TWI471291B - 由羰基化合物和氰化氫製備羧醯胺的方法 - Google Patents

由羰基化合物和氰化氫製備羧醯胺的方法 Download PDF

Info

Publication number
TWI471291B
TWI471291B TW98140350A TW98140350A TWI471291B TW I471291 B TWI471291 B TW I471291B TW 98140350 A TW98140350 A TW 98140350A TW 98140350 A TW98140350 A TW 98140350A TW I471291 B TWI471291 B TW I471291B
Authority
TW
Taiwan
Prior art keywords
reaction
carbonyl compound
hydrogen cyanide
cyanohydrin
meth
Prior art date
Application number
TW98140350A
Other languages
English (en)
Other versions
TW201031622A (en
Inventor
Alexander May
Martin Koestner
Joerg Becker
Joerg Schallenberg
Hermann Siegert
Bernd Vogel
Original Assignee
Evonik Roehm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm Gmbh filed Critical Evonik Roehm Gmbh
Publication of TW201031622A publication Critical patent/TW201031622A/zh
Application granted granted Critical
Publication of TWI471291B publication Critical patent/TWI471291B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • C07C231/065By hydration using metals or metallic ions as catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles

Description

由羰基化合物和氰化氫製備羧醯胺的方法
本發明關於一種由羰基化合物和氰化氫製備羧醯胺的方法。本發明進一步關於一種製備(甲基)丙烯酸烷酯和聚合物的方法,及製造模塑材料和聚合物模塑物的方法。
藉由在包含二氧化錳的觸媒存在下水解腈類的羧醯胺製備已為先前技藝多年。羧醯胺為工業上許多情況中必要的中間物。例如,α-羥基異丁醯胺可用於製備甲基丙烯酸或甲基丙烯酸酯,尤其是甲基丙烯酸甲酯。
一種製備羧醯胺的特佳方法詳述於WO 2008/061822 A1中。
雖然前文詳述之文件的教示已導向相當便宜的製備,但是對進一步改進此方法仍有常在的要求。典型地,由氰化氫與羰基化合物(尤其為丙酮)的反應所獲得的氰醇係藉由添加酸來予以安定化。此安定化作用必須在氰醇轉化成羧醯胺之前移除,而此移除典型地由蒸餾完成。WO 2008/061822 A1陳述在丙酮與氰化氫反應之後所獲得的混合物可用於水解。然而,其中未陳述是否必須進行純化。此純化通常包含兩階段蒸餾,未轉化之反應物在第一階段中移出。在第二階段中,用於安定化的酸典型地從氰醇中移出。若不以例如蒸餾進行純化,則會得到相對短的觸媒使用壽命。在使用經蒸餾之反應混合物的情況中,觸媒的使用壽命可有相當大的改善,雖然此方法的整體效率由於蒸餾的能量消耗而變差。
鑑於先前技藝,本發明的目的因此係提供製備羧醯胺的方法,其可以特別簡單且便宜的方式進行,且具有高產率。更特定言之,特別的問題應是提供一種具有高速率、低能量使用及低產率損失的方法,其確保用於製備羧醯胺之觸媒有特別長的壽命及工廠有長的使用壽命。
未明確陳述但是由引介方式於本文討論的關聯性可立即推論或辨別的這些目的和其他目的,係藉由具有申請專利範圍第1項之所有特點的方法達成。根據本發明方法之適當修改受到附屬項的保護。關於製備(甲基)丙烯酸烷酯和聚合物及製造模塑材料和聚合物模塑物的方法,申請專利範圍第22、24、26及27項提供解決在這些目的之下的問題之辦法。
據此,本發明提供一種由羰基化合物和氰化氫製備羧醯胺的方法,其包含以下步驟
A)令羰基化合物與氰化氫反應以製備羥腈,
B)將步驟A)中獲得的羥腈在包含二氧化錳的觸媒存在下水解,其特徵在於將相對於氰化氫為莫耳過量之羰基化合物用於步驟A)中的羰基化合物與氰化氫的反應,且在步驟A)中獲得的反應混合物在進行步驟B)中的水解前未經蒸餾純化。因此,意外的是有可能提供特別的節能效率法,其能賦予長的觸媒使用壽命。
同時,根據本發明的方法可達成一系列的更多優點。這些優點中之一是根據本發明的方法可延長用於製備羧醯胺之工廠的使用壽命至出乎意料地顯著的程度。此允許在高速率下特別有效率且便宜地進行本方法,且具有低能量使用和低產率損失。
根據本發明的方法能達成有效率的羧醯胺製備。在此方法中,尤其使用羰基化合物,其通常具有式-CO-之基團。羧醯胺包含至少一個式-CONH2 之基團。這些化合物為技術領域中所知且敘述於例如Rmpp Chemie Lexikon on CD-ROM中。
所使用之反應物尤其可為脂族或環脂族羰基化合物、飽和或不飽和羰基化合物及芳族和雜芳族羰基化合物。用作為反應物的羰基化合物可具有一、二或多個羰基。另外,亦有可能使用在芳族或脂族基中具有雜原子,尤其為鹵素原子,諸如氯、溴、氟、氧、硫及/或氮原子的羰基化合物。特別適合的羰基化合物較佳地包含1至100個,更佳為2至20個,而最佳為2至5個碳原子。
特別佳的羰基化合物包括具有3至5個碳原子之脂族或雜脂族酮,例如丙酮,及具有2至5個碳原子之脂族或雜脂族醛,例如3-甲基-巰基丙醛或乙醛。在此以丙酮作為反應物特別佳。
這些化合物可單獨或成為混合物與氰化氫(HCN)反應,得到α-羥腈(氰醇),例如α-羥基-γ-甲硫基丁腈(2-羥基-4-甲硫基丁腈)、2-羥基丙腈(乳腈)及2-羥基-2-甲基丙腈(丙酮氰醇),特別優先選擇為丙酮氰醇。
羰基化合物係使用以氰化氫為基準計過量的莫耳數。羰基化合物對氰化氫之莫耳比較佳地可在從1.1:1至7:1之範圍內,較佳為1.5:1至5:1,而最佳在從2:1至3:1之範圍內。
優先選擇令羰基化合物與氰化氫在步驟A)中於鹼存在下反應。在此有可能使用陰離子交換劑。優先選擇使用氫氧化物或氧化物,其更佳地由鹼土金屬或鹼金屬所形成。這些包括Ca(OH)2 和Mg(OH)2 、MgO、CaO、NaOH、KOH、LiOH或Li2 O。在此最特別優先選擇使用LiOH或Li2 O。將較佳為0.001至10重量%,更佳為0.01重量%至2重量%之氫氧化物及/或氧化物添加至羰基化合物與氰化氫反應的反應混合物中。在本發明的特別修改中,氫氧化物及/或氧化物之比例可經選擇使得沒必要添加更多鹼來調整在步驟B)中的後續水解反應之pH。
理論上,亦有可能使用可溶性胺來調整pH。然而,頃發現使用這些胺可對步驟B)中用於水解的觸媒壽命有不利的影響。除了具有一個氮原子的有機化合物以外,氨(NH3 )亦可包括在本發明的上下文中的胺中。可溶性胺在反應混合物中的比例因此較佳為至多0.1重量%,更佳為至多0.01重量%,而最佳為至多0.001重量%。在特別的觀點中,沒有顯著的這些胺比例添加至反應混合物中來調整pH。
進行羰基化合物與氰化氫反應的溫度通常可在從-30至70℃之範圍內,較佳在從-20至60℃之範圍內,尤其在從-10至50℃之範圍內,而更佳在從-5至40℃之範圍內。
在步驟A)中形成羥腈的反應可根據反應溫度在減壓或增壓下進行。此反應較佳地在從0.5至10巴,更佳在0.8至3巴之壓力範圍內進行。
在步驟A)中形成羥腈的反應時間係取決於包括所使用之羰基化合物、觸媒活性及反應溫度之因素而定,這些參數在此可於寬闊的範圍內。羰基化合物與HCN反應的反應時間較佳在從30秒至15小時之範圍內,更佳為10分鐘至5小時,而最佳為30分鐘至3小時。
在連續的方法中,在步驟A)中的反應之滯留時間較佳為30秒至15小時,更佳為10分鐘至5小時,而最佳為30分鐘至3小時。
在步驟A)中的反應之後所製備的反應混合物在步驟B)中的水解之前未經蒸餾純化,與先前技藝之方法形成對比。在此應瞭解蒸餾意指憑藉著混合物成分不同的沸點而使反應混合物分離。此允許以相當大的效率達成本方法的改進。在步驟A)中特別的反應構型中,不需要任何純化。反而將步驟A)中的反應之後所獲得的混合物可直接送至步驟B)中的水解反應中。
根據本發明,在步驟A)中獲得的腈之水解係在包含二氧化錳的觸媒存在下進行。憑藉著其他價態的錳併入晶格中而使天然與合成的二氧化錳之化學計量組成物較佳地在介於MnO1.7 與MnO2.0 之間的範圍內。二氧化錳係以數種多晶形存在。彼等在作為觸媒的行為上有顯著的差異。在最穩定的多晶形黑軟錳礦(pyrolysite)(β-二氧化錳)中,結晶度最顯著。在更多的多晶形中的結晶度較不顯著且向下延伸至非晶形產物,其包括α-或δ-MnO2 。以X-射線繞射可指認出多晶形。可將二氧化錳的一些化學和催化上特別的活性形式水合且另外含有羥基。
包含二氧化錳的觸媒可包含更多的化合物或離子。這些尤其包括鹼金屬及/或鹼土金屬離子,其可在製備中引入晶格中或沉積在觸媒表面上。較佳的鹼金屬離子尤其包括鋰、鈉及/或鉀離子。較佳的鹼土金屬離子尤其包括鈣及/或鎂離子。鹼金屬及/或鹼土金屬的含量可以每一錳原子計較佳為少於0.6個原子。鹼金屬及/或鹼土金屬對錳之原子比較佳在從0.01:1至0.5:1之範圍內,更佳在從0.05:1至0.4:1之範圍內。
另外,包含二氧化錳的觸媒可包含促進劑,其同樣可引入晶格中或沉積在觸媒表面上。較佳的促進劑包括Ti、Zr、V、Nb、Ta、Cr、Mo、W、Zn、Ga、In、Ge、Sn和Pt。促進劑的含量可以每一錳原子計較佳為少於0.3個原子。促進劑對錳之原子比較佳在從0.001:1至0.2:1之範圍內,更佳在從0.005:1至0.1:1之範圍內。包含二氧化錳的觸媒較佳地可包含0.01至10重量%,更佳為0.1至5重量%之促進劑,此參數係以金屬或金屬離子所測量之重量為基準。
另外,適合的觸媒可包含SiO2 的部分或其他的黏合劑,以增加機械穩定性,如在例如EP-A-0 956 898中所詳述。
特別佳的觸媒包含例如0.0至25重量%,尤其為0.1至2重量%之SiO2 ;0.1至10重量%,尤其為2至7重量%之K2 O;0.0至5重量%,尤其為0.2至4重量%之ZrO2 ;及75至99重量%,尤其為85至98重量%之MnO2 。觸媒可包含更多如前文詳述的元素。觸媒的組成物可以半定量的X-射線螢光分析來測定。
包含二氧化錳的較佳觸媒在以粉末所測量的X-射線光譜(XRD)中具有至少一個在從32.0至42.0°之範圍內的反射值。X-射線光譜可以例如來自Panalytical之Xpert pro系統獲得。在從32.0至42.0°之範圍內的此反射值更佳地具有關於在從20°至65°之範圍內的更多強度的最大強度,經測量為最大反射值。特別佳的觸媒展現低的結晶度且此尤其可從X-射線光譜觀察出。特別佳的觸媒結構可經指認為以ICDD(繞射數據之國際中心(International Centre for Diffraction Data))提出之結構編號44-0141或72-1982,特別優先選擇為具有根據44-0141之結構的晶體。
鹼金屬及/或鹼土金屬離子及促進劑可呈例如鹽形式添加至觸媒的製備中。例如,特別可能使用前述物質的鹵化物、硝酸鹽、硫酸鹽、碳酸鹽、磷酸鹽及氫氧化物,優先選擇使用可溶於水中的化合物。
包含二氧化錳的觸媒較佳地可包含至少50重量%,更佳為至少80重量%之具有實驗式MnOx 之二氧化錳,其中x係在從1.7至2.0之範圍內。
在本發明的特別觀點中,包含二氧化錳的觸媒可具有在從50至1000平方公尺/公克,更佳為100至300平方公尺/公克,而最佳為150至250平方公尺/公克之範圍內的比表面積(BET),其係根據試驗方法DIN 66131所測定。
取決於反應器類型而定,可使用例如呈粉末或顆粒形式之觸媒,在許多例子中的粒度係取決於所使用之反應容器。
包含二氧化錳且已敘述於前的觸媒之製備作用就其本身而言為已知的且詳述於例如EP-A-0 379 111、EP-A-0 956 898、EP-A-0545697和EP-A-0 433 611中。包含二氧化錳且依照本發明使用的觸媒較佳地可藉由以過錳酸鹽(例如,過錳酸鉀)氧化Mn2+ 鹽(例如,MnSO4 )而獲得(參見Biochem. J.,50,p.43(1951)和J. Chem. Soc.,p.2189,1953)。另外,適合的二氧化錳可藉由硫酸錳於水溶液中的電解氧化反應而獲得。
具有根據44-0141之結構的觸媒可藉由例如將含有0.71莫耳Mn(II)SO4 (在溶液中總計15重量%之Mn2+ )、0.043莫耳Zr(IV)(SO4 )2 、0.488莫耳濃縮硫酸及13.24莫耳水之水溶液在70℃下快速添加至64.5莫耳水中的1.09莫耳KMnO4 之溶液中而獲得。可將具有所形成之沉澱物的上層澄清液加熱至90℃經3小時。接著可將沉澱物濾出,以1公升水清洗四次及在110℃下經12小時乾燥。
添加至包含二氧化錳的觸媒中之反應混合物較佳地具有在從6.0至11.0,較佳為6.5至10.0,而最佳為8.5至9.5之範圍內的pH。在此上下文中,pH係經定義為水合氫離子(H3 O+ )之活性的負十對數。此參數因此取決於包括溫度之因素而定,此參數係以反應溫度為基準。就本發明的目的而言,在許多例子中以電測量單元(pH計)足以測定此參數,在室溫下測定就許多目的而言足以代替反應溫度的測定。pH較佳地可在步驟A)中的羥腈製備過程中儘早調整,在此例子中,較佳地可使用前述指明之氧化物和氫氧化物。
在此應強調包含二氧化錳的觸媒在許多例子中具有兩性性質;因此,在反應中的反應混合物之pH受到觸媒類型和量的重大影響。以〝添加至包含二氧化錳的觸媒中之反應混合物〞用語確信pH係在沒有觸媒存在下測量。反應混合物的更多成分包括例如溶劑、水、腈等。
意外地發現在鋰離子存在下的水解造成包含二氧化錳的觸媒有特別長的壽命。據此,根據本發明的方法可藉由添加鋰化合物(尤其為水溶性鋰鹽)至反應混合物中而進一步改進,例如LiCl、LiBr、Li2 SO4 、LiOH及/或Li2 O。鋰化合物的濃度較佳在0.001至5重量%,更佳為0.01重量%至1重量%之範圍內。此添加可在水解反應期間或之前進行。
腈水解成羧醯胺較佳地發生在氧化劑存在下。適合的氧化劑廣為技術領域中所知。這些氧化劑包括含氧氣體;過氧化物,例如過氧化氫(H2 O2 )、過氧化鈉、過氧化鉀、過氧化鎂、過氧化鈣、過氧化鋇、過氧化苯甲醯和過氧化二乙醯;過酸或過酸之鹽,例如過甲酸、過乙酸、過硫酸鈉、過硫酸銨和過硫酸鉀;及含氧酸或含氧酸之鹽,例如過碘酸、過碘酸鉀、過碘酸鈉、過氯酸、過氯酸鉀、過氯酸鈉、氯酸鉀、氯酸鈉、溴酸鉀、碘酸鈉、碘酸、次氯酸鈉、過錳酸鹽(例如,過錳酸鉀、過錳酸鈉及過錳酸鋰)和鉻酸之鹽(例如,鉻酸鉀、鉻酸鈉及鉻酸銨)。
所使用之氧化劑量可在寬闊的範圍內,但是反應物和產物不應被氧化劑氧化。這些物質的氧化敏感性因此可限制氧化劑的使用。下限引起欲達成之觸媒使用壽命的改進。氧化劑對腈之莫耳比較佳在0.001:1至2:1,更佳為0.01:1至1.5:1之範圍內。
這些氧化劑可添加至反應混合物中,例如以溶液及/或氣體。所使用之氧化劑更佳為包含氧之氣體。在此例子中,氣體可包含分子氧(O2 )或臭氧(O3 )。另外,用作為氧化劑的氣體可包含更多氣體,尤其為惰性氣體,諸如氮或稀有氣體。在特別的觀點中,氣體較佳地可包含50至98體積%之惰性氣體及2至50體積%之分子氧(O2 )。較佳的氣體特別包括空氣。另外,亦有可能使用含有少於20體積%,特別少於10體積%之分子氧的氣體,這些氣體通常含有至少1體積%,較佳為至少2體積%之氧。
包含氧且通過反應混合物的氣體量可以包含二氧化錳的1公斤觸媒為基準計較佳在1至5000公升/小時之範圍內,更佳在從10至1000公升/小時之範圍內。
使腈水解所必要之水可在許多例子中用作為溶劑。水對腈之莫耳比較佳為至少1;水對腈之莫耳比更佳在0.5:1-25:1之範圍內,而最佳在1:1-10:1之範圍內。
用於水解的水可具有高純度。然而,此性質不必然。不但以新鮮水,如此亦有可能使用包含較多或較少雜質量的工業用水或程序用水。據此,亦有可能以再循環水用於水解。
另外,更多的成分可存在於腈水解的反應混合物中。這些成分包括羰基化合物,諸如醛和酮,尤其為那些已用於製備優先用作為腈的氰醇之化合物。例如,丙酮及/或乙醛可存在於反應混合物中。此敘述於例如US 4018829-A中。所添加之醛及/或酮的純度通常不特別重要。據此,這些物質可包含雜質,尤其為醇(例如,甲醇)、水及/或α-羥基異丁酸甲酯(MHIB)。在反應混合物中的羰基化合物,尤其為丙酮及/或乙醛可使用在寬闊範圍內的量。羰基化合物較佳地使用以每莫耳腈計0.1-6莫耳,較佳為0.1-2莫耳的量。在本發明的特別修改中,可將此羰基化合物全部於步驟A)中添加,所以可使此過量循環。
進行水解反應的溫度通常可在10-150℃之範圍內,較佳在20-100℃之範圍內,而更佳在30-80℃之範圍內。
取決於反應溫度而定,水解反應可在減壓或增壓下進行。優先選擇在0.1-10巴,更佳為0.5至5巴之壓力範圍內進行此反應。
水解反應的反應時間取決於包括所使用之腈、觸媒活性及反應溫度之因素而定,且這些參數可在寬闊的範圍內。水解反應的反應時間較佳在30秒至15小時,更佳在15分鐘至10小時,而最佳在60分鐘至5小時之範圍內。
在連續法中,滯留時間較佳為30秒至15小時,更佳為15分鐘至10小時,而最佳為60分鐘至5小時。
以腈之觸媒裝載量可在寬闊的範圍內。優先選擇使用以每小時以每公克觸媒計0.01至2.0公克,更佳為0.05至1.0公克,而最佳為0.1至0.4公克腈。
在步驟B)中的反應可在例如固定床反應器或在懸浮反應器中進行。若使用氣體作為氧化劑,則特別有可能使用所謂的滴流床反應器,其能賦予氣體、固體與液體好的接觸。在滴流床反應器中,觸媒呈固定床形式排列。在此例子中,滴流床反應器可以並流或逆流模式操作。
在步驟B)之後所獲得的反應混合物不但包含所欲之羧醯胺,通常還包含更多成分,尤其為未轉化之腈或氰化氫、過量使用的羰基化合物(尤其為丙酮及/或乙醛)和過量使用的水。
據此,通常將反應混合物分離,為了使已使用之反應物再轉化。在本發明的修改中,在步驟B)之後所獲得的反應混合物可以兩階段蒸餾純化。
在步驟B)之後所獲得的反應混合物通常仍包含羥腈比例。羥腈的沸點比水的沸點高。與此有關聯的問題可藉由將羥腈分解成羰基化合物和氰化氫而輕易地解決。此分解可在例如鹼存在下(以陰離子交換劑較佳)催化,該鹼係提供於例如蒸餾器底部。
在本發明的第一個修改中,在第一個蒸餾步驟a)中,所產生的羧醯胺可與包含水、羰基化合物和羥腈及/或氰化氫之混合物分離。在此例子中,羥腈較佳地可分離成羰基化合物和氰化氫。因此獲得的混合物可在第二個蒸餾步驟b)中純化,在此例子中,羰基化合物和氰化氫可經由第二蒸餾器頂端抽出及水係經由第二蒸餾器底部抽出。
用於分離步驟B)中獲得的反應混合物成為羧醯胺及包含水、羰基化合物和羥腈及/或氰化氫之混合物的第一蒸餾步驟a)較佳在從110至260℃之範圍內,更佳在從140至230℃之範圍內的溫度下進行。在此壓力較佳在從0.002至1巴之範圍內,更佳在從10至500毫巴之範圍內。本文陳述之蒸餾溫度尤其係以底部溫度為基準。
在水與羰基化合物和氰化氫在步驟b)中分離的溫度通常可在從50至150℃之範圍內,較佳在從70至120℃之範圍內,而更佳在從90至110℃之範圍內。第二蒸餾步驟b)較佳地可在從0.2至5巴,更佳在0.7至1.5巴之壓力範圍內進行。
在特別佳的具體例中,羰基化合物和氰化氫可先經由第一蒸餾步驟a’)中的頂端從步驟B)之後所獲得的反應混合物移出。
在此例子中,羥腈先分離成羰基化合物和氰化氫,且以此方式同樣經由頂端從混合物移出。在此方式中獲得的氰化氫和羰基化合物可用於步驟A)中製備羥腈。從底部獲得的混合物包含水和羧醯胺。此混合物係在第二步驟b’)中分離,其中羧醯胺可有利地以多階段蒸發濃縮(亦已知為多階段蒸發)與水分離。在此例子中,由最初能量所產生的蒸氣量用作為較低壓力水平下的第二階段中的液相之加熱介質。此原理可連續經過數個階段以節省能量。有利地,多階段蒸發濃縮包含2至4個這些分離階段。多階段蒸發濃縮的原理更詳細地敘述於發表文中,包括H. G. Hirschberg,Handbuch der Verfahrenstechnik und des Anlagenbau[Handbook of Process Technology and of Plant Construction],Springer 1999,以揭示內容為目的參考此文件。此構型意外能賦予步驟B)中獲得的反應混合物特別的節能效率之純化作用。所產生的水可用於步驟B)中的水解。
用於分離步驟B)中獲得的反應混合物成為羧醯胺和水及包含羰基化合物和氫化氫的第一蒸餾步驟a’)較佳地可在從50至170℃之範圍內,更佳在從90至120℃之範圍內的溫度下進行。在此步驟a’)中的壓力較佳在從0.4至5巴之範圍內,更佳在從0.7至2巴之範圍內。本文所陳述之蒸餾溫度尤其與底部溫度有關。
可在步驟b’)中分離水和羧醯胺的溫度通常可在從90至260℃之範圍內,較佳在從100至180℃之範圍內。第二蒸餾步驟b’)較佳地可在從10毫巴至20巴,更佳在100毫巴至10巴之壓力範圍內進行。高壓力值尤其適用於多階段蒸發濃縮的第一階段。
關於工廠的使用壽命和觸媒壽命的意外優點尤其可憑藉包含在步驟A)中使用的羰基化合物之組成物經由回流引入用於分離水與氰化氫之蒸餾器而達成,引入回流的組成物具有比經由蒸餾器頂端抽出之組成物低的HCN比例。在引入回流中的組成物中的HCN之重量比例較佳為至多60%,更佳為至多40%,而最佳為至多10%之存在於經由蒸餾器頂端抽出之組成物中的HCN量,該量係以重量為基準計。引入蒸餾器的回流中的組成物更佳地基本上不包含HCN。關於此點,應強調羥腈可從移出的羰基化合物和氰化氫形成,且同樣不應再循環至蒸餾器中。據此,前述關於返回蒸餾器的HCN量之數字係指自由HCN與呈羥腈形式黏結的HCN之總量。黏結之HCN量可藉由分解羥腈來測定。據此,引入蒸餾器的回流中的組成物基本上亦不包含羥腈。
在本發明較佳的修改中,在分離水與氰化氫的過程中移出的羰基化合物用於步驟A)中製備羥腈。據此,相應於蒸餾步驟的頂端產物較佳地用於製備在步驟B)中使用的羥腈。據此,所獲得的水可用於在步驟B)中的羥腈水解。
觸媒壽命的進一步改進尤其可經由使用具有高分離性能的塔來達成,尤其在分離水與氰化氫時。據此,以此為目的較佳地使用一種具有二或多個分離階段的蒸餾塔。在本發明中,分離階段的數量係指盤式塔中的盤數量或在具有結構化填料之塔或具有隨意填料之塔的例子中的理論板數量。
具有盤的多階段蒸餾塔的實例包括那些諸如泡罩盤、篩盤、隧道式罩盤、閥盤、狹縫盤、狹縫篩盤、泡罩篩盤、噴射盤、離心盤之塔;具有隨意填料之多階段蒸餾塔而言,包括那些諸如Raschig環、Lessing環、Pall環、Berl鞍、Intalox鞍之塔;及具有結構化填料之多階段蒸餾塔而言,包括那些諸如Mellapak(Sulzer)、Rombopak(Khni)、Montz-Pak(Montz)型及具有觸媒包之結構化填料(例如,Kata-Pak)之塔。
同樣地可使用具有盤區、隨意填料區或結構化填料區之組合的蒸餾塔。
使用具有高分離性能的蒸餾塔及具有低的氰化氫含量的回流允許用於水解的水相中的HCN比例保持非常低。優先選擇以僅包含異常低的氰化氫比例之水相再循環至水解,有可能尤其達成以再循環之水相為基準計少於1重量%,更佳少於0.5重量%,而更佳少於0.1重量%之氰化氫值。
意外的優點尤其可憑藉在分離水與氰化氫的蒸餾步驟中所添加的羰基化合物量來達成,該量係經選擇使其足以製備在步驟A)中所設想的羥腈量。據此,用於HCN轉化所必需之羰基化合物較佳地完全添加至用於蒸餾包含在步驟A)中使用的水、HCN和羰基化合物之混合物的蒸餾器回流中。根據構型,此可在第一或第二蒸餾中做到。
另外,包含純化之羧醯胺的反應混合物可以離子交換塔的方式純化,以移出更多成分。
為此目的,有可能尤其使用陽離子交換劑和陰離子交換劑。適合於此目的的離子交換劑就其本身而言為已知的。例如,有可能藉由將苯乙烯-二乙烯苯共聚物磺酸化而獲得適合的陽離子交換劑。鹼性陰離子交換劑包含與苯乙烯-二乙烯苯共聚物共價鍵結的四級銨基團。
α-羥基羧醯胺的純化尤其更詳細地述敘於EP-A-0686623中。
本發明的水解反應可特別適任為製備(甲基)丙烯酸的方法中之中間物步驟。術語〝(甲基)丙烯酸單體〞包含甲基丙烯酸單體和丙烯酸單體及二者之混合物。術語〝(甲基)丙烯酸單體〞尤其包括(甲基)丙烯酸,特別為丙烯酸(丙烯酸(propenoic acid))和甲基丙烯酸(2-甲基丙烯酸)及這些酸之酯,亦稱為(甲基)丙烯酸酯。據此,本發明亦提供一種製備(甲基)丙烯酸烷酯,尤其為甲基丙烯酸甲酯的方法,其具有根據本發明方法的水解步驟。可具有氰醇之水解步驟以製備(甲基)丙烯酸及/或(甲基)丙烯酸烷酯的方法尤其詳述於EP-A-0 406 676、EP-A-0 407 811、EP-A-0 686 623和EP-A-0 941 984中。
在特別佳的具體例中,有可能藉由包含下列步驟的方法以簡單且便宜的方式由羰基化合物、氰化氫和醇獲得(甲基)丙烯酸烷酯:
A)藉由至少一種羰基化合物與氰化氫反應以形成至少一種氰醇;
B)將氰醇或氰醇類水解,以形成至少一種α-羥基羧醯胺;
C)將α-羥基羧醯胺或α-羥基羧醯胺類醇解,以獲得至少一種α-羥基羧酸烷酯;
D)將α-羥基羧酸烷酯或α-羥基羧酸烷酯類以(甲基)丙烯酸轉酯化,以形成至少一種(甲基)丙烯酸烷酯和至少一種α-羥基羧酸;
E)將α-羥基羧酸或α-羥基羧酸類脫水,以形成(甲基)丙烯酸。
步驟A)和B)已詳細解釋於上。在下一步驟C)中,可將因此獲得的α-羥基羧醯胺轉化成α-羥基羧酸烷酯。此可藉由例如使用甲酸烷酯來做到。尤其適合的反應物為甲酸甲酯或甲醇與一氧化碳之混合物,此反應係以實例方式敘述於EP-A-0407811中。
優先選擇令α-羥基羧醯胺與醇以醇解反應,該醇較佳地包含1-10個碳原子,更佳為1-5個碳原子。較佳的醇包括甲醇、乙醇、丙醇、丁醇,尤其為正丁醇及2-甲基-1-丙醇、戊醇、己醇、庚醇、2-乙基己醇、辛醇、壬醇和癸醇。所使用之醇更佳為甲醇及/或乙醇,最特別優先選擇為甲醇。以羧醯胺與醇獲得羧酸酯的反應為一般知識。
α-羥基羧醯胺對醇之莫耳比(例如,α-羥基異丁醯胺對甲醇)本身不重要,且較佳在從3:1至1:20之範圍內。此莫耳比最特別適合在從2:1至1:15之範圍內,而更佳在從1:1至1:10之範圍內。
反應溫度可同樣在寬闊的範圍內,反應速度通常隨溫度增加而增加。溫度上限通常源自於所使用之醇的沸點。反應溫度較佳在從40-300℃,更佳在160-240℃之範圍內。反應可取決於反應溫度而在減壓或增壓下進行。此反應較佳在0.5-200巴之壓力範圍下進行,特別適合在1至100巴,而更佳在5至30巴之範圍內。
在特別的具體例中,在α-羥基羧醯胺與醇之間的反應可在壓力反應器中進行。原則上應瞭解此意指准許在反應期間維持增壓的反應室。在此上下文中,增壓意指大於大氣壓力的壓力,亦即特別大於1巴。壓力較佳地可在從大於1巴至少於100巴之範圍內。據此,在α-羥基羧醯胺的反應/醇解期間及在從反應混合物移出氨期間二者的壓力可大於大氣壓力或大於1巴。因此,在反應中形成的氨可在大於1巴的壓力下從混合物蒸餾出,且有可能完全免除用於蒸餾移出氨的輔助劑(諸如汽提氣)。
產物混合物不僅可耗盡氨,亦可耗盡未轉化之醇。尤其在以甲醇用於醇解的例子中,結果是尤其包含氨和甲醇組份的產物混合物,原則上該等組份非常難以彼此分離。在最簡單的例子中,產物混合物係藉由從產物混合物直接移出成為物質混合物的該兩種組份而耗盡氨和醇。接著使這兩種物質接受分離操作,例如精餾。另外,可將兩種組份醇(甲醇)和氨在單一操作中與反產物混合物分離,且同時可將兩種成分氨和醇(甲醇)彼此分離。
反應步驟及從產物混合物移出氨/醇可在彼此以空間獨立且於不同的單位中進行。就此目的而言,有可能例如提供一或多個壓力反應器且連接至壓力蒸餾塔。此系統包含一或多個排列在塔外的單獨區域內的反應器。
優先選擇使用連續法製備α-羥基羧酸酯,其中令α-羥基羧醯胺反應物與醇在觸媒存在下反應,以獲得包含α-羥基羧酸酯、氨、未轉化之α-羥基羧醯胺及醇和觸媒之產物混合物,該方法係藉由下列步驟:
a’)將包含α-羥基羧醯胺、醇和觸媒的反應物流作為反應物進料至壓力反應器中;
b’)將反應物流在從大於1巴至100巴之範圍內的壓力下之壓力反應器中彼此反應;
c’)將從步驟b’)所產生且包含α-羥基羧酸酯、未轉化之α-羥基羧醯胺和觸媒之產物混合物從壓力反應器排出;及
d’)耗盡產物混合物的醇和氨,氨係在固定保持大於1巴之壓力下蒸餾出。
在此例子中,可藉由下列步驟提供一種特別適當的方法修改:
b1)將反應物在從5巴至70巴之範圍內的壓力下之壓力反應器中彼此反應;
b2)將從步驟b1)所產生的產物混合物降壓至少於壓力反應器中的壓力但大於1巴之壓力;
c1)將從步驟b2)所產生的降壓之產物混合物進料至蒸餾塔中;
c2)在蒸餾塔中經由頂端蒸餾出氨和醇,將蒸餾塔中的壓力保持在從大於1巴至少於10巴之範圍內;及
d1)將從步驟c2)所產生的產物混合物從塔排出,該產物混合物已耗盡氨和醇,且包含α-羥基羧酸酯、未轉化之α-羥基羧醯胺和觸媒。
在此較佳的方法變化中,反應物的反應及氨/醇的移出係發生在兩個不同空間的獨立單位中。換言之,反應器/反應室及用於從產物混合物移出氨/醇的分離單元彼此分離。此具有可以不同的壓力範圍用於反應物反應及後續的氨/醇移出的優點。分離成在壓力反應器中的反應步驟在比壓力塔中的分離步驟中更高的壓力下的方法(兩個步驟皆在增壓下進行,亦即大於1巴)意外地允許再一次顯著地改進分離作用且增加氨/醇混合物的移出效率。
所述及之品質特色甚至可藉由以在分離塔(壓力蒸餾塔)底部耗盡氨和醇的產物混合物重複一次或一次以上在壓力反應器中的反應而進一步改進,該反應步驟可移轉至多個串連的壓力反應器中。
關於此點,最特別的優先選擇為以下列步驟特徵化的方法變化:
e)將步驟d1)中排出的產物混合物加壓至從5到70巴之範圍內的壓力;
f)將以步驟e)中的該方式加壓之混合物進料至用於反應的另一壓力反應器中且允許其再反應;及
g)重覆根據前文名單的步驟b2)、c1)、c2)及d1)。
據此,特別有興趣將耗盡氨和醇之混合物從第一蒸餾塔底部上方的盤中抽出,加壓至大於蒸餾塔中的壓力及接著進料至第二壓力反應器中,由此在增壓和增溫作用下獲得兩次反應之產物混合物的另一次反應之後,將其依次降壓至少於第二壓力反應器但大於1巴之壓力,且接著再循環至第一蒸餾塔中,該第一蒸餾塔係在進行進料至第二壓力反應器中的盤下方,但是在第一蒸餾塔的底部上方,在此再經由頂端蒸餾出氨和醇,以獲得經兩次耗盡氨和醇之混合物。
此方法步驟可依要求重覆,例如以重複三至四次特別適宜。關於此點,優先選擇以重複一次以上下列步驟為特徵的方法:在壓力反應器中的反應,反應過的混合物降壓,進料至第一蒸餾塔中,在第一蒸餾塔中耗盡氨和醇,抽出耗盡氨和醇之混合物,加壓及進料耗盡氨和醇之混合物至另一壓力反應器中,以獲得在壓力蒸餾塔底部耗盡n次氨和醇之產物混合物,其係取決於串連的壓力反應器數量n而定。在此上下文中,n可為大於0之正整數,n較佳在從2至10之範圍內。
適當的方法修改係設想重複一次以上前文述及且定義之步驟e)至g)。
最特殊的方法變化包含使用四個串連的壓力反應器進行四次反應及耗盡氨和醇,以獲得經四次耗盡氨和醇之產物混合物。此方法變化據此係以重複至少兩次以上步驟e)至g)為特徵,所以反應係在全部至少四個串連的壓力反應器中進行。
頃發現不同的溫度範圍特別適合於經指明之方法變化的塔及反應器中。
例如,壓力蒸餾塔通常且較佳地可具有在從約50℃至約160℃之範圍內的溫度。確切的溫度典型地由現行之壓力條件為函數的沸騰系統來建立。
在反應器中的溫度較佳在從約120-240℃之範圍內。最特別適合的是逐步越低從反應器至反應器的溫度,例如以從3-15℃之範圍逐步降低,較佳以4-10℃,而最特別佳以5℃逐步降低。此係以正面影響反應的選擇率。
增加選擇率的另一對策亦可在於逐步減少從反應器至反應器的反應器體積。隨著轉化率增加而減少的反應器體積同樣給予改進的選擇率。
如已於前文所述,適宜在壓力蒸餾塔中的特定點上抽出欲從塔中抽出的產物混合物。在此上下文中,為了定位,使用從塔底部起的抽出點距離作為位置的相對陳述。特別適當地,在本發明的上下文中的程序是在每個新反應之後,將根據步驟c1)的降壓之產物混合物進料至以前一步驟c1)進料的進料點為基準更緊鄰於蒸餾塔底部的壓力反應器中。
除了其中α-羥基羧醯胺與醇的反應係藉由移出氨(其為一種在兩個空間獨立但是連接的單元中所產生的產物)來進行的所述變化以外,在另一方法修改中,較佳的是在單一單元中進行反應步驟和移出步驟。在此例子中,壓力反應器和壓力蒸餾塔經實現於單一單元中且有效地同時發生。
在本發明的前述變化中,較佳地在適任為反應器的反應性蒸餾塔中觀察的壓力範圍可在寬闊的範圍內變化。本發明較佳的具體例包含同時在從5巴至40巴之範圍內的壓力下之反應性蒸餾塔中進行步驟a)至c)。特別適當的方法為一種以步驟a)至c)同時在從10巴至30巴之範圍內的壓力下之在反應性蒸餾塔中進行為特徵的方法。
在本發明較佳的變化中,反應物的反應係在經設計為壓力塔的反應性蒸餾塔中進行,且所形成之氨在反應期間經由塔頂端連續蒸餾出。此達成氨可以不必減低壓力的很簡單方式移出且可以高純度回收的意外效果。特別有興趣的另一變化為一種其中氨係在壓力下經由塔頂端蒸餾出及醇係經由底部或經由側流從塔移出的方法。由於反應性蒸餾塔的經適當配置之分離作用,因此達成氨與醇的立即分離。
在本發明的一種變化中,可使用較佳地具有二或多個分離階段的任何多階段耐壓反應性蒸餾塔。此等反應性蒸餾器經與步驟D)有關的詳細解釋,且這些蒸餾器亦可用於羧醯胺與醇的反應。
耗盡氨之產物混合物尤其含有所欲之α-羥基羧酸酯。為了進一步分離及純化酯,有可能於適當的方法修改中經由反應性蒸餾塔底部抽取耗盡氨之產物混合物且進料至另一第二蒸餾塔中,醇在此經由塔頂端蒸餾出且較佳地再循環至反應器中,以獲得氨和醇二者耗盡之混合物。
為了從耗盡氨和醇之混合物進一步分離及回收α-羥基羧酸酯,接著優先選擇其中將耗盡氨和醇之混合物經由另一蒸餾塔底部排出且進料至又另一蒸餾塔中的方法,其中α-羥基羧酸酯係經由頂端蒸餾出,並將因此獲得的耗盡氨、醇和α-羥基羧酸酯之混合物視需要在進一步的純化步驟之後再循環至反應器中。經由塔頂端獲得的α-羥基羧酸酯產物具有高純度且例如可極有利地進料至進一步的反應步驟中,以獲得(甲基)丙烯酸烷酯。
如概述般,蒸餾裝置較佳地具有至少一個已知為反應器的區域,其中提供至少一種觸媒。此反應器較佳地可如所述在蒸餾塔內。
當至多10重量%,較佳為至多5重量%,而更佳為至多1重量%之存在於反應相內的醇係經由氣相從反應系統移出時,則可能有利於本發明。此對策允許反應以特別便宜的方式進行。
此反應可以例如鹼性觸媒促進。這些觸媒包括均勻觸媒和非均勻觸媒。
均勻觸媒包括鹼金屬烷氧化物和鈦、錫及鋁的有機金屬化合物。優先選擇使用鈦烷氧化物或錫烷氧化物,例如四異丙氧化鈦或四丁氧化錫。非均勻觸媒包括氧化鎂、氧化鈣和如前文已述之鹼性離子交換劑。
最特別有興趣進行根據本發明的方法之觸媒為耐水性鑭系化合物。使用此類型的均勻觸媒造成意外有利的結果。〝耐水性〞用語意指觸媒在水存在下仍保有其催化能力。據此,本發明的反應可在至多2重量%之水存在下進行,不會顯著地損害觸媒的催化能力。在此上下文中,〝顯著地〞用語意指反應速度及/或選擇率在以水不存在下的反應為基準計減少了至多50%。
鑭系化合物代表La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及/或Lu之化合物。優先選擇使用包含鑭的鑭系化合物。鑭系化合物較佳地在25℃下具有至少1公克/公升,較佳為至少10公克/公升之水中溶解度。較佳的鑭系化合物為較佳以3價氧化態存在的鹽類。特別佳的耐水性鑭系化合物為La(NO3 )3 及/或LaCl3 。這些化合物可以鹽形式添加至反應混合物中或當場形成。
特別的方法變化包括使用包含鈦及/或錫和α-羥基羧醯胺的可溶性金屬錯合物作為觸媒。
本發明的另一特殊修改設想使用金屬三氟甲磺酸鹽作為觸媒。在此例子中,優先選擇使用其中金屬係選自週期表第1、2、3、4、11、12、13和14族之元素的金屬三氟甲烷磺酸鹽。在這些之中,優先選擇使用其中金屬相當於一或多個鑭系元素的那些金屬三氟甲烷磺酸鹽。
除了均勻催化的較佳變化以外,使用非均勻觸媒的方法一些環境下亦適合。可成功使用的非均勻觸媒包括氧化鎂、氧化鈣和鹼性離子交換劑等。例如,可優先選擇其中觸媒為包含至少一種選自Sb、Sc、V、La、Ce、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Tc、Re、Fe、Co、Ni、Cu、Al、Si、Sn、Pb和Bi之元素的不溶性金屬氧化物的方法。或者,可優先選擇其中所使用之觸媒為選自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Cu、Ga、In、Bi和Te之不溶性金屬的方法。
所形成之氨典型地從反應系統排出,在許多例子中,反應係以沸點下進行。
在醇解中釋出的氨可輕易地再循環至整體方法中。例如,氨可與甲醇反應以得到氰化氫。此詳述於例如EP-A-0941984中。另外,氰化氫可從氨和甲烷以BMA或Andrussow法獲得,這些方法敘述於Ullmann’s Encyclopedia of Industrial Chemistry,5th Edition on CD-ROM,under“Inorganic Cyano Compounds”中。
在步驟C)中醇解α-羥基羧醯胺的較佳構型係敘述在2007年03月28日以申請案號PCT/EP2007/052951於歐洲專利局提出申請的WO 2007/131829中。於其中所述之羥基羧醯胺與醇反應的具體例以揭示內容為目的併入本發明中。
在下一步驟D)中,將α-羥基羧酸烷酯與(甲基)丙烯酸反應,以獲得(甲基)丙烯酸烷酯及α-羥基羧酸。
在本發明進一步的觀點中,可將α-羥基羧酸烷酯與(甲基)丙烯酸反應。可用於此目的的(甲基)丙烯酸就其本身而言為已知的且可於商業上獲得。除了丙烯酸(丙烯酸(propenoic acid))及甲基丙烯酸(2-甲基丙烯酸)以外,這些化合物特別包括含有取代基的衍生物。適合的取代基特別包括鹵素,諸如氯、氟和溴,及烷基,其較佳地可包含1至10個,更佳為1至4個碳原子。這些化合物包括β-甲基丙烯酸(丁烯酸)、α,β-二甲基丙烯酸、β-乙基丙烯酸和β,β-二甲基丙烯酸。優先選擇為丙烯酸(丙烯酸(propenoic acid))及甲基丙烯酸(2-甲基丙烯酸),特別優先選擇為甲基丙烯酸。
可用於此目的的α-羥基羧酸烷酯就其本身而言為已知的,酯之醇基較佳地包含1至20個碳原子,特別為1至10個碳原子,而更佳為1至5個碳原子。較佳的醇基特別衍生自甲醇、乙醇、丙醇、丁醇,特別為正丁醇及2-甲基-1-丙醇、戊醇、己醇和2-乙基己醇,特別優先選擇為甲醇和乙醇。
用於轉酯化之α-羥基羧酸烷酯的酸基較佳地衍生自(甲基)丙烯酸,其可藉由將α-羥基羧酸脫水而獲得。當例如使用甲基丙烯酸時,則使用α-羥基異丁酸酯。當例如使用丙烯酸時,則優先選擇使用α-羥基異丙酸。
優先選擇使用的α-羥基羧酸烷酯為α-羥基丙酸甲酯、α-羥基丙酸乙酯、α-羥基異丁酸甲酯和α-羥基異丁酸乙酯。
除了反應物以外,反應混合物可包含更多成份,例如溶劑、觸媒、聚合抑制劑和水。
烷基羥基羧酸酯與(甲基)丙烯酸的反應可以至少一種酸或至少一種鹼催化。有可能使用均勻或非均勻觸媒。特別適合的酸性觸媒特別為無機酸(例如,硫酸或氫氯酸)及有機酸(例如,硫酸,特別為對-甲苯磺酸,及酸性陽離子交換劑)。
特別適合的陽離子交換樹脂特別包括含磺酸之苯乙烯-二乙烯苯聚合物。特別適合的陽離子交換樹脂在商業上可從Rohm & Haas以商標名稱Amberlyst和從Lanxess以商標名稱Lewatit獲得。
觸媒的濃度較佳在從1至30重量%,更佳在5至15重量%之範圍內,該濃度係以所使用之α-烷基羥基羧酸酯與所使用之(甲基)丙烯酸的總量為基準計。
可使用的聚合抑制劑較佳包括吩噻嗪、第三丁基兒茶酚、氫醌單甲醚、氫醌、4-羥基-2,2,6,6-四甲基哌啶連氧(tetramethylpiperidinooxyl)(TEMPOL)或其混合物;這些抑制劑的有效性在一些例子中可藉由使用氧予以改進。聚合抑制劑可使用在從0.001至2.0重量%之範圍內的濃度,更佳在從0.01至0.2重量%之範圍內,該濃度係以所使用之α-烷基羥基羧酸酯與所使用之(甲基)丙烯酸的總量為基準計。
反應較佳在從50℃至200℃,更佳在70℃至130℃,特別在80℃至120℃,而最佳在90℃至110℃之範圍內的溫度下進行。
反應可取決於反應溫度而在減壓或增壓下進行。此反應較佳地在0.02-5巴,特別在0.2至3巴,而更佳在0.3至0.5巴之壓力範圍內進行。
(甲基)丙烯酸對α-羥基羧酸烷酯之莫耳比較佳在4:1-1:4之範圍內,特別為3:1至1:3,而更佳在從2:1-1:2之範圍內。
選擇率較佳為至少90%,更佳為98%。選擇率係經定義為以經轉化之α-羥基羧酸烷酯與(甲基)丙烯酸的總量為基準計的所形成之(甲基)丙烯酸烷酯與α-羥基羧酸的總量之比率。
在本發明的特別觀點中,轉酯化可在水存在下進行。水含量較佳在從0.1-50重量%之範圍內,更佳為0.5-20重量%,而最佳為1-10重量%,其係以所使用之α-羥基羧酸烷酯的重量為基準計。
添加少量水意外地允許反應的選擇率增加。雖然添加水,但是可意外保持低的甲醇形成。在以所使用之α-羥基羧酸烷酯的重量為基準計10至15重量%之水濃度下,在120℃之反應溫度下及以5至180分鐘之反應時間或滯留時間形成較佳少於5重量%之甲醇。
轉酯化反應可以批次或連續進行,優先選擇為連續法。在轉酯化反應中,產物較佳地可從反應物移出,為了移轉反應平衡。
轉酯化反應的時間係取決於所使用之莫耳質量和反應溫度,且這些參數可在寬闊的範圍內。α-羥基羧酸烷酯以(甲基)丙烯酸的轉酯化反應的時間較佳在從30秒至15小時之範圍內,更佳為5分鐘至5小時,而最佳為15分鐘至3小時。
在連續法中,滯留時間較佳為30秒至15小時,更佳為5分鐘至5小時,而最佳為15分鐘至3小時。
在由α-羥基異丁酸甲酯的甲基丙烯酸甲酯之製備作用中,溫度較佳為60至130℃,更佳為80至120℃,而最佳為90至110℃。壓力較佳在從50至1000毫巴之範圍內,更佳為300至800毫巴。甲基丙烯酸對α-羥基異丁酸甲酯之莫耳比較佳在從2:1-1:2之範圍內,特別為1.5:1-1:1.5。
在特別佳的具體例中,轉酯化反應可在蒸餾器中進行。在此例子中,可將觸媒添加於蒸餾器的任何區域中。例如,可將觸媒提供於底部區域中或塔區域中。然而,反應物應同時與觸媒達到接觸。另外,可將觸媒提供於蒸餾器的單獨區域中,在此例子中,將此區域與蒸餾器的更多區域(例如,底部及/或塔)連接。以此單獨排列的觸媒區域較佳。
此較佳的具體例意外地成功增加反應的選擇率。在此上下文中,應強調反應的壓力可於蒸餾塔內獨立調整。此允許不以對應提高之反應時間和滯留時間來保持低的沸騰溫度。另外,反應溫度可在寬闊的範圍內變動。此允許反應時間縮短。另外,觸媒體積可依要求作選擇而不必考慮塔的幾何性。此外,例如可添加另一反應物。所有這些對策皆可助於增加選擇率和生產率,達成意外的加乘效果。
在此方法中,將α-羥基羧酸烷酯(例如,α-羥基異丁酸甲酯)進料至蒸餾器中。另外,將(甲基)丙烯酸(例如,甲基丙烯酸)引入蒸餾器內。蒸餾條件較佳地以確實使一種產物以蒸餾從蒸餾器排出,第二種產物繼續存在於底部且從此處連續移出的此一方式配置。在使用具有低碳數的醇(尤其為乙醇或甲醇)之例子中,優先選擇以蒸餾從反應混合物抽出(甲基)丙烯酸烷酯。將反應物往復循環地通過觸媒區域。此連續形成(甲基)丙烯酸烷酯及α-羥基羧酸。
蒸餾器的較佳具體例以圖式顯示於圖1中。反應物可經由一個共同管線(1)引入或經由兩個管線(1)及(2)單獨引入蒸餾塔(3)中。反應物較佳地經由單獨管線添加。反應物可在相同的階段或在任何位置上進料至塔中。
反應物的溫度可以進料器中的熱交換器的方式調整,就此目的的必要單元未顯示於圖1中。在較佳的變化中,反應物可單獨計量供給至塔中,沸點較低的組份係在進料沸點較高的化合物之位置下方計量供給。在此例子中,沸點較低的組份較佳地呈蒸氣形式添加。
可以具有兩或多個分離階段的任何多階段蒸餾塔(3)用於本發明。在本發明中使用的分離階段數量為盤式塔中的盤數量或在具有結構化填料之塔或具有隨意填料之塔的例中為理論板數量。
具有盤的多階段蒸餾塔的實例包括那些諸如泡罩盤、篩盤、隧道式罩盤、閥盤、狹縫盤、狹縫篩盤、泡罩篩盤、噴射盤、離心盤之塔;具有隨意填料之多階段蒸餾塔而言,包括那些諸如Raschig環、Lessing環、Pall環、Berl鞍、Intalox鞍之塔;及具有結構化填料之多階段蒸餾塔而言,包括那些諸如Mellapak(Sulzer)、Rombopak(Khni)、Montz-Pak(Montz)型及具有觸媒包之結構化填料(例如,Kata-Pak)之塔。
同樣地可使用具有盤區、隨意填料區或結構化填料區之組合的蒸餾塔。
蒸餾塔(3)可配備有內部構件。蒸餾塔較佳地具有凝結蒸氣的冷凝器(12)及底部蒸發器(18)。
蒸餾裝置較佳地具有至少一個在下文已知為反應器的區域,其中提供至少一種觸媒。此反應器可在蒸餾塔內。然而,此反應器較佳地排列在塔(3)以外的單獨區域中,這些較佳的具體例中之一詳細地解釋於圖1中。
為了在單獨的反應器(8)中進行轉酯化反應,有可能以收集器的方式在塔內收集一部份向下流動的液相且將其送出塔外作為子液流(4)。收集器的位置係由個別組份在塔中的濃度分布來決定。濃度分布可以溫度及/或回流的方式調節。收集器較佳地放置在使得導引至塔外的液流含有兩種反應物的位置,更佳為反應物具有足夠高的濃度,而最佳為具有酸:酯之莫耳比=1.5:1至1:1.5。另外,複數個收集器可提供在蒸餾塔內的不同位置上,在此例子中,抽出之反應物量可用於調整莫耳比。
另外有可能將另一反應物(例如,水)計量供給至導引至塔外的液流中,為了調整交叉-轉酯化反應中的酸/酯之產物比或增加選擇率。水可經由管線(未顯示於圖1中)從外部進料或從相分離器(13)抽出。富含水的液流(5)之壓力接著可以增加壓力的裝置(6)(例如,泵)增加。
壓力增加可減少或防止在反應器(例如,固定床反應器)中形成液流。此允許反應物均勻流經反應器且濕潤觸媒粒子。可將液流導引過熱交換器(7)且調整反應溫度。液流可依需要加熱或冷卻。另外有可能經由反應溫度調整酯對酸之產物比。
轉酯化反應發生在固定床反應器(8)中的觸媒上。可以向下或向上流經反應器。反應器輸出液流(9)包含產物和某種程度的未轉化之反應物,反應器廢物流中的組份含量係取決於滯留時間、觸媒質量、反應溫度及反應物比和添加的水量而定,該反應器輸出液流(9)先通過熱交換器(10)且調整至有利於引入蒸餾塔中的溫度。優先選擇設定溫度,其對應於液流引入點的蒸餾塔中的溫度。
離開反應器的液流返回到塔中的位置可在抽出反應器進料的位置上方或下方,但是較佳地在上方。再循環至塔中之前,液流可經由閥(11)降壓,較佳地建立與塔中相同的壓力水平。在此上下文中,蒸餾塔較佳地具有較低的壓力。此構型提供欲分離之組份的沸點降低的優點,因此蒸餾可在較低的溫度下進行,因而節省能量和較不耗費熱能。
接著在蒸餾塔(3)中分離產物混合物。低沸騰物(較佳為轉酯化反應中形成的酯)係經由頂端移出。蒸餾塔較佳地經操作使得添加於固定床反應器上游的水同樣作為頂端產物移出。在頂端抽取的蒸氣流在冷凝器(12)中凝結且接著在傾析器(13)中分離成水相和含產物酯相。水相可經由管線(15)排出至處置區(workup)或經由管線(17)全部或部份返回反應中。含酯相之液流可部分作為回流(16)經由管線(14)導引至塔中或部份從蒸餾器排出。高沸騰物(較佳為交叉-轉酯化反應中形成的酸)作為底部液流(19)從塔排出。
從該反應獲得的α-羥基羧酸(例如,羥基異丁酸)可在另一步驟E)中以已知的方式脫水。α-羥基羧酸(例如,α-羥基異丁酸)通常在至少一種金屬鹽(例如,鹼金屬及/或鹼土金屬鹽)存在下加熱至從160-300℃之範圍內的溫度,較佳在從200至240℃之範圍內,通常獲得(甲基)丙烯酸和水。適合的金屬鹽包括氫氧化鈉、氫氧化鉀、氫氧化鈣、氫氧化鋇、氫氧化鎂、亞硫酸鈉、碳酸鈉、碳酸鉀、碳酸鍶、碳酸鎂、碳酸氫鈉、乙酸鈉、乙酸鉀和磷酸二氫鈉。
α-羥基羧酸的脫水作用較佳地可在從0.05巴至2.5巴之範圍內,更佳在從0.1巴至1巴之範圍內的壓力下進行。
α-羥基羧酸的脫水作用敘述於例如DE-A-176 82 53中。
因此獲得的(甲基)丙烯酸可依次用於製造(甲基)丙烯酸烷酯。另外,(甲基)丙烯酸為商業產品。意外地,用來製備(甲基)丙烯酸烷酯的方法可據此同樣適任於製備(甲基)丙烯酸,在此例子中,(甲基)丙烯酸烷酯對(甲基)丙烯酸之產物比可藉由在α-羥基羧酸烷酯的轉酯化反應中的水濃度及/或反應溫度輕易地調節。
根據本發明的方法可視為製備聚合物或製造模塑材料和聚合物模塑物的方法之組成步驟,所以使用本發明來進行的這些方法同樣為新穎且創新的。
依照本發明可獲得的(甲基)丙烯酸酯(尤其為優先選擇製備的甲基丙烯酸甲酯)可以自由基方式轉化成聚合物。
這些聚合物通常係藉由包含甲基丙烯酸甲酯的混合物之自由基聚合反應而獲得。這些混合物通常含有以單體重量為基準計至少40重量%,較佳為至少60重量%,而更佳為至少80重量%之甲基丙烯酸甲酯。
另外,這些混合物可包含更多與甲基丙烯酸甲酯可共聚合的(甲基)丙烯酸酯。〝(甲基)丙烯酸酯〞用語包含甲基丙烯酸酯和丙烯酸酯及二者之混合物。
這些單體被廣為已知。彼等包括從飽和醇衍生之(甲基)丙烯酸酯,例如丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯和(甲基)丙烯酸2-乙基己酯;從不飽和醇衍生之(甲基)丙烯酸酯,例如(甲基)丙烯酸油酯、(甲基)丙烯酸2-丙炔酯、(甲基)丙烯酸烯丙酯、(甲基)丙烯酸乙烯酯;(甲基)丙烯酸芳酯,諸如(甲基)丙烯酸苯甲酯或(甲基)丙烯酸苯酯,其中芳基可每個未經取代或經至多四個取代;(甲基)丙烯酸環烷酯,諸如(甲基)丙烯酸3-乙烯基環己酯、(甲基)丙烯酸冰片酯;(甲基)丙烯酸羥基烷酯,諸如(甲基)丙烯酸3-羥丙酯、(甲基)丙烯酸3,4-二羥基丁酯、(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯;乙二醇二(甲基)丙烯酸酯,諸如1,4-丁二醇(甲基)丙烯酸酯;醚醇之(甲基)丙烯酸酯,諸如(甲基)丙烯酸四氫糠酯、(甲基)丙烯酸乙烯氧基乙氧基乙酯;(甲基)丙烯酸酯之醯胺和腈,諸如N-(3-二甲基胺基丙基)(甲基)丙烯醯胺、N-(二乙基膦基)(甲基)丙烯醯胺、1-甲基丙烯醯基醯胺基-2-甲基-2-丙醇;含硫之甲基丙烯酸酯,諸如(甲基)丙烯酸乙基亞磺醯基乙酯、(甲基)丙烯酸4-氰硫基丁酯、(甲基)丙烯酸乙基磺醯基乙酯、(甲基)丙烯酸氰硫基甲酯、(甲基)丙烯酸甲基亞磺醯基甲酯、雙((甲基)丙烯醯基乙基)硫化物;多官能(甲基)丙烯酸酯,諸如三羥甲基丙烷三(甲基)丙烯酸酯。除了前文詳述之(甲基)丙烯酸酯以外,欲聚合之組成物亦可包含更多與甲基丙烯酸甲酯和前述之(甲基)丙烯酸酯可共聚合之不飽和單體。
這些單體包括1-烯屬烴,諸如己烯-1、庚烯-1;支鏈烯,例如乙烯基環己烷、3,3-二烷基-1-丙烯、3-甲基-1-二異丁烯、4-甲基戊烯-1;丙烯腈;乙烯酯,諸如乙酸乙烯酯;苯乙烯、在側鏈上具有烷基取代基的經取代之苯乙烯,例如α-甲基苯乙烯和α-乙基苯乙烯,在環上具有烷基取代基的經取代之苯乙烯,諸如乙烯基甲苯和對-甲基苯乙烯;鹵化苯乙烯,例如單氯苯乙烯、二氯苯乙烯、三溴苯乙烯和四溴苯乙烯;雜環狀乙烯基化合物,諸如2-乙烯基吡啶、3-乙烯基吡啶、2-甲基-5-乙烯基吡啶、3-乙基-4-乙烯基吡啶、2,3-二甲基-5-乙烯基吡啶、乙烯基嘧啶、乙烯基哌啶、9-乙烯基咔唑、3-乙烯基咔唑、4-乙烯基咔唑、1-乙烯基咪唑、2-甲基-1-乙烯基咪唑、N-乙烯基吡咯烷酮、2-乙烯基吡咯烷酮、N-乙烯基吡咯烷、3-乙烯基吡咯烷、N-乙烯基己內醯胺、N-乙烯基丁內醯胺、乙烯基氧雜環戊烷(vinyloxolane)、乙烯基呋喃、乙烯基噻吩、乙烯基噻茂烷、乙烯基噻唑和氫化的乙烯基噻唑、乙烯基噁唑和氫化的乙烯基噁唑;乙烯基和異平基醚;順丁烯二酸衍生物,例如順丁烯二酸酐、甲基順丁烯二酸酐、順丁烯二醯亞胺、甲基順丁烯二醯亞胺;和二烯,例如二乙烯苯。
這些共單體通常係以單體重量為基準計0重量%至60重量%,較佳為0重量%至40重量%,而更佳為0重量%至20重量%之量使用,化合物可單獨或以混合物使用。
聚合反應通常以已知的自由基引發劑引發。較佳的引發劑包括廣為技術領域中已知的偶氮引發劑,諸如AIBN和1,1-偶氮雙環己烷腈;及過氧基化合物,諸如過氧化甲基乙酮、過氧化乙醯基丙酮、過氧化二月桂醯、2-乙基過己酸第三丁酯、過氧化酮、過氧化甲基異丁酮、過氧化環己酮、過氧化二苯甲醯、過氧基苯甲酸第三丁酯、過氧基異丙基碳酸第三丁酯、2,5-雙(2-乙基己醯基過氧基)-2,5-二甲基己烷、過氧基-2-乙基己酸第三丁酯、過氧基-3,5,5-三甲基己酸第三丁酯、過氧化二異丙苯、1,1-雙(第三丁基過氧基)環己烷、1,1-雙(第三丁基過氧基)-3,3,5-三甲基環己烷、異丙苯基過氧化氫、第三丁基過氧化氫、過氧基二碳酸雙(4-第三丁基環己基)酯,前述化合物中之二或多者彼此的混合物;和前述化合物與同樣可形成自由基的未指明之化合物的混合物。
這些化合物常以單體重量為基準計0.01重量%至10重量%,較佳為0.5重量%至3重量%之量使用。
聚合反應較佳地可在從20℃至120℃之範圍內的溫度下進行。
由(甲基)丙烯酸酯以各種自由基聚合法的(甲基)丙烯酸酯均-及/或共聚物之製備作用就其本身而言為已知的。例如,聚合物可以整體、溶液、懸浮液或乳液聚合法製備。整體聚合反應以實例方式敘述於Houben-Weyl,volume E20,Part 2(1987),p. 1145ff中。關於溶液聚合反應的有用資訊可見於該相同的發表文中的第1156ff頁。懸浮液聚合技巧的細節可見於該相同的發表文中的第1149ff頁,而乳液聚合反應詳述且解釋於該相同的發表文中的第1150ff頁。
前文詳述之聚合物尤其可用於製造模塑材料,其不但包含聚合物,典型地亦可包含添加劑,例如著色劑、顏料(例如,金屬顏料)、UV穩定劑或填充劑。這些添加劑的比例係取決於意欲之應用,而因此可在寬闊的範圍內。若有添加劑存在,則此比例較佳地可為0至30重量%,更佳為0.1至5重量%。
可將較佳的模塑材料和聚合物以習知的模塑法方式加工成模塑物,例如以射入模塑或擠壓,且本發明同樣提供用於製造模塑物的方法,該方法係使用已根據本發明的方法獲得的聚合物進行。
另外,已根據本發明的方法獲得的(甲基)丙烯酸烷酯(尤其為甲基丙烯酸甲酯)可用於製造鑄玻璃。以鑄造室法獲得的這些聚合物具有特別高的分子量且因此展現不同於可熱塑性加工之聚合物的機械性質。本發明同樣提供用於製造這些模塑物的方法,該方法使用已根據本發明的方法獲得的(甲基)丙烯酸酯進行。
本發明將參考實例詳細例證於下。
實例1
製備一種包含1莫耳HCN、2.5莫耳丙酮與200ppm Li2 O之混合物且在20℃下轉化,直到建立平衡為止。所產生的反應混合物包含47.7重量%之丙酮氰醇和51.5重量%之丙酮。HCN含量少於8000ppm。
將此組成物的混合物連續轉移至水解反應器中,其中添加38.6重量%之水。在水解過程中,HCN含量基本上維持不變。
水部分係從回流添加,該回流係在丙酮氰醇水解之後從純化反應混合物的底部獲得。水解係使用MnO2 觸媒進行,其尤其詳細地解釋於WO 2008/061822的實例中。使用空氣穩定觸媒,如在發表文WO 2008/061822的實例1中所述。pH為9.0。
羧醯胺係在第一蒸餾步驟中經由底部從水解之後所獲得的反應混合物移出,且此蒸餾係在175℃之溫度(底部溫度)和0.4巴之壓力下進行。
包含52重量%之水、43重量%之丙酮、4.8重量%之丙酮氰醇和0.2重量%之HCN的頂端產物以具有內部構件的蒸餾塔方式及添加1.2公斤/小時之液流連續純化。0.3公斤丙酮係經由塔的回流供應,以達成高分離性能。蒸餾系統具有無限的使用壽命,亦即在60天內未發現任何減低的分離性能。在底部產物中不可能偵測出任何HCN。頂端產物包含86重量%之丙酮、5.8重量%之丙酮氰醇、0.2重量%之HCN和8重量%之水。
觸媒的使用壽命超過60天,觸媒的使用壽命經定義成直到轉化率水平下跌至開始的轉化率水平之50%以下的時間。
1...管線
2...管線
3...蒸餾塔
4...子液流
5...液流
6...增壓裝置
7...熱交換器
8...固定床反應器
9...反應器輸出液流
10...熱交換器
11...閥
12...冷凝器
13...傾析器
14...管線
15...管線
16...回流
17...管線
18...底部蒸發器
19...底部液流
圖1例示蒸餾器的較佳具體例。
1...管線
2...管線
3...蒸餾塔
4...子液流
5...液流
6...增壓裝置
7...熱交換器
8...固定床反應器
9...反應器輸出液流
10...熱交換器
11...閥
12...冷凝器
13...傾析器
14...管線
15...管線
16...回流
17...管線
18...底部蒸發器
19...底部液流

Claims (23)

  1. 一種由羰基化合物和氰化氫製備羧醯胺的方法,其包含以下步驟A)令羰基化合物與氰化氫反應以製備羥腈,B)將步驟A)中獲得的羥腈在包含二氧化錳的觸媒存在下水解,其特徵在於將相對於氰化氫為莫耳過量之羰基化合物用於步驟A)中的羰基化合物與氰化氫的反應,且在步驟A)中獲得的反應混合物在進行步驟B)中的水解之前未經蒸餾純化,其中羰基化合物對氰化氫之莫耳比係在從2:1至3:1之範圍內,其中在步驟B)之後所獲得的反應混合物係以兩階段蒸餾純化,且其中將包含步驟A)中使用的羰基化合物之組成物經由回流引入用於分離水和氰化氫之蒸餾器中,該引入回流中的組成物具有比經由該蒸餾器頂端抽出之組成物低的HCN比例。
  2. 根據申請專利範圍第1項之方法,其中將所產生的羧醯胺與包含水、羰基化合物和羥腈及/或氰化氫之混合物分離,且該混合物係在進一步的蒸餾步驟中純化,其中羰基化合物和氰化氫係經由蒸餾器頂端抽出且水係經由蒸餾器底部抽出。
  3. 根據申請專利範圍第1項之方法,其中將所產生的羧醯胺和水與包含羰基化合物和羥腈及/或氰化氫之混合 物分離,且水係在進一步的蒸餾步驟中與所產生的羧醯胺分離。
  4. 根據申請專利範圍第3項之方法,其中以多階段蒸發濃縮將該羧醯胺與水分離。
  5. 根據申請專利範圍第1項之方法,其中所添加之羰基化合物量係經選擇使其足以製備在步驟A)中所設想的羥腈量。
  6. 根據申請專利範圍第1項之方法,其中將藉純化獲得的該羰基化合物用於製備步驟A)中的羥腈。
  7. 根據申請專利範圍第1項之方法,其中將藉純化獲得的水用於水解步驟B)中的羥腈。
  8. 根據申請專利範圍第1項之方法,其中在步驟A)中使用的羰基化合物為丙酮。
  9. 根據申請專利範圍第1項之方法,其中在步驟A)中製備羥腈的羰基化合物與氰化氫的反應係在從-10至50℃之範圍內的溫度下進行。
  10. 根據申請專利範圍第1項之方法,其中在步驟A)中製備羥腈的羰基化合物與氰化氫的反應係在從0.3巴至3巴之範圍內的壓力下進行。
  11. 根據申請專利範圍第1項之方法,其中在步驟B)中添加到包含二氧化錳的觸媒中的反應混合物具有在從6.0至11.0之範圍內的pH,且水解係在氧化劑存在下進行。
  12. 根據申請專利範圍第11項之方法,其中該pH係 藉由添加氫氧化物或氧化物來調整。
  13. 根據申請專利範圍第12項之方法,其中該調整pH之添加係在步驟A)中製備羥腈之羰基化合物與氰化氫的反應過程中進行。
  14. 根據申請專利範圍第1項之方法,其中該水解係在鋰離子存在下進行。
  15. 根據申請專利範圍第1項之方法,其中在步驟B)的水解中水對羥腈之莫耳比係在0.5:1-25:1之範圍內。
  16. 根據申請專利範圍第1項之方法,其中在步驟B)中的水解反應係在從10至150℃之範圍內的溫度下進行。
  17. 根據申請專利範圍第1項之方法,其中該水解反應係在從0.1巴至10巴之範圍內的壓力下進行。
  18. 一種製備(甲基)丙烯酸烷酯的方法,其特徵在於在該製備(甲基)丙烯酸烷酯的方法過程中,進行根據申請專利範圍第1至16項中至少一項之由羰基化合物和氰化氫製備羧醯胺的方法。
  19. 根據申請專利範圍第18項之方法,其中製備甲基丙烯酸甲酯。
  20. 一種製備聚合物的方法,其特徵在於使用申請專利範圍第18或19項中之(甲基)丙烯酸烷酯。
  21. 根據申請專利範圍第20項之方法,其中聚合係在從20℃至120℃之範圍內的溫度下進行。
  22. 一種製造模塑材料的方法,其特徵在於使用申請專利範圍第20或21項中之聚合物。
  23. 一種製造聚合物模塑物的方法,其特徵在於使用申請專利範圍第18或19項中之(甲基)丙烯酸烷酯或申請專利範圍第22項中之模塑材料。
TW98140350A 2008-12-01 2009-11-26 由羰基化合物和氰化氫製備羧醯胺的方法 TWI471291B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008044218A DE102008044218A1 (de) 2008-12-01 2008-12-01 Verfahren zur Herstellung von einem Carbonsäureamid aus einer Carbonylverbindung und Blausäure

Publications (2)

Publication Number Publication Date
TW201031622A TW201031622A (en) 2010-09-01
TWI471291B true TWI471291B (zh) 2015-02-01

Family

ID=42110167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98140350A TWI471291B (zh) 2008-12-01 2009-11-26 由羰基化合物和氰化氫製備羧醯胺的方法

Country Status (14)

Country Link
US (1) US8975440B2 (zh)
EP (1) EP2352720B1 (zh)
JP (1) JP5757874B2 (zh)
KR (1) KR101696940B1 (zh)
CN (1) CN102232064B (zh)
BR (1) BRPI0922626A2 (zh)
CA (1) CA2745498A1 (zh)
DE (1) DE102008044218A1 (zh)
MX (1) MX2011005476A (zh)
MY (1) MY159638A (zh)
RU (1) RU2552619C9 (zh)
SG (1) SG171871A1 (zh)
TW (1) TWI471291B (zh)
WO (1) WO2010063520A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517610B2 (ja) * 2006-05-15 2014-06-11 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング α−ヒドロキシカルボン酸エステルの製造法
DE102006055430A1 (de) 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von Carbonsäureamiden durch Hydrolyse von Carbonsäurenitrilen in Gegenwart eines Mangandioxid umfassenden Katalysators
DE102006055428A1 (de) * 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von (Meth)acrylsäure
DE102008001319A1 (de) * 2008-04-22 2009-10-29 Evonik Röhm Gmbh Katalysator zur Umsetzung von Carbonsäurenitrilen
ES2649612T3 (es) * 2011-02-23 2018-01-15 Evonik Degussa Gmbh Un procedimiento para la preparación del nitrilo de ácido 2-hidroxi-4-(metiltio)butírico a partir del 3-(metiltio)propanal y de cianuro de hidrógeno
CN102295571B (zh) * 2011-06-01 2016-04-27 郭建行 甲醇或甲醛氨氧化合成酰胺的方法
EP3191446B1 (de) * 2014-09-10 2021-08-25 Röhm GmbH Verfahren zur herstellung von alpha-hydroxycarbonsäureestern unter rezyklierung von ammoniak
DE102016210285A1 (de) 2016-06-10 2017-12-14 Evonik Röhm Gmbh Verfahren zur Herstellung von Methacrylaten und Methacrylsäure
EP3392237B1 (de) 2017-04-21 2019-10-02 Evonik Degussa GmbH Verfahren zur herstellung von acroleincyanhydrinen
EP3604222A1 (en) * 2018-07-30 2020-02-05 Evonik Operations GmbH Process for the purification of hydrogen cyanide
CN112495391B (zh) * 2020-12-21 2021-09-14 中国科学院山西煤炭化学研究所 一种适用于乙腈水合反应制备乙酰胺的负载型复合金属催化剂及其制备方法和应用
WO2023117754A1 (de) 2021-12-23 2023-06-29 Röhm Gmbh Verfahren zur herstellung von alkylmethacrylaten mit verbesserter ausbeute und verminderten emissionen flüchtiger organischer verbindungen
WO2023169810A1 (de) 2022-03-11 2023-09-14 Röhm Gmbh Verfahren zur herstellung von alpha-hydroxyisobuttersäuremethylester und dessen anwendung in der elektronik-industrie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407811A2 (en) * 1989-07-14 1991-01-16 Mitsubishi Gas Chemical Company, Inc. Process for producing methyl methacrylate
JPH06172283A (ja) * 1992-12-02 1994-06-21 Mitsui Toatsu Chem Inc α−ヒドロキシイソ酪酸アミドの製造方法
TW477805B (en) * 1997-09-09 2002-03-01 Ici Plc Polymer composition comprising poly(alkyl (meth)acrylate) and rubber toughening agent, it's preparation and use

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562320A (en) 1967-04-25 1971-02-09 Escambia Chem Corp Process for producing methacrylic acid
JPS4812727B1 (zh) * 1969-10-21 1973-04-23
DE2202660C3 (de) * 1972-01-20 1983-12-29 Skw Trostberg Ag, 8223 Trostberg Verfahren zur Entfernung von Cyanidionen aus Abwasser
DE2527120A1 (de) 1975-06-18 1976-12-30 Roehm Gmbh Verfahren zur herstellung von alpha-hydroxyisobutyramid aus acetoncyanhydrin
US4950801A (en) 1989-01-19 1990-08-21 Mitsubishi Gas Chemical Company, Inc. Process for producing alpha-hydroxycarboxylic acid amide
JP2893730B2 (ja) 1989-07-04 1999-05-24 三菱瓦斯化学株式会社 メタクリル酸メチルの製造法
JP2780373B2 (ja) * 1989-09-07 1998-07-30 三菱瓦斯化学株式会社 α―ヒドロキシカルボン酸アミドの製造法
JP2827368B2 (ja) 1989-12-19 1998-11-25 三菱瓦斯化学株式会社 α―ヒドロキシイソ酪酸アミドの製造法
US5387715A (en) 1991-12-03 1995-02-07 Mitsui Toatsu Chemicals, Inc. Process for producing α-hydroxy-isobutyramide
KR960000850A (ko) 1994-06-06 1996-01-25 사토 아키오 메타크릴산메틸의 연속제조방법
JPH11255710A (ja) 1998-03-11 1999-09-21 Mitsubishi Gas Chem Co Inc メタクリル酸メチルの製造方法
JPH11319558A (ja) 1998-05-13 1999-11-24 Mitsubishi Gas Chem Co Inc シアンヒドリンの水和触媒
JP2002371046A (ja) * 2001-06-11 2002-12-26 Showa Denko Kk 2−ヒドロキシカルボン酸アミドの製法
DE102005023976A1 (de) 2005-05-20 2006-11-23 Röhm Gmbh Verfahren zur Umesterung
DE102005023975A1 (de) * 2005-05-20 2006-11-23 Röhm Gmbh Verfahren zur Herstellung von Alkyl(meth)acrylaten
DE102007011706A1 (de) * 2007-03-08 2008-09-11 Evonik Röhm Gmbh Verfahren zur Herstellung von Alpha-Hydroxycarbonsäuren
JP5517610B2 (ja) 2006-05-15 2014-06-11 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング α−ヒドロキシカルボン酸エステルの製造法
DE102006055428A1 (de) 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von (Meth)acrylsäure
DE102006055426A1 (de) 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von Alkyl(meth)acrylaten unter Verwendung einer enzymatischen Cyanhydrinhydrolyse
DE102006055430A1 (de) 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von Carbonsäureamiden durch Hydrolyse von Carbonsäurenitrilen in Gegenwart eines Mangandioxid umfassenden Katalysators
DE102006055427A1 (de) * 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung von Tetramethylglycolid
DE102008001319A1 (de) 2008-04-22 2009-10-29 Evonik Röhm Gmbh Katalysator zur Umsetzung von Carbonsäurenitrilen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407811A2 (en) * 1989-07-14 1991-01-16 Mitsubishi Gas Chemical Company, Inc. Process for producing methyl methacrylate
JPH06172283A (ja) * 1992-12-02 1994-06-21 Mitsui Toatsu Chem Inc α−ヒドロキシイソ酪酸アミドの製造方法
TW477805B (en) * 1997-09-09 2002-03-01 Ici Plc Polymer composition comprising poly(alkyl (meth)acrylate) and rubber toughening agent, it's preparation and use

Also Published As

Publication number Publication date
CN102232064A (zh) 2011-11-02
US8975440B2 (en) 2015-03-10
EP2352720A1 (de) 2011-08-10
US20120232305A2 (en) 2012-09-13
KR101696940B1 (ko) 2017-01-16
MX2011005476A (es) 2011-06-16
RU2552619C9 (ru) 2016-01-20
EP2352720B1 (de) 2017-12-20
JP2012510485A (ja) 2012-05-10
RU2552619C2 (ru) 2015-06-10
TW201031622A (en) 2010-09-01
JP5757874B2 (ja) 2015-08-05
CN102232064B (zh) 2014-11-05
DE102008044218A1 (de) 2010-06-02
KR20110090993A (ko) 2011-08-10
MY159638A (en) 2017-01-13
WO2010063520A9 (de) 2011-06-03
SG171871A1 (en) 2011-07-28
WO2010063520A1 (de) 2010-06-10
RU2011126760A (ru) 2013-01-10
US20110306784A1 (en) 2011-12-15
CA2745498A1 (en) 2010-06-10
BRPI0922626A2 (pt) 2016-01-05

Similar Documents

Publication Publication Date Title
TWI471291B (zh) 由羰基化合物和氰化氫製備羧醯胺的方法
TWI301830B (en) Process for the production of alkyl (meth)acrylates
JP6501754B2 (ja) メチルメタクリレートの製造方法
TW200835672A (en) Process for preparing carboxamides by hydrolysing carbonitriles in the presence of a catalyst comprising manganese dioxide
EP3235801B1 (en) Carboxylic acid ester production method
TWI414512B (zh) α-羥基羧酸酯之製備方法
EP1867637A2 (en) Transesterification process for production of (meth)acrylate ester monomers
US20060173191A1 (en) Transesterification process for production of (meth)acrylate ester monomers
JP2009544640A (ja) α−ヒドロキシカルボン酸エステルの製造法
JP2014531410A (ja) α−ヒドロキシカルボン酸エステルの製造法
JP2009286718A (ja) (1,3−ジオキソラン−4−イル)アルキルアルコールの精製方法
MXPA06001071A (en) Transesterification process for production of (meth)acrylate ester monomers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees