TWI469988B - 新穎的4b族金屬有機化合物及其製備方法 - Google Patents

新穎的4b族金屬有機化合物及其製備方法 Download PDF

Info

Publication number
TWI469988B
TWI469988B TW101132020A TW101132020A TWI469988B TW I469988 B TWI469988 B TW I469988B TW 101132020 A TW101132020 A TW 101132020A TW 101132020 A TW101132020 A TW 101132020A TW I469988 B TWI469988 B TW I469988B
Authority
TW
Taiwan
Prior art keywords
cpch
nme
net
film
group
Prior art date
Application number
TW101132020A
Other languages
English (en)
Other versions
TW201333023A (zh
Inventor
Dae-Jun Ahn
Hyun-Chang Kim
Original Assignee
Mecharonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecharonics Co Ltd filed Critical Mecharonics Co Ltd
Publication of TW201333023A publication Critical patent/TW201333023A/zh
Application granted granted Critical
Publication of TWI469988B publication Critical patent/TWI469988B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

新穎的4B族金屬有機化合物及其製備方法
本發明關於新穎的4B族金屬有機化合物及其合成方法,並關於使用該新穎的4B族金屬有機化合物的化學蒸氣沉積(CVD)(尤其為原子層沉積(ALD))之方法。
當種類繁多的薄膜沉積在基材上時,由於每一晶片的組件增加,使得記憶或非記憶半導體裝置之結構複雜化且增加階梯覆蓋的重要性。
在金屬氧化物薄膜製造方法中,諸如化學蒸氣沉積(CVD)或原子層沉積(ALD),金屬有機化合物需要特定的性質,諸如高揮發本性、在蒸發與分解之間的高溫度差異、低毒性、化學穩定性、熱穩定性、化學合成容易性及熱解作用。
再者,金屬有機化合物在其蒸發及輸送過程期間不應自發地分解,亦不應與其他材料進行副反應。特別為了獲得好的多組份薄膜,所引入之金屬組份的比值可容易受到控制,且在沉積溫度下的金屬前驅體之分解行為應彼此相似。
通常使用金屬氮化物、金屬氧化物、金屬矽酸鹽或金屬等作為製造半導體之薄膜。代表性金屬氮化物的實例為氮化鈦(TiN)、氮化鉭(TaN)和氮化鋯(ZrN)。金屬氮化物之薄膜有效作為摻雜之半導體的矽層與連接半導體層的配線 層(諸如鋁或銅)之間的擴散阻障層。當鎢薄膜沉積在基材上時,則金屬氮化物之薄膜有效作為黏著層。
用於製造薄膜之代表性金屬矽酸鹽的實例為矽酸鈦和矽酸鉭。金屬矽酸鹽之薄膜有效作為矽基材與電極/配線材料/擴散阻障層之間的黏著層。當金屬薄膜沉積在矽層上時,則使用金屬矽酸鹽(諸如矽酸鈦或矽酸鉭)改進黏著性。
已知金屬氧化物(諸如氧化鋁(Al2 O3 )、氧化鈦(TiO2 )或氧化鉭(Ta2 O5 )等被用於半導體裝置之電容器,且具有比那些矽酸鹽(SiO2 )高的介電常數(ε),並利用該等材料製造具有大規模整合及/或高容量之記憶半導體。
如上文所述,前驅體的選擇為最重要的必要條件,使沉積之薄膜具有好的性質。例如,當使用氯化鈦(TiCI4 )在基材上沉積氮化鈦(TiN)時,此前驅體具有以下的問題,儘管其良好的經濟可行性。
將前驅體中存在的氯原子引入沉積之氮化鈦薄膜中,且其誘出鋁配線材料的腐蝕。另外,當沉積溫度高時(約600℃),不可在配線材料為具有低熔點的鋁時採用此方法。再者,在沉積過程期間形成非揮發性材料,諸如氯化鈦銨複合物(TiCI4 :NH3 )x 和氯化銨鹽(NH4 CI),且該等材料聚積在薄膜中,所製造之半導體晶片誘出重大的缺陷。
另外,使用氯化鉭(TaCl5 )或氯化鋯(ZrCI4 ),使得氮化鉭(TaN)膜或氮化鋯(ZrN)膜沉積在基材上。然而,上述氯化物不容易用作為前驅體,因為該等為固體,不可能供 給沉積過程足夠的蒸氣。
再者,使用鈦醯胺[Ti(NR2 )4 :R=CH3 或C2 H5 ]形成氮化鈦(TiN)膜之方法或使用乙氧化鉭形成氧化鉭(Ta2 O3 )膜之方法經發展用於介電膜,該等前驅體為不穩定且危險的材料。
氧化鋯(ZrO2 )具有比二氧化矽(SiO2 )高的介電常數(ε)。且當其應用在半導體裝置的電容器中時,可獲得高整合及高容量記憶半導體。TEMAZ[Zr(NMeEt)4 :肆-乙基甲基醯胺基鋯]可作為最常應用在金屬有機化學蒸氣沉積(MOCVD)及原子層沉積(ALD)中的鋯化合物之範例(D.M.Hausmann等人之Chem.Mater.,2002.14,4350)。
TEMAZ在室溫下為液體且具有高的蒸氣壓力,然而其具有低的熱穩定性且引起低的階梯覆蓋及電容器洩漏。據此,TEMAZ對用於下一代半導體裝置的MOCVD方法或ALD方法具有適用性限制。
在ALD方法中,CpTDMAZ[環戊二烯基參二甲基醯胺基鋯;CpZr(NMe2 )3 ]已知為TEMAZ的取代品(Jaakko Niinisto等人之J.Mater.Chem.2008,18,5243)。
研究文件說明CpTDMAZ在室溫下為液體且具有高的蒸氣壓力,並在高沉積溫度下比TEMAZ穩定。然而,CpTDMAZ具有在應用於ALD方法中時產生不希望的副產物之缺點。
TDMAT[肆-二甲基醯胺基鈦;Ti(NMe2 )4 ]可作為最常應用在MOCVD方法或ALD方法中的鈦化合物之範例。 且TEMAH[肆-乙基甲基醯胺基鉿;Hf(NEtMe)4 ]可作為鉿化合物之範例。然而,該等化合物亦由於與上文所述之TEMAZ相同的理由而不可能用於下一代半導體裝置中。未曾報導可應用在ALD方法中的TDMAT或TEMAH之任何取代化合物。
原子層沉積(ALD)為已知的薄膜沉積方法。
ALD包含以下步驟:(1)藉由加熱內含金屬有機化合物之容器至約100℃~110℃經長時間而蒸發金屬有機化合物,及(2)運送成為氣相之金屬有機化合物至基材,以沉積在基材上。然而,在蒸發及運送步驟期間,CpTDMAZ、TDMAT或TEMAH係經由自發的分子間反應而提供多組份化合物。據此,當塗覆CpTDMAZ、TDMAT或TEMAH時,難以控制薄膜的厚度且不可能獲得好品質的膜。已知作為替代法的液體注入ALD,其中包含金屬有機前驅體化合物及彼等適合的穩定溶劑(諸如烴、醚和胺)之液體組成物被用作為前驅體。
將CVD或ALD方法中形成4B族金屬氧化物之前驅體說明於下。但是該等前驅體之結構與本發明新穎的4B族金屬有機前驅體之結構不同且它們的化學性質亦互不相同。
WO 2007/140813A1(2007年12月13日;Air LiquideSociete)
KR 2007/0121281A1(2007年12月27日;DNF)
KR 2010/0016477A1(2010年2月12日;Advanced Technology Materials)
D.M.Haussmann等人之Chem.Mater.,2002,14,4350
Jaakko Niinistoet等人之J.Mater.Chem.,2008,18,5243
本發明意欲解決上述先前技藝的問題。亦即本發明提供其中熱穩定性及階梯覆蓋比CpTDMAZ、TDMAT或TEMAH更好的金屬有機化合物。本發明亦提供在高溫下長時間貯存之後不分解之新穎的金屬有機化合物(新穎的4B族氧化物前驅體)(請參考所附圖形)。
本發明的目標係提供具有高的熱穩定性及高的揮發性之金屬有機化合物,所以可在CVD或ALD方法中獲得好的4B族金屬氧化物薄膜,提供金屬有機化合物之製備方法及使用金屬有機化合物之薄膜形成方法。
本發明將詳細說明於下。
本發明提供以下式I代表之新穎的4B族氧化物前驅體: 其中M代表Ti、Zr或Hf;R1 代表C1 ~C4 烷基;R2 和R3 獨立代表C1 ~C6 烷基。
以上式I代表之較佳的化合物為其中R1 、R2 和R3 獨立代表甲基、乙基或丙基之化合物。以上式I代表之更佳的化合物為其中R1 、R2 和R3 獨立代表甲基或乙基之化合物。以上式I代表之另外較佳的化合物為其中R1 、R2 和R3 全部代表甲基之化合物。以上式I代表之最佳的化合物為其中R1 和R2 二者代表甲基及R3 代表乙基之化合物。
將上式I之代表性化合物列示於下:Zr(CpCH2 CH2 NMe)(NMe2 )2 ,Zr(CpCH2 CH2 NMe)(NMeEt)2 ,Zr(CpCH2 CH2 NMe)(NEt2 )2 ,Zr(CpCH2 CH2 NMe)(NMei Pr)2 ,Zr(CpCH2 CH2 NMe)(NEti Pr)2 ,Zr(CpCH2 CH2 NMe)(Ni Pr)2 ,Zr(CpCH2 CH2 NMe)(NMen Pr)2 ,Zr(CpCH2 CH2 NMe)(NEtn Pr)2 ,Zr(CpCH2 CH2 NMe)(Nn Pr)2 ,Zr(CpCH2 CH2 NEt)(NMe2 )2 ,Zr(CpCH2 CH2 NEt)(NMeEt)2 ,Zr(CpCH2 CH2 NEt)(NEt2 )2 ,Zr(CpCH2 CH2 NEt)(NMei Pr)2 ,Zr(CpCH2 CH2 NEt)(NEti Pr)2 ,Zr(CpCH2 CH2 NEt)(Ni Pr)2 ,Zr(CpCH2 CH2 NEt)(NMen Pr)2 ,Zr(CpCH2 CH2 NEt)(NEtn Pr)2 ,Zr(CpCH2 CH2 NEt)(Nn Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Zr(CpCH2 CH2 Ni Pr)(NMeEt)2 ,Zr(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Zr(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Zr(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Zr(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Zr(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NEtn Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(Nn Pr)2 Ti(CpCH2 CH2 NMe)(NMe2 )2 ,Ti(CpCH2 CH2 NMe)(NMeEt)2 ,Ti(CpCH2 CH2 NMe)(NEt2 )2 ,Ti(CpCH2 CH2 NMe)(NMei Pr)2 ,Ti(CpCH2 CH2 NMe)(NEti Pr)2 ,Ti(CpCH2 CH2 NMe)(Ni Pr)2 , Ti(CpCH2 CH2 NMe)(NMen Pr)2 ,Ti(CpCH2 CH2 NMe)(NEtn Pr)2 ,Ti(CpCH2 CH2 NMe)(Nn Pr)2 ,Ti(CpCH2 CH2 NEt)(NMe2 )2 ,Ti(CpCH2 CH2 NEt)(NMeEt)2 ,Ti(CpCH2 CH2 NEt)(NEt2 )2 ,Ti(CpCH2 CH2 NEt)(NMei Pr)2 ,Ti(CpCH2 CH2 NEt)(NEti Pr)2 ,Ti(CpCH2 CH2 NEt)(Ni Pr)2 ,Ti(CpCH2 CH2 NEt)(NMen Pr)2 ,Ti(CpCH2 CH2 NEt)(NEtn Pr)2 ,Ti(CpCH2 CH2 NEt)(Nn Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Ti(CpCH2 CH2 Ni Pr)(NMeEt)2 ,Ti(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Ti(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Ti(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Ti(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Ti(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NEtn Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(Nn Pr)2 Hf(CpCH2 CH2 NMe)(NMe2 )2 ,Hf(CpCH2 CH2 NMe)(NMeEt)2 ,Hf(CpCH2 CH2 NMe)(NEt2 )2 ,Hf(CpCH2 CH2 NMe)(NMei Pr)2 ,Hf(CpCH2 CH2 NMe)(NEti Pr)2 ,Hf(CpCH2 CH2 NMe)(Ni Pr)2 ,Hf(CpCH2 CH2 NMe)(NMen Pr)2 ,Hf(CpCH2 CH2 NMe)(NEtn Pr)2 ,Hf(CpCH2 CH2 NMe)(Nn Pr)2 ,Hf(CpCH2 CH2 NEt)(NMe2 )2 ,Hf(CpCH2 CH2 NEt)(NMeEt)2 ,Hf(CpCH2 CH2 NEt)(NEt2 )2 ,Hf(CpCH2 CH2 NEt)(NMei Pr)2 ,Hf(CpCH2 CH2 NEt)(NEti Pr)2 ,Hf(CpCH2 CH2 NEt)(Ni Pr)2 ,Hf(CpCH2 CH2 NEt)(NMen Pr)2 ,Hf(CpCH2 CH2 NEt)(NEtn Pr)2 ,Hf(CpCH2 CH2 NEt)(Nn Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Hf(CpCH2 CH2 Ni Pr)(NMeEt)2 ,Hf(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Hf(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Hf(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Hf(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Hf(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Hf(CpCH2 CH2Nn Pr)(NEtn Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(Nn Pr)2
其中i Pr和n Pr各自代表異丙基和正丙基。
式I之4B族化合物可根據以下的反應流程1至3而容易地製備。可將反應溶劑用在上述4B族化合物之合成中。反應溶劑的實例為非極性溶劑,諸如己烷、戊烷、庚烷、苯和甲苯,及極性溶劑,諸如二乙醚、石油醚、四氫呋喃和1,2-二甲氧基乙烷。
根據本發明的式I之4B族化合物可藉由反應流程1之產物(式II化合物)與式III化合物反應而製得。
反應流程1
在上述反應流程1及式III中,M代表Ti、Zr或Hf;R1 、R2 和R3 係如上述式I中所定義;X代表Cl、Br或I;及M'代表Li、Na或K。
在反應流程1中所使用之鹵乙基烷基胺鹵酸鹽係根據Organic Syntheses Wiley:New York,1943;Collective volume 4,p333中之說明而容易地製得。式II化合物係藉由引入新鮮合成之金屬環戊二烯基至上述鹵乙基烷基胺鹵酸鹽中且將該等回流以完成反應而製得。在濾出因此獲得的固體鹽且在減壓下移除溶劑(經由真空蒸餾)之後,製得反應流程1(式II化合物)之產物。
在上述反應流程2中,M代表Ti、Zr或Hf;及R1 、R2 和R3 係如上述式I中所定義。
式I之4B族化合物係藉由將式II化合物與式III之 金屬化合物反應而以高產率製得。在將肆(二烷基醯胺基)4-B族金屬(IV)(式Ⅲ)冷卻至低溫且於其中添加環戊二烯基乙基烷基胺(式II)之後,將反應溶液在室溫下攪拌1小時以完成反應。接著在減壓下移除溶劑且將其餘的液體在真空壓力下蒸餾,以獲得高產率之主題化合物。
如下述反應流程3中所描述,根據本發明的式I之4B族化合物亦可藉由將式IV(M'NR2 R3 )之化合物與式V化合物反應而製得。在環戊二烯基(乙基烷基醯胺基)4B族金屬(IV)二鹵化物(式V)裝入反應器中且將其冷卻至-20℃之後,經由導管緩慢地添加懸浮在正己烷中的二烷基醯胺金屬(M'NR2 R3 )(IV)且將反應混合物在室溫下攪拌15小時以完成反應。容許混合物在室溫下放置足夠的時間,將上清液經由導管轉移至另一燒瓶中。接著在減壓下移除溶劑且將其餘的液體在真空壓力下蒸餾,以獲得式I化合物。
在上述反應流程3中,M代表Ti、Zr或Hf;R1 、R2 和R3 係如上述式I中所定義;X代表Cl、Br或I;及M'代表Li、Na或K。
將式I之4B族金屬有機化合物以習知的沉積方法沉 積在基材上。可使用任何已知的沉積方法沉積式I之4B族金屬有機化合物,但是以金屬有機化學蒸氣沉積(MOCVD)或原子層沉積(ALD)較佳,且其應用於任何已知的基材上,但是以矽基材或金屬、陶瓷、塑胺結構基材較佳。
通常利用單獨的式I之4B族金屬有機化合物或超過兩種該化合物的混合物。可使用包含下列者之組成物來穩定化合物:0.1重量%~99.9重量%(較佳為1重量%~99重量%)之4B族金屬有機化合物及其餘的一或多種選自下列群組之有機化合物:飽和或不飽和烴、醚(包括環醚)、酯、醇、胺(包括環胺)、硫化物(包括環硫化物)、膦、β-二酮和β-酮酯等。
若使式I之4B族金屬有機化合物穩定,則添加至上述組成物之有機化合物不受限制。飽和或不飽和烴的實例為脂族烴,諸如丙烷、丁烷、戊烷、己烷、庚烷、辛烷、乙烯、丙烯、丁烯、戊烯、己烯、庚烯、辛烯、乙炔、丙炔、丁炔、戊炔、己炔、庚炔、辛炔;環烴,諸如環丙烷、環丁烷、環戊烷、環己烷、甲基環己烷、二甲基環己烷、三甲基環己烷、乙基環己烷、二乙基環己烷、十氫萘、雙環庚烷、六氫茚環己烷、環辛烷等;芳族烴,諸如苯、甲苯、二甲苯、均三甲苯等;或其混合物,但該等不限於此。醚(包括環醚)的實例為四氫呋喃、二乙醚、甲基第三丁醚或其混合物,但該等不限於此。酯的實例為乙酸甲酯、乙酸乙酯、乙酸丁酯、乙酸丁賽璐蘇(butylcellosolve acetate)、丙二醇單甲醚乙酸酯、二乙二醇單乙醚乙酸酯或其混合物,但該等不限於此。醇的實例為甲醇、乙醇、丙醇、丁醇或其混合物,但該等不限於此。醯胺(包括環醯胺)的實例為N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶酮或其混合物,但該等不限於此。亞碸(包括環亞碸)的實例為二甲基亞碸、甲基乙基亞碸或其混合物,但該等不限於此。膦的實例為三苯膦、三環己膦或其混合物,但該等不限於此。β-二酮的實例為二甲基β-二酮、甲基乙基β-二酮、甲基異丁基β-二酮或其混合物,但該等不限於此。β-酮酯的實例為乙醯乙酸甲酯、乙醯乙酸乙酯、或其混合物,但該等不限於此。
形成含有式I之4B族金屬有機化合物之薄膜的沉積溫度為100~1000℃,較佳為200~500℃,更佳為250~450℃,使用熱能量、光能量、電漿或偏電壓中之任一者作為沉積步驟中的能量來源。
輸送式I之4B族金屬有機化合物至基材上之方法為選自下列中之一者:浮式法、起泡法、蒸氣相質量流動控制器(MFC)法、直接液體注入(DLI)法或使用前驅體化合物-有機溶劑溶液的液體轉移法。
輸送式I之4B族金屬有機化合物至基材上的載送氣體或稀釋氣體為選自下列中之任一者:氬、氮、氦、氫和其混合物。可使用選自下列中之任一者作為反應氣體:水蒸氣(H2 O)、氧(O2 )、臭氧(O3 )、過氧化氫(H2 O2 )、氨氣(NH3 )、肼(NH2 NH2 )和其混合物。
根據本發明沉積在基材上的薄膜為下列中之任一者:4B族金屬氧化物(MO2 )膜、4B族金屬氮化物(MN)膜、4B族金屬碳化物(MC)膜或4B族金屬碳氮化物(MCN)膜;或含有4B族金屬氧化物(MO2 )膜和超過一種選自下列群組之膜的金屬氧化物複合膜:Sc、Y、La、Ac之氧化物膜,V、Nb、Ta之氧化物膜,AL、Ga、In之氧化物膜,及Si、Ge、Sn、Pb之氧化物膜;或含有4B族金屬氮化物(MN)膜和超過一種選自下列群組之膜的金屬氮化物複合膜:Sc、Y、La、Ac之氮化物膜,V、Nb、Ta之氮化物膜,AL、Ga、In之氮化物膜,及Si、Ge、Sn、Pb之氮化物膜;或含有4B族金屬碳化物(MC)膜和超過一種選自下列群組之膜的金屬碳化物複合膜:Sc、Y、La、Ac之碳化物膜,V、Nb、Ta之碳化物膜,AL、Ga、In之碳化物膜,及Si、Ge、Sn、Pb之碳化物膜;或含有4B族金屬碳氮化物(MCN)膜和超過一種選自下列群組之膜的金屬碳氮化物複合膜:Sc、Y、La、Ac之碳氮化物膜,V、Nb、Ta之碳氮化物膜,AL、Ga、In之碳氮化物膜,及Si、Ge、Sn、Pb之碳氮化物膜。
根據本發明,使用原子層沉積(ALD)形成薄膜之方法包含以下步驟:(1)運載基材至反應室中且將基材加熱至其燒結溫度;(2)將第一沖洗氣體引入反應室中(第一沖洗步驟);(3)將4B族化合物供給至反應室中,以在基材上形成 原子層;(4)將反應氣體供給至反應室中,以與原子層反應;及(5)利用第二沖洗氣體從上述反應室排出副產物和4B族化合物的未反應材料(第二沖洗步驟)。
在第一和第二沖洗步驟中,將超過一種選自He、H2 、N2 、Ar和NH3 之群組的氣體引入反應室中且在排出室中的氣體時可利用真空泵。
根據本發明的式I之金屬有機化合物具有一些與中心金屬原子鍵結的配體。在該等之中,連接至烷基醯胺配體之環戊二烯基與中心金屬原子形成強σ-鍵和π-鍵。因此,本發明的金屬有機化合物經長時間加熱而不分解,亦即具有高的熱穩定性。再者,本發明的金屬有機化合物具有高的蒸氣壓力,因為兩種二烷基胺基配體與中心原子金屬鍵結。
試驗化合物的重量減少至50重量%之溫度(T1/2 ℃)係從圖1之TGA圖測定且列示於以下表1中。測試已知的TEMAZ和CpTDMAZ及實例1與2中所製備之化合物。
出自表1,根據本發明的實例1與實例2所製備之化合物的T1/2 ℃分別為195℃和202℃。然而,已知的 TEMAZ和CpTDMAZ的T1/2 ℃分別為164℃和176℃。
據此,根據本發明的式I之4B族金屬有機化合物與已知的TEMAZ和CpTDMAZ相比而具有異常高的T1/2 ℃,其意指根據本發明的化合物之熱穩定性得到顯著的改進。
試驗化合物的重量減少至50重量%之溫度(T1/2 ℃)係從圖2和圖3之TGA圖測定且列示於以下表2中。測試已知的TDMAT[Ti(NMe2 )4 ;肆(二甲基醯胺基)鈦]和TEMAH[Hf(NEtMe)4 ;肆(乙基甲基醯胺基)鉿]及實例5與7中所製備之化合物。
出自表2,根據本發明的實例5中所製備之化合物(亦即環戊二烯基(乙基甲基醯胺基)鈦(IV)二(二甲基醯胺基)[(CpCH2 CH2 NCH3 )Ti(NMe2 )2 ])的T1/2 ℃為202℃。然而,已知的TDMAT[Ti(NMe2 )4 ;肆(二甲基醯胺基)鈦]的T1/2 ℃為79℃。亦即根據本發明所製備之鈦化合物與已知的TDMAT相比而具有異常高的T1/2 ℃,其意指熱穩定性得到顯著的改進。
本發明的實例7中所製備之化合物(亦即環戊二烯基(乙基甲基醯胺基)鉿(IV)二(乙基甲基醯胺)[(CpCH2 CH2 NCH3 )Hf(NEtMe)2 ]的T1/2 ℃為181℃。然而 ,已知的TEMAH[Hf(NEtMe)4 ;肆(乙基甲基醯胺基)鉿]的T1/2 ℃為168℃。亦即根據本發明所製備之鉿化合物的T1/2 ℃比TEMAH多10℃,其意指根據本發明的鉿化合物之熱穩定性得到改進。
圖4A、4B、5A和5B為1 H核磁共振(1 H NMR)圖,其描述CpTDMAZ和實例1之化合物的熱穩定性試驗結果。上述試驗係根據實例8中的試驗方法執行。
具體而言,圖4A為描述CpTDMAZ在加熱前之狀態的1 H NMR圖和圖4B為描述CpTDMAZ在加熱後之狀態的1 H NMR圖。自圖4A和4B發現CpTDMAZ在加熱後可容易地分解,以產生雜質。然而,自圖5A(在加熱前的實例1之化合物)和5B(在加熱後的實例1之化合物)發現實例1之化合物在加熱後沒有特定的變化。據此確認本發明的實例1中所製備之鋯化合物的熱穩定性與已知的CpTDMAZ相比而得到顯著的改進。
結果,本發明之新穎的4B族氧化物前驅體較佳地被用作為半導體製造方法中(尤其在金屬有機蒸氣沉積(MOCVD)或原子層沉積(ALD)方法中)用於製造4B族薄膜及含有4B族氧化物之所有種類的氧化物薄膜之前驅體。
當本發明的前驅體化合物具有高的熱穩定性及高的揮發性時,則可利用該等前驅體化合物形成在下一代半導體裝置中所要求之複雜化薄膜,並亦可提高半導體製造方法 的可靠性和效率。
工業應用性實例
以下的實例僅為例證而已,並不以任何方式限制本發明。
所有的操作係在惰性氬氛圍下使用手套箱及史蘭克管(schlenk line)技術進行。將以實例1~7所獲得的化合物以核磁共振分析(1 H NMR和13 C NMR二者)測定。
實例1-(CpCH2 CH2 NCH3 )Zr(NMe2 )2 之合成法 步驟1:
步驟2:
步驟1:將2公升史蘭克燒瓶經火燄乾燥且裝入500毫升四氫呋喃及68.2公克(0.524莫耳;1.00當量)氯乙基甲基胺鹽酸鹽(其係根據在Organic Syntheses:Wiley:New York,1943;Collective volumn 4,p333中所述之方法而製得)。將混合物攪拌且冷卻至0℃。接著經30分鐘添加 92.3公克(1.048莫耳;2.00當量)環戊二烯基鈉(NaCp)。容許反應混合物到達室溫且回流4小時。反應係藉由將溶液冷卻至室溫而完成。在濾出所獲得的固體NaCI之後,在減壓下完全移除溶劑。將所獲得的液體在減壓下蒸餾(沸點:25℃ @0.2mmHg),得到呈透明液體的32.3公克步驟1化合物,50%產率。
步驟2:將250毫升史蘭克燒瓶經火燄乾燥且裝入80毫升甲苯及26.8公克(0.100莫耳;1.00當量)肆(二甲基醯胺基)鋯(IV)。將混合物攪拌且冷卻至-20℃。經30分鐘添加在步驟1中所合成之12.3公克(0.10莫耳;1.00當量)環戊二烯基乙基甲基胺。反應係在反應混合物在室溫下攪拌1小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:85℃ @0.1mmHg)且獲得呈黃色液體的29.5公克主題化合物,92%產率。
1 H NMR(C6 D6 ):δ 5.96(t,2H,C5 H4 CH2 CH2 NCH3 ),5.79(t,2H,C5 H4 CH2 CH2 NCH3 ),3.68(t,2H,C5 H4 CH2 CH2 NCH3 ),3.08(s,3H,C5 H4 CH2 CH2 NCH3 ),2.93(s,12H,2×N(CH3 )2 ),2.69(t,2H,C5 H4 CH2 CH2 NCH3 )
13 C NMR(C6 D6 ):δ 136.51,112.41,106.92(C5 H4 CH2 CH2 NCH3 ),71.53(C5 H4 CH2 CH2 NCH3 ),43.98 N(CH3 )2 ),41.52(C5 H4 CH2 CH2 NCH3 ),29.51(C5 H4 CH2 CH2 NCH3 )
實例2-(CpCH2 CH2 NCH3 )Zr(NEtMe)2 之合成法
將250毫升史蘭克燒瓶經火燄乾燥且裝入100毫升甲苯及24.0公克(74.2毫莫耳;1.00當量)肆(乙基甲基醯胺基)鋯(IV)。將混合物攪拌且冷卻至-20℃。接著經30分鐘添加在實例1之步驟1中所合成之10.0公克(81.2毫莫耳;1.09當量)環戊二烯基乙基甲基胺。反應係在溶液在室溫下攪拌5小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:97℃ @0.1mmHg)且獲得呈黃色液體的23公克主題化合物,89%產率。
1 H NMR(C6 D6 ):δ 5.98(m,2H,C5 H4 CH2 CH2 NCH3 ),5.82(m,2H,C5 H4 CH2 CH2 NCH3 ),3.68(t,2H,C5 H4 CH2 CH2 NCH3 ),3.28~3.10(m,4H,2×N(CH2 CH3 )(Me)),3.07(s,3H,C5 H4 CH2 CH2 NCH3 ),2.98(s,6H,2×N(CH3 )(Et)),2.70(t,2H,C5 H4 CH2 CH2 NCH3 ),1.07(t,6H,2×N(CH2 CH3 )(Me))
13 C NMR(C6 D6 ):δ 136.25,112.14,106.65(C5 H4 CH2 CH2 NCH3 ),71.51(C5 H4 CH2 CH2 NCH3 ),50.17(N(CH3 )(Et)),41.97(N(CH2 CH3 )(Me)),39.30(C5 H4 CH2 CH2 NCH3 ),29.57(C5 H4 CH2 CH2 NCH3 ),15.93(N(CH2 CH3 )(Me)).
實例3-(CpCH2 CH2 NCH3 )Zr(NEt2 )2 之合成法
將250毫升史蘭克燒瓶經火燄乾燥且裝入100毫升甲苯及38.0公克(0.1莫耳;1.00當量)肆(二乙基醯胺基)鋯(IV)。將混合物攪拌且冷卻至-20℃。接著經30分鐘添加在實例1之步驟1中所合成之13.5公克(0.11莫耳;1.10當量)環戊二烯基乙基甲基胺。反應係在反應混合物在室溫下攪拌12小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:140℃ @0.1mmHg)且獲得呈黃色液體的18公克主題化合物,50%產率。
1 H NMR(C6 D6 ):δ 5.98(m,2H,C5 H4 CH2 CH2 NCH3 ),5.84(m,2H,C5 H4 CH2 CH2 NCH3 ),3.68(t,2H,C5 H4 CH2 CH2 NCH3 ),3.24~3.12(m,8H,4×N(CH2 CH3 )2 ),3.04(s,3H,C5 H4 CH2 CH2 NCH3 ),2.70(t,2H,C5 H4 CH2 CH2 NCH3 ),1.03(t,12H,4×N(CH2 CH3 )2 )
13 C NMR(C6 D6 ):δ 135.95,112.92,106.41(C5 H4 CH2 CH2 NCH3 ),71.52(C5 H4 CH2 CH2 NCH3 ),44.31(N(CH2 CH3 )2 ),42.64(C5 H4 CH2 CH2 NCH3 ),29.64(C5 H4 CH2 CH2 NCH3 ),16.38(N(CH2 CH3 )2 )
實例4-(CpCH2 CH2 NCH3 )Zr(NEtMe)2 之合成法
將1公升史蘭克燒瓶經火燄乾燥且裝入150毫升甲苯及20.0公克(65.9毫莫耳;1.00當量)環戊二烯基(乙基甲基醯胺基)鋯(IV)二氯化物。將混合物攪拌且冷卻至-20℃。將懸浮在350毫升正己烷中的8.57公克(131.8毫莫耳;2.00當量)乙基甲基醯胺鋰(LiNEtMe)經由導管經2小時逐滴添加至混合物中且將反應混合物在室溫下攪拌15小時。在容許在室溫下放置5小時之後,將上清液經由導管轉移至火燄乾燥之1公升史蘭克燒瓶中。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:97℃ @0.1mmHg)且獲得呈黃色液體的12.9公克主題化合物,50%產率。
1 H NMR(C6 D6 ):δ 5.98(m,2H,C5 H4 CH2 CH2 NCH3 ),5.82(m,2H,C5 H4 CH2 CH2 NCH3 ),3.68(t,2H,C5 H4 CH2 CH2 NCH3 ),3.28~3.10(m,4H,2×N(CH2 CH3 )(Me)),3.07(s,3H,C5 H4 CH2 CH2 NCH3 ),2.98(s,6H,2×N(CH3 )(Et)),2.70(t,2H,C5 H4 CH2 CH2 NCH3 ),1.07(t,6H,2×N(CH2 CH3 )(Me))
13 C NMR(C6 D6 ):δ 136.25,112.14,106.65(C5 H4 CH2 CH2 NCH3 ),71.51(C5 H4 CH2 CH2 NCH3 ),50.17(N(CH3 )(Et)),41.97(N(CH2 CH3 )(Me)),39.30(C5 H4 CH2 CH2 NCH3 ),29.57(C5 H4 CH2 CH2 NCH3 ),15.93(N(CH2 CH3 )(Me))
實例5-(CpCH2 CH2 NCH3 )Ti(NMe2 )2 之合成法
將250毫升史蘭克燒瓶經火燄乾燥且裝入80毫升甲苯及25.7公克(0.100莫耳;1.00當量)肆(二甲基醯胺基)鈦(IV)。將反應混合物攪拌且冷卻至-20℃。將實例1之步驟1中所合成之12.3公克(0.10莫耳;1.00當量)環戊二烯基乙基甲基胺經30分鐘添加至混合物中。反應係在混合物在室溫下攪拌1小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:80℃ @0.1mmHg)且獲得呈黃色液體的18.0公克主題化合物,70%產率。
1 H NMR(C6 D6 ):δ 5.81(t,2H,C5 H4 CH2 CH2 NCH3 ),5.70(t,2H,C5 H4 CH2 CH2 NCH3 ),3.66(t,2H,C5 H4 CH2 CH2 NCH3 ),3.34(s,3H,C5 H4 CH2 CH2 NCH3 ),3.07(s,12H,2×N(CH3 )2 ),2.66(t,2H,C5 H4 CH2 CH2 NCH3 )
13 C NMR(C6 D6 ):δ 136.01,111.90,108.15(C5 H4 CH2 CH2 NCH3 ),73.24(C5 H4 CH2 CH2 NCH3 ),48.33(N(CH3 )2 ),46.19(C5 H4 CH2 CH2 NCH3 ),29.22(C5 H4 CH2 CH2 NCH3 )
實例6-(CpCH2 CH2 NCH3 )Ti(NMe2 )2 之合成法
將250毫升史蘭克燒瓶經火燄乾燥且裝入80毫升甲苯及38.8公克(0.100莫耳;1.00當量)肆(二甲基醯胺基)鉿(IV)。將反應混合物攪拌且冷卻至-20℃。將實例1之步驟1中所合成之12.3公克(0.10莫耳;1.00當量)環戊二烯基乙基甲基胺經30分鐘添加至反應混合物中。反應係在混合物在室溫下攪拌2小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:90℃ @0.1mmHg)且獲得呈黃色液體的31.0公克主題化合物,80%產率。
1 H NMR(C6 D6 ):δ 5.92(t,2H,C5 H4 CH2 CH2 NCH3 ),5.76(t,2H,C5 H4 CH2 CH2 NCH3 ),3.80(t,2H,C5 H4 CH2 CH2 NCH3 ),3.06(s,3H,C5 H4 CH2 CH2 NCH3 ),2.96(s,12H,2×N(CH3 )2 ),2.65(t,2H,C5 H4 CH2 CH2 NCH3 )
13 C NMR(C6 D6 ):δ 135.03,112.27,106.48(C5 H4 CH2 CH2 NCH3 ),71.31(C5 H4 CH2 CH2 NCH3 ),43.83(N(CH3 )2 ),41.59(C5 H4 CH2 CH2 NCH3 ),29.12(C5 H4 CH2 CH2 NCH3 )
實例7-(CpCH2 CH2 NCH3 )Hf(NEtMe)2 之合成法
將250毫升史蘭克燒瓶經火燄乾燥且裝入100毫升甲苯及30.0公克(72.1毫莫耳;1.00當量)肆(乙基甲基醯胺 基)鉿(IV)。將反應混合物攪拌且冷卻至-20℃。將實例1之步驟1中所合成之10.0公克(81.2毫莫耳;1.09當量)環戊二烯基乙基甲基胺經30分鐘添加至混合物中。反應係在反應混合物在室溫下攪拌8小時之後完成。接著在減壓下完全移除溶劑。將其餘的液體在減壓下蒸餾(沸點:100℃ @0.1mmHg)且獲得呈黃色液體的18公克主題化合物,60%產率。
1 H NMR(C6 D6 ):δ 5.94(m,2H,C5 H4 CH2 CH2 NCH3 ),5.78(m,2H,C5 H4 CH2 CH2 NCH3 ),3.80(t,2H,C5 H4 CH2 CH2 NCH3 ),3.29~3.13(m,4H,2×N(CH2 CH3 )(Me)),3.05(s,3H,C5 H4 CH2 CH2 NCH3 ),2.93(s,6H,2×N(CH3 )(Et)),2.67(t,2H,C5 H4 CH2 CH2 NCH3 ),1.06(t,6H,2×N(CH2 CH3 )(Me))
實例8-鋯化合物之熱穩定性試驗
在該等試驗中使用CpTDMAZ[環戊二烯基鋯(IV)參(二甲基醯胺)]及實例1中所合成之環戊二烯基乙基甲基醯胺基鋯(IV)二(二甲基醯胺)兩者。在10公克試驗化合物引入各20毫升玻璃瓶中之後,將玻璃瓶以塞子密封且在塞子上以纏繞的黏帶進一步密封。接著將玻璃瓶引入在惰性氬氛圍下的手套箱中。容許含有上述試驗化合物的兩個玻璃瓶在110℃之油浴中放置6小時及在150℃下再2小時,且接著冷卻至室溫。
上述試驗化合物的熱分解程度係以1 H核磁共振(1 H NMR)測定,並將結果描述在圖4A、4B、5A和5B中。
自圖4A和4B之1 H NMR圖發現CpTDMAZ在加熱後容易分解,以產生雜質。然而,自圖5A和5B之1 H NMR圖發現實例1之化合物在加熱後沒有特定的變化。
實例9-Zr、Ti和Hf化合物之TGA試驗
熱重量分析(TGA)係執行熱穩定性試驗。在該等試驗中使用TEMAZ[肆-乙基甲基醯胺基鋯]、CpTDMAZ[環戊二烯基鋯(IV)參二甲基醯胺]及實例1與2中所合成之化合物。將上述試驗化合物在以60公升/分鐘之速率引入之氬氣氛圍下以10℃/分鐘之速率加熱至400℃。測定試驗化合物之重量減少至50重量%之溫度(T1/2 ℃)。如表1中所列示,在實例1與2中所合成之化合物的T1/2 ℃分別為195℃和202℃,而已知的TEMAZ和CpTDMAZ的T1/2 ℃分別為164℃和176℃。
結果確認在實例1與2中之化合物的T1/2 ℃遠高於已知的TEMAZ和CpTDMAZ。
TDMAT[Ti(NMe2 )4 ;肆-二甲基醯胺基鈦]、TEMAH[Hf(NEtMe)4 ;肆-甲基乙基醯胺基鉿]和實例5與7中所合成之化合物的熱穩定性試驗係使用相同的熱重量分析(TGA)來執行。如表2中所列示,在實例5中所合成之化合物的T1/2 ℃為202℃,其遠高於已知的TDMAT(T1/2 ℃;79℃)。再者,在實例7中所合成之化合物的T1/2 ℃為181℃,其比已知的TEMAH(T1/2 ℃;168℃)高13℃。
雖然本發明已參考各種特定的具體例而於本文說明,但是應理解本發明不因此受到限制,並延伸且包含各種修改和具體例,本情況為那些熟諳本技藝者所理解且利用隨後的申請專利範圍廣泛地解釋。
工應應用性
在本發明中,包含4B族金屬之新穎的金屬有機化合物具有高的熱穩定性及高的揮發性,並可提高在下一代半導體裝置製造方法中的可靠性和效率。
圖1為TEMAZ、CpTDMAZ和實例1與2之化合物的熱重量分析(TGA)圖。
圖2為TDMAT和實例5之化合物的TGA圖。
圖3為TEMAH和實例7之化合物的TGA圖。
圖4A為描述在試驗實例8中的CpTDMAZ在加熱前之狀態的1 H核磁共振(1 H NMR)圖。
圖4B為描述在試驗實例8中的CpTDMAZ在加熱後之狀態的1 H NMR圖。
圖5A為描述在試驗實例8中的化合物(實例1)在加熱前之狀態的1 H NMR圖。
圖5B為描述在試驗實例8中的化合物(實例1)在加熱後之狀態的1 H NMR圖。

Claims (26)

  1. 一種將以式I代表之4B族金屬有機化合物用於半導體元件沉積之用途: 其中M代表Ti、Zr或Hf;R1 代表C1 ~C4 烷基;R2 和R3 獨立代表C1 ~C6 烷基。
  2. 根據申請專利範圍第1項之用途,其中R1 、R2 和R3 獨立代表甲基、乙基或丙基。
  3. 根據申請專利範圍第2項之用途,其中R1 、R2 和R3 獨立代表甲基或乙基。
  4. 根據申請專利範圍第3項之用途,其中R1 、R2 和R3 全部代表甲基。
  5. 根據申請專利範圍第3項之用途,其中R1 和R2 二者代表甲基及R3 代表乙基。
  6. 根據申請專利範圍第1項之用途,其中該以式I代表之化合物為下列者:Zr(CpCH2 CH2 NMe)(NMe2 )2 ,Zr(CpCH2 CH2 NMe)(NMeEt)2 ,Zr(CpCH2 CH2 NMe)(NEt2 )2 ,Zr(CpCH2 CH2 NMe)(NMei Pr)2 , Zr(CpCH2 CH2 NMe)(NEti Pr)2 ,Zr(CpCH2 CH2 NMe)(Ni Pr)2 , Zr(CpCH2 CH2 NMe)(NMen Pr)2 ,Zr(CpCH2 CH2 NMe)(NEtn Pr)2 , Zr(CpCH2 CH2 NMe)(Nn Pr)2 ,Zr(CpCH2 CH2 NEt)(NMe2 )2 , Zr(CpCH2 CH2 NEt)(NMeEt)2 ,Zr(CpCH2 CH2 NEt)(NEt2 )2 , Zr(CpCH2 CH2 NEt)(NMei Pr)2 ,Zr(CpCH2 CH2 NEt)(NEti Pr)2 , Zr(CpCH2 CH2 NEt)(Ni Pr)2 ,Zr(CpCH2 CH2 NEt)(NMen Pr)2 , Zr(CpCH2 CH2 NEt)(NEtn Pr)2 ,Zr(CpCH2 CH2 NEt)(Nn Pr)2 , Zr(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Zr(CpCH2 CH2 Ni Pr)(NMeEt)2 , Zr(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Zr(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Zr(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Zr(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Zr(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Zr(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(NEtn Pr)2 ,Zr(CpCH2 CH2 Nn Pr)(Nn Pr)2 Ti(CpCH2 CH2 NMe)(NMe2 )2 ,Ti(CpCH2 CH2 NMe)(NMeEt)2 ,Ti(CpCH2 CH2 NMe)(NEt2 )2 ,Ti(CpCH2 CH2 NMe)(NMei Pr)2 ,Ti(CpCH2 CH2 NMe)(NEti Pr)2 ,Ti(CpCH2 CH2 NMe)(Ni Pr)2 ,Ti(CpCH2 CH2 NMe)(NMen Pr)2 ,Ti(CpCH2 CH2 NMe)(NEtn Pr)2 ,Ti(CpCH2 CH2 NMe)(Nn Pr)2 ,Ti(CpCH2 CH2 NEt)(NMe2 )2 ,Ti(CpCH2 CH2 NEt)(NMeEt)2 ,Ti(CpCH2 CH2 NEt)(NEt2 )2 ,Ti(CpCH2 CH2 NEt)(NMei Pr)2 ,Ti(CpCH2 CH2 NEt)(NEti Pr)2 ,Ti(CpCH2 CH2 NEt)(Ni Pr)2 ,Ti(CpCH2 CH2 NEt)(NMen Pr)2 ,Ti(CpCH2 CH2 NEt)(NEtn Pr)2 ,Ti(CpCH2 CH2 NEt)(Nn Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Ti(CpCH2 CH2 Ni Pr)(NMeEt)2 ,Ti(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Ti(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Ti(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Ti(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Ti(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Ti(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(NEtn Pr)2 ,Ti(CpCH2 CH2 Nn Pr)(Nn Pr)2 Hf(CpCH2 CH2 NMe)(NMe2 )2 ,Hf(CpCH2 CH2 NMe)(NMeEt)2 ,Hf(CpCH2 CH2 NMe)(NEt2 )2 ,Hf(CpCH2 CH2 NMe)(NMei Pr)2 ,Hf(CpCH2 CH2 NMe)(NEti Pr)2 ,Hf(CpCH2 CH2 NMe)(Ni Pr)2 ,Hf(CpCH2 CH2 NMe)(NMen Pr)2 ,Hf(CpCH2 CH2 NMe)(NEtn Pr)2 ,Hf(CpCH2 CH2 NMe)(Nn Pr)2 ,Hf(CpCH2 CH2 NEt)(NMe2 )2 ,Hf(CpCH2 CH2 NEt)(NMeEt)2 ,Hf(CpCH2 CH2 NEt)(NEt2 )2 , Hf(CpCH2 CH2 NEt)(NMei Pr)2 ,Hf(CpCH2 CH2 NEt)(NEti Pr)2 ,Hf(CpCH2 CH2 NEt)(Ni Pr)2 ,Hf(CpCH2 CH2 NEt)(NMen Pr)2 ,Hf(CpCH2 CH2 NEt)(NEtn Pr)2 ,Hf(CpCH2 CH2 NEt)(Nn Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NMe2 )2 ,Hf(CpCH2 CH2 Ni Pr)(NMeEt)2 ,Hf(CpCH2 CH2 Ni Pr)(NEt2 )2 ,Hf(CpCH2 CH2 Ni Pr)(NMei Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NEti Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(Ni Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NMen Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(NEtn Pr)2 ,Hf(CpCH2 CH2 Ni Pr)(Nn Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NMe2 )2 ,Hf(CpCH2 CH2 Nn Pr)(NMeEt)2 ,Hf(CpCH2 CH2 Nn Pr)(NEt2 )2 ,Hf(CpCH2 CH2 Nn Pr)(NMei Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NEti Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(Ni Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NMen Pr)2 ,Hf(CpCH2 CH2 Nn Pr)(NEtn Pr)2 ,或Hf(CpCH2 CH2 Nn Pr)(Nn Pr)2 其中i Pr和n Pr各自代表異丙基和正丙基。
  7. 一種用於半導體元件沉積之組成物,其包含0.1重量%~99.9重量%(較佳為1重量%~99重量%)之根據申請專利範圍第1項之4B族有機金屬化合物及其餘的一或多種選自下列群組之有機化合物:飽和或不飽和烴、醚(包括環醚)、酯、醇、胺(包括環胺)、硫化物(包括環硫化物)、膦、β-二酮和β-酮酯等。
  8. 一種製備式I之4B族金屬有機化合物的方法, 其中M、R1 、R2 和R3 係如申請專利範圍第1項所定義,該方法的特徵在於令式IV化合物 M’NR2 R3 (IV)其中R2 和R3 係如申請專利範圍第1項所定義及M’代表Li、Na或K;與式V之金屬化合物反應, 其中M和R1 係如申請專利範圍第1項所定義及X代表Cl、Br或I。
  9. 根據申請專利範圍第8項之製備式I之4B族金屬有機化合物的方法,其中使用石油醚、己烷、戊烷、庚烷、二乙醚、四氫呋喃、苯、甲苯或1,2-二甲氧基乙烷作為反應溶劑。
  10. 一種形成含有4B族金屬之薄膜的方法,其包含以下步驟:將申請專利範圍第1至7項之一或多種金屬有機化合物蒸發並將其沉積在矽基材或金屬、陶瓷、塑膠結構上。
  11. 根據申請專利範圍第10項之形成含有4B族金屬之薄膜的方法,其中該沉積步驟係利用金屬有機化學蒸氣沉積(MOCVD)或原子層沉積(ALD)。
  12. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該沉積步驟係利用熱能量、光能量或電漿或偏電 壓中之任一者。
  13. 根據申請專利範圍第12項之形成薄膜的方法,其中該沉積溫度為100~1000℃,較佳為200~500℃,更佳為250~450℃。
  14. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該輸送金屬有機化合物至基材上之方法為選自下列中之一者:浮式法、起泡法、蒸氣相質量流動控制器(MFC)法、直接液體注入(DLI)法或使用前驅體化合物-有機溶劑溶液的液體轉移法。
  15. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該輸送金屬有機化合物至基材的載送氣體或稀釋氣體為選自下列中之任一者:氬、氮、氦、氫或其混合物。
  16. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該沉積在基材上的薄膜為4B族金屬氧化物(ZrO2 )膜或其含有超過一種選自下列群組之膜的金屬氧化物複合膜:Sc、Y、La、Ac之氧化物膜,Ti、Hf之氧化物膜,V、Nb、Ta之氧化物膜,AL、Ga、In之氧化物膜,及Si、Ge、Sn、Pb之氧化物膜。
  17. 根據申請專利範圍第16項之形成薄膜的方法,其中用於基材沉積之反應氣體為選自下列的一種氣體或超過兩種之氣體的混合物:水蒸氣(H2 O)、氧(O2 )、臭氧(O3 )、過氧化氫(H2 O2 )。
  18. 根據申請專利範圍第10或11項之形成薄膜的方 法,其中該沉積在基材上的薄膜為4B族金屬氮化物(MN)膜或其含有超過一種選自下列群組之膜的金屬氮化物複合膜:Sc、Y、La、Ac之氮化物膜,V、Nb、Ta之氮化物膜,AL、Ga、In之氮化物膜,及Si、Ge、Sn、Pb之氮化物膜。
  19. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該沉積在基材上的薄膜為4B族金屬碳化物(MC)膜或其含有超過一種選自下列群組之膜的金屬碳化物複合膜:Sc、Y、La、Ac之碳化物膜,V、Nb、Ta之碳化物膜,AL、Ga、In之碳化物膜,及Si、Ge、Sn、Pb之碳化物膜。
  20. 根據申請專利範圍第10或11項之形成薄膜的方法,其中該沉積在基材上的薄膜為4B族金屬碳-氮化物(MCN)膜或其含有超過一種選自下列群組之膜的金屬碳-氮化物複合膜:Sc、Y、La、Ac之碳-氮化物膜,V、Nb、Ta之碳-氮化物膜,AL、Ga、In之碳-氮化物膜,及Si、Ge、Sn、Pb之碳氮化物膜。
  21. 根據申請專利範圍第18項之形成薄膜的方法,其中該用於基材沉積之反應氣體為氨(NH3 )或肼(N2 H2 )或其混合物。
  22. 根據申請專利範圍第19項之形成薄膜的方法,其中該用於基材沉積之反應氣體為氨(NH3 )或肼(N2 H2 )或其混合物。
  23. 根據申請專利範圍第20項之形成薄膜的方法,其 中該用於基材沉積之反應氣體為氨(NH3 )或肼(N2 H2 )或其混合物。
  24. 根據申請專利範圍第11項之形成薄膜的方法,其中該原子層沉積(ALD)包含以下步驟:(1)運載基材至反應室中且將該基材加熱至其燒結溫度;(2)將第一沖洗氣體引入該反應室中(第一沖洗步驟);(3)將4B族化合物供給至該室中,以在基材上形成原子層;(4)將反應氣體供給至室中,以與原子層反應;及(5)利用第二沖洗氣體從上述室排出副產物和4B族化合物的未反應材料(第二沖洗步驟)。
  25. 根據申請專利範圍第24項之形成薄膜的方法,其中該第一及第二沖洗步驟包含將超過一種選自He、H2 、N2 、Ar和NH3 之群組的氣體引入反應室中且利用真空泵排出該室中的氣體。
  26. 一種半導體裝置,其係根據包括上述申請專利範圍第10或11項之方法所製得。
TW101132020A 2012-02-08 2012-09-03 新穎的4b族金屬有機化合物及其製備方法 TWI469988B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120012738A KR101395644B1 (ko) 2012-02-08 2012-02-08 신규한 4-비이 족 금속 유기화합물 및 그 제조방법

Publications (2)

Publication Number Publication Date
TW201333023A TW201333023A (zh) 2013-08-16
TWI469988B true TWI469988B (zh) 2015-01-21

Family

ID=49216630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101132020A TWI469988B (zh) 2012-02-08 2012-09-03 新穎的4b族金屬有機化合物及其製備方法

Country Status (2)

Country Link
KR (1) KR101395644B1 (zh)
TW (1) TWI469988B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102251989B1 (ko) * 2014-03-10 2021-05-14 삼성전자주식회사 유기 금속 전구체 및 이를 이용한 박막 형성 방법
KR101598485B1 (ko) * 2014-06-20 2016-02-29 주식회사 유진테크 머티리얼즈 성막용 전구체 조성물 및 이를 이용한 박막 형성 방법
JP6796950B2 (ja) * 2016-05-23 2020-12-09 株式会社Adeka 薄膜形成用原料及び薄膜の製造方法
US10490409B2 (en) 2016-10-28 2019-11-26 Hansol Chemical Co., Ltd. Precursor for vapor deposition having excellent thermal stability and preparing method thereof
KR20190060530A (ko) 2017-11-24 2019-06-03 주식회사 메카로 이산화티타늄 박막을 포함하는 고유전막 형성 방법
KR102015276B1 (ko) * 2018-02-08 2019-08-28 주식회사 메카로 유기금속화합물 및 이를 이용한 박막
US20210375710A1 (en) * 2018-11-22 2021-12-02 Mitsui Chemicals, Inc. Semiconductor element intermediate, and method of producing semiconductor element intermediate
KR20230086527A (ko) 2021-12-08 2023-06-15 (주)휴미스트 반도체 박막 제조를 위한 기상 증착용 비대칭 구조의 신규한 4족 전이금속화합물 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198910A (ja) * 1995-01-25 1996-08-06 Tosoh Corp エチレン系共重合体の製造方法
US20030191334A1 (en) * 2000-05-31 2003-10-09 Jorg Schottek Method for producing transition metal compounds and their use for the polymerization of olefins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080101040A (ko) * 2007-05-15 2008-11-21 주식회사 유피케미칼 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체화합물 및 이를 이용한 박막 증착 방법
KR20150139628A (ko) * 2007-09-14 2015-12-11 시그마 알드리치 컴퍼니 엘엘씨 하프늄과 지르코늄계 전구체를 이용한 원자층 증착에 의한 박막의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198910A (ja) * 1995-01-25 1996-08-06 Tosoh Corp エチレン系共重合体の製造方法
US20030191334A1 (en) * 2000-05-31 2003-10-09 Jorg Schottek Method for producing transition metal compounds and their use for the polymerization of olefins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
、『Ethene homo- and ethene/propene copolymerization using a MAO activated cyclopentadienyl-amido half-sandwich complex』, MACROMOLECULAR CHEMISTRY AND PHYSICS, Volume 201, Issue 17, pages 2581–2585, November 2000, Article first published online: 12 DEC 2000 *

Also Published As

Publication number Publication date
KR20130091450A (ko) 2013-08-19
KR101395644B1 (ko) 2014-05-16
TW201333023A (zh) 2013-08-16

Similar Documents

Publication Publication Date Title
TWI469988B (zh) 新穎的4b族金屬有機化合物及其製備方法
US8946096B2 (en) Group IV-B organometallic compound, and method for preparing same
KR101263454B1 (ko) 지르코늄 금속을 함유하는 신규한 유기금속화합물 및 그 제조방법
KR101279925B1 (ko) 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
JP4680953B2 (ja) 多座配位β−ケトイミナート金属錯体
TW201512177A (zh) 揮發性二氫吡嗪基及二氫吡嗪金屬錯合物
KR101659610B1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
JP5148186B2 (ja) イミド錯体、その製造方法、金属含有薄膜及びその製造方法
JP2007302656A5 (zh)
TW201014925A (en) Titanium pyrrolyl-based organometallic precursors and use thereof for preparing dielectric thin films
CN110073474A (zh) 锆前体、铪前体、钛前体及使用其沉积含第4族的膜
JP2022070966A (ja) シクロペンタジエニル配位子を含む金属錯体
JP2020517579A (ja) 金属トリアミン化合物、その製造方法およびこれを含む金属含有薄膜蒸着用組成物
TWI405767B (zh) 具有位阻胺化物的有機金屬化合物
JP5424715B2 (ja) チタン錯体、その製造方法、チタン含有薄膜及びその製法
KR20140074162A (ko) 4 족 전이금속-함유 전구체 화합물, 및 이를 이용하는 박막의 증착 방법
TWI831079B (zh) 稀土前驅體、製備其的方法和使用其形成薄膜的方法
KR102472597B1 (ko) η6 보라타 벤젠 리간드가 도입된 4족 유기금속 전구체 화합물, 그 제조방법 및 상기 전구체 화합물을 이용한 박막 형성 방법
KR20140136146A (ko) 규소함유 유기 금속 전구체 화합물, 이의 제조방법 및 이를 이용한 금속-규소 산화물 박막의 제조 방법
KR20120058762A (ko) 신규의 탄탈 화합물 및 그 제조 방법
KR100634814B1 (ko) 새로운 티타늄 산화물 선구 물질 및 그 제조 방법
US20210193459A1 (en) Organic metal compound, composition for depositing thin film comprising the organic metal compound, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film
KR100756388B1 (ko) 알루미늄증착 전구체 및 그의 제조방법
TW202334479A (zh) 鉬前驅物化合物、其製備方法以及使用其形成含鉬薄膜之方法
KR20140121761A (ko) 4 족 전이금속-함유 전구체 화합물 및 이를 이용하는 박막의 증착 방법