TWI444463B - 用於減低流體觸媒裂解之NOx排放之組成物及方法 - Google Patents

用於減低流體觸媒裂解之NOx排放之組成物及方法 Download PDF

Info

Publication number
TWI444463B
TWI444463B TW095114813A TW95114813A TWI444463B TW I444463 B TWI444463 B TW I444463B TW 095114813 A TW095114813 A TW 095114813A TW 95114813 A TW95114813 A TW 95114813A TW I444463 B TWI444463 B TW I444463B
Authority
TW
Taiwan
Prior art keywords
zeolite
composition
catalyst
reduction
patentable scope
Prior art date
Application number
TW095114813A
Other languages
English (en)
Other versions
TW200704766A (en
Inventor
Michael Scott Ziebarth
Roger Jean Lussier
Meenakshi Sundaram Krishnamoorthy
Original Assignee
Grace W R & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grace W R & Co filed Critical Grace W R & Co
Publication of TW200704766A publication Critical patent/TW200704766A/zh
Application granted granted Critical
Publication of TWI444463B publication Critical patent/TWI444463B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

用於減低流體觸媒裂解之NO x 排放之組成物及方法 前後參照相關之申請案
此申請案是2004年8月2日申請之美國專利申請案編號No.10/909,706及2004年8月2日申請之美國專利申請案編號No.10/909,709的部分接續申請案。
本發明之範圍
本發明係關於NOx 還原組成物及使用此組成物來減少煉油廠程序中,具體而言,流體觸媒裂解(FCC)程序中之NOx 排放物之方法。更特別,本發明係關於NOx 還原組成物及使用此組成物來減少FCC程序期間自流體觸媒裂解單元(FCCU)再生器所釋放之NOx 廢氣含量之方法而無實質上改變烴轉化率或有價值之裂解產物的產量。
近年來,美國和世界各處關於自氮、硫和碳的有害氧化物之工業排放物所形成之空氣污染日漸增加關切。回應此等關切,政府機關已制定對於一或多種此等污染物的可容許排放之極限,且該趨勢顯然向著增加嚴格限制方面。
自流體觸媒裂解(FCC)再生器出口之煙道氣氣流中之NOx 、或氮的氧化物是一個全面普及問題。流體觸媒裂解單元(FCCs)處理含氮化合物之重烴進料,當它進入再生器時,其一部分被包含在觸媒上之煤焦中。某些此類煤焦-氮在FCC再生器中或在下游CO鍋爐中最後被轉化成為NOx 排放物。因此,由於觸媒再生,處理含氮之進料之所有FCCU可能具有NOx 排放問題。
FCC程序中,觸媒粒子(備料)被連續循環在觸媒裂解區與觸媒再生器之間。再生期間,在昇高之溫度下,經由使用含氧之氣體例如空氣之氧化,將裂解區中沉積在裂解觸媒粒子上之煤焦移除。移除煤焦沉積物恢復觸媒粒子的活性至其可再使用在裂解反應中之程度。就大體而論,當焦以氧不足之情況下予以燃燒時,再生器煙道氣具有高CO/CO2 比及低含量的NOx ,但是當以過量氧被燃燒時,煙道氣具有高含量的NOx 及減少之CO含量。因此,基於此等因素例如單元進料速率,進料的氮含量、再生器設計、再生器的操作模式及觸媒備料的組成物、CO和NOx 、或此等污染物的混合物以不同數量隨同煙道氣被排放。
已作過各種嘗試來限制自FCCU所排放之NOx 氣體的數量係由在其形成之後,處理NOx 氣體,例如後處理含NOx 氣之氣流如下列美國專利中所述:No.4,434,147;4,778,664;4,735,927;4,798,813;4,855,115;5,413,699和5,547,648等號。
另種途徑是變更再生器的操作成為部分燃燒,然後在彼等被轉化成為NOx 之前,處理煙道氣中之NOx 先質,例如下列各美國專利中所述:No.5,173,278;5,240,690;5,372,706;5,413,699;5,705,053;5,716,514和5,830,346等號。
尚有另外途徑是變更再生器的操作來減少NOx 排放,例如美國專利5,382,352號中所述或變更所使用之CO燃燒促進劑,例如美國專利4,199,435;4,812,430和4,812,431中所述。亦已建議使用氧來增濃空氣在以部分燃燒模式操作之再生器中,例如,美國專利5,908,804號。
亦已試圖使用添加劑處理NOx 排放。美國專利No.6,379,536;6,280,607;6,129,834和6,143,167等號中揭示使用NOx 去除組成物用於減少自FCCU再生器之NOx 排放。美國專利No.6,165,933和6,358,881等號中亦揭示NOx 還原組成物,在FCC觸媒再生程序步驟期間,其促進CO燃燒同時減少再生步驟期間所排放之NOx 的含量。可使用經由此等專利所揭示之NOx 還原組成物作為添加劑,其連同FCC觸媒備料被循環或併合成為FCC觸媒的一個整體部分。
美國專利No.4,973,399和4,980,052號中揭示經由將含有銅負載之沸石的各別添加劑粒子併合入裂解觸媒的循環備料中來減少自FCCU的再生器之NOx 排放。
截至目前為止使用來控制NOx 排放之許多添加劑組成物典型引起烴轉化率或有價值之裂解產物例如汽油、輕烯烴和液化石油氣(LPGs)的產量顯著降低,同時增加煤焦的產量。關於被加至FCCU之NOx 添加劑,極需要之特性是不影響裂解產物產量或改變總單元轉化率。典型,FCCU的操作基於單元設計、進料和觸媒使其最適化來產生裂解產物的板岩並使煉油廠獲利能力達最大限度。此產物板岩係基於煉油廠的價值模式。舉例而言,在尖峰夏季駕駛季節期間,許多煉油廠希望使汽油產量達到最大限度,而在冬季期間,煉油廠可能希望使加熱油產量達到最大限度。其他情況中,煉油廠可能發現產生輕烯烴產物有利可圖,可將它在自由市場上出售或使用於有關之石化工廠作為原料。
當NOx 還原添加劑增加焦產量時,FCCU可能具有不充分之空氣容量來燃燒額外之焦,而可能導致較低之進料通過量入單元中。如果添加劑增加低值乾氣的產量,則較有價值之產物的產量可能降低。乾氣之增加可能超過該單元處理它的能力,因此,迫使減少所處理之進料的數量。雖則如果煉油廠認為此等產物有價值且該單元具有處理額外輕烴所必須之設備,可能需要能增加輕烯烴產量之添加劑時,如果煉油廠之目標是使汽油產量達到最大,則該添加劑可能降低獲得能力。輕烯烴典型在FCCU中,係犧牲汽油產量而達成。如果添加劑影響產物產率,致使單元達到設備極限,及/或降低可被處理之進料的數量,甚至能增加單位轉化率之添加劑可能不受歡迎。
因此,影響產物板岩或改變以所需要速率來處理進料之能力,對於FCCU之任何改變可能不利於煉油廠之獲利。因此,需要NOx 控制組成物,其不致重大影響產物產率及總單元轉化率。
現已發現某些金屬穩定化之沸石顯示能增加活性和穩定性而減少觸媒裂解法期間NOx 排放。將金屬穩定化之沸石成分與媒裂觸媒的備料摻合,特別與含有活性Y-型沸石之裂解觸媒備料摻合,流體觸媒裂解(FCC)程序期間被循環遍歷流體觸媒裂解單元(FCCU)能提供優良NOx 控制性能沒有實質上改變或影響烴轉化率或FCC程序期間所產生之裂解石油產物的產量。
依照本發明,本發明的NOx 還原組成物典型包括含有沸石成分的粒子之顆粒組成物,其具有在FCC程序期間減少NOx 之能力且其已使用選自下列所構成之族群之一種金屬:鋅、鐵及其混合物予以穩定化。本發明的較佳具體實施例中,該顆粒沸石成分是鎂鹼沸石。本發明的甚至更佳之具體實施例中,將沸石粒子與一種無機黏結劑結合。黏結劑較佳包括矽石、礬土或矽石-礬土。可將沸石與氫、銨、鹼金屬及其組合進行交換。較佳之鹼金屬是鈉、鉀或其組合。
本發明的一個特點,係提供基於金屬穩定化沸石之NOx 還原附加劑組成物。將該等組成物以粒子的分別摻合物加至媒裂觸媒的循環備料來減少FCC程序期間自FCCU再生器所釋放之NOx 排放。
本發明的另外特點係提供NOx 還原觸媒組成物,其包括被併合成為FCC觸媒的一整體成分之金屬穩定化沸石,較佳,含有Y-型沸石活性裂解成分。
本發明的更另外優點係提供改良之NOx 還原組成物,此等組成物減少FCC程序期間自FCCU再生器之NOx 排放,同時實質上維持烴轉化率及裂解石油產物的產量且使焦產生之增加減至最少。
本發明的另外特點係使用依照本發明之NOx 還原組成物來提供用於減少FCC程序期間FCCU再生器的廢氣中NOx 含量之方法。
本發明的另外特點是提供用於減少FCCU再生器的廢氣中NOx 含量之改良FCC程序,沒有實質上影響烴轉化率或FCC程序期間所產生之石油產物的產量。
本發明的此等和其他特點予以更進一步詳述如下。
雖然已知數種氮氧化物在周圍條件下係相當穩定,但是為了本發明之目的,本文中使用之NOx 係代表氧化氮、二氧化氮(氮的主要有害氧化物)及N2 O4 、N2 O5 和其混合物。
本發明包括該項發現即,使用含有NOx 還原組成物之某些沸石併用一種流體觸媒裂解(FCC)觸媒,較佳其包含活性Y型沸石之觸媒,對於減少FCC程序條件下自FCCU再生器所釋放之NOx 排放係極為有效且沒有實質上改變烴進料轉化率或裂解產物之產量。通常,本發明之組成物包括至少一種金屬穩定化之沸石成分,其具有減少自FCC條件下FCCU再生器之NOx 排放之能力。該沸石係使用選自下列所構成之族群之一種金屬或(金屬離子):鋅、鐵和其混合物予以穩定化而產生NOx 還原沸石。本發明的較佳具體實施例中,將沸石與無機黏結劑結合而形成顆粒NOx 還原組成物。可將該顆粒NOx 還原組成物以各別之粒子添加劑加至媒裂觸媒的循環備料中。本發明的另外具體實施例中,將沸石併合成為裂解觸媒的一整體成分,其中在併合入裂解觸媒組成物中之前或之後,將沸石使用所需要之金屬實行穩定化。
為了本發明的目的,措辭"烴進料轉化率或裂解產物的產量之實質上改變"本文中之定義係指(i)項或(ii)項:(i)當與相同或大體上相同產物的基線產量相比較時,LCO(輕循環油)、塔底油和汽油連同LPG的產量之相對改變小於30%,較佳相對改變小於20%,最佳相對改變小於10%;或(ii)當與基線轉化率相比較時,烴進料轉化率之相對改變係小於10%,較佳相對改變小於6.5%且最佳相對改變小於5%。轉化率之定義為100%×(1-塔底油產量-LCO產量)。當使用NOx 還原組成物作為各別之添加劑時,該基線是使用相同或大體上相同進料並在相同或大體上相同形成和單元條件下操作之FCCU中產物的平均轉化率或產量,但是係在將本發明的添加劑加至觸媒備料之前。當將NOx 還原組成物併入或摻合入裂解觸媒粒子中而產生整體NOx 還原觸媒系統時,烴轉化率或裂解產物產量之顯著改變係使用一種基線予以測定,此基線之定義為在相同或大體上相同形成和單元條件下,使用相同或大體上相同進料,及使用包括與含有NOx 還原組成物者相同或大體上相同裂解觸媒組成物之裂解觸媒備料操作之相同或大體上相同FCCU中產物的平均轉化率或產物產量,除去NOx 還原組成物在裂解觸媒中以一種基體成分例如高嶺土或其他填料予以替代以外。上文中具體說明之百分數改變係選自Davison循環上升管(DCR)所獲得之操作數據的統計分析所導出,如下列各出版物中所述:1)G.W.Young,G.D.Weatherbee和S.W.Davey"使用Davison循環上升管(DCR)實驗工廠單元模擬商業上FCCU產量",National Petroleum Refiners Association(NPRA)論文AM88-52;及2)G.W.Young,"Realistic Assessment of FCC Catalyst Performance in the Laboratory"in Fluid Catalytic Cracking:科學與技術,J.S.Magee和M.M.Mitchell,Jr.Eds.Studies in Surface Science and Catalysis,第76卷,p.257,Elsevier科學出版社,B.V.阿姆斯特丹,1993,ISBN 0-444-89037-8。
使用於本發明中之沸石包括具有在觸媒裂解條件下,觸媒裂解程序期間,尤其在FCC條件下FCC程序期間減少NOx 排放之能力之沸石。就大體而論,該NOx 還原沸石包括具有範圍自約2至約7.2之孔徑及具有小於約500,較佳小於250,最佳小於100的SiO2 對Al2 O3 莫耳比之沸石。較佳,該沸石係選自下列所構成之族群:鎂鹼沸石、ZSM-11、倍他(β)、MCM-49、絲光沸石、MCM-56、沸石-L、沸石Rho、毛沸石、菱沸石、斜發沸石、MCM-22、MCM-35、MCM-61、矽鋁鉀沸石、A、ZSM-12、ZSM-23、ZSM-18、ZSM-22、ZSM-57、ZSM-61、ZK-5、NaJ、Nu-87、Cit-1、SSZ-35、SSZ-48、SSZ-44、SSZ-23、環晶石、鋇十字沸石、鈹矽鈉沸石、插晶菱沸石、濁沸石、柱沸石、鈉菱沸石、水鈣沸石、鈣霞石、鍶沸石、輝沸石、方鹼沸石、古柱沸石、鈉沸石、omega(ω)或其混合物。本發明的更佳具體實施例中,該NOx 還原沸石成分是選自下列所構成之族群之沸石:鎂鹼沸石、倍他(β)、MCM-49、絲光沸石、MCM-56、沸石-L、沸石Rho、毛沸石、菱沸石、斜發沸石、MCM-22、矽鋁鉀沸石、A、ZSM-12、ZSM-23、omega及其混合物。本發明的最佳具體實施例中,該沸石是鎂鹼沸石。
本發明的較佳具體實施例中,構成本發明的NOx 還原組成物之沸石具有至少100m2 /g的表面積,較佳至少200m2 /g而最佳至少300m2 /g。本發明的另外具體實施例中,在併合入黏結劑中而形成顆粒NOx 還原組成物之前、或FCC觸媒或使用金屬或金屬離子實行穩定化之前,使沸石與選自下列所構成之族群之一種物料交換:氫、銨、鹼金屬及其組合。較佳之鹼金屬是選自下列所構成之族群之一:鈉、鉀及其混合物。
NOx 還原組成物包括至少一種NOx 還原沸石,將此NOx 還原沸石係使用穩定化數量(例如基於NOx 還原組成物的總重量(以金屬氧化物所量計之),自約1.0至約25重量%,較佳自約5至約15重量%,最佳自約8至約12重量%)的選自下列所構成之族群之一種金屬或金屬離子:鋅、鐵及其混合物予以穩定化。
典型,沸石的穩定化係以充分沉積所需要之穩定化金屬或金屬離子在沸石成分中或其上之任何方式予以實現。其較佳者為將穩定化金屬或金屬離子以如此方式沉積因此使金屬或金屬離子存留在沸石的孔隙中或被併合在沸石的骨架內。如為精於該項技藝之人士所了解,此操作可能由各種方法予以實現。
經由金屬或金屬離子的存在時進行合成沸石可將金屬或金屬離子併合在沸石的骨架以內。舉例而言,在製備沸石期間,亦可將金屬成分加至合成凝膠。或者,可將金屬或金屬離子成分連同其他反應物添加成為使用於合成沸石之一成分或由使用來合成沸石之其他反應物之一,例如鋁離子所部分取代或交換。使用習用之方法例如,離子交換、浸漬等等亦可將穩定化金屬或金屬離子摻合入沸石的孔隙中而形成本發明的NOx 還原組成物。
典型固態交換可經由摻合細磨之金屬鹽類與沸石並同時一同加熱此兩成分且溫度足以容許交換發生予以實現。然後可將摻合物水洗來移除任何未交換之金屬粒子及/或任何剩餘鹽類而產生金屬交換之沸石。
典型經由溶液交換,亦可將穩定化金屬或金屬離子成分在經由結合NOx 還原沸石與一種無機黏結劑而形成粒子所形成之顆粒NOx 還原組成物上浸漬或交換。雖然本發明並未限制製備顆粒組成物的任何特別方法,但是典型,本發明的顆粒NOx 還原組成物係由形成含有顆粒NOx 還原沸石,無機黏結劑和視需要基體物料之水相漿體予以製備,其數量足以在最終組成物中提供至少10.0wt%之NOx 還原沸石成分及至少5.0wt%黏結劑物料,其後,將水相漿體噴霧乾燥而形成粒子。視需要,將經噴霧乾燥之粒子在充分溫度下乾燥歷充分時間來移除揮發物,例如在約90℃至約320℃歷約0.5至約24小時。本發明的較佳具體實施例中,在噴霧乾燥之前,將含有沸石之水相漿體研磨以便減小被包含在漿體中物料的平均粒子大小至10μm或更小,較佳5μm或更小,最佳3μm或更小。視需要,在併合黏結劑及/或基體物料之前或之後,可研磨該水相漿體。
可將經噴霧乾燥之組成物在一溫度下煅燒及歷一段時間足夠移除揮發物並提供充分硬度至供使於FCC程序條件下,FCCU中之黏結劑,較佳自約320℃至約900℃歷自約0.5至約6小時。
視需要,將經乾燥或經煅燒之組成物洗滌或與氨或銨鹽(例如硫酸銨、硝酸銨、氯化物、碳酸鹽、磷酸鹽等)的水溶液,或一種無機或有機酸(例如硫酸、硝酸、磷酸、氫氯酸、乙酸、甲酸等)進行交換來減少成品產物中鹼金屬的數量,例如鈉或鉀之數量。
浸漬顆粒NOx 還原組成物典型可經由溶解一種可溶金屬鹽在水中,其後使用該溶液浸漬顆粒組成物予以實現。
亦在本發明的範圍以內者是在製備顆粒NOx 還原組成物期間,可將穩定化金屬或金屬離子成分加至進料漿體。即,可將NOx 還原沸石,黏結劑和任何基體成分與穩定化金屬成分組合而形成進料漿體,接著形成顆粒組成物,如上文中所述,一般係由噴霧乾燥來形成。另外,亦係本發明的範圍以內者是如上文中所述,在結合NOx 還原沸石粒子與無機黏結劑而形成顆粒NOx 還原組成物之前,可能浸漬穩定化金屬或金屬離子成分或典型經由溶液交換在NOx 還原沸石上進行交換。
於使用NOx 還原組成物成為裂解觸媒的一整體成分之情況,在併合沸石成為觸媒的一成分之前或之後,可將穩定化金屬或金屬離子交換或浸漬至NOx 還原沸石上。無意欲限制將NOx 還原沸石成分併合在裂解觸媒以內成為製造裂解觸媒的任何特定方法,典型,將沸石成分,任何添加之沸石,裂解觸媒沸石,通常係USY或REUSY型及任何基體物料在水中形成漿體。研磨漿體來減小漿體中固體粒子的平均粒子大小至小於10μm,較佳至小於5μm,最佳至小於3μm。將經研磨之漿體與一種適當黏結劑,即:矽溶膠黏結劑及視需要之基體物料,例如黏土組合。然後將漿體混合並噴霧乾燥而形成觸媒。視需要將經噴霧乾燥之觸媒使用氫氧化銨的水溶液、銨鹽、無機或有機酸和水洗滌來移除不需要之鹽類。可將已洗滌之觸媒與水溶性稀土鹽類,例如稀土氯化物、硝酸鹽等等進行交換。
或者,將NOx 還原沸石成分,視需要添加之沸石、裂解觸媒沸石、任何基體物料、一種稀土水溶性鹽、黏土和礬土溶膠黏結劑在水中形成漿體並摻合。將該漿體研磨並噴霧乾燥。將經噴霧乾燥之觸媒在約250℃至約900℃煅燒。然後,視需要,可將經噴霧乾燥之觸媒使用氫氧化銨之水溶液、銨鹽、無機或有機酸和水洗滌來移除不需要之鹽類。視需要,在其已洗滌之後,經由該項技藝中所熟知之任何方法,可使該觸媒與水溶性稀土鹽類進行交換。亦係本發明的範圍以內的是,在形成最後觸媒組成物之前的任何步驟可將穩定化金屬成分加至觸媒進料漿體。
典型,使用溶液交換、固態交換或任何其他習用方法,將穩定化金屬或金屬離子在NOx 還原沸石或含有NOx 還原沸石之最後觸媒組成物上進行交換或浸漬。典型之溶液相交換中,將沸石在含有所需要之金屬成分之水溶液中形成漿體。控制溶液的pH值和溫度,使金屬成分對沸石的交換達到最大。然後可將該物料過濾和水洗滌來移除任何未交換之金屬及/或任何剩餘鹽類。如果金屬係由浸漬來添加,則可將一種可溶金屬鹽溶入水中並用該溶液浸漬沸石。附帶,可將交換或浸漬在含有鹼金屬或鹼土金屬離子之NOx 還原沸石上或在已轉化成為其氫形式之沸石上進行。
被使用於本發明的NOx 還原組成物中之NOx 還原沸石的數量將基於數種因素而變更,包括但不限於,NOx 還原沸石與媒裂觸媒組合的模式及所使用之裂解觸媒的型式。於本發明的組成物是分別的添加劑組成物並包括由結合NOx 還原沸石的粒子與適當無機黏結劑所形成之顆粒組成物之情況,通常,存在於該顆粒組成物中之NOx 還原沸石成分的數量基於組成物的總重量是至少10 wt%,較佳至少30 wt%,最佳至少40 wt%且甚至更佳至少50wt%。典型,顆粒添加劑組成物含有基於該添加劑組成物的總重量,自約10至約85 wt%,較佳自約30至約80 wt%,最佳自約40至約75wt%的NOx 還原沸石成分。
使用以製備本發明的顆粒NOx 還原組成物之黏結劑物料包括任何無機黏結劑其能結合沸石粉末而形成具有適合使用於FCC程序條件下FCCU中之各種性質的粒子。使用來製備依照本發明之組成物之典型無機黏結劑物料包括,但不限於,礬土、矽石、矽石-礬土、磷酸鋁等及其混合物。該黏結劑較佳係選自下列所構成之族群:礬土、矽石、矽石-礬土及其混合物。更佳,該黏結劑包括礬土。甚至更佳,該黏結劑包括一種酸或鹼膠溶之礬土。最佳,該黏結劑包括一種礬土溶膠,例如氯水解鋁。通常,存在於特別添加劑組成物中之黏結劑物料的數量構成本發明的添加劑組成物之自約5至約50wt%,較佳自約10至約30wt%,最佳自約15至約25wt%。
視情況,存在於本發明的顆粒組成物中之附加物料包括,但不限於填料(例如,高嶺黏土)或基體物料(例如,礬土、矽石、矽石-礬土、氧化釔、氧化鑭、氧化鈰、氧化釹、氧化釤、氧化銪、氧化釓、氧化鈦、氧化鋯、氧化鐠及其混合物。當使用時,使用附加物料之數量係不致重大不利影響組成物的減少自FCC條件下之FCCU再生器所釋放之NOx 排放的性能,烴進料轉化率或裂解觸媒的產物產量。就大體而論,附加物料可構成組成物的不超過約70wt%。然而,其較佳者為本發明的組成物基本上係由NOx 還原沸石及一種無機黏結劑組成。
本發明的顆粒添加劑組成物應具有充分之粒子大小以容許將該組成物循環遍及FCCU同時和FCC程序期間裂解觸媒的備料一致。典型,本發明的組成物可具有大於45μm的平均粒子大小,該平均粒子大小較佳是自約50至約200μm,最佳自約55至約150μm,甚至更佳自約60至約120μm。本發明的組成物典型具有小於約50的Davison磨耗指數(DI),較佳小於約20,最佳小於約15。
可將本發明的顆粒組成物以分別之粒子添加劑形式連同主裂解觸媒循環遍歷FCCU。通常,顆粒添加劑組成物之使用量係為FCC觸媒備料的至少0.1wt%。所使用之添加劑組成物的數量範圍較佳係FCC觸媒備料的自約0.1至約80 wt%,最佳自約1至約75wt%。有利地,當與特別調配之高活性裂解觸媒協同使用時,例如2001年4月13日申請之美國專利申請案編號No.09/833,603號中所敘述並揭示之高活性裂解觸媒,此文獻併入本文以供參考,使用高達80 wt%的FCC觸媒備料之添加劑含量容許有效減少自FCCU再生器之NOx 排放,由於裂解觸媒備料的稀釋,並無損失裂解活性。
如為精於該項技藝之人士所了解,可將本發明的分別之顆粒組成物以習用方式加至FCCU,例如遲同補充觸媒加至再生器或經由任何其他便利方法。
當併合入FCC觸媒粒子中時,NOx 還原成分典型代表FCC觸媒粒子的至少0.1wt%。所使用之NOx 還原成分的數量較佳範圍是FCC觸媒粒子的自約0.1至約70wt%,最佳自約1至約50wt%。
如以上本文中所述,該集成之FCC觸媒典型可包括NOx 還原沸石成分連同裂解觸媒沸石,無機黏結劑物料及視需要,基體、填料和其他添加劑成分例如金屬阱(舉例而言,Ni和V之阱)而組成該裂解觸媒。裂解觸媒沸石,通常是Y、USY或REUSY型提供大部分的裂解活性且典型其存在之數量範圍係基於組成物的總重量,自約10至約75 wt%,較佳自約15至約60且最佳自約20至約50wt%。使用以製備依照本發明,集成觸媒組成物之無機黏結劑物料包括任何無機物料其能結合集成觸媒的各成分而形成粒子其具有適合使用於FCC程序條件下,FCCU中之各種性質。典型,此等無機黏結劑物料包括,但不限於礬土、矽石、矽石-礬土、磷酸鋁等及其混合物。黏結劑較佳係選自下列所構成之族群:礬土、矽石、矽石-礬土。通常,存在於積體觸媒組成物中之黏結劑物料含量基於觸媒組成物的總重量係小於50wt%。存在於積體觸媒中之無機黏結劑物料含量的範圍較佳基於組成物的總重量,自約5至約45wt%,更佳自10至約30wt%,而最佳自約15至約25wt%。
視需要,存在於本發明的積體觸媒組成物中之基體物料包括,但不限於,礬土、矽石-礬土、稀土氧化物,例如氧化鑭、過渡金屬氧化物例如氧化鈦、氧化鋯和氧化錳,2A族之氧化物例如氧化鎂和鋇,黏土例如高嶺土及其混合物。典型,存在於整體觸媒中之基體及/或填料之含量係基於觸媒組成物的總重量,少於50wt%。存在之基體及/或填料之含量較佳範圍係基於觸媒組成物之總重量自約1至約45wt%。
整體觸媒的粒子大小和磨耗性質影響單元中之流體化性質及測定觸媒被保留在商業FCC單元中是如何良好。本發明的整體觸媒組成物典型具有約45至約200μm的平均粒子大小,更佳自約50μm至約150μm。如經由Davison磨耗指數(DI)所量測之整體觸媒的磨耗性質具有小於50的DI值,更佳小於20而最佳小於15。
本發明的較佳具體實施例中,FCC裂解觸媒含有Y型沸石。可將NOx 還原沸石作為分別之添加劑粒子加至裂解觸媒的循環備料或直接併合入含有Y型沸石之裂解觸媒中成為該觸媒的一整體成分。任一情況中,存在之Y型沸石的數量足夠提供充分裂解活性在FCCU中,如由精於該項技術之人士迅速可測定。存在之Y型沸石的數量較佳足夠提供NOx 還原沸石對Y型沸石之比為小於2,較佳小於1在全部觸媒備料中。
稍微簡略言之,該FCC程序包括裂解重烴進料成為較輕之產物,係由使循環觸媒循環裂解程序中之原料與由具有平均大小範圍自約50至約150μm之粒子,較佳自約60至約120μm粒子組成之循環可流體化裂解觸媒備料接觸。此等相當高分子量烴進料的媒裂導致產生較低分子量的烴類產物。循環FCC程序中之重要步驟是:(i)進料在觸媒裂解條件下操作之觸媒裂解區中,通常在上升管裂解區中予以觸媒裂解,係使進料與熱再生之裂解觸媒的來源接觸而產生流出物,其中包含裂解產物及含有焦和可汽提之烴的廢觸媒。
(ii)排放流出物及通常在一或數個旋風器中分離成為富含裂解產物之氣相和富含固體粒子相包括廢觸媒;(iii)移出氣相成為產物並在FCC主塔及其相關之側塔中分餾而形成氣體和液體裂解產物包括汽油。
(iv)通常使用水蒸汽將廢觸媒汽提,自該觸媒上移除吸留之烴類,其後,將經汽提之觸媒在觸媒再生區中氧化地再生而產生熱,被再生之觸媒,然後將它循環至裂解區用於裂解另外數量的進料。
習用之FCC觸媒,舉例而言,,包括具有八面沸石裂解成分之沸石系觸媒,如下列基本評論中所述:由Venuto和Habib,使用沸石觸媒之流體媒裂,Marcel Dekker,紐約,1979 ISBN 0-8247-6870-1,以及甚多其他來源中所述,例如,Sadeghbeigi,流體媒裂手冊,Gulf出版公司,HouSton,1995,ISBM 0-88415-290-1。該FCC觸媒較佳是包含Y型沸石活性裂解成分之觸媒。本發明的特佳實施例中,FCC觸媒係由黏結劑,通常礬土、矽石、矽石-礬土、Y型沸石活性成分、一或數種基體礬土及/或矽石-礬土及填料例如高嶺黏土組成。該Y型沸石可能以一或數種形式而存在且可能已使用穩定化陽離子例如任何的稀土陽離子予以超穩定化及/或處理。
典型之FCC程序係在480℃至600℃的反應溫度連同600℃至800℃的觸媒再生溫度時予以實施。如該項技藝中眾所周知,觸媒再生區可由單或複數反應器容器組成。可使用本發明的組成物在任何典型烴進料的FCC處理中。適當原料包括石油餾出物或具有約150℃至約900℃的沸點範圍,較佳約200℃至約800℃的原油之殘渣,當予以媒裂時,其產生汽油或其他石油產物。亦可包括具有約200℃至約800℃沸點之合成進料,例如來自煤塔砂或頁岩油之合成油。
為了自觸媒上移除焦,將氧或空氣加至再生區。此操作係由再生區的底部中之適當噴布裝置予以實施,或若需要,添加另外之氧至再生區的稀相或濃相。
依照本發明之添加劑組成物引人注目地降低觸媒再生期間FCCU再生器流出物中NOx 排放,即:降低至少10%,較佳至少20%,同時實質上維持烴進料轉化率或自裂解觸媒所獲得之裂解產物,例如汽油和輕烯烴的產量。某些情況中,使用本發明的組成物和方法,可達成迅速減量70%以上的NOx 而沒有重大影響裂解產物之產量或進料轉化率。然而,如由精於FCC技藝之人士應了解,NOx 減量的程度將基於此等因素,舉例而言,例如所利用之添加劑的組成和數量;裂解觸媒單元之設計和操作此單元之方式,包括但不限於,再生器中氧含量和空氣的分佈,再生器中觸媒床深度,汽提塔操作和再生器溫度,所裂解之烴進料的性質及可能影響再生器的化學作用和操作之其他觸媒添加劑的存在。因此,因為每一FCCU在某些或全部的此等方面是不同,所以可能預期本發明方法的有效性是隨著各個單元而不同。本發明的NOx 還原組成物亦預防FCC程序期間焦的產生顯著增加。
亦係屬於本發明的範圍以內者是本發明的NOx 還原組成物可單獨使用或與一或多種另外之NOx 還原成分併用,較單獨使用任一種組成物更有效地實現NOx 還原。該另外之NOx 還原成分較佳是一種非沸石之物料,即:不含或大體不含(即,少於5wt%,較佳少於1wt%)沸石之物料。
本發明的範圍以內亦經考慮的是,可將依照本發明之添加劑組成物與習見使用於FCC程序中之其他添加劑協同使用,例如NOx 還原添加劑,汽油-硫減量添加劑,CO燃燒促進劑,用於生產輕烯烴之添加劑等等。
本發明的範圍在任何方面無意受下列所揭示之實例所限制。該等實例包括製備使用於本發明的方法中之添加劑及評估減少觸媒裂解環境中之NOx 的本發明方法。此等實例係以申請專利範圍之發明的特定舉例說明而示出。然而,應了解:本發明並不限於該等實例中所揭示之特別細節。
除非在其他情況具體說明,實例中之所有份數和百分數,以及述及固體組成或濃度之本說明書的餘項是以重量計。除非在其他情況具體說明,氣態混合物的濃度是以體積計。
此外,說明書或申請專利範圍中所列舉之任何範圍的數字,例如代表特別一組的性質、量度的單位、狀況、物理狀態或百分比者,意欲照字義清楚地併合入本文中以供參考或在其他情況下,屬於此範圍以內之任何數字,包括如此所列舉之任何範圍以內之任何子集的數字。
實例
關於減少來自FCC單元之NO排放,添加劑A至H的性能評估,經由使用DCR予以實施。每一次實驗中,DCR係在"全燃燒"再生條件下予以操作,此處"全燃燒"之定義為該種狀況,其中被加至再生器之空氣的數量在離開再生器之前,足夠轉化廢FCC觸媒上之所有焦種屬成為CO2 。該試驗係在再生器中使用1%過量O2 予以實施,並使用在705℃時操作之再生器。
實例1 包含75%鎂鹼沸石及25%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有來自氯水解鋁溶液(23%固體粒子)之25%Al2 O3 、75%鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O=6至10wt%)及充分附加水而造成含有約42至44%固體粒子之漿體。將該漿體研磨至小於3.0μm的平均粒子大小,然後予以噴霧乾燥。將經噴霧乾燥之產物在400至450℃時煅燒歷20至40分鐘。將經煅燒之觸媒使用硫酸銨溶液,接著用水洗滌,來減少K2 O含量至少於1.0wt%。將該觸媒指定為添加劑A,其性質示於下表1中。
實例2 包含73%鎂鹼沸石、2.5%ZnO及24.5%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、250克的ZnCl2 及充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中碾磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑B,其性質示於下表1中。
實例3 包含72.1%鎂鹼沸石、3.9%ZnO及24%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、400克的ZnCl2 及充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中碾磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑C,其性質示於下表1中。
實例4 包含70.7%鎂鹼沸石、5.8%ZnO及23.5%礬土溶膠之組成物的製備如下:製備一種水相漿體,其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、600克的ZnCl2 及充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中碾磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑D,其性質示於下表1中。
實例5 包含69.5%鎂鹼沸石、7.4%ZnO及23.1%礬土溶膠之組成物的製備如下:製備一種水相漿體,其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、800克的ZnCl2 和充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑E,其性質示於下表1中。
實例6 包含67%鎂鹼沸石、10.7%ZnO及22.3%礬土溶膠之組成物的製備如下:製備一種水相漿體,其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、1200克的ZnCl2 和充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑F,其性質示於下表1中。
實例7 添加劑G之製備如下:將如實例4中所示,所製備之732.2克乾燥基之添加劑樣品使用以172.9克、Zn(醋酸)2 .2H2 O、281ml H2 O及209.4ml的30%NH4 OH溶液所製備之溶液浸漬。將它在287℃時烘箱乾燥歷4小時,使用相同組成的溶液再浸漬,並在287℃時乾燥歷4小時。然後將樣品在593℃時煅燒歷4小時。添加劑G具有如下列表1中所示之性質。
實例8 包含62.5%鎂鹼沸石、10.7%ZnO、4.5%Catapal C礬土及22.3%礬土溶膠之組成物的製備如下:製備一種水相漿體,其含有6520克的氯水解鋁溶液(23%固體粒子)、4200克(乾燥基)之鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、300克(乾燥基)Catapal C礬土、1200克的ZnCl2 和充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑H,其性質示於下表2中。
實例9 包含65%鎂鹼沸石、15%黏土和20%礬土溶膠之組成物的製備如下:製備一種水相漿體,其含有4344克的氯水解鋁溶液(23%固體粒子)、3250克(乾燥基)的鎂鹼沸石,650克(乾燥基)黏土和充分附加水而造成含有約40%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將具有如表2中所示之性質之觸媒指定為添加劑I。
實例10 使用固態交換步驟,將鎂鹼沸石與鋅離子交換如下:將氯化鋅(228克)研磨成為細末,然後與2500克的鎂鹼沸石粉末摻合。將摻合物在325℃時煅燒歷2小時。將經煅燒之摻合物攪拌入維持在80℃之9000克的水中成為漿體,混合歷0.16小時,然後過濾。然後將濾餅使用維持在80℃之水洗滌三次,予以乾燥,然後在593℃時煅燒歷1.5小時。該最後鋅固態交換之產物含有2.80%ZnO。
包含65%Zn/鎂鹼沸石、15%黏土及20%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有2608克的氯水解鋁溶液(23%固體粒子)、1950克(乾基)的鋅固態交換之鎂鹼沸石和充分附加水而造成含有約40%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑J並具有下列表2中所示之各種性質。
實例11 與矽溶膠結合之鎂鹼沸石觸媒使用下列步驟予以製備:將含有29%鎂鹼沸石(SiO2 /Al2 O3 =20)之水相漿體在Drais磨機中研磨。將經研磨鎂鹼沸石漿體(4160克)與1200克Natka黏土(乾燥基)和6000克矽溶膠黏結劑(10%固體粒子)組合。該矽溶膠黏結劑自矽酸鈉和酸性明礬製成。然後觸媒漿體在Bowen噴霧乾燥器中予以噴霧乾燥。將產生之經噴霧乾燥之產物用硫酸銨溶液洗滌,接著用水洗滌而產生具有少於0.1wt%的Na2 O含量之觸媒。將此觸媒指定為添加劑K並具有下列表2中所示之各種性質。
實例12 經由下列程序,將實例11中所製備之添加劑K與鋅離子進行交換:Zn-交換係由添加150克的經噴霧乾燥之觸媒至含有1500克,水中之12.4克的Zn(NO3 )2 .6H2 O之硝酸鋅溶液而進行。將混合物在70℃時攪拌歷0.5小時。然後過濾該漿體並將觸媒使用維持在70℃之水洗滌三次來移除過量硝酸鋅。將此觸媒指定為添加劑L並具有下列表2中所示之各種性質。
實例13 將添加劑A至H在DCR中評估來測定用於減少自FCC單元所釋放之NO排放之各添加劑的有效性。每一實驗中,DCR係在"全燃燒"再生條件下予以操作,此處"全燃燒"之定義為該種狀況,其中被加至再生器之空氣的數量足夠轉化廢FCC觸媒上之所有焦種屬成為CO2 。該試驗係在再生器中使用1%過量O2 予以實驗並使用在705℃時操作之再生器。
使用具有如下表3中所示之性質的商業FCC進料用於試驗。將該DCR初始加進大概1596克的具有如表4中所示性質之一種平衡裂解觸媒及4克的以Pt為基底之燃燒促進劑的商業樣品(自Grace Davison所獲得之CP-3)的摻合物,使用循環丙烯汽蒸方法(CPS),將它在788℃時去活化歷20小時並無任何所添加之Ni或V。該CPS方法的敘述公佈於L.T.Boock,T.F.Petti和J.A.Rudesill,"Contaminant-Metal Deactivation and Metal-Dehydrogenation Effects During Cyclic Propylene Steaming of Fluid Catalytic Cracking Catalysts,"Deactivation and Testing of Hydrocarbon Processing Catalysts,ACS專題論集634系列,p.171(1996),ISBN 0-8412-3411-6。
在穩定化該單元之後,使用線上Multigas 2030 FTIR氣體分析儀收集基線NO排放數據。其後,將含有第二摻合物之添加劑注射入DCR中。關於添加劑A、E、F、G和H,此摻合物含有大概86克之添加劑其在流體化床反應器中在760℃時使用N2 中之20%水蒸汽予以熱液去活化歷24小時沒有添加Ni或V;並含有0.215克的CPS-去活化之CP-3。關於添加劑B、C和D,此摻合物含有大概90克之添加劑其在流體化床反應器中在760℃時使用N2 中之20%水蒸汽予以熱液去活化歷24小時,沒有添加Ni或V;109.5克的平衡裂解觸媒和0.25克的CPS去活化之CP-3。如表5中所見,在DCR中在相似數量時,添加劑B至H顯示比添加劑A較佳NOx 還原性能。此結果證實添加Zn至鎂鹼沸石改良其在去活化之後,NOx 還原性能。該NOx 還原性能係隨著增加Zn含量而增加直至達到最大值在10%ZnO範圍內。
使用添加劑A、E和F之各操作的產量示於下表6中來舉例說明此等NOx 還原添加劑,沒有一種添加劑能影響FCC產量之特點。
實例14 用於減少自FCC單元之NOx 排放的添加劑I和J在DCR中予以評估。該試驗係使用如實例13中之相同條件,平衡觸媒和進料等狀態下操作之DCR予以實施。將DCR初始加進大概1895.25克的平衡裂解觸媒和4.75克的CPS-去活化之CP-3的摻合物。穩定化該單元之後,基線NO排放數據使用線上Multigas 2030 FTIR氣體分析儀予以收集。其後,將大概105克的添加劑I或J、94.5克的平衡觸媒和0.5克的CPS-去活化之CP-3的摻合物注射入DCR中並在添加劑上連續操作歷大概10小時。如表7中所示,1小時之後,在減少NOx 排放方面,添加劑J較添加劑I僅略為有效,但是7小時之後,顯示較大之NOx 減量性能優點。自此數據,可下結論是,當與未經穩定化之添加劑相比較時,添加預交換之Zn至鎂鹼沸石穩定化NOx 還原活性且提供改良之NOx 減量性能。
實例15 使用如實例13和14中之相同操作條件,評估添加劑K和L其在DCR中之NOx 還原性能。使用一種商業上FCC進料用於試驗,其性質示於下表8中。將該DCR初始加進大概1800克的自Grace Davison所獲得之商業上可供應之裂解觸媒,SURERNOVADMR+的摻合物,其在流體化床反應器中在816℃時使用100%水蒸汽予以熱液去活化歷4小時,沒有添加Ni或V。穩定化該單元之後,使用線上Lear-Siegler SO2 /NO分析儀(SM8100A)收集基線NO排放數據。其後,將100克的觸媒之摻合物加至由95.25克的熱液去活化之SuperNovaDMR+觸媒和4.75克的CPS-CP-3組成之DCR中。遍歷此時框連續收集NO排放,且一旦該單元再被穩定化,立即將含有0.525克的去活化之CP-3連同105克的添加劑K或L和105克的去活化之SuperNovaDRM+觸媒之摻合物加至DCR。如表9中所見,在減少自DCR之NO排放方面,添加劑L較優於添加劑K。此顯示Zn在經包含在具有矽溶膠黏結劑之粒子中之鎂鹼沸石上之後交換改良了鎂鹼沸石的NO減量性能。
實例16 包含75%黏土和25%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有2174克的氯水解鋁溶液(23%固體粒子)、1500克(乾基)之黏土和充分附加水而造成含有約40%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑M並具有如下列表10中所示之性質。
實例17 包含71%黏土、6%ZnO和23%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾基)之黏土、620克之ZnCl2 和充分附加水而造成含有約45%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑N並具有如下列表10中所示之性質。
實例18 受載在礬土上之ZnO其製備如下:將1000克(乾燥基)的HiQ礬土(自Alcoa獲得)使用溶解於水中之165克,ZnCl2 浸漬至初始潤濕。然後將該物料在593℃時煅燒歷2小時。將該觸媒指定為添加劑O並具有如下列表10中所示之性質。
實例19 為了模擬FCC單元中之去活化期間ZnO/礬土觸媒的吸收SiO2 和鈉離子,將該觸媒首先用SiO2 化合物然後用鈉鹽浸漬。將500克(乾燥基)添加劑O使用已溶解入乙醇中之85克,四乙基原矽酸鹽浸漬至初始潤濕。將該觸媒在室溫時乾燥過夜,然後用含有4.3克的碳酸鈉水溶液浸漬。然後將該物料在593℃時煅燒歷2小時。其後,使此樣品在流體化床反應器中歷經在816℃時,使用100%水蒸汀之熱液去活化歷4小時。將此觸媒指定為添加劑P並具有如下列表10中所示之性質。
實例20 使用如實例13和14中所示之相同條件,進料和觸媒,將用於減少NO排放之HiQ Al2 O3 和添加劑M至P的性能在DCR中評估。將該DCR初始加進1596克的平衡裂解觸媒及4克的CPS-去活化之CP-3的摻合物。於穩定化該單元時,將85.12克的添加劑及0.125克的去活化之CP-3的摻合物加進該DCR並對於每一添加劑,繼續操作歷大概2小時。結果記錄於下表11中。
如表11中所示,可推論:添加ZnO至不同載體不能改良其在DCR中之NOx 還原活性,意指在現實FCC條件下,Zn的固有NOx 還原活性是極低。此數據顯示隨著添加Zn至實例13和14中之鎂鹼沸石所見到之增加之NOx 還原活性主要係由於Zn在鎂鹼沸石上的穩定化效應。
實例21 包含75%鎂鹼沸石、25%礬土溶膠之組成物如實例1中所述予以製備。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。其後將約125克的此物料使用溶於100ml去離子水中之17.7克的YCl3 .6H2 O浸漬,在287℃時烘箱乾燥過夜,然後在538℃時煅燒歷2小時。將產生之樣品指定為添加劑Q並具有如下列表12中所示之性質。
實例22 包含75%鎂鹼沸石、25%礬土溶膠之組成物如實例1中所述予以製備。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。其後將約125克的此物料使用溶於87ml去離子水中之33.2克的MgCl2 .6H2 O浸漬;在287℃時烘箱乾燥過夜,然後在593℃時煅燒歷2小時。將產生之樣品指定為添加劑R並具有如下列表12中所示之性質。
實例23 包含73%鎂鹼沸石、3%Fe2 O3 和24%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾基)的鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、445克的FeCl2 .4H2 O和充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑S並具有如下列表12中所示之性質。
實例24 包含67%鎂鹼沸石、11%Fe2 O3 和22%礬土溶膠之組成物的製備如下:製備一種水相漿體其含有6520克的氯水解鋁溶液(23%固體粒子)、4500克(乾基)的鎂鹼沸石(SiO2 /Al2 O3 =20,Na2 O+K2 O<0.5wt%)、1782克的FeCl2 .4H2 O和充分附加水而造成含有約44%固體粒子之漿體。將該漿體在Drais磨機中研磨至小於2.5μm的平均粒子大小,然後在Bowen噴霧乾燥器中予以噴霧乾燥。將經噴霧乾燥之產物在593℃時煅燒歷1.5小時。將該觸媒指定為添加劑T並具有如下列表12中所示之性質。
實例25 使用如實例13中所示之相同條件,進料和觸媒,將添加劑Q至T用於減少NO排放的性能在DCR中評估。將該DCR初始加進1596克的平衡裂解觸媒及4克的CPS-去活化之CP-3的摻合物。於穩定化該單元時,將85.12克的添加劑Q或R或S,其在流體化床反應器中在760℃時使用N2 中20%水蒸汽已予熱液去活化歷24小時,並未添加Ni或V以及0.215克的去活化之CP-3的摻合物加進該DCR,並對於每一添加劑,繼續操作歷大概2小時。關於添加劑T之評估,將含有85克的熱液去活化之添加劑、14.75克的平衡觸媒及0.25克的去活化之CP-3之第二摻合物加進DCR。如自表13中可推論:在穩定化金屬的恒定莫耳時,Zn和Fe顯示相似NOx 減量性能在鎂鹼沸石上及顯示改良之NOx 減量性能在穩定化鎂鹼沸石中之Mg或Y上。

Claims (23)

  1. 一種改良在烴進料流體觸媒裂解(FCC)成為較低分子量成分期間降低自流體觸媒裂解單元(FCCU)的再生區所釋放之NOx 之方法,其中FCCU於該再生區及反應區之間具有觸媒備料循環,該方法包括:a)在有效之NOx 減量的NOx 還原組成物存在下,使烴進料與FCCU中具有Y型沸石之FCC裂解觸媒的該循環備料接觸,此NOx 還原組成物包括大於45μm之平均粒子大小及至少30%之NOx 還原沸石,其具有孔徑範圍自2至7.2Å及SiO2 對Al2 O3 莫耳比為小於500,將該沸石使用定量的選自下列所構成之族群之金屬或金屬離子:鋅、鐵及其混合物、自10至30重量%之無機黏結劑、以及選擇性地不超過70%之至少一種選自填料、基體及其混合物之添加材料予以穩定化,並穩定化該沸石,其中該顆粒NOx 還原組成物係以分別之粒子添加劑存在,及其中於該觸媒備料內的觸媒組成中,該NOx 還原的量係足夠提供NOx 沸石成分對總觸媒備料中之Y型沸石的比小於1;及b)減少自FCCU再生區釋放之NOx 排放量,其係與不存在NOx 還原組成物之NOx 排放量相比較。
  2. 如申請專利範圍第1項之方法,其中步驟(b)係在相較於單獨自裂解觸媒獲得之烴進料轉化率或裂解烴的產量而 言,沒有實質改變烴進料轉化率或裂解烴產量下實現。
  3. 如申請專利範圍第1項之方法,其中NOx 還原沸石係選自鎂鹼沸石、ZSM-11、倍他(β)、MCM-49、絲光沸石、MCM-56、沸石-L、沸石Rho、毛沸石、菱沸石、斜發沸石、MCM-22、MCM-35、MCM-61、矽鋁鉀沸石、A、ZSM-12、ZSM-23、ZSM-18、ZSM-22、ZSM-57、ZSM-61、ZK-5、NaJ、Nu-87、Cit-1、SSZ-35、SSZ-48、SSZ-44、SSZ-23、環晶石、鋇十字沸石、鈹矽鈉沸石、插晶菱沸石、濁沸石、柱沸石、鈉菱沸石、水鈣沸石、鈣霞石、鍶沸石、輝沸石、方鹼沸石、古柱沸石、鈉沸石、ω(omega)或其混合物所構成之族群。
  4. 如申請專利範圍第3項之方法,其中NOx 還原沸石是鎂鹼沸石、倍他(β)、MCM-49、絲光沸石、MCM-56、沸石-L、沸石Rho、毛沸石、菱沸石、斜發沸石、MCM-22、矽鋁鉀沸石、A、ZSM-12、ZSM-23、ω(omega)及其混合物。
  5. 如申請專利範圍第4項之方法,其中NOx 還原沸石是鎂鹼沸石。
  6. 如申請專利範圍第1項之方法,其中該顆粒NOx 還原組成物具有自50至200μm的平均粒子大小。
  7. 如申請專利範圍第6項之方法,其中NOx 還原組成物另外包括自5至50重量%的無機黏結劑,其係選自下列構成之族群:礬土、矽石、矽石-礬土、磷酸鋁及其混合物。
  8. 如申請專利範圍第7項之方法,其中存在於顆粒狀NOx 還原組成物之NOx 還原沸石的數量是該組成物的至少40重量%。
  9. 如申請專利範圍第7項之方法,其中存在於NOx 還原組成物中之NOx 還原沸石的數量是介於該組成物的30至80重量%之範圍。
  10. 如申請專利範圍第7項之方法,其中該無機黏結劑是酸或鹼膠溶之礬土。
  11. 如申請專利範圍第7項之方法,其中該無機黏結劑是氯水解鋁。
  12. 如申請專利範圍第7項之方法,其中存在於NOx 還原組成物中之無機黏結劑的數量範圍係該組成物的自15至25重量%。
  13. 如申請專利範圍第1項之方法,其中該NOx 還原沸石成分具有小於250的SiO2 對Al2 O3 莫耳比。
  14. 如申請專利範圍第7項之方法,其中該NOx 還原組成物進一步包括選自礬土、矽石、矽石-礬土、氧化鈦、氧化鋯、氧化釔、氧化鑭、氧化鈰、氧化釹、氧化釤、氧化銪、氧化釓、氧化鐠及其混合物所構成之族群之一種基體物質。
  15. 如申請專利範圍第14項之方法,其中該所選之基體物料之含量少於70重量%。
  16. 如申請專利範圍第1或2項之方法,其進一步包括自接觸步驟回收該裂解觸媒及在再生區中處理所使用之觸媒來再生該觸媒。
  17. 如申請專利範圍第1或2項之方法,其中裂解觸媒及顆 粒添加劑組成物在接觸烴進料期間被流體化。
  18. 如申請專利範圍第1或2項之方法,其進一步包括使烴進料與至少一種額外之NOx 還原組成物接觸。
  19. 如申請專利範圍第6項之方法,其中該顆粒NOx 還原組成物具有小於20的Davison磨耗指數(DI)。
  20. 如申請專利範圍第1項之方法,其中將NOx 還原組成物併入FCC裂解觸媒中成為該裂解觸媒的成分。
  21. 如申請專利範圍第20項之方法,其中存在於FCC裂解觸媒中之NOx 還原組成物的數量範圍是該裂解觸媒的自0.1至70wt%。
  22. 如申請專利範圍第20項之方法,其進一步包括使烴進料與至少一種附加之NOx 還原組成物接觸。
  23. 如申請專利範圍第5或20項之方法,其中將NOx 還原沸石使用鋅金屬或鋅離子來穩定化。
TW095114813A 2005-04-27 2006-04-26 用於減低流體觸媒裂解之NOx排放之組成物及方法 TWI444463B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67515005P 2005-04-27 2005-04-27

Publications (2)

Publication Number Publication Date
TW200704766A TW200704766A (en) 2007-02-01
TWI444463B true TWI444463B (zh) 2014-07-11

Family

ID=36652877

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095114813A TWI444463B (zh) 2005-04-27 2006-04-26 用於減低流體觸媒裂解之NOx排放之組成物及方法

Country Status (17)

Country Link
US (1) US7918991B2 (zh)
EP (1) EP1888231A1 (zh)
JP (1) JP5383184B2 (zh)
KR (1) KR101382014B1 (zh)
CN (1) CN101166574B (zh)
AR (1) AR056648A1 (zh)
AU (1) AU2006240437B2 (zh)
BR (1) BRPI0610326B1 (zh)
CA (1) CA2606249C (zh)
IL (1) IL186525A0 (zh)
MX (1) MX2007012265A (zh)
NO (1) NO20075962L (zh)
RU (1) RU2007143987A (zh)
SG (1) SG169976A1 (zh)
TW (1) TWI444463B (zh)
WO (1) WO2006115665A1 (zh)
ZA (1) ZA200709702B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
CN102974390A (zh) * 2007-04-26 2013-03-20 约翰逊马西有限公司 过渡金属/沸石scr催化剂
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US10583424B2 (en) * 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
CN101993374A (zh) * 2009-08-31 2011-03-30 中国石油化工股份有限公司上海石油化工研究院 制备c1~c4烷基亚硝酸酯的方法
SG188753A1 (en) * 2011-09-30 2013-04-30 Bharat Petroleum Corp Ltd Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
TWI611014B (zh) * 2012-07-23 2018-01-11 W R 康格雷氏公司 經鎂穩定之極低蘇打催化裂解觸媒及其形成方法
WO2014016764A1 (en) * 2012-07-24 2014-01-30 Indian Oil Corporation Limited Catalyst composition for fluid catalytic cracking, process for preparing the same and use thereof
CN104742144B (zh) * 2015-04-09 2016-08-24 安徽理工大学 一种机械手
EP3693085A4 (en) 2017-07-05 2021-04-14 Research Institute Of Petroleum Processing, Sinopec COMPOSITION CAPABLE OF REDUCING CO AND NOX EMISSIONS, PROCESS OF PREPARATION AND USE, AND PROCESS FOR CATALYTIC CRACKING OF FLUID
EP3689441A1 (en) * 2019-02-01 2020-08-05 Casale Sa Process for removing nitrogen oxides from a gas

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892801A (en) 1955-12-13 1959-06-30 Gen Electric Catalysts
US3036973A (en) 1958-11-21 1962-05-29 Hoffmann La Roche Racemization catalyst and process for the manufacture thereof
US3364136A (en) 1965-12-10 1968-01-16 Mobil Oil Corp Novel cyclic catalytic process for the conversion of hydrocarbons
US3184417A (en) 1960-12-29 1965-05-18 Gen Aniline & Film Corp Method of preparing a copper modified nickel catalyst composition
US3129252A (en) 1960-12-29 1964-04-14 Gen Aniline & Fihn Corp Purification of butynediol
SE331321B (zh) 1968-09-20 1970-12-21 Asea Ab
US3617488A (en) 1969-12-19 1971-11-02 Sigmund M Csicsery Hydrotreating catalyst comprising clay-type aluminosilicate component and a crystalline zeolitic molecular sieve component, and process using said catalyst
US3804780A (en) * 1972-03-15 1974-04-16 Mobil Oil Corp Catalyst of zinc-rare earth exchanged zeolite
US4473658A (en) 1973-09-20 1984-09-25 Mobil Oil Corporation Moving bed catalytic cracking process with platinum group metal or rhenium supported directly on the cracking catalyst
US3894940A (en) 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US6042797A (en) 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US4170571A (en) 1977-12-27 1979-10-09 Union Carbide Corporation Novel combustion catalyst
US4839026A (en) 1978-09-11 1989-06-13 Atlantic Richfield Company Catalytic cracking with reduced emissions of sulfur oxides
US4199435A (en) 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4290878A (en) 1978-12-08 1981-09-22 Chevron Research Company NOx control in platinum-promoted complete combustion cracking catalyst regeneration
US4309279A (en) 1979-06-21 1982-01-05 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4377502A (en) 1979-12-26 1983-03-22 Standard Oil Company (Indiana) Synthesis of crystalline aluminosilicate molecular sieves
US4521298A (en) 1980-07-18 1985-06-04 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
US4642178A (en) 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
JPS5761085A (en) 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
US4495304A (en) 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US4758418A (en) 1980-07-29 1988-07-19 Union Carbide Corporation Process for combusting solid sulfur-containing material
US4472267A (en) 1980-07-29 1984-09-18 Atlantic Richfield Company Catalyst and process for conversion of hydrocarbons
US4495305A (en) 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4368057A (en) 1980-10-14 1983-01-11 Matthews Ronald D Method for reducing ammonia concentration in pre-combusted fuel gas using nitric oxide
GB2100075B (en) * 1981-05-19 1984-07-18 Tokyo Shibaura Electric Co Rectifier circuit
US4434147A (en) 1981-10-05 1984-02-28 Chevron Research Company Simultaneous sulfur oxide and nitrogen oxide control in FCC units using cracking catalyst fines with ammonia injection
US4513091A (en) 1983-02-14 1985-04-23 Mobil Oil Corporation Hydrothermal zeolite activation
US4427536A (en) 1982-02-02 1984-01-24 Chevron Research Company Promoter for the oxidation of SO2 in an FCC process
US4522937A (en) 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4472532A (en) 1982-11-29 1984-09-18 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4476245A (en) 1982-11-29 1984-10-09 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4471070A (en) 1982-11-29 1984-09-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4428827A (en) 1983-01-24 1984-01-31 Uop Inc. FCC Sulfur oxide acceptor
US4818509A (en) 1984-03-23 1989-04-04 Mobil Oil Corporation Continuous process for manufacturing crystalline zeolites in continuously stirred backmixed crystallizers
US4582815A (en) 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
GB8420205D0 (en) 1984-08-09 1984-09-12 British Petroleum Co Plc Selective dealumination of zeolites
US4735927A (en) 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4778664A (en) 1986-03-10 1988-10-18 The Dow Chemical Company Process for the removal of NO from fluid streams using a water soluble polymeric chelate of a polyvalent metal
US4898846A (en) 1986-03-21 1990-02-06 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US5102530A (en) 1986-03-21 1992-04-07 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4747935A (en) 1986-03-26 1988-05-31 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing nitrogen
US4708786A (en) 1986-03-26 1987-11-24 Union Oil Company Of California Process for the catalytic cracking of nitrogen-containing feedstocks
US4728635A (en) 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US4798813A (en) 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
CA1295598C (en) 1986-07-29 1992-02-11 Makoto Imanari Process for removing nitrogen oxides from exhaust gases
US4797266A (en) 1986-08-07 1989-01-10 Shell Oil Company Method of preparation of a combined ZSM-5-ferrierite aluminosilicate
US4778665A (en) 1986-09-09 1988-10-18 Mobil Oil Corporation Abatement of NOx in exhaust gases
FR2607128B1 (fr) 1986-11-21 1989-04-28 Inst Francais Du Petrole Nouvelles ferrierites, leur procede de preparation et leur utilisation
US4866019A (en) 1987-01-13 1989-09-12 Akzo N.V. Catalyst composition and absorbent which contain an anionic clay
US4830840A (en) 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
US4904627A (en) 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4880521A (en) 1987-05-07 1989-11-14 Union Oil Company Of California Process for the cracking of feedstocks containing high levels of nitrogen
US4810369A (en) * 1987-05-07 1989-03-07 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing high levels of nitrogen
US4755282A (en) 1987-07-22 1988-07-05 Shell Oil Company Process for the reduction of NH3 in regeneration zone off gas by select recycle of certain-sized NH3 decomposition catalysts
US4744962A (en) 1987-07-22 1988-05-17 Shell Oil Company Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
US4812430A (en) 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control during multistage combustion
US4812431A (en) 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control in fluidized bed combustion
US4957718A (en) 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US4826799A (en) 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
US4895994A (en) 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
JPH0763631B2 (ja) 1988-04-18 1995-07-12 トヨタ自動車株式会社 排気ガス浄化用触媒の製造方法
US5057205A (en) 1988-06-10 1991-10-15 Mobil Oil Corporation Additive for vanadium and sulfur oxide capture in catalytic cracking
GB8904409D0 (en) 1989-02-27 1989-04-12 Shell Int Research Process for the conversion of a hydrocarbonaceous feedstock
US5371055A (en) 1988-07-07 1994-12-06 W. R. Grace & Co.-Conn. Increasing metal-tolerance of FCC catalyst by sulfur oxide removal
GB8820358D0 (en) * 1988-08-26 1988-09-28 Shell Int Research Process for catalytic cracking of hydrocarbon feedstock
US4923842A (en) 1988-10-11 1990-05-08 Allied-Signal Inc. Lanthanum containing catalyst for treating automotive exhaust
US4980052A (en) 1988-12-05 1990-12-25 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4889615A (en) 1988-12-06 1989-12-26 Mobil Oil Corporation Additive for vanadium capture in catalytic cracking
US5021144A (en) 1989-02-28 1991-06-04 Shell Oil Company Process for the reduction of NOX in an FCC regeneration system by select control of CO oxidation promoter in the regeneration zone
US5000841A (en) * 1989-04-10 1991-03-19 Mobil Oil Corporation Heavy oil catalytic cracking process and apparatus
US5145815A (en) 1989-08-10 1992-09-08 Uop Regeneration of zeolitic molecular sieves with sulfur oxide absorption on soda-lime bed
CA2024154C (en) 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
US4973399A (en) 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
JPH07106300B2 (ja) 1989-12-08 1995-11-15 財団法人産業創造研究所 燃焼排ガス中の窒素酸化物除去法
AU634005B2 (en) 1989-12-21 1993-02-11 Tosoh Corporation Catalyst for and method of purifying oxygen-excess exhaust gas
US5002654A (en) 1989-12-28 1991-03-26 Mobil Oil Corporation Reducing NOx emissions with zinc catalyst
US5015362A (en) 1989-12-28 1991-05-14 Mobil Oil Corporation Catalytic conversion of NOx over carbonaceous particles
US4988432A (en) 1989-12-28 1991-01-29 Mobil Oil Corporation Reducing NOx emissions with antimony additive
US4986897A (en) 1989-12-28 1991-01-22 Mobil Oil Corporation Catalytic conversion of NOx with NH3
US4988654A (en) 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5260240A (en) 1989-12-29 1993-11-09 Chevron Research And Technology Company Process for the demetallization of FCC catalyst
US5002653A (en) 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US5114898A (en) 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5114691A (en) 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5037538A (en) 1990-02-26 1991-08-06 Mobil Oil Corporation Catalytic cracking process with isolated catalyst for conversion of NO.sub.x
CA2044893C (en) 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
US5206196A (en) 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5208198A (en) 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
JP2973524B2 (ja) 1990-12-18 1999-11-08 東ソー株式会社 排ガス浄化触媒
US5130012A (en) 1991-01-24 1992-07-14 Mobil Oil Corporation Process and apparatus for reducing NOx emissions from high-efficiency FFC regenerators
US5173278A (en) 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
US5260043A (en) 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JP3086015B2 (ja) 1991-08-07 2000-09-11 トヨタ自動車株式会社 排気ガス浄化用触媒
US5374349A (en) 1991-09-11 1994-12-20 Union Oil Company Of California Hydrocracking process employing catalyst containing zeolite beta and a pillared clay
US5174980A (en) 1991-10-04 1992-12-29 Mobil Oil Corp. Synthesis of crystalline ZSM-35
US5190736A (en) 1991-10-18 1993-03-02 Mobil Oil Corporation Synthesis of crystalline ZSM-35
JPH05123578A (ja) 1991-11-06 1993-05-21 Nippon Oil Co Ltd 炭化水素転化触媒の製造方法
US5171553A (en) 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
JPH07503693A (ja) 1991-11-20 1995-04-20 ザ・ダウ・ケミカル・カンパニー フッ化物を含有した実質的に非水の成長媒体中で結晶質微孔質固体を成長させる方法
US5785947A (en) 1991-12-18 1998-07-28 Chevron U.S.A. Inc. Preparation of zeolites using organic template and amine
US5328590A (en) 1992-02-27 1994-07-12 Union Oil Company Of California Hydrocracking process using a catalyst containing zeolite beta and a layered magnesium silicate
US5547648A (en) 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
US5240690A (en) 1992-04-24 1993-08-31 Shell Oil Company Method of removing NH3 and HCN from and FCC regenerator off gas
US5268089A (en) 1992-06-24 1993-12-07 Mobil Oil Corporation FCC of nitrogen containing hydrocarbons and catalyst regeneration
US5316661A (en) 1992-07-08 1994-05-31 Mobil Oil Corporation Processes for converting feedstock organic compounds
DE69316287T2 (de) 1992-08-25 1998-07-23 Idemitsu Kosan Co Katalysator zur Reinigung von Abgasen
US5382352A (en) 1992-10-20 1995-01-17 Mobil Oil Corporation Conversion of NOx in FCC bubbling bed regenerator
US5294332A (en) 1992-11-23 1994-03-15 Amoco Corporation FCC catalyst and process
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
US5372706A (en) 1993-03-01 1994-12-13 Mobil Oil Corporation FCC regeneration process with low NOx CO boiler
JP3185448B2 (ja) 1993-03-11 2001-07-09 日産自動車株式会社 排気ガス浄化用触媒
US5744113A (en) 1993-05-27 1998-04-28 Siemens Aktiengesellschaft Process and catalyst for decomposing oxides of nitrogen
EP0630680B1 (en) 1993-06-25 1996-12-04 Tosoh Corporation Method for removal of nitrogen oxides
US5407652A (en) 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
US5413699A (en) 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
EP0655277A1 (en) 1993-11-01 1995-05-31 Csir Amorphous aluminosilicate catalyst
US5510306A (en) 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
US5470810A (en) * 1994-02-02 1995-11-28 Mobil Oil Corporation Catalyst and method of manufacture
DE69519243T2 (de) 1994-02-15 2001-03-08 Tokyo Gas Co Ltd Verfahren und Katalysator zur Reinigung von NOx-enthaltenden Abgasen
US6114265A (en) 1994-03-15 2000-09-05 Exxon Research And Engineering Company Combustion control in a fluid catalytic cracking regenerator
US5426083A (en) 1994-06-01 1995-06-20 Amoco Corporation Absorbent and process for removing sulfur oxides from a gaseous mixture
US5689000A (en) 1994-07-01 1997-11-18 Monsanto Company Process for preparing carboxylic acid salts and catalysts useful in such process
US5552129A (en) 1994-07-07 1996-09-03 Mobil Oil Corporation Catalytic system for the reduction of nitrogen oxides
US5589147A (en) 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
CA2156464C (en) 1994-09-30 1999-07-20 Raghu K. Menon Reduction of emissions from fcc regenerators
KR0136893B1 (ko) 1994-11-03 1998-04-25 강박광 선택적 촉매환원에 의한 배기가스중의 질소산화물의 제거방법
US5599520A (en) 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
KR100364182B1 (ko) 1994-11-23 2003-02-07 엑손모빌 케미칼 패턴츠 인코포레이티드 제올라이트결합제올라이트촉매를사용한탄화수소의전환방법
US5741468A (en) 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US20020120169A1 (en) 1995-01-13 2002-08-29 Michel Spagnol Process facilitating the regeneration of a catalyst based on a zeolite used in an acylation reaction, catalyst and use
DE19505579A1 (de) 1995-02-18 1996-08-22 Sued Chemie Ag Adsorbens zur Behandlung von Ölen und/oder Fetten
AU718321B2 (en) * 1995-05-05 2000-04-13 W.R. Grace & Co.-Conn. Compositions for reduced NOx and combustion promotion in FCC processes
US6165933A (en) 1995-05-05 2000-12-26 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US6129834A (en) 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US5968466A (en) 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
US6471924B1 (en) 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
US5716514A (en) 1995-08-30 1998-02-10 Mobil Oil Corporation FCC NOx reduction by turbulent/laminar thermal conversion
US5705053A (en) 1995-08-30 1998-01-06 Mobil Oil Corporation FCC regenerator NOx reduction by homogeneous and catalytic conversion
US5830346A (en) 1995-08-30 1998-11-03 Mobil Oil Corporation FCC regenerator in partial CO burn with downstream air addition
US5744686A (en) 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
EP0766992B1 (en) 1995-10-06 2003-07-30 ENITECNOLOGIE S.p.a. Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
US6017508A (en) 1995-10-24 2000-01-25 The Dow Chemical Company Process of modifying the porosity of aluminosilicates and silicas, and mesoporous compositions derived therefrom
US5827793A (en) 1996-04-11 1998-10-27 Exxon Research And Engineering Company Controlled FCC catalyst regeneration using a distributed air system
US6033641A (en) 1996-04-18 2000-03-07 University Of Pittsburgh Of The Comonwealth System Of Higher Education Catalyst for purifying the exhaust gas from the combustion in an engine or gas turbines and method of making and using the same
US6040259A (en) 1996-05-29 2000-03-21 Exxon Chemical Patents Inc. Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion
JP3889467B2 (ja) 1996-09-25 2007-03-07 日本特殊陶業株式会社 窒素酸化物除去用触媒材料及び該材料を用いた窒素酸化物処理装置並びに窒素酸化物除去方法
US6027696A (en) 1997-04-11 2000-02-22 Indian Oil Corporation Ltd. Fluidized catalytic cracking apparatus
US6103949A (en) 1997-04-14 2000-08-15 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
US5958818A (en) 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
DE19723949A1 (de) 1997-06-06 1998-12-10 Basf Ag Verfahren zur Regenerierung eines Zeolith-Katalysators
US6090271A (en) 1997-06-10 2000-07-18 Exxon Chemical Patents Inc. Enhanced olefin yields in a catalytic process with diolefins
US6028023A (en) 1997-10-20 2000-02-22 Bulldog Technologies U.S.A., Inc. Process for making, and use of, anionic clay materials
US6504074B2 (en) 1997-12-03 2003-01-07 Exxonmobil Chemical Patents Inc. Toluene disproportionation using coated zeolite catalyst
US6143261A (en) 1997-12-15 2000-11-07 Exxon Research And Engineering Company Catalytic reduction of nitrogen oxide emissions with MCM-49 and MCM-56
JPH11300208A (ja) 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd 接触分解触媒
US6106697A (en) 1998-05-05 2000-08-22 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins
US6908604B2 (en) 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6143681A (en) 1998-07-10 2000-11-07 Northwestern University NOx reduction catalyst
US6037307A (en) 1998-07-10 2000-03-14 Goal Line Environmental Technologies Llc Catalyst/sorber for treating sulfur compound containing effluent
BR9912728A (pt) 1998-08-03 2001-05-02 Shell Int Research Processo para a preparação de uma composição de catalisador, composição de um catalisador compósito, uso da mesma, processo para a conversão de uma matéria-prima hidrocarbonácea em materiais com ponto de ebulição menor, e, uso de um material de gelatina
US6110258A (en) 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
US6177381B1 (en) 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
KR100284936B1 (ko) 1998-12-31 2001-04-02 김충섭 촉매 활성 귀금속 담지 제올라이트계 탈질 촉매의 제조 방법
US6309758B1 (en) 1999-05-06 2001-10-30 W. R. Grace & Co.-Conn. Promoted porous catalyst
TW553772B (en) 1999-07-31 2003-09-21 Degussa Fixed bed catalysts
DE19936135A1 (de) 1999-07-31 2001-02-15 Degussa Festbettkatalysatoren
US6514470B1 (en) 1999-10-28 2003-02-04 The Regents Of The University Of California Catalysts for lean burn engine exhaust abatement
KR20020061011A (ko) 1999-12-28 2002-07-19 코닝 인코포레이티드 제올라이트/알루미나 촉매 지지체 조성물 및 이의 제조방법
US6555492B2 (en) 1999-12-29 2003-04-29 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US20020038051A1 (en) 2000-02-18 2002-03-28 Degussa-Huls Ag Raney copper
US6376708B1 (en) 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
DE10020100A1 (de) 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Verfahren und Katalysator zur Reduktion von Stickoxiden
US6585952B1 (en) 2000-05-25 2003-07-01 Board Of Trustees Operating Michigan State University Ultrastable hexagonal, cubic and wormhole aluminosilicate mesostructures
JP4703818B2 (ja) 2000-06-20 2011-06-15 株式会社アイシーティー 排気ガス浄化用触媒および排気ガス浄化方法
EP1166853A1 (en) 2000-06-22 2002-01-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
US6770251B2 (en) 2000-06-28 2004-08-03 Ict. Co., Ltd. Exhaust gas purifying catalyst
EP1174173B1 (en) 2000-07-17 2013-03-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
CN1156555C (zh) 2000-08-10 2004-07-07 中国石油化工集团公司 一种催化裂化助剂及其制备方法
US6538169B1 (en) * 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US20020094314A1 (en) 2000-11-27 2002-07-18 National Institute Of Advanced Industrial Science And Technology Method for the reduction and removal of nitrogen oxides
JP2002253967A (ja) 2001-02-28 2002-09-10 Showa Denko Kk 亜酸化窒素分解触媒、その製造方法および亜酸化窒素の分解方法
US6632768B2 (en) 2001-03-12 2003-10-14 University Of Missouri-Columbia Adsorbent for HC in exhaust gas, and process for producing the same
JP3981915B2 (ja) 2001-04-03 2007-09-26 日産自動車株式会社 排気ガス浄化システム
US6884744B2 (en) 2001-04-13 2005-04-26 W. R. Grace & Co.-Conn. Zeolite based catalyst of ultra-high kinetic conversion activity
US6558533B2 (en) 2001-04-13 2003-05-06 W.R. Grace & Co.-Conn Process for sulfur removal from hydrocarbon liquids
DE10132890A1 (de) 2001-07-06 2003-01-16 Daimler Chrysler Ag Feststoff und Verfahren zur Adsorption und Desorption von Stickoxiden in Abgasen von Verbrennungskraftmaschinen
US6759358B2 (en) 2001-08-21 2004-07-06 Sud-Chemie Inc. Method for washcoating a catalytic material onto a monolithic structure
US20030073566A1 (en) 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
US6800586B2 (en) 2001-11-23 2004-10-05 Engelhard Corporation NOx reduction composition for use in FCC processes
US6912847B2 (en) 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
US6858556B2 (en) 2002-02-25 2005-02-22 Indian Oil Corporation Limited Stabilized dual zeolite single particle catalyst composition and a process thereof
WO2004000731A2 (en) 2002-06-25 2003-12-31 Akzo Nobel N.V. Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
AU2003265413B2 (en) 2002-08-13 2008-07-17 Intercat, Inc. Flue gas treatments to reduce NOx and Co emissions
US7045056B2 (en) 2002-10-10 2006-05-16 Engelhard Corporation CO oxidation promoters for use in FCC processes
US6660683B1 (en) * 2002-10-21 2003-12-09 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US20040262197A1 (en) 2003-06-24 2004-12-30 Mcgregor Duane R. Reduction of NOx in low CO partial-burn operation using full burn regenerator additives
US20050100494A1 (en) 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US20050232839A1 (en) 2004-04-15 2005-10-20 George Yaluris Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US7304011B2 (en) 2004-04-15 2007-12-04 W.R. Grace & Co. -Conn. Compositions and processes for reducing NOx emissions during fluid catalytic cracking

Also Published As

Publication number Publication date
AU2006240437B2 (en) 2011-10-06
CA2606249C (en) 2013-07-23
KR20080013939A (ko) 2008-02-13
KR101382014B1 (ko) 2014-04-04
NO20075962L (no) 2007-11-22
CN101166574A (zh) 2008-04-23
CN101166574B (zh) 2011-09-21
JP2008539302A (ja) 2008-11-13
MX2007012265A (es) 2007-12-07
US7918991B2 (en) 2011-04-05
BRPI0610326A2 (pt) 2010-06-15
AR056648A1 (es) 2007-10-17
TW200704766A (en) 2007-02-01
US20090057199A1 (en) 2009-03-05
AU2006240437A1 (en) 2006-11-02
SG169976A1 (en) 2011-04-29
EP1888231A1 (en) 2008-02-20
CA2606249A1 (en) 2006-11-02
ZA200709702B (en) 2008-11-26
WO2006115665A1 (en) 2006-11-02
BRPI0610326B1 (pt) 2015-07-21
RU2007143987A (ru) 2009-06-10
JP5383184B2 (ja) 2014-01-08
IL186525A0 (en) 2008-01-20

Similar Documents

Publication Publication Date Title
TWI444463B (zh) 用於減低流體觸媒裂解之NOx排放之組成物及方法
JP4974883B2 (ja) 流動式接触分解中のNOx排気を減少させる組成物および方法
JP5008570B2 (ja) 流動式接触反応装置における軽質オレフィン用およびlpg用触媒
TWI382875B (zh) 減低流體觸媒裂解期間NOx排放之組成物及方法
US9931595B2 (en) Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
JP2009500153A (ja) 流動接触ユニットにおける軽質オレフィン用ペンタシル触媒
US20050100493A1 (en) Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
JP2009542428A (ja) 硫酸アルミニウムで結合された触媒
TWI395614B (zh) 用於減低流體觸媒裂解期間之NOx排放之鎂鹼沸石
TWI396589B (zh) 用於減低流體觸媒裂解期間之NOx排放之組成物及方法
JP6632065B2 (ja) 炭化水素油の接触分解触媒、炭化水素油の接触分解触媒の製造方法および炭化水素油の接触分解方法
MXPA06005000A (en) FERRIERITE COMPOSITIONS FOR REDUCING NOx

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees