TWI353102B - Step-up/step-down type dc-dc converter, and contro - Google Patents

Step-up/step-down type dc-dc converter, and contro Download PDF

Info

Publication number
TWI353102B
TWI353102B TW096118748A TW96118748A TWI353102B TW I353102 B TWI353102 B TW I353102B TW 096118748 A TW096118748 A TW 096118748A TW 96118748 A TW96118748 A TW 96118748A TW I353102 B TWI353102 B TW I353102B
Authority
TW
Taiwan
Prior art keywords
state
period
switching
inductive
converter
Prior art date
Application number
TW096118748A
Other languages
English (en)
Other versions
TW200812206A (en
Inventor
Ryuta Nagai
Takashi Matsumoto
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of TW200812206A publication Critical patent/TW200812206A/zh
Application granted granted Critical
Publication of TWI353102B publication Critical patent/TWI353102B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control

Description

九、發明說明: 相關申請案之對照參考資料 此申請案係根據並主張先前於2006年6月16日提申的 曰本專利申請案第2006-167677號之優先權,其整個内容於 此被併入參考。 t發明所屬之技術領域;j 發明領域 該領域有關一種步升/步降型直流對直流變換器及其 控制電路與控制方法,更特別是有關一種能夠降低切換元 件的平均切換頻率與實現高效率的步升/步降型直流對直 流變換器。 習知技藝說明 在一步升/步降型直流對直流變換器中,一用於將能量 從一輸入侧累積到一電感器的狀態(1)以及用於從該電感器 將能量釋放到一輸出側的狀態(2)係藉由切換元件的開/關 操作在一預定頻率下交替地重複,該電感器係連接至三個 端,一電壓輸入端、電壓輸出端及參考電位。 在美國專利第6,〇87,816號中所揭露的一種步升/步降 型直流對直流變換器中,更提供有一用於經由一電感器將 一電壓輸入端連接至一電壓輸出端、並供應能量至一輸出 的狀態(3)。在一個時脈週期中,在該狀態與狀態之間 或是在該狀態(2)與狀態(3)之間的切換被執行。 此外,美國專利第6,275,016號、曰本公開未審查專利 申請案第2005-192312號、日本公開未審查專利申請案第 S55-68877號、美國專利第5,4〇2,〇6〇號、美國專利第 4,395,675號以及曰本公開未審查專利申請案第556141773 號被揭露作為與上述的相關技蔽。 近來對於微型化與變輕電性裝置的要求已提升了電感 的微型化,其導致對於抑制電感器電流的—峯對桊電流值 的必要性,以至於一切換頻率增加且一切換損失傾向增 加。因此’降低切換頻率同時抑制電感器電流以降低切換 損失疋必要的。然而,降低切換頻率並未揭露於美國專利 第6,087,816號,且切換損失不能被降低,其造成一問題。 【^^明内3 發明概要 為了解決至少一個背景技藝之問題,並且目標是提供 一種步升/步降型直流對直流變換器,其能夠降切換元件的 每一單位間之切換次數、一平均切換頻率,同時抑制電感 器電流的峯對峯電流值、並能夠實現高效率。 圖式簡單說明 第1圖是一步升/步降型直流對直流變換器1的電路圖; 第2圖是一顯示一狀態(1)的電路圖; 第3圖是一顯示一狀態(2)的電路圖; 第4圖是一顯示一狀態(3)的電路圖; 第5圖是一第一實施例的狀態轉變圖; 第6圖是該第一實施例之直流對直流變換器1的波形 圖, 1353102 第7圖是一顯示傳統電路操作的波形圖; 第8圖是一第二實施例的狀態轉變圖;及 第9圖是該第二實施例之直流對直流變換器1的波形 5 【實施方式】 較佳實施例之詳細說明
一第一狀態是一種狀態其中該第一與第二切換元件為 ON。在此情況下,該電感元件的一端係連接至該電壓輸入 端,且其另一端係連接至該參考電位。在該第一狀態中, 10 能量係自該電壓輸入端側累積到該電感元件,且該電感器 電流隨著時間的推移以一固定陡斜率增加。一增加的斜率 係由(輸入電壓)/(電感值)來計算出。
一第二狀態是一種狀態其中第一與第二切換元件為 OFF。在此情況下,該電感元件的一端係連接至該參考電 15 位,且其另一端係連接至該電壓輸入端。在該第二狀態中, 該能量係從該電感元件釋放到該電壓輸出端側,且該電感 器電流隨著時間的推移以一固定陡斜率減少。一減少的斜 率係由-(輸出電壓)/(電感值)來計算出。 一第三狀態是一種狀態其中第一切換元件為ON且該 20 第二切換元件為OFF。在此情況下,該電感元件的一端係 連接至該電壓輸入端,且其另一端係連接至該電壓輸出 端。在該第三狀態中,當該輸入電壓係高於該輸出電壓時, 來自該電壓輸入端側之能量係累積到該電感元件、且同時 供應至該電壓輸出端側,並且該電感器電流隨著時間的推 7 1353102
移以一固定陡斜率增加。另一方面,當該輸入電壓係低於 該輸出電壓時,該能量係從該電感元件釋放到該電壓輸出 端側,且該電感器電流隨著時間的推移以一固定陡斜率減 少。在此時,第三狀態中該電感器電流的增加與減少的斜 5 率係分別小於該第一狀態中的增加斜率與該第二狀態中的 減少斜率。此外,當該輸入電壓接近該輸出電壓時,該第 三狀態中該電感器電流的增加/減少斜率變成近乎零。然 後,對於該第一與第二切換元件的傳導控制被執行以實現 該該第一、第二及第三狀態。 10 一第一期間操作包含該第二狀態且是一在一預定第一 期間中所執行的操作。在該第一期間操作的第二狀態中, 該電感器電流以該固定陡斜率減少。一第二期間操作包含 該第一與第三狀態且是一在一長於該第一期間的第二期間 中所執行的操作。在該第二期間操作的第一狀態中,該電 15 感器電流以該固定陡斜率增加。在該第二期間操作的第三 狀態中,該電感器電流以一比該第一狀態之斜率和緩的斜 率增加、或以一比該第二狀態之斜率和緩的斜率減少。然 後,該第一與第二期間操作被重複。 在該第二期間操作中,該第一狀態被切換至該第三狀 20 態,以至於該電感器電流的增加斜率被降低。因此,係能 防止該電感器的峯對峯電流值增加,且該第二期間操作的 第二期間在與該第一期間操作的第一期間比較下能被加 長。於是,該第一與第二切換元件的一平均切換頻率能被 降低,且產生於切換開/關的開關驅動損失與該開關在一切 8 換ON (0FF)至OFF (0N)的轉變狀態中的傳導損失能被降 低。因此,該直流對直流變換器的效率能被提升。 上述與另外的目標與新特徵將更完整地顯現自以下詳 細說明當其與該等附圖結合來讀取時。然而,所要明確地 理解的疋’圖式僅是為了說明的目的並且不想作為發明限 制的定義。第1圖是-步升/步降型直流對直流變換器(的電 路圖。此直流對直流變換器具有一所謂眺橋型切換調整 器之構造且包含:一扼流線圈L1;電晶體FET1,FET2,FET3 及FET4,一輸出電谷器ci ;及控制電路丨丨。一輸入端丁化 10係連接至该電晶體FET16i}沒極端,且一輸入電壓係輸入 到該F E T1。該電晶體F Ε Τ i的一源極端係連接至該扼流線圈 L1的一端Tx與該電晶體FET2的一汲極端,該電晶體fet2 的源極端係連接至一參考電位,該等電晶體^£丁1與1;]£丁2 的閘極端係分別連接至該控制電路的輸出端DH1與DL1。 15 1亥電晶體FET4的一錄端係連接至一輸出端Tout,且 該輸入電壓Vin係增加或減少要被輸出作為一輸出電壓 v〇m。用於累積經由該扼流線圈L1所供應之電源的輸出電 谷器ci係連接在該輸出端Tout與該參考電位之間。另外, 該輸出端Tom係連接至該控制電路u的一輸入端FB。該電 20晶體FET4的一源極端係連接至該扼流線圈L1的一端Ty與 該電晶體FET3的一汲極端,該電晶體FET3的一源極端係連 接至該參考電位,該等電晶體FET3與FET4的閘極端係分別 連接至輸出端DH2與DL2。此外,該輸入電壓Vin被供應至 3玄控制電路11作為一來源電壓Vcc。 9 1353102 該控制電路11的構造將被說明。一偵測一流經該扼流 線圈L1的電感器電流IL之電流感測信號Vs被輸入到一輸入 端CS,該輸入端FB係連接至一經由一電阻元件R2被連接至 該參考電位的電阻元件R1的一端,該等電阻元件R1與R2之 5 間的一連接點係連接至一誤差放大器ERA的一反相輸入 端。另外,一參考電壓el被施加至該誤差放大器ERA的一 非反相輸入端。一輸出信號Eout係輸出自該誤差放大器 ERA,該誤差放大器ERA的一輸出端係連接至一電壓比較 β 器C0MP1的一非反向輸入端,且該輸出信號Eout係輸入到 10 該C0MP1。此外,該輸入端CS係連接至該電壓比較器 C0MP1的一反向輸入端,且該電流感測信號Vs被輸入到該 COMP1。一輸出信號VI係輸出自該電壓比較器C0MP1。此 外,一時脈信號CLK係輸出自一振盪器0SC。該電壓比較 器C0MP1的一輸出端與該振盪器〇SC的輸出端係連接至一 15 狀態控制電路SC,該狀態控制電路SC的輸出端Q1與Q2係 分別連接至該等輸出端DH1與DH2,且輸出端*Q1與*Q2係 分別連接至該等輸出端DL1與DL2。控制信號VQ卜*VQ1, VQ2及*VQ2係分別輸出自該等輸出端φ,*Q1,Q2及, 該狀態控制電路SC根據該時脈信號CLK與輸出信號VI來 20 控制該等控制信號VQ1,*VQ1,VQ2及*VQ2。 該直流對直流變換器1之操作將被說明。在該直流對直 流變換器It,如第2圖至第4圖所示,該等狀態(1),(2)及(3) 係根據該等電晶體FET1,FET2,FET3及FET4的ON與OFF 之組合而獲得。 10 當該等控制信號VQ1與VQ2為高位準 、且 *VQ1 與 *VQ2 為低位料,該等電晶體FET1與FET3為ON、且該FET2與 FET4為OFF。於是’如第2圖所示,該扼流線圈L1之端Τχ 係連接至胃輸入端Tin ’該端Ty係連接至該參考電位,並且 該狀態⑴被獲得。在該狀態⑴中,能量係從該輸入端Tin 側累積到雜流線圈U,且該電感器電流IL隨著時間的推 移以-固定陡斜率增加。在此時,其中該扼流線圈u的一 電感值被定義為L,一增加的斜率係由(vin/L)計算出。 當該等控制信號* VQ1與* VQ2為高位準、且VQ丨與VQ2 為低位準時’該等電晶體FET1與fET3為〇FF、且該FET2 與FET4為ON。於是’如第3圖所示,該扼流線圈L1之端Τχ 係連接至該參考電位,該端Ty係連接至該輸出端T〇ut,並 且該狀態(2)被獲得。在該狀態(2)中,該能量係自該扼流線 圈L1釋放至該輸出端Tout側,並且該電感器電流IL隨著時 間的推移以一固定陡斜率減少。在此時,一減少的斜率係 由-(Vin/L)來計算出。 當該等控制信號VQ1與*VQ2為高位準、且*VQ1與VQ2 為低位準時,該等電晶體FET1與FET4為ON、且該FET2與 FET3為OFF。於是,如第4圖所示,該扼流線圈li之端Τχ 係連接至該輸入端Tin,該端Ty係連接至該輸出端Tout,並 且該狀態(3)被獲得。在該狀態(3)中,當該輸入電壓Vin係 高於該輸出電壓Vout時,來自該輸入端Tin侧的能量被累積 到該扼流線圈L1、並且同時被供應至該輸出端Tout側,而 且該電感器電流IL隨著時間的推移以該固定陡斜率增加。 1353102 另一方面,當該輸入電壓Vin係低於該輸出電壓Vout時,該 能量係自該扼流線圈L1釋放至該輸出端Tout側,並且該電 感器電流IL隨著時間的推移以該固定陡斜率減少。在此 時’於該狀態(3)該電感器電流IL的增加與減少斜率係分別 5小於該狀態(1)中的增加斜率與該狀態(2)中的減少斜率。此 外,當該輸入電壓Vin接近該輸出電壓Vout時,該狀態(3) 中該電感器電流IL的增加/減少斜率變成零。 —第一實施例中的直流對直流變換器1之操作將參考 第5圖與第6圖來說明。該第一實施例中,如第5圖的一狀態 10轉變圖所示,一第一期間操作T01係由該狀態(1)與狀態(2) 構成,且一第二期間操作T〇2係由該狀態(1)與狀態(3)構 成。該等狀態(1) ’(2) ’(1),(3) ’(1),…係以此順序重複, 且該第一期間操作τ 01與第二期間操作T 0 2係交替地重複。 該第一實施例中的直流對直流變換器丨之操作將參考 15第6圖的一波形圖來說明。該時脈信號CLK包含一具有—基 本週期T的時脈。一輸出電流lout是該等狀態2與狀態3中流 動的電感器電流之平均。此處,一期間,其中該第一期間 操作T01被執行,被定義為一第一期間们,並且一期間, 其中該第二期間操作T〇2被執行,被定義為一第二期間 2〇 T2。該第一期間T1係使得等於該時脈信號CLK的基本週期 T,並且該第二期間T2係成為一如該第一期間丁1的11倍之長 的值。此處,η是2或更大的一自然數、並根據例如一負載 的波動或該輸入電壓Vin與輸出電壓v〇ut2間的關係而被 定義為一預定值。n=4的情況將被說明於本實施例。此外, 12 1353102 當該輸入電壓Vin接近一近乎等於該輸出電壓Vout之值並 且該狀態(3)中該電流感側信號Vs的一斜率係近乎零時的 操作將被說明於本實施例。 該第一期間操作τοι將被說明。在時間〖丨(第6圖)’該 5 狀態控制電路SC,根據該時脈信號CLK的時脈之上升緣’ 使得該控制信號*VQ2轉變至低位準且該控制信號VQ2轉 變至高位準。因此,該狀態(1)被設定,且該第一期間操作 TOl係開始。該狀態(丨)中,因為該扼流線圈L1接收來自該 輸入側之能量由於其自該輸出側阻擋,所以該電流感測信 10 號Vs以該陡斜率增加。
在時間t2,當該電流感測信號VS達到該輸出信號Eout 時,該電壓比較器COMP1的輸出信號VI從高位準轉變至低 位準。該狀態控制電路sc,根據一低位準輸出信號¥1的輸 入’使得該等控制信號VQ1與VQ2轉變至低位準且該等控 15制信號*ν(^與*VQ2轉變至高位準。因此,該狀態(1)被切 換至該狀態(2)。在該狀態(2)中,因為該扼流線圈L1自該輸 入側被阻擋、且同時連接至該輸出侧,所以該電流感測信 號Vs以該陡斜率減少。然後,該狀態(2)被維持直到下一個 時脈信號CLK被輸入。 接著,s玄第二期間操作τ〇2將被說明。在時間13,該狀 態控制電路sc,根據該時脈信號CLK之時脈的上升緣,使 得該等控制信EVQ1與VQ2轉變至高位準以及該等控靜 號*VQm*VQ2轉變至低位準,此,該狀態(2)被切換至 5亥狀態⑴。於是’該第一期間操作T〇1結束,且該第二期 13 1353102 間操作τ〇2係開始。在該狀態⑴中,該電流感測信號%以 該陡斜率增加》 在時間t4’ t該電流感測信號Vs達到該輸出信號^ 時,該電壓比較器COMP1的輸出信號V1從高位準轉變至低 5位準。該狀態控魏路SC,根據該低位準輸出信㈣的輸 =,使得該控制信號VQ2轉變至低位準以及該控制信號 *VQ2轉變至高位準。因此’該狀態⑴被切換至該狀態⑺。 然後,該狀態(3)被維持直到該第二期間丁2經過。該狀 態(3)中,因為該輸入電壓Vin接近該輸出電壓¥〇似,如第6 圖所示,δ玄電流感測信號vs的一斜率是近乎零。因此,該 電流感測信號Vs近乎保持在時間t4的—值不變換器。於 是’於該狀態(3)期間,近乎最大電流被維持在該扼流線圈 L1中。 在時間t8 ,該第二期間T2結束。然後,該狀態控制電 15路sc,根據該時脈信號CLK的上升緣,使得該控制信號 *VQ2轉變至低位準以及該控制信號VQ2轉變至高位準。因 此,該狀態(3)被切換至該狀態⑴。於是,該第二期間操作 T02結束,.且該第—期間操作丁⑴係開始。 在該第—期間操作T01的狀態(1)中,該電流感測信號 8以°亥陡斜率增加。此處,於該先前的第二期間T2中的狀 態⑶之期限’―最大電流感測信號Vs被維持。因此,因為 S玄電流感測信號1^在時間t8達到該輸出信號E0ut ,所以該 狀態⑴在該最小脈衝上期限後,在時間t9被切換至該狀態 (2)。 14 1353102 於是該等狀態(1),(2),⑴,⑶,⑴,係以此順序 重複,且該第-期間操作丁01與第二期間操作丁2係交替地 重複。然後’在-由第6圖中斜線所示的—區域中,該能量 被供應至該輸出端Tout側,以至於該電感器電流被供應至 5該負載並被累積至該輸出電容器C1。
此外,每一單位時間之切換次數係將參考第6圖來說 明。此處,該實施例中的切換被定義為次數其中該等電晶 體FET卜FET2,FET3及FET4每一個係以此順序成為〇FF, ON,OFF,或以此順序成為ON,OFF,ON。因此,一個 10 切換中存在有該傳導狀態的兩個轉變。在根據該第一實施 例第6圖之操作中,於一期間(=(η+ι)χΤ)其是該第一期間71 與該第二期間Τ2的總計,對於該等電晶體FET1與FET2,該 切換被執行一次。即,該等電晶體FET1與FET2每一個的每 一單位時間之切換次數SCI係由以下式子來表示。 15 SCI = 1/((η+1)χΤ)(次/秒)···式⑴ 同樣地,於該期間該切換(=(n+l)xT)其是該第一期間 T1與該第二期間T2的總計,對於該等電晶體FET3與FET4, 該切換被執行兩次。即,該等電晶體FET3與FET4每一個的 每一單位時間之切換次數SC2係由以下式子來表示。 20 SC2 = 2/((n+l)xT)(次/秒)..·式(2) 於是’每一個電晶體的切換次平均數ACS係由以下式 子來表示。 ASC = 1.5/((n+l)xT)(次/秒)..·式⑺ 另一方面,一傳統電路操作的一範例係顯示於第7圖。 15 1353102 在該傳統電路操作中,該等電晶體FETl,FET2,FET3及 FET4不在兩種期間中操作而是操作在相同的基本週期τ 中。因此,該等電晶體在該時脈號CLK的多數個時脈週期 不被控制。在此情況下,於兩個期間(=2xT)對於該等電晶 5 體FETl,FET2,FET3及FET4,該切換被執行一次。即, 該等電晶體FEU,FET2,FET3及FET4每一個的每一單位 時間之切換次數PSC係由以下式子來表示。 PSC = 1/(2χΤ)(次/秒)·.·式(4) 於是,該等式(3)及(4)顯露出當ng3時,該第一實施例 10 之切換次的平均數ASC係小於傳統切換次數psc。 如同上述詳細說明中,在根據該第一實施例的直流對 直流變換器1中,該狀態(1)於該第二期間操作T02被切換至 該狀態(3) ’以至於該電感器電流IL的增加斜率被降低。因 此,因為能防止該電感器電流IL的峯對峯電流值增加而不 15笞邊第一期間操作T02的第一期間T2之長度,所以該第二 期間操作T02的第二期間T2係能成為長於該第一期間操作 τοι的第一期間τι。此處,因為該第一期間T1是該時脈信 號CLK的一個時脈週期,所以藉由使該第二期間T2長於該 第一期間Τ1而能實現用於在該時脈信號CLK之該等多數個 20時脈週期控制該等電晶體之多時脈控制。因為該等電晶體 FET卜FET2,FET3及FET4的平均切換頻率能如此被降低, 所以產生再切換開/關時的切換驅動損失以及在切換⑽ (OFF)至OFF (ON)的-轉變狀態中開關的傳導損失能被降 低。因此,該直流對直流變換器的效率能被提升。 16 1353102 實知例中的直流對直流變換器1之操作將失 考第謂與第9圖來說明。該第二實施财一第期間操 作TOla被用來代替該第—實施例的第—期間操作。如 第8圖的狀態轉變圖所示,該第—期間操作T〇la係由該狀 態(2)構成’且該第二期間操作τ〇2係由狀態⑴與⑶構成。 該等狀態⑴’(3),(2),⑴,··舶此順序重複並且該第 一期間操作Τ 01 a與第二㈣操作TO 2係交替地重複。
該第二實施例中該直流對直流變換器1之操作將參考 第9圖的-波形圖來說明。此處,一期間,其中該第一期間 10操作T01a被執行,被定義為一第一期間Tla。該第一期間 Tla係成為等於該時脈信號CLK的基本週期τ。此外,因為 其它構造係相同如該第-實施例的構造’所以詳細說明將 被省略。 該第一期間操作TOla將被說明。在時間tl丨,該狀態控 15制電路SC,根據該時脈信號CLK的時脈之上升緣,使得該 控制信號VQ1轉變至低位準以及該控制信號*VQ1轉變至 高位準。因此,該狀態(2)被設定,且該第—期間操作T〇la 係開始。該狀態(2)中,該電流感測信號Vs以一陡斜率減 y。然後,该狀態(2)被维持直到下一個時脈信號clk被輸 20 入。於是,該狀態(2)的期限被固定到該第一期間Tla十的預 定基本週期T。 接者’該第·一期間4呆作T02將被說明。在時間113,該 狀態控制電路SC,根據該時脈信號CLK的時脈之上升緣, 使得該等控制信號VQ1與VQ2轉變至高位準以及該等控制 17 1353102 信號*VQ1與*VQ2轉變至低位準。因此,該狀態(2)被切換 至該狀態(1)。於是,該第一期間操作T〇la結束,且該第二 期間知作T02係開始。該狀癌(1)中,該電流感測信號vs以 該陡斜率增加。 5 在時間tl4 ’當該電流感測信號Vs達到該輸出信號Eout 時,該狀態控制電路SC,根據該高位準輪出信號¥1的輸 入’使得該控制信號VQ2轉變至低位準以及該控制信號 *VQ2轉變至高位準。因此,該狀態〇)被切換至該狀態(3)。 然後,該狀態(3)被維持直到該第二期間T2經過。該狀態(3) 10中,因為該輸入電壓Vin接近該輸出電壓Vom,該電流感測 信號Vs的斜率係近乎零如第9圖所示。 在時間tl8,該第二期間T2結束。該狀態控制電路sc, 根據該時脈信號CLK的時脈之上升緣,使得該控制信號 VQ1轉變至低位準以及駿龍號*輝轉變至高位準。因 15此,該狀態(3)被切換至該狀態(2)。於是,該第二期間操作 T〇2結束,且該第一期間操作TOla係開始。 該等14(2) ’⑴,(3),(2),..於是係以此順序重複, 並且該帛期間操作丁叫與第二期間操作T⑴係交替地重 複m由第9圖中斜線所示的一區域中,該能量被 20供應至-玄輸出端T〇ut側,以至於該等電感器電流被供應至 該負載並被累積至該輸出電容器C卜 此外每—單位時間之切換次數係將參考第9圖來說 Θ在根據該第二實施例第9圖之操作中,於該期間 (=(n+1)xm是該第-期間TU賴第二顧了2的總計,對 18 於該等電晶體FET1,FET2,FET3及FET4,該切換被執行 一次。即’該等電晶體FET1,FET2,FET3及FET4每一個 的每一單位時間之切換次數SCa係由以下式子來表示。 SCa = 1/((η+1)χΤ)(次/秒)···式(5) 5 於是’該等式(3)與(5)顯露出當η22時,切換次數SCa 變成小於該傳統切換次數PSC。 如上述詳細說明中,在根據該第二實施例的直流對直 流變換器1中’該第一期間操作TOla係僅由該狀態(2)構 成,且該狀態(2)於該基本週期τ被維持。此外,在該第二 1〇期間操作Τ〇2中,該狀態(1)被切換至該狀態以至於該電 感器電流IL的增加斜率被降低。於是,防止了該電感器電 流IL的峯對峯電流值增加,並同時,該17£13與1^丁4的切換 次數能被降低。因此,該直流對直流變換器的效率能被提 升。 15 此外,照例,本發明並不限於該等實施例,並且不同 的改良與修飾在不脫離本發明之範圍下能被達成。雖然該 第一實施例被說明在上,其中該輸入電壓Vin接近該輸出電 壓Vo u t且該狀態(3)中該電流感測信號v s的斜率係近乎零, 本發明並不限於此實施例。 20 當該輸入電壓vin係高於該輸出電壓Vout時,該電流感 測k號Vs以該狀態(3)中的固定斜率增加。因為該電流感測 k號Vs再該第二期間T2結束時達到該輸出信號£〇饥,跟隨 該第二期間T2的第一期間T1中該狀態(1)之期限變成一最 小脈衝上期限。另一方面,當該輸入電壓Vin係低於該輸出 19 1353102 電壓Vout時,該電流感測信號Vs以該狀態(3)中的固定斜率 減少。因為該電流感測信號Vs在該第二期間T2結束時係低 於該輸出信號Eout ’所以跟隨該第二期間T2的第一期間T1 中的狀態(1)之期限係達成如一直到該電流感測信號%達 5 到該輸出信號Eout的期限。因此,該第一實施例之操作能 被實現於以上兩情況。此外,照例’本發明第二實施例的 插作式甚至在該輸入電壓Vin係南於或低於該輸出電壓 Vout的兩情況下同樣能被實現。
此外,該第一期間T1係成為等於該實施例中的基本週 10 期T,然而,T可能不同於該基本週期T。 此外’雖然該第二期間T2被設定如一如該第一期間τ 1 的η倍之長的值,且此實施例中,η作為一值被設定如2或更 大的自然數’本發明並不限於此實施例。1或更大的實數可 能代替η。例如,當該第一期間Τ1係藉由將分頻應用至該基 15本週期τ而獲得時,一實數能代替η。在此情況下,假設該 第一期間Τ1係藉由將1/2-分頻應用至該基本週期τ而獲得 且§亥第二期間Τ2係藉由將1 /5_分頻應用至該基本週期τ而 獲得,該第二期間Τ1是如該第一期間丁丨的2 5倍之長。即使 §亥時脈信號CLK的週期本身係調變在該第一期間τ〗與第二 20期間Τ2,照例’一實數係能代替η。 此外,該實施例中,照例,一補償信號可能被施加至 该電流感測彳s號Vs與輸出信號£〇ut為了控制穩定。 此外’雖然該實施例中該第二期間T2被設定為一具有 一如該第一期間的4倍之長的期間之固定值,可是本發明並 20 1353102 不限於此實施例。照例,該第二期間T2係能根據該輪入電 壓與輸出電壓之間的關係、及輸出負載的變化動態地受到 可變的控制。例如,當該第二期間η係根據輪出負載變化 的產生丈到該可變控制而被減少時,該狀態(3)的期限能被 5降低,並且因此該直流對直流變換器的後續特性能被提 升。此外,當該第二期間丁2係根據該輸入電壓Vin與輸出電 壓Vout之間的-差電壓之減少動態地受到該可變控制而被 增加、且根據在該差電壓的增加而被減少時進—步能減 少切換次數。 10 此外,雖然該第—期間操作τοι與第二期間操作τ〇2 的存在率在該第-實施例中被設定為1: 1,可是本發明並 不限於此實施例。照例,該存在率能被設定為—任意值。 该第一期間操作Τ01與帛二期間操作τ〇 2的存在率係可變 地控制以至於該狀態(3)對整個狀態的時間比例能被調整。 15例如,當該第二期間操作T02的存在率係藉由以T01, ΊΌ1 ’ ΤΌ2 ’ ΊΌ1 ’…的-順序重複該第一期間操作T〇1與 第二期間操作T02而降低時,相同如縮短該狀態(3)之期限 的功效能被獲得。 此外,雖然該等電晶體FET2與FET4在該實施例中係用 20來作為一同步整流元件,可是本發明並不限於此實施例, 並且一二極體元件可能被用來整流。例如,該等電晶體F E τ 2 與FET4的至少一個可能以該二極體代替或者該二極體係可 能與該等電晶體FET2與FET4的至少一個並聯。 此外,雖然Ν-型 FET,FET1,FET2,FET3及FET4被 21 1353102 用於該實施例如第丨圖所示,可是本發明並不限於此實施 例。照例,該等N-型FET的任一或全部係可以p_型FET來代 替。 該電流感測信號V s並不限於偵測流經該扼流線圈L i的 5感測器電流1L、並可能偵測流經該等電晶體FET 1與FET3的 至少一個的電流。 該實施例中,在該第二期間操作τ〇2中,該狀態(1)被 切換至該狀惑(3),並且因此該電感器電流化的增加斜率被 減少並且該峯對峯電流值係能防止增加。然而,本發明並 1〇不限於此實施例。該狀態(2)可能被切換至該狀態(3)以至於 該電感器電流IL的減少斜率被減少。於是,能防止該電感 器電流IL的一底電流值減少,並且該第二期間操作12係能 成為長於該第一期間Τ1。 此外,雖然該時脈信號CLK係用於該實施例中的該步 15升/步降型直流對直流變換器,可是本發明並不限於此實施 例。只要該直流對直流變換器,在該輸入電壓Vin係高於該 輸出電壓Vout時,係以一步降型直流對直流變換器來代 替,或在該輸入電壓Vin係低於該輸出電壓¥〇加時,係以一 步升型直流對直流變換^來代替,該時脈信號CLK通常係 20能用於兩種直流對直流變換器。 此外,該實施例的控制電路1丨可能係由—單一或多數 個半導體晶片等所構成。另外,照例,該直流對直流變換 器1可能係由一單一或多數個半導體晶片等所構成、並可能 被組成為一模組。 22 1353102 並且,該電晶體FET1是一第一切換元件的一範例,電 晶體FET2是—第一整流元件的一範例,電晶體FET4是一第 二整流元件的一範例,電晶體FET3是一第二切換元件的一 範例,s亥扼流線圈L1是一電感元件的一範例,且該控制電 路11是一控制部的一範例。 根據本發明之該步升/步降型直流對直流變換器與其 控制電路與控制方法,能夠提供一種步升/步降型直流對直 流變換器其中電感器電流的一峯對峯電流值被抑制且同時 切換元件的一平均切換頻率能被降低、並且高效率能被實 現。 【圖式簡單說明】 15 第1圖是一步升/步降型直流對直流變換器丨的電路圖; 第2圖是一顯示一狀態的電路圖 第3圖是一顯示一狀態(2)的電路圖 第4圖是一顯示一狀態(3)的電路圖 第5圖是一第一實施例的狀態轉變圖; 第6圖是該第一實施例之直流對直流變換器1的波形 園, 第7圖是一顯示傳統電路操作的波形圖; 20 第8圖是一第二實施例的狀態轉變圖;及 第9圖是該第二實施例之直流對直流變換器1的波形 圖。 【主要元件符號說明】 1…步升/步降型直流對直流變換器11.. ·控制電路 23 1353102
SC...狀態控制電路 Rl^…電阻元件 L1...扼流線圈 ERA...誤差放大器 FET1-FET4…電晶體 COMP1...電壓比較器 C1...輸出電容器 OSC...振盪器 Tin."輸入端 DH1,DL1...輸出端 Tout...輸出端 DH2,DL2. · ·輸出端 Tx,Ty."端 卩1,*(^1,(^,*(^...輸出端 FB,CS...輸入端
24

Claims (1)

  1. 第96118748號專利申請案申請專利範圍修正本修正日期:99年10月19日 十、申請糾細: 姚,10. 1 & 申請專利範圍: 平月日修 乂降^•直极對直流變換器包 .. 與一電感元件的-端之連接在一電壓輸入端 5 參考電位與該電感元件的埂接杜 連接在-電壓輪出端心的第-整流元件;一 整浐元#·» 、電感兀件的另—端之間的第二 端該:::::r元編- -者,且假使該二::,7第-狀態與-第二狀態之任 在該第-週期内達到一設定’當該電感元件的電流 該第二狀態;以及 $值時,從該第-狀態切換至 在緊接著該第—週 態,且當該電感元帛—週期内設定該第一狀 15 值時,從該第一狀1 凌在該第二週期内達到該給定 切換至—第三狀態, 八中在該第―狀態,該第— 其中在該第二壯 一第一切換几件為ON, 其中在該第三狀第?切換元件為0FF; 切換元件為〇FF ; ^ 刀換兀件為ON且該第二 20 其中該第一週期包括 第二狀態,或者包括㈣_連續序列之該第-狀態與該 其中該第二週期:一狀態;且 第三狀態。 ^括—連續相之該第-狀態與該 2.如申請專利範圍第 1項所述之步升/步降型直流對直流 25 1353102 年月曰修(更)正替换頁丨 *~9〇. 10. ί ^--— 1 變換器的控制方法,其中 該第二週期係如該第一週期的η (η: 1或更大的實數) 倍之長。 3. 如申請專利範圍第2項所述之步升/步降型直流對直流 5 變換器的控制方法,其中 該η為2或更大的自然數。 4. 如申請專利範圍第1項所述之步升/步降型直流對直流 變換器的控制方法,其中 該第一整流元件是一第三切換元件, 10 該第二整流元件是一第四切換元件, 該第三與第四切換元件在該第一狀態中為OFF, 該第三與第四切換元件在該第二狀態中為ON,及 在該第三狀態_,該第四切換元件為ON,且該第三 切換元件為OFF。 15 5. —種步升/步降型直流對直流變換器的控制電路,包含 有: 一連接在一電壓輸入端與一電感元件的一端之間的 第一切換元件; 一連接在一參考電位與該電感元件的一端之間的第 20 一整流元件; 一連接在一電壓輸出端與該電感元件的另一端之間 的第二整流元件; 一連接在該參考電位與該電感元件的另一端之間的 第二切換元件;及 26 1353102 年月曰修(更)正替換頁I 9θτΙ0.1 注--1 一控制部,用於控制:一第一狀態,其中該第一與第 二切換元件為ON ; —第二狀態,其中該第一與第二切換 元件為OFF ;及一第三狀態,其中該第一切換元件為ON 且該第二切換元件為OFF,其中該第一狀態與該第二狀 5 態之任一者在一第一週期内被設定,且假使該第一狀態 被設定,當該電感元件的電流在該第一週期内達到一給 定值時,該第一狀態被切換至該第二狀態;以及其中該 第一狀態在緊接著該第一週期之一第二週期内被設定, 且當該電感元件的電流在該第二週期内達到該給定值 10 時,該第一狀態被切換至一第三狀態; 其中該第一週期包括一連續序列之該第一狀態與該 第二狀態,或者包括該第二狀態;且 其中該第二週期包括一連續序列之該第一狀態與該 第三狀態。 15 6·如申請專利範圍第5項所述之步升/步降型直流對直流 變換器的控制電路,該變換器更包含有: 一第三切換元件作為該第一整流元件,及 一第四切換元件作為該第二整流元件, 其中該控制部於該第一狀態使該第三與第四切換元 20 件成為OFF、於該第二狀態使該第三與第四切換元件成 為ON、以及於該第三狀態使該第四切換元件成為ON並 使該第三切換元件成為OFF。 7. —種步升/步降型直流對直流變換器,包含有: 一連接在一電壓輸入端與一電感元件的一端之間的 27 1353102 年月曰修(更)正瞥换頁 99. 10. t~§- 第一切換元件; 一連接在一參考電位與該電感元件的一端之間的第 - 一整流元件; . 一連接在一電壓輸出端與該電感元件的另一端之間 5 的第二整流元件, 一連接在該參考電位與該電感元件的另一端之間的 第二切換元件;及 一控制部,用於控制:一第一狀態,其中該第一與第 ^ 二切換元件為ON ; —第二狀態,其中該第一與第二切換 10 元件為OFF;及一第三狀態,其中該第一切換元件為ON 且該第二切換元件為OFF,其中該第一狀態與該第二狀 . 態之任一者在一第一週期内被設定,且假使該第一狀態 - 被設定,當該電感元件的電流在該第一週期内達到一給 定值時,該第一狀態被切換至該第二狀態;以及其中該 15 第一狀態在緊接著該第一週期之一第二週期内被設定, _ 且當該電感元件的電流在該第二週期内達到該給定值 時,該第一狀態被切換至一第三狀態; 其中該第一週期包括一連續序列之該第一狀態與該 s 第二狀態,或者包括該第二狀態;且 '20 其中該第二週期包括一連續序列之該第一狀態與該 第三狀態。 28
TW096118748A 2006-06-16 2007-05-25 Step-up/step-down type dc-dc converter, and contro TWI353102B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167677 2006-06-16

Publications (2)

Publication Number Publication Date
TW200812206A TW200812206A (en) 2008-03-01
TWI353102B true TWI353102B (en) 2011-11-21

Family

ID=38860881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096118748A TWI353102B (en) 2006-06-16 2007-05-25 Step-up/step-down type dc-dc converter, and contro

Country Status (4)

Country Link
US (1) US7956586B2 (zh)
JP (1) JP5739832B2 (zh)
CN (1) CN101090234A (zh)
TW (1) TWI353102B (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967588B2 (ja) * 2006-10-17 2012-07-04 トヨタ自動車株式会社 コンバータ制御装置
JP5211678B2 (ja) * 2007-12-26 2013-06-12 富士通セミコンダクター株式会社 Dc−dcコンバータ、dc−dcコンバータの制御方法および電子機器
EP2189870A1 (en) * 2008-11-25 2010-05-26 St Microelectronics S.A. A switch-mode voltage regulator
EP2267572B1 (en) * 2009-06-16 2013-07-24 Agence Spatiale Européenne Solar array regulator based on step-up and down conversion and solar power system comprising the same
CN101764515A (zh) * 2009-11-09 2010-06-30 天津南大强芯半导体芯片设计有限公司 一种pwm与psm自动切换电路及其切换方法
TWI463778B (zh) * 2011-04-29 2014-12-01 Energy Pass Inc 電流模式直流轉換器及其直流轉換方法
JP5902401B2 (ja) 2011-05-31 2016-04-13 サイプレス セミコンダクター コーポレーション 電源装置、制御回路、電子機器及び電源の制御方法
WO2012164787A1 (ja) 2011-06-03 2012-12-06 パナソニック株式会社 昇降圧コンバータ
US9711962B2 (en) 2012-07-09 2017-07-18 Davide Andrea System and method for isolated DC to DC converter
US9041363B2 (en) * 2012-09-21 2015-05-26 Analog Devices Global Windowless H-bridge buck-boost switching converter
JP5958860B2 (ja) * 2012-10-11 2016-08-02 パナソニックIpマネジメント株式会社 発光素子点灯装置および、これを用いた照明器具
JP5983403B2 (ja) * 2012-12-28 2016-08-31 株式会社オートネットワーク技術研究所 双方向昇降圧回路の制御方法及び双方向昇降圧回路
US9395738B2 (en) 2013-01-28 2016-07-19 Nvidia Corporation Current-parking switching regulator with a split inductor
US9800158B2 (en) 2013-01-30 2017-10-24 Nvidia Corporation Current-parking switching regulator downstream controller
US9804621B2 (en) * 2013-02-05 2017-10-31 Nvidia Corporation Current-parking switching regulator downstream controller pre-driver
US9459635B2 (en) 2013-02-08 2016-10-04 Nvidia Corporation Current-parking switching regulator upstream controller
US9389617B2 (en) 2013-02-19 2016-07-12 Nvidia Corporation Pulsed current sensing
US9639102B2 (en) 2013-02-19 2017-05-02 Nvidia Corporation Predictive current sensing
JP6060794B2 (ja) * 2013-04-19 2017-01-18 株式会社オートネットワーク技術研究所 変換装置
US9231477B2 (en) 2013-04-23 2016-01-05 Nvidia Corporation Control of a soft-switched variable frequency buck regulator
US20140312868A1 (en) * 2013-04-23 2014-10-23 Nvidia Corporation Control of a soft-switched variable frequency multi-phase regulator
JP6044444B2 (ja) 2013-04-30 2016-12-14 株式会社オートネットワーク技術研究所 変換装置
CN103337957B (zh) * 2013-07-04 2015-03-25 江苏集能易新能源技术有限公司 一种低纹波四开关升降压直流变换器及其控制方法
JP6265092B2 (ja) 2014-09-22 2018-01-24 株式会社デンソー スイッチング電源装置
US9564900B2 (en) 2015-04-16 2017-02-07 Taiwan Semiconductor Manufacturing Co., Ltd. Supply boost device
US10439539B2 (en) * 2015-05-21 2019-10-08 Analog Devices Global Unlimited Company Feedback control system and method
KR20170002324A (ko) 2015-06-29 2017-01-06 페어차일드코리아반도체 주식회사 스위치 제어 회로 및 이를 포함하는 컨버터
CN106899202A (zh) * 2015-12-18 2017-06-27 亚荣源科技(深圳)有限公司 交流-直流转换器及其功因校正电路
US11264902B2 (en) * 2016-03-02 2022-03-01 Analog Devices International Unlimited Company Inductor current based mode control for buck-boost converters
US10224813B2 (en) 2016-03-24 2019-03-05 Nvidia Corporation Variable frequency soft-switching control of a buck converter
CN108933521B (zh) * 2017-05-24 2020-09-04 三垦电气株式会社 控制电路和控制方法
US10135340B1 (en) * 2017-09-11 2018-11-20 Linear Technology Holding Llc Pass through regulation of buck-boost regulator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840913B2 (ja) 1978-11-16 1983-09-08 横河電機株式会社 一般化dc/dcコンバ−タ
JPS605144B2 (ja) 1980-04-01 1985-02-08 日本電信電話株式会社 電力転送装置
US4395675A (en) * 1981-10-22 1983-07-26 Bell Telephone Laboratories, Incorporated Transformerless noninverting buck boost switching regulator
US5402060A (en) * 1993-05-13 1995-03-28 Toko America, Inc. Controller for two-switch buck-boost converter
JP3049427B2 (ja) * 1998-10-21 2000-06-05 株式会社ハイデン研究所 正負パルス式高周波スイッチング電源
US6087816A (en) * 1999-06-29 2000-07-11 Maxim Integrated Products, Inc. Step-up/step-down switching regulators and pulse width modulation control therefor
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
US6275016B1 (en) * 2001-02-15 2001-08-14 Texas Instruments Incorporated Buck-boost switching regulator
US6788033B2 (en) * 2002-08-08 2004-09-07 Vlt, Inc. Buck-boost DC-DC switching power conversion
US7940033B2 (en) * 2003-04-22 2011-05-10 Aivaka, Inc. Control loop for switching power converters
JP3787784B2 (ja) * 2003-12-25 2006-06-21 日本テキサス・インスツルメンツ株式会社 Dc−dcコンバータ
JP4487649B2 (ja) * 2004-06-14 2010-06-23 富士電機システムズ株式会社 昇降圧型dc−dcコンバータの制御装置
JP2006042461A (ja) * 2004-07-26 2006-02-09 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP4381327B2 (ja) * 2005-03-02 2009-12-09 富士通マイクロエレクトロニクス株式会社 Dc−dcコンバータ、dc−dcコンバータ制御装置、電源装置、電子装置及びdc−dcコンバータ制御方法
JP4596960B2 (ja) * 2005-04-11 2010-12-15 梶原工業株式会社 電磁誘導加熱装置、電磁誘導加熱調理装置
JP2006325281A (ja) * 2005-05-17 2006-11-30 Matsushita Electric Ind Co Ltd スイッチング電源回路とスイッチング電源制御方法
US7157888B2 (en) * 2005-06-06 2007-01-02 Aimtron Technology Corp. Light loading control circuit for a buck-boost voltage converter

Also Published As

Publication number Publication date
JP2012135211A (ja) 2012-07-12
TW200812206A (en) 2008-03-01
CN101090234A (zh) 2007-12-19
JP5739832B2 (ja) 2015-06-24
US7956586B2 (en) 2011-06-07
US20070290667A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
TWI353102B (en) Step-up/step-down type dc-dc converter, and contro
Huang et al. An 84.7% efficiency 100-MHz package bondwire-based fully integrated buck converter with precise DCM operation and enhanced light-load efficiency
US8305065B2 (en) Power supplying apparatus including a pulse-width modulation oscillator and smoothing filters
JP6039327B2 (ja) スイッチング電源装置
CN214256151U (zh) 控制电路和开关变换器
US7250745B2 (en) Control circuit of DC-DC converter and its control method
TW201801434A (zh) 用於電壓調節器之過電流保護電路及方法
JP2010516223A (ja) スナバを有する電力コンバータ
JP2012039761A (ja) スイッチング電源装置
JP2010259257A (ja) スイッチングレギュレータ及びその動作制御方法
JP2012039710A (ja) スイッチング電源装置
JP2008131746A (ja) 昇降圧型スイッチングレギュレータ
TWI309496B (en) Dc-dc converter and its control method, and switching regulator and its control method
Hajiheidari et al. High-step-down DC–DC converter with continuous output current using coupled-inductors
JP5023819B2 (ja) 昇降圧型dc−dcコンバータの制御方法、昇降圧型dc−dcコンバータの制御回路、および昇降圧型dc−dcコンバータ
TWI491149B (zh) 直流轉直流控制器及其多斜坡信號的操作方法
Liu et al. A 12V/24V-to-1V PWM-controlled DSD converter with delay-insensitive and dual-phase charging techniques for fast transient responses
Manohar et al. 94.6% peak efficiency DCM buck converter with fast adaptive dead-time control
US10243460B2 (en) Method and apparatus for dynamic voltage transition control in semi-resonant and resonant converters
JP2011083049A (ja) 電圧変換装置
CN108964439B (zh) 开关变换器及其控制方法和控制器
TWM453302U (zh) 切換式電源供應器及其控制電路
EP3821526A1 (en) Dc-to-dc power converter
JP2012070589A (ja) スイッチング電源装置
JP2011142761A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees