TWI256676B - Termination for trench MIS device having implanted drain-drift region - Google Patents
Termination for trench MIS device having implanted drain-drift regionInfo
- Publication number
- TWI256676B TWI256676B TW094105483A TW94105483A TWI256676B TW I256676 B TWI256676 B TW I256676B TW 094105483 A TW094105483 A TW 094105483A TW 94105483 A TW94105483 A TW 94105483A TW I256676 B TWI256676 B TW I256676B
- Authority
- TW
- Taiwan
- Prior art keywords
- trench
- termination
- epitaxial layer
- die
- drift region
- Prior art date
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract 2
- 229920005591 polysilicon Polymers 0.000 abstract 2
- 239000000758 substrate Substances 0.000 abstract 2
- 239000002184 metal Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0886—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66734—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/810,031 US7045857B2 (en) | 2004-03-26 | 2004-03-26 | Termination for trench MIS device having implanted drain-drift region |
US10/811,443 US6927451B1 (en) | 2004-03-26 | 2004-03-26 | Termination for trench MIS device having implanted drain-drift region |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200534359A TW200534359A (en) | 2005-10-16 |
TWI256676B true TWI256676B (en) | 2006-06-11 |
Family
ID=35184308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094105483A TWI256676B (en) | 2004-03-26 | 2005-02-23 | Termination for trench MIS device having implanted drain-drift region |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP2005286328A (zh) |
DE (1) | DE102005008495B4 (zh) |
TW (1) | TWI256676B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI415262B (zh) * | 2008-02-27 | 2013-11-11 | Advanced Analogic Tech Inc | 半導體晶粒之隔離電晶體、隔離二極體及隔離與終端結構 |
US9525045B1 (en) | 2016-03-10 | 2016-12-20 | Vanguard International Semiconductor Corporation | Semiconductor devices and methods for forming the same |
TWI601291B (zh) * | 2015-10-07 | 2017-10-01 | 世界先進積體電路股份有限公司 | 半導體裝置及其製造方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9484451B2 (en) | 2007-10-05 | 2016-11-01 | Vishay-Siliconix | MOSFET active area and edge termination area charge balance |
US7989882B2 (en) * | 2007-12-07 | 2011-08-02 | Cree, Inc. | Transistor with A-face conductive channel and trench protecting well region |
US7816229B2 (en) | 2008-09-30 | 2010-10-19 | Infineon Technologies Austria Ag | Semiconductor device with channel stop trench and method |
DE102010027679A1 (de) * | 2010-07-20 | 2012-01-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
US9431249B2 (en) | 2011-12-01 | 2016-08-30 | Vishay-Siliconix | Edge termination for super junction MOSFET devices |
US9614043B2 (en) | 2012-02-09 | 2017-04-04 | Vishay-Siliconix | MOSFET termination trench |
US9842911B2 (en) | 2012-05-30 | 2017-12-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US9508596B2 (en) | 2014-06-20 | 2016-11-29 | Vishay-Siliconix | Processes used in fabricating a metal-insulator-semiconductor field effect transistor |
US9887259B2 (en) | 2014-06-23 | 2018-02-06 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
US9882044B2 (en) | 2014-08-19 | 2018-01-30 | Vishay-Siliconix | Edge termination for super-junction MOSFETs |
JP6309656B2 (ja) * | 2015-02-12 | 2018-04-11 | 株式会社日立製作所 | 半導体装置及びその製造方法、電力変換装置、3相モータシステム、自動車並びに鉄道車両 |
JP6032337B1 (ja) * | 2015-09-28 | 2016-11-24 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
DE102015117994B8 (de) * | 2015-10-22 | 2018-08-23 | Infineon Technologies Ag | Leistungshalbleitertransistor mit einer vollständig verarmten Kanalregion |
JP6317727B2 (ja) * | 2015-12-28 | 2018-04-25 | 株式会社東芝 | 半導体装置 |
TWI622124B (zh) * | 2017-06-30 | 2018-04-21 | 帥群微電子股份有限公司 | 溝槽式功率半導體元件的製造方法 |
TWI646630B (zh) * | 2017-07-26 | 2019-01-01 | 世界先進積體電路股份有限公司 | 半導體結構及其製造方法 |
US10431465B2 (en) | 2017-09-18 | 2019-10-01 | Vanguard International Semiconductor Corporation | Semiconductor structures and methods of forming the same |
CN107910360A (zh) * | 2017-12-06 | 2018-04-13 | 中国工程物理研究院电子工程研究所 | 一种新型碳化硅小角度倾斜台面终端结构及其制备方法 |
US12100764B2 (en) * | 2019-02-07 | 2024-09-24 | Rohm Co., Ltd. | Semiconductor device |
JP7118914B2 (ja) * | 2019-03-15 | 2022-08-16 | 株式会社東芝 | 半導体装置及びその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61274366A (ja) * | 1985-05-29 | 1986-12-04 | Tdk Corp | 高耐圧半導体装置 |
JPH0621468A (ja) * | 1992-06-29 | 1994-01-28 | Toshiba Corp | 絶縁ゲート型半導体装置 |
JPH09283754A (ja) * | 1996-04-16 | 1997-10-31 | Toshiba Corp | 高耐圧半導体装置 |
JPH1187698A (ja) * | 1997-09-02 | 1999-03-30 | Kansai Electric Power Co Inc:The | 高耐圧半導体装置及びこの装置を用いた電力変換器 |
US6084264A (en) * | 1998-11-25 | 2000-07-04 | Siliconix Incorporated | Trench MOSFET having improved breakdown and on-resistance characteristics |
DE19913375B4 (de) * | 1999-03-24 | 2009-03-26 | Infineon Technologies Ag | Verfahren zur Herstellung einer MOS-Transistorstruktur |
GB9917099D0 (en) * | 1999-07-22 | 1999-09-22 | Koninkl Philips Electronics Nv | Cellular trench-gate field-effect transistors |
US6784505B2 (en) * | 2002-05-03 | 2004-08-31 | Fairchild Semiconductor Corporation | Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique |
GB0312512D0 (en) * | 2003-05-31 | 2003-07-09 | Koninkl Philips Electronics Nv | Termination structures for semiconductor devices and the manufacture thereof |
JP3954541B2 (ja) * | 2003-08-05 | 2007-08-08 | 株式会社東芝 | 半導体装置及びその製造方法 |
-
2005
- 2005-02-23 TW TW094105483A patent/TWI256676B/zh active
- 2005-02-24 DE DE102005008495A patent/DE102005008495B4/de active Active
- 2005-03-23 JP JP2005084311A patent/JP2005286328A/ja active Pending
-
2012
- 2012-02-01 JP JP2012019697A patent/JP5649597B2/ja active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI415262B (zh) * | 2008-02-27 | 2013-11-11 | Advanced Analogic Tech Inc | 半導體晶粒之隔離電晶體、隔離二極體及隔離與終端結構 |
TWI601291B (zh) * | 2015-10-07 | 2017-10-01 | 世界先進積體電路股份有限公司 | 半導體裝置及其製造方法 |
US9525045B1 (en) | 2016-03-10 | 2016-12-20 | Vanguard International Semiconductor Corporation | Semiconductor devices and methods for forming the same |
Also Published As
Publication number | Publication date |
---|---|
JP2005286328A (ja) | 2005-10-13 |
JP2012084929A (ja) | 2012-04-26 |
DE102005008495A1 (de) | 2007-06-28 |
JP5649597B2 (ja) | 2015-01-07 |
TW200534359A (en) | 2005-10-16 |
DE102005008495B4 (de) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI256676B (en) | Termination for trench MIS device having implanted drain-drift region | |
US8829614B2 (en) | Integrated Schottky diode in high voltage semiconductor device | |
US8324053B2 (en) | High voltage MOSFET diode reverse recovery by minimizing P-body charges | |
US7713822B2 (en) | Method of forming high density trench FET with integrated Schottky diode | |
US7714383B2 (en) | Semiconductor device | |
US10177221B2 (en) | Integrated Schottky diode in high voltage semiconductor device | |
US7843004B2 (en) | Power MOSFET with recessed field plate | |
US7436022B2 (en) | Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout | |
US20210028305A1 (en) | Trench mosfets with oxide charge balance region in active area and junction charge balance region in termination area | |
US8680643B2 (en) | Junction barrier Schottky (JBS) with floating islands | |
US7745878B2 (en) | Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact | |
US9166042B2 (en) | High voltage MOSFET diode reverse recovery by minimizing P-body charges | |
US8164139B2 (en) | MOSFET structure with guard ring | |
EP1191603A3 (en) | Trench MOS device and termination structure | |
US20210126124A1 (en) | Termination of multiple stepped oxide shielded gate trench mosfet | |
CN101523583A (zh) | 沟槽结势垒可控肖特基二极管 | |
EP1255302A3 (en) | Method for fabricating forward and reverse blocking devices | |
US9093521B2 (en) | Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout | |
US20100090270A1 (en) | Trench mosfet with short channel formed by pn double epitaxial layers | |
US8564054B2 (en) | Trench semiconductor power device having active cells under gate metal pad | |
US9059147B1 (en) | Junction barrier schottky (JBS) with floating islands | |
US8017494B2 (en) | Termination trench structure for mosgated device and process for its manufacture | |
US8101995B2 (en) | Integrated MOSFET and Schottky device | |
TWI265633B (en) | High voltage power MOSFET having low on-resistance | |
JP2013069852A (ja) | 半導体装置 |