TWI240223B - Method and system for detecting defects on a printed circuit board - Google Patents

Method and system for detecting defects on a printed circuit board Download PDF

Info

Publication number
TWI240223B
TWI240223B TW090101143A TW90101143A TWI240223B TW I240223 B TWI240223 B TW I240223B TW 090101143 A TW090101143 A TW 090101143A TW 90101143 A TW90101143 A TW 90101143A TW I240223 B TWI240223 B TW I240223B
Authority
TW
Taiwan
Prior art keywords
pcb
patent application
image
layer
scope
Prior art date
Application number
TW090101143A
Other languages
English (en)
Inventor
Alain Coulombe
Michel Cantin
Louis Berard
Jonathan Gauthier
Original Assignee
Solvision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvision Inc filed Critical Solvision Inc
Application granted granted Critical
Publication of TWI240223B publication Critical patent/TWI240223B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

1240223
五、發明説明(1 ) 發明之技術銲年 本發明係有關-種檢測系統與方法,其用以 測電子電路板上的瑕疲,例如印刷電路板。更確: 來說,本發明係有關根據邊緣檢測的系統與方法。 經濟部智慧財產局員工消費合作社印製
發明之技術眢筆 電子電路有許多種形式,例如PCB(印刷電路 板)、引線框架與併合電路。這些電路通常包含多個 組件,例如導體、孔、襯墊、電介質、光聚合物抗 钱膜等等。$些組件可在層體上進行、组配,並固定 在彼此的頂部。多層體組配的一個實例便是著名的 導體孔塗光電路結構。在以下的說日月中,我們將參 照印刷電路板(PCB),僅作為實例。然而,要了解 的是,本發明並不限定於電子電路的實施例。 過去,PCB的檢測都是依靠人眼目測,以放大 鏡仔細檢測一個電路,試著根據一個合格電路模型 來哥找差異。人眼目測檢測的缺點有很多個,如主 觀性、緩慢、難以荒集瑕疫的大量資訊等。 隨著電腦處理速度的快速,近年來自動檢測的 方法也孕育而生。大部分自動檢測的方法都包含取 得欲受檢之PCB上的數位化影像,並且分析該數 位化影像以鑑別瑕疵的出現。自動檢測方法的實例 便是根據邊緣檢測的方法。 邊緣是一個組件輪廓的線段。在一個數位影像 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) 1240223
上,它可用人眼目測分辨出來,作為一個組件到下 一個組件的色調的變化,假設組件(或區域)之間的 變異已有明顯的光學特色。邊緣檢測方法包含特徵 化並分析一個PCB影像上的邊緣,並且根據已知 的數值與標準來比較該邊緣。 附錄圖式的第1圖顯示可在一個PCB或其他種 類的電子電路上找到之瑕疫實例。該瑕疵可能是, 例如,介於PCB二層體之間的不良重疊處1Q、二 層體間的未對準狀況12、二個鄰近磁軌之間過小的 裂縫14、二個組件之間的橋接16、過窄的磁軌18, 或是壞掉的磁軌19。 由貝爾(Baier)等人發明,於1986年2月仞日 獲准註冊之美國專利證號457〇18〇,名為,,用以自動 光子榀/則的方法的專利,已說明在電子電路上邊緣 進仃檢測方法以檢測瑕疵的方法。該專利係有關一 種一個實質二維型樣的自動光學檢測的方法與裝 置,其利用數位影像處理技術。該方法包含一個第 一步驟,其中掃描灰階數位影像的邊緣與直線條, 並且在影像儲存中標示該等邊緣。隨後,掃描與檢 測影像儲存内容之所有未標示區域,以找出容許灰 階。 由於異常的檢測祇能利用比較未標示區域與容 2火卩白區域,貝爾方法的缺點是檢測的品質太過依 罪數位影像的品質。確實,一個物件的數位化影像 1240223
AT ------- B7 五、發明説明(^ 一"一 可能依靠數位化演算法與放大差異等等,來呈現出 形貌尺寸與位置的變化。 貝爾方法的另一項缺點是需要大約相同的計算 功率以檢測數位圖片上的所有像素,其不對應於邊 緣,導致計算資源與時間的浪費。 貝爾方法的另一項缺點是很難特徵化所檢測到 的瑕疵。該特徵化可以有用的找尋電子電路生產過 程中出現的錯誤型樣。 於1995年9月19日獲准註冊之美國專利證號 5452368 ’名為用以檢測半導體組件引線的方法,, 的專利中,LeBeau揭露一種用以檢測物件中瑕疵 的方法,其藉由比較第一物件的第一灰階影像與第 一物件的第二灰階影像來進行。更確切來說,第一 影像的邊緣形貌被骨架化,並且與第二影像的擴展 邊緣形貌做比較,反之亦然。與貝爾方法相反的, LeBeau並不檢測數位影像上的非邊緣相關區域。 經濟部智慧財產局B(工消費合作社印製 然而,LeBeau的方法的一個缺點是,利用比較 物件的二個影像來找尋瑕疵,該方法可能被位於相 同位置上非常相似的瑕疫所影響。LeBeau的方法 並不能檢測這樣的瑕疵。這是一個重大的缺點,因 為一個不良的製造過程往往會產生這種重複的瑕 疲。 因此,所欲的是能有一種可檢測電子電路上之 瑕疲的方法與系統,且並不必依賴該電子電路之數 6 本紙張尺度適用中國國家標準(CNS ) Μ規格(21〇><297公釐)
五、發明説明(4 ) -經濟部智慧財產局員工消費合作社印製 1240223 位化影像的品質與解析度,也不會將灰階變化視為 瑕疲。 所欲的同時是能有一種利用設計數據來檢測瑕 疵的方法與系統。 所欲的更是該方法與系統能提供二位準的檢 測,其中一個是檢測異常,而另一個則是檢測這些 異常來尋找瑕疵,以幫助處理速度的最大化。 登之概要說明 更明確來說,根據本發明,一種檢測方法,其 用以檢測在具有包括組件之至少一層體的印刷電路 板(PCB)上之表面瑕疫’該方法包含: 提供該PCB的一個數位影像; 辨識該PCB影像上的邊緣; 為該PCB之至少一層體上之每個組件,備置 一個對應的電腦模型; 藉著比較該經辨識的邊緣與該電腦模型,來檢 測該PCB影像上的異常;以及 為檢測到之每個異常,鑑別是否該檢測到的異 常對應於一個表面瑕疵。 本發明另備置一種用以檢測一個PCB上之表面 瑕疵的系統;該系統包含: 一台電腦,其包含PCB之一個模型並且被組 配以辨識一個PCB影像上的邊緣,利用比較 表紙張尺度適用中國國家標準(CNS ) A4規格(2ΐ〇χ297公釐)
1240223
五、發明説明( 經辨識之邊緣與該電腦模型來檢測該PCB影 像上的異常,並且為每個檢測到的異常,鑑別 是否該檢測到的異常對應於一個表面瑕疵; 一種照明組裝,其連接到該電腦以提供該PCB 上的照明; 一個框接收器,其連接到該電腦; 一台相機’其連結到該框接收器,以取得該ρ〇b 的一個影像;以及 一個定位系統,其連結到該框接收器。 要庄思的疋,此用語PCB”在這應該被解釋為包 έ人眼可分辨之表面瑕的任何一種電子電路。 本發明之其他目的、優點與特徵都將在以下未 設限之較佳實施例的說明中更為明顯,並請參照所 附錄的圖示。 J8不的ffi要說明 在附錄的圖示中: 經濟部智慧財產局員工消費合作社印製 第1圖為一個結構圖,其顯示一個印刷電路板 (PCB)上的瑕疵實例; 第2圖為一個方塊圖,其顯示根據本發明的一 個實施例之一種用以檢測PCB上表面瑕疲的系統; 第3圖為一個流程表,其顯示根據本發明的一 個實施例之一種用以檢測PCB上表面瑕疫的方法; 第4圖為一個流程表,其顯示第3圖之輪廊鑑
!24〇223 A7 B7 五、 發明説明(6) -經 -濟 部 智 慧 財 產 局 8 工 消 費 合 作 社 印 製 別步驟; 第5圖為PCB與一台電腦之影像的結構圖,並 根據該影像顯示參考點的選擇,以找出其對準狀 况; 第6a圖為一個結構圖,其顯示一個PCB的三 層體模型之重疊多邊形·· 第6b圖則顯示第6a圖中之多邊形的結構圖, 在減除接下來的數層層體之後; 第6c圖為第6a圖中多邊形之相交點的結構圖; 第7a圖為第6a圖中之多邊形的結構圖,其顯 示一個狹窄區域; 第7b圖為第7a圖中之P1與P3多邊形的結構 圖,在擴展之後; 第7 c圖一個結構圖,其顯示第7 a圖之多邊形 的重疊結果; 第8圖為一個結構圖,其顯示PCB的一個區域 的遺失輪廓之檢測; 第9圖為一個結構圖,其顯示第3圖中於多個 異常中檢視一個瑕疵的步驟之二個活動半平面的界 定; 第10圖為一個結構圖,其顯示當線段不為平行 時,二個線段之間的測量距離; 第11圖為一個結構圖’其顯示一個平行線段之 累積間隔的測量; 批衣------1T------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1240223
發明説明( 第12圖為一個結構圖,其顯示一個異常分析區 (AAR)的辨識; 第13a圖、第13b圖與第13c圖為流程圖,其 顯示一種用以辨識是否一個異常違反允許寬度或間 距之方法; 第14圖為一個結構圖,其顯示一個狹窄空間區 域中的瑕疵; 第15圖為一個決策樹狀圖,其用以檢測一個狹 窄空間區域中的瑕疲; 第16圖為一個向量模型之多邊形的一個結構 圖,其顯示侵钱過程;以及 第17圖為侵蝕過程之後,第16圖之多邊形的 結構圖。 較隹實施例的說明 經濟部智慧財產局員工消費合作社印製 大致而言,根據本發明之實施例之一種用以檢 測PCB上的表面瑕疵的方法,其包含1)辨識該ρ〇Β 之數位影像上的邊緣;2)藉由比較該經辨識邊緣與 PCB的電腦模型,來檢測異常;以及3)利用每個 異常的特性化,鑑別是否檢測到之異常對應於一個 表面瑕疫。 根據本發明的一種方法因此呈現了二個位準的 檢測:第一個位準可以快速的辨識異常,且相對地 需要很少的計算時間,而第二個位準是較精密的, 10 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) [240223 五、發明説明(8 )
I ¾¾部智慧財產局員工消費合作社印製 A7 B7 它比較經辨識的異常與設計之規格,以便特徵化檢 測到的瑕疵。 為了應用本方法,必須備置經檢測之PCB的數 位影像與一個相似PCB的電腦模型。 現在請參照附錄圖式中的第2圖,其中將說明 根據本發明的一個實施例之一種用以檢測一個PCB 上之表面瑕疲的系統20。 大體而言,該系統20可蒐集檢測中之PCB的 衫像’並且利用根據本發明之一種方法,檢測可能 的瑕疵,該方法將在以下做更詳細的說明。 該系統20包含一台電腦22,一個框接收器24 與一個照明組裝26,其均連結到該電腦22,一台 相機28 ’其連結於該框接收器24與一個定位系統 30,而該定位系統透過一個軸控制器32連結到該 框接收器24,以及一個伺服控制器34。 較佳的是,該電腦22為個人電腦的形式來組配 的’以同時儲存由PCB之相機28所取得之欲檢測 的影像與一個相似PCB的電腦模型。同時該電腦22 是較佳地被程式化,以便控制該照明組裝26 ,並且 以便進行影像分析所需要的計算,其利用根據本發 明之方法,以辨識檢測中的PCB是否包含表面瑕 疯。 泫照明組裝26可調整檢測中之ρ〇Β上的光強 度0 11
1240223 五、發明説明(9 ) 該框接收器24為卡片形式,其介於相機28與 電恥22之間。該框接收器24能較佳地在一個或二 個模式中運作。根據第一個模式,該框接收器24 可根據直線來抓取影像,並且傳送每條直線到該電 腦22。在第二個模式中,該框接收器24在將該影 像傳送到該電腦22之前,便一次抓取該pCB的整 個影像。 一個習知的影像處理卡36較佳地介於該框接收 态24與電腦22之間,並且它可以快速的處理相機 28所取得的影像。並不包含卡%,電腦22是被組 裝以處理該影像。 相機28可取得PCB的數位影像。該相機28較 佳的為一種CCD(電荷耦合裝置)相機,其可於線性 或矩陣模式中操作。根據欲檢測之pCB性質的不 同與所需要的準確性的不同,相機28可有不同的 解析度。 經濟部智慧財產局員工消費合作社印製 使用線性CCD相機需要在定位系統30上以垂 直於其像素的方向,掃描pCB。然而,垂直方向所 取得的解析度實際上可為無限的。它的直線解析度 約有8000像素。 矩陣CCD相機有約4000x4000像素的解析度。 較佳地’該種相機使用於一個PCB的稀疏區域。 如此一來’定位系統30可被組配,以便從一個區 域移動到另一個區域。 12 本紙張尺度適用中國國家標準(CNS) A4規格(210x297公羡) 1240223 五、 發明説明(10)
M,濟部智慧財產局85消費合作社印製 —該定位系、统30包含多個軸與飼服馬達 不),其允許支撐移動到PCB的位置。 *、、 軸控制器32允許該定位系統30的同步動 根據檢測系統20的要件。 該飼服控制器34控制該定位系統3〇與回動迴 路,其規則化所需的電流幅度,以通電該定位^ 20的電動馬達(未顯示)。 由於框接收器、伺服控制器、定位系統與CCD 相機都是習知技藝中的裝置’此處將不做詳細的說 明。 。 §然,在不分離本發明之精神與本質的情況之 下’該系統20可有其他的組態。 顯然地,該系統20可為一條生產線的一部份。 現在請參照第3圖,根據本發明的實施例之一 種用以檢測一個PCB或其他電子電路上的表面瑕 疲的方法200,將在此作更詳細說明。 在步驟202,PCB的一個數位影像備置於電腦 22 °違影像較佳的為具有灰階之位元映像形式。灰 階的數目根據所需之準確性而有所不同。根據本發 明之一個最佳實施例,系統2〇製造並分析具有256 灰階的數位影像。或者,起始影像可有其他的格式, 而一個轉換步驟可隨後被加入以備置一個位元映像 影像。 在步驟204,輪廓被辨識於PCB影像上。步驟 13 ---扣衣— .15先閱讀背面之注意事輩真落令) • n n . 本紙張尺度適用巾關家標準(CNS) Α4· (21()><297公楚) 1240223 A7 B7 經濟部智慧財產笱員工消費合作社印製 五、發明説明(11) 204產生一個真實輪廓圖(ACC),其為該PCB影像 上輪廓的表現型態。如以下將解說的,相較於系統 20所取得之PCB影像的解析度,在較大的解析度 計算該輪廓的位置。在第4圖中將總結步驟204。 在子步驟204a(第4圖)中,該PCB影像的亮度 被校正。更確切來說,利用以下的方程式,可較佳 地正常化該影像的亮度(像素強度): lum = 256x(lum -LUM_ MIN) 1{L UM _ MAX -LUM_ MIN\\) 其中 lum為該影像之每個像素的亮度; LUM—MIN為該影像最暗區域的平均亮 度;以及 LUM—MAX為該影像最亮區域的平均亮 度。 以上的方程式允許像素強度分散於LUM_MIN與 LUM—MAX之間,以便包含所有的256灰階。 顯然地,上述的方程式可根據該影像的灰階數 目來校正。也可使用其他正常化的方程式。 雖然子步驟204a是另擇的,它已可較佳地校正 亮度,以增進該定限之子步驟(204d)的效率。 相信熟知技藝者可以構思一個演算法,來鑑別 最暗與最亮區域。 在另擇的子步驟204b中,過濾該PCB影像以 14 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫
訂 線 1240223
AT 發明説明(12) 便減少因數值化該影像所帶來的雜音。以下的高斯 濾波器較佳的應用在一個3乘3像素窗口(8個相連 的窗口): 1 2 1 2 4 2 1 2 1 該高斯濾波器可被應用在一個具有其他的尺寸 大小的像素窗口上。也可使用其他種類的濾波器。 在子步驟204c中,利用一個傳統的普威特方法 (Prewitt),在8個相連的窗口上計算數值梯度。或 者,也可使用其他的方法。該梯度的強度儲存在一 個新影像中。由於普威特方法(Prewitt)是習知技藝 中所皆知的’這裡將不作詳細的說明。 該梯度影像隨後與一個既定的臨界值互相比 較,以辨識該影像區域中的像素,其中亮度的改變 相當快速(子步驟204d)。這些區域通常對應於像素 磁執,其重疊於影像中的輪廓。 在子步驟204e中,利用骨架化像素磁軌,計算 邊緣的第一近似值,其辨識於子步驟2〇4d中。確 只,該影像上的每個邊緣對應於一鍊相連的像素, 每一個像素在8個相連的窗口中都有至少一個鄰近 區。該骨架化過程允許將該像素鏈送到一個磁執, 其具有一個像素寬度。此結果較佳地儲存在一個影 像播案中(ACCimage),其與起始影像有相同的大小, 1240223 A7 B7 五、發明説明(13) 但,、具有一個二進制的數值,例如1代表屬於一個 邊緣的像素,而〇代表其他的像素。 在子步驟204f巾,ACCjmage的每鏈像素將列為 形成ACC的像素座標。這些座標僅為真實座標的 首先估算值,如以下所說明一般。 更精確的來說,該鍊是遵行逆時鐘方向,而每 個連序像素的座標都儲存在一個檔案中·· ACC。因 此,該ACC包含一串向量,每個都代表該影像中 一個輪廓的座標。 每個輪廓隨後都一個像素接著一個像素的被分 析,以便估算二次微分上位置為零的那點,其已可 靠地被顯示為亮度的一個反曲點的座標。該對應的 像素應該為輪廓的一部份,因為亮度剖面的反曲點 是介於二個物件之間的轉換點的顯示。 經濟部智慧財產局8工消費合作社印製 更精確的來說,該過程首先包含尋找一個垂直 於該像素輪廓之方向估算。可在現存像素位置進行 一條線段擬合來完成,包含前二個像素與後二個像 素的相同輪廓。該線段擬合顯示該像素位置正切的 輪廓角度,藉由增加90度便可取得垂直方向。隨 後,該亮度杳,其平行置於該方向且越過現存像 素,便被在起始PCB影像中被抽取,如一開始被 系統20所取得一般。二次微分計算於該亮度剖面 上。第二積分之通過零的該點對應於該亮度剖面的 反曲點。該點的座標儲存於ACC,代替該向量的第 1240223
五、發明説明(14) .經濟部智慧財產局員工消費合作社印製 一估算。 當然,也可以使用其他的數值化方法,以找尋 每個像素中垂直於該輪廓的方向估算。 相信熟知技藝者可以歸納出其他形成檢測中之 PCB數位化影像的抽取輪廓方法。 如步驟208所做的之更詳細說明,可利用比較 儲存在ACC與ACCimag中的輪廓位置與所設計之輪 廓位置,來檢測檢測中之PCB上的異常。確實, 可推測一個輪廓或是輪廓的部分是位於ACc上, 如果其位置不同於其所設計之位置的話。 在方法200(第3圖)的步驟206中,備置了檢測 中之PCB的一個電腦模型。該電腦模型較佳的包 含為多邊形式之一個具有組件輪廓的每層體之向量 模型。除了作為足夠的輪廊表現型態之外,為了要 與ACC比較,多邊形已成為一個有效率的模型, 如以下將說明的一般。 一個傳統的PCB之格柏模型較佳的於向量模型 中轉換’其中每層體上的每個組件都以多邊形表 現。確實,一個包含圓弧的要件可被視為一個足夠 的向置模組,如果圓弧邊緣可利用短頂點來表示的 話。或者,如果沒有PCB之格柏模型的話,其他 的PCB之多層體模組也可以用來抽取相關的資訊。 在比較PCB的向量模組與ACC和ACCimage之 前,可在向量模型上進行轉換,以便將該模組對準 17 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 私衣------訂------線 (請先閱讀背面之注意事項再填寫本頁) 1240223
五、發明説明(15) 經濟部智慧財產局員工消費合作社印製 該影像。確實,在PCB加工的過程中,層體可以 在不同的時間,利用不同的機器,被塗敷,並且層 體的對準處可以有些微的不同。隨後,根據檢測中 之PCB ’較佳的備置Pcb的多層體模型,以及重 新對準該模型層體,以產生一個較妤的pCB模型。 針對每層體,在對準的過程,選擇既定的點作 為參考。如第5圖所顯示一層體32的模型與一個 PCB影像34,較佳的選擇介於水平線段36與垂直 線段38之間的交叉點40作為參考點。顯然的,未 被其他層體之要件所覆蓋之一個層體區域可備置更 多可靠的參考點。要注意的是,該PCB影像包含 多個組件,例如未出現於單層體模型32上的組件 42,因為該PCB影像34包含所有層體。 一旦參考點的表單建立之後,接下來的變換可 應用在一層體的每個點上,以根據PCB影像上的 參考點來對準它: ddxx + eexy + \ ddxx^eexy + l v 其中(U,V)是PCB影像中的座標, (x,y)則是層體模型中的座標 18 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫.
、一一5 線 1240223 1Γ ,經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(16)
而au,bu,cu,dd與ee則是係數,其可補償pCB 影像與該模型之間的旋轉、位移、比例縮放 與透視。每層體中的係數可能都不$。 在PCB被檢測之前,較佳的選擇這些參考點, 以減小計算中的延誤。 一旦所有模型中的層體都對準之後,他們均是 互相重疊的。 由於模型的所有層體包含多個多邊形,二層體 的重疊處便包含第一層體之每個多邊形與第二層體 之所有多邊形的重疊。如果該模型包含第三層體的 活’第三層體的多邊形都相互重疊於第一與第二声 體之重疊所產生的新多邊形。 第6a圖到第6c圖顯示重疊的過程。 第6a圖顯示一個三層體的模型,其包含三個多 邊形P1、P2與P3,每層體中都有一個多邊形。這 些重疊處都包含對準重疊P3(Pv3)與多邊形P1與 P2的重疊結果。 P2重疊在P1上便產生: /M =尸1 一尸2(4)
Pv2 = P2(5) P2重疊在P1上之後,P2為原封不動,而P1 必須減去重疊之P2的部分。在P2與P1之重疊處 19 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------装------ir------^ (請先閱讀背面之注意事項再填寫本頁) 1240223 A7 B7 五、發明説明(17) 上的P3重疊處便產生(請參看第6b圖) 經濟部智慧財產局員工消費合作社印製 尸vl =尸 1-P2〜P3(6) Pv2 = P2 —尸 3(7) Pv3 = P3 ⑻ 在某些情況下,2個多邊形的減除可產生獨立的 多邊形。可將Pv1與Pv1視為多邊形表單。當一層 體中有超過一個多邊形時,P1,P2與P3便可同時 被視為多邊形的表單。 重疊的過程可以指出重疊的區域。一個重疊區 域上的一個多邊形必須更新,在新層體的重疊之 後。 在第6c圖中可較清楚的看出,〇21是由P1與 p2之交叉並與P3重疊之後,所產生之新多邊形。 再者,由於二個多邊形的交又或二個多邊形之 間的差異可能產生不只一個多邊形,〇21在此必須 被解釋為多邊形的一個表單。該表單可以不包含任 何多邊形,如果在層體1與層體2之間並沒有多邊 形重疊的話。 上述之重疊過程同時允許追縱狹窄區域,如下 面所述。第7a圖中之區域T31為一個狹窄區域的 實例。區域T31將如下被抽取。 如第7b圖所示,多邊形P1與P3被擴展以產 (請先閱讀背面之注意事項再填 寫 線 1240223 A7 X-
Hr ,經濟部智慧財產局員工消費合作社印製 發明説明(18) 生D(Pv1)與D(P3)。二者間的交叉隨後被發現是可 以產生多邊形D31的,其明顯地包括欲抽取的一個 區域。擴展該多邊形〇31以產生d(031),其從D31 減除以產生狹窄區域T31(請參照第7c圖)。 在第7a至第7c圖中的操作將利用以下的方程 式作總結: 731 = (D(P3) λ D(Pvl)) - D(〇31)(9) 同樣的,T31可被視為多邊形的表單,由於下 面的二個原因:二個多邊形的交又可以產生不只一 個多邊形,並且D(031)也可同時產生不只一個多 邊形。 為了要做總結’二層體的重疊將產生下面三個 結果: 〜丨=(/\-〇4丨(1〇) 可見多邊形的表單; 〇k+i = (°k - ) ^ (Pk+] n Pvk )(11) 來自重疊區域中之多邊形表單;以及 rpk,i)^((D(Pk+l)nD(Pvk))^D(Pk+] ηΡν,)χΐ2) 來自狹窄區域中之多邊形表單。 7; =/)(6)0/)(6)(13):並且 而01為零(淨空)。 該過程一直重複,也就是說,每個新層體都與 Pvki,〇k與Tk重疊,其由前面層體的重疊而取得。 21 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公餐) 1240223 五、發明説明(19) 標記k顯示已被重疊的層體數目。 、、在多邊形表單上所進行的運算有連集、交集、 減除與擴展。連集(U)包含在一個單獨表單上組合 一個多邊形的表單。二表單的交集(门)包含從第一 表單之母個夕邊开)與與第二表單之每個多邊形的交 叉。相似的,當二個表單相減時,第一表單的每個 多邊形減去第二表單中所有的多邊形。 可見多邊形Pvk的表單說明應該出現在pcβ影 像上的所有輪廓。然而,上述的pVk表單並不是適 合與ACC快速比較的格式。確實,ACC中的每點 應该對應於Pvk中之至少一個多邊形線段,以確保 快速的比較。 轉換Pvk表單以替代每個多邊形之頂點為線段, 其與下個頂點一同形成,便產生特徵輪廓圖 (Characteristic Contour Chart, CCC)。該 CCC 的 經濟部智慧財產局S工消費合作社印製 母條線段因此被分為一個多邊形表單,包含所有線 段的規格,而不是整個頂點,如Pvk表單中一般。 更精確的來說,CCC中之每個線段的特徵在於一條 直線的方程式、該直線尾端的座標、所允許與線段 相距之距離臨界質。此外,針對所有的多邊形,該 CCC包含矩形的特徵化,其緊密的圍繞該多邊形。 此矩形被擴展,以便確保的不圍繞於矩形中之ACC 中的每一點並不對應到一個多邊形的線段。 22 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X297公釐) 1240223 7;一 ,經请部智慧財產局員工消費合作社印製 A7 B7 發明説明(20) 異常的檢測 一旦CCC產生了,方法200之步驟208(參照 第3圖)包含檢測PCB上的異常,利用比較ACC中 的輪廓與電腦模型,該電腦模型目前為形式。 更精破的來說,異常較佳的被標示並特徵化於以下 一種圖表中: ECC,即多餘輪廓圖;以及 MCC,即遺失輪廓圖。 檢測多餘輪廓的第一部步驟便是要在ccc中找 出對應於ACC中的每個點的一個線段。如果一點 並不夠接近該CCC的任一線段的話,它便被視為 夕餘的並且儲存在ECC中。所計算之距離相較於 一個事先決定的臨界值。該ECC的格式與ACC的 格式相同;為輪廓的一個表單,其中每個輪廓之特 徵都在於一個連結點的表單。 更明確來說,對ACC中的每一個點: •掃描該CCC直到列出之矩形中的一個圍繞 含該點為止; •掃描該對應的多邊形直到找到該點可對應的 線段為止; •如果沒有線段對應於該點的話,便掃描另— 個多邊形; •如果已檢測了一條線段,該過程持續到下一 點,但較佳的以相同的線段開始。確實,由 23 本紙張尺度適用中國國家榡準(CNS ) A4規格(21〇><297公董) 裝1T------線 (請先閱讀背面之注意事項再填寫本頁) 1240223
於形成一個多邊形的點是連續的,下一個點 對應到相同線段的可能性便是佳的; •一個不對應於任何線段的點被標示在ECC 中。如果該點是一串連續點中的一部分的 話,它便被錄製在ECC中,成為該串中的 一部份。 針對於ACC的每個輪廓,在ACC與ccc中的 點都較加以相同的方向掃描。 當然,也可以使用其他的方法以檢測ACc中多 餘的輪廊。 以下將更詳細說明遺失輪廓的檢測。 經濟部智慧財產局員工消費合作社印製 遺失輪廓的檢測同時暗示著輪廓的檢測與ccc 中的輪廓位置偏差過大。對高密度的電子電路而 σ 個輪廊的允终偏差區是相對狹窄。但由於CCC 為向量的格式,其解析度並不受影像的解析度所限 定。相似的,該ACC的解析度為該影像之解析度 的7至8倍’因為在輪廓的檢測後,acc已用一個 子像素解析度編碼。這是具有優點的,因為它允許 檢測誤置的輪廓,即使當最大允許的偏差是狹窄 時。 要注意的是,遺失輪廓的檢測,相對而言,並 不疋精準地連結。遺失輪廓過程之檢測的目的只是 要驗證CCC上的一個輪廓是否不存在於該PCB影 像上。確實,出現在PCB影像上但卻誤置於該電 24 本紙張尺度適财關家樣準(CNS ) A4規格(21GX 297公整) -- 1240223 A7 B7 五、發明説明(22) (請先閱讀背面之注意事項再填寫本頁) 腦模式的輪廓,可利用多餘輪廓之檢測過程來檢 測,並且被標示在ECC上。因此,遺失輪廓的檢 測可以在該影像的解析度上被完成,並且可以利用 比較影像來完成。 為了要取得MCC,CCC上的輪廓首先被畫在一 個二進制影像上,即CCCimage,其具有與ACCimage相 同的解析度。CCC|mage與ACCimage之間的比較所產 生的MCC,將用以下的方程式來作結論: MCC = D(ACCiniage)® CCCimage nCCCimage(l5)
其中D(ACC|mage)是擴展後的ACC image 计鼻 MCC的過程同樣的於第8圖中作總結。 MCC與ECC包含區域規格,其對應於PCB影 像中的異常。這些區域於方法200的步驟210中被 檢測(請參看第3圖),以檢測瑕疵。 異常的撿測 Μ濟部智慧財產局員工消費合作社印製 由於一個異常會在ECC中產生不只一個輪廓, 但ECC中的每個輪扉只對應一個異常,ECC中的 每個輪廓較佳的被視為一個獨立異常,並被分別的 檢測。當ECC中所有的輪廓已經被檢測時,檢測 的過程便結束。ECC中的輪廓,其落於既定的製造 標準之外,將較佳的被標示並被特徵化於一個檔案 中〇 25 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) 1240223 A7 B7
五、發明説明(23) 經濟部智慧財產局員工消費合作社印製 只要在不分離本發明之精神與本質之下,此樓 案可以為各種不同的形式,並且包含,例如,瑕疫 的位置與大小,以及受瑕疵所影響的PCB的細節。 可以在PCB上找到的大部分瑕疵都對應於印刷 在PCB上之要件的錯誤寬度,或者對應於這些要 件之間的錯誤間距。其他的異常,如雜質、凹槽與 起毛等,都是有問題的,當一個要件的寬度或是二 個要件之間的距離過於分散於設計内容的話。 當接下來二個異常中之任一個超過製造過程之 標準時,異常之中的瑕疵因此被檢測··一個要件的 見度具有異常,以及二個鄰近要件之距離,如果異 常並不位於要件上的話。以下將分別說明上述二種 情況之驗證。 上述二種情況的驗證是相當相似的。一般而言, 在二種情況中,可以在異常附近所找到之CCC所 有線段均以表單的形式儲存在電腦檔案中,以下將成稱為鄰近線段表(Neighbor Segment List, NSL)。 對接近該異常的母個線段而言,可以找到相對於第 一線段之NSL的每個其他線段。將驗證第一線段與 所有的相對要件之間的距離,以評估是否該距離是 在设計或製造之標準以内。該標準很明顯是事先定 義的並且疋預先健存在電腦檔案中,以便使電腦32 可以存取。 二個線段間之距離的驗證與其間之寬度的驗證 26 本紙張尺度it用中國國家標準(CNS ) A4規格(210X297公楚) -— (請先閱讀背面之注意事項再填寫. .裝· 訂 線 1240223 A7 B7 五、發明説明(24) 的不同處,僅在於二個相對之片對的界定,如丁所 說明的。 如第9圖所顯示,一個輪廓的每個線段,如線 段44,可以視為介於二個半平面46與48之間的 邊界。平面46,在線段44相對於輪廓50的一邊, 為線段44的外部”邊。平面48,在線段44對於輪 廓50的同一邊,稱為線段44的”實體,,邊。該實體 邊是設定為活動的”’當線段44與”相對”之線段52 之間的距離被驗證時。 該外部邊是活動的,當介於線段44與56之間 的磁執54的寬度被驗證時。二個線段被配對以進 行分析,如果它們是彼此面對的並且是位於同_個 活動平面上的話。在第9圖的實例中,線段52、58 與60都交替地與線段44配對。 檢測的過程是利用臨界值,其較佳地以百分比 來表示,因此提供了一個萬用的方法,其不需要為 每一種電路之距離與寬度設定新的臨界值。當然, 百分比是根據設計之數值來表現的。例如,臨界值 設定為50%,當二個線段的距離是有問題時,如果 它比所設計之小二倍的話。 顯然地,根據絕對數值的臨界值可以同時被用 來驗證線段之間的寬度。 可以選擇不同的方法來鑑別二個線段之間的間 距,其依靠線段的定向以及是否在該二個線段之間 27 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X297公釐) ---------批衣—— (請先閱讀背面之注意事項再填寫本頁) 訂 _經濟部智慧財產局員工消費合作社印製 1240223 A7 B7 五、發明説明(25) 有一個或多個異常處。 (請先閱讀背面之注意事項再填寫 如果一個異常處被檢測於二個平行線段之間的 話,二個線段之間的間距將被簡單的界定為二個線 段之間的距離。 如果二個線段62與64並不平行的話(參看第1〇 圖),間距可以任意地被界定為線段間的角度。在這 樣的情況下,一個點到參考線段62的距離便用以 下的方式測量:介於二個線段與該點之間,與交叉 點68交叉的直線66被測量。該點與參考線段之間 的距離被界定為直線66與參考線段62之間的角度 72 〇 訂 線 在二個情況中,異常處之每點與參考線段(相對 線段)之間的距離同時被計算。紀錄下來之最大與最 小距離界定一個間隔,其包含該異常處。異常處的 出現的地方,二個線段之間的有效間距為二個線段 減去該間隔的間距。該正常化的間距為介於有效間 距與該二個線段間之間距的比例。 經濟部智慧財產局員工消費合作社印製 第11圖顯示當多個異常處74、76與78被檢測 於二個線段80與82之間的間距計算實例。 在此實例中,為每個異常處計算間隔。如果超 過一個異常處之間隔重疊的話(請參照異常處74與 76),這些間隔便被重新組合,以便形成一個單一的 累積間隔(a-c)。這些累積間隔(a-c)與非累積間隔 (d-e)被增加以產生有效的間距。再來,該正常化的 28 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇χ297公釐) 1240223 經¾部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(26) 間距為介於有效間距與二線段間之實際間距的比 率。 間距與寬度的驗證只進行於鄰近一個異常處之 PCB影像的區域。接下來將說明這些區域如何被鑑 別的。這些區域在此將被稱為異常分析區(Anomaly Analysis Regions, AAR)。 現在請參看第12圖,AAR首先被鑑別為圍繞該 異常處86的矩形84。著名演算法可以用來鑑別該 矩形,如果知道形成異常處86的輪廓之點座標的 話。 該矩形84可以隨後利用膨脹係數(Dilatation Factor, DF)擴展,其界定為: \-%res 其中%res為正常化間距上或者正常化寬度上之 既定臨界值,以產生有效AAR 88。 圍繞於矩形88外之區域的要件較佳地未被考量 於進一步的分析中,因為已假設他們無法造成混合 於異常處86的瑕疵。然而,所有的線段89-91與 89-91·,其如上述方式被配對並且位於AAR88中, 將被檢測以找出瑕疵。 該AAR較佳地被鑑別,以找出每個瑕疵,當一 個異常處於步驟208(參照第3圖)被檢測,並且儲 存於ECC中時。 29 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 装------1T------^ (請先閱讀背面之注意事項再填寫本頁) 1240223 A7 B7 五、發明説明(27)
如果第一異常處的AAR重疊於第一異常處的 AAR時,便假設該二個異常處的混合將造成一個瑕 疵*。當一個異常處被檢測以找出瑕庇時,驗證便因 此完成,猶如其AAR並不重疊其他異常處的aar。 如果重疊的話,一個新矩形將被產生,其圍繞所有 相關的異常處。該新矩形被擴展以產生新的A a r, 並且最後過程重複,直到新AAR不重疊於其他AAR 為止。再來,在此AAR中,所有線段都將被驗證 以找出瑕疵。 由於一個AAR可能包含不只一個異常處或者其 尺寸可能為相對地重要,可以進行一項檢驗以驗證 每個異常處是否位於二個線段之間的中間間距。較 佳地應用接下來的二個規則以進行該項檢驗。 第一個狀況暗示著界定AAR的矩形應該重叠該 二個配對線段的二個活動半平面。 第二個情況暗示著該二個線段應該夠靠近。更 確切來說,利用以下的標準:介於第一與第二線段 之異常處的距離總和應該低於其間最大距離的一 半。二個線段之間的最大距離被儲存,並且在此將 稱為dsegmax。雖然該標準已經可以產生好的結 果,也可以利用其他的標準,以鑑別是否二個線段 都夠靠近以被檢測。 當第一與第二情況被滿足時,該異常處被視為 位於二個線段之間的中間間距,並且被視為一對被 30 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297^57 (請先閱讀背面之注意事項再填寫.
線 經濟部智慧財產局員工消費合作社印製 1240223 A7 B7 五、發明説明(28) 檢測以找出瑕疵的相對線段 (請先閱讀背面之注意事項再填寫本頁) 現在請參看第1 3a、1 3b與1 3c圖,將說明鑑別 疋否因為运反了允终見度或是間距而使一個異常處 造成一個瑕疫的方法300。 如下所說明的,二個額外的檢測將另外被進行 於狹窄間距區域與重疊區域。 這些異常處較佳地被分為二個群組··位於一個 要件上會造成寬度瑕疵*的異常處,以及不位於一個 要件上但會造成間距瑕疵的異常處。 ,經清部智慧財產局員工消費合作社印製 位於要件上的異常處相對的容易被選擇。確實, EEC上的每個輪廓對應於一串連續的點。重疊於 CCC的一個輪廓之EEC的一個輪廓將隨被一分為 一。如果EEC之一個輪廓上的任一點是位於一個 要件上的話,輪廓上所有的點都將被視為在該要件 上。如果只有EEC輪廓上的一點不位於要件上的 话’該輪廓便不被視為位於該要件上。驗證EEC 上每個輪廓的僅僅一點將允許鑑別二個群組中的異 常處’其在此被稱為ECCs_n^ ECCw|dth。方法300 將獨立用於此二群組中。 由於方法300於二個群組上應用的差異相當的 相似,並且為了簡要,方法3〇〇將藉由參照所有的 ECC來說明。 第-步驟302是要取得列於ECCW_中的下一 個非檢測異常處。顯然地,當步驟302第一次被進 31 1240223 A7 B7 五、發明説明(29) 行時,下一個異常處將首先被列出。該異常處將在 此被稱為目前異常(Current Anomaly, CA)。 步驟304包含找出ECC中所有的異常處,其對 應之AAR重疊於CA的AAR。 在步驟306,在ECC中,檢測這些異常處並標 示它們,並且將它們置於目前異常表中(Current Anomaly List, CAL)。如上所討論的,該AAR重新 被評估(步驟306),並且重複步驟304與306,直 到沒有非檢測異常處的AAR重疊於新AAR為止。 在步驟308,包圍在AAR中的所有CCC輪廓 都列於一個新的NSL中。 在步驟310,驗證NSL所有的線段是否如所分 析的標示。若非,NSL的下個非分析線段將成為目 前線段(Current Segment,CS),該 CS 將如在 NSL 中所分析的(步驟311)被標示,並且過程將持續到 步驟316。 如果NSL中所有的線段都如所分析的標示,便 可驗證ECC中所有異常處都如檢測的被標示。若 否,便對下一個異常處重複進行步驟302。若是, 異常處的檢測便結束,並且所有的過程便停止(步驟 314)。 步驟316包含利用上述的標準,來驗證是否NSL 的下一個非分析線段相對於CS。若是,過程將進 持續到步驟320。若否,便到達NSL的結尾(318), 32 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫^c ) 訂 線 經濟部智慧財產局員工消費合作社印製 1240223 ,經请部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(30) 並且重複步驟310。若否,便重複步驟316。 在步驟320,如上所說明的,考慮CS與CS相 對之線段,來計算c/segmax。 在步驟322,驗證是否CAL包含令一個非檢測 異常處。若是,CAL的下一個非檢測異常處將被設 定為CA(步驟324),並且過程持續到步驟326。若 否,該方法便進行到步驟330。 在步驟326,如果CA的AAR並不重疊於CS 與其相對線段之活動半平面的話,便重複步驟322。 若是,該方法將進行到步驟328。 在步驟328,對CS(MD1)的距離與對相對線段 (MD2)的最小距離,以及最大與最小間距(MAS與 MIS)都被計算以找出CA的每個點。 在所有檢測到的異常處中,位於二線段之中間 間距的異常處被鑑別(步驟330)。該檢驗如下;如 果
MD\ + MD2 > DSEGMAX * %RES 那麼該異常處並不被視為位於該二線段的中間 間距。不位於中間間距的異常處將從CAL被移除(步 驟 332)〇 如果CAL是空的話,那麼過程將隨後會到步驟 310(步驟 334)。 在步驟336中,每個異常處所佔據的區域都被 33 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------装------1T------^ (請先閱讀背面之注意事項再填寫本頁) 1240223
五、 發明説明(31) 儲存在所有佔據區域(AH 0ccupied Regi〇ns,a〇R) 的表單中’其較佳地為間隔形式。該A〇R表單包 s每個異常處的MAS與M|S。如果二個區域重疊 的話’它們的間隔便會增加。 在步驟338,正常化間距將如上所討論的被計 算。確貫,介於CS與其相對線段之間的有效間距 將被計算。它等於二個線段減去A〇R的間隔總和 的間距。該正常化的間距等於有效間距對二線段之 κ際間距的比例。 在步驟340檢測一個瑕疵,如果正常化間距低 於%只£5數值的話。 在步驟342,檢測到的異常處被特徵化,並且儲 存在一個瑕疵表單中。更精確來說,異常處與二線 •k(CS與相對於CS的線段)被儲存。過程隨後回到 步驟31 〇。 區域的掩湔 經濟部智慧財產局員工消費合作社印製 狹窄區域的多邊形Tk+1同時較佳地檢測,由於 以下二個原因: •它們在多層體模型上的尺寸可能太小,·以及 •即使在模型上二線段間的中間間距是正確 的,影像上的對應區域可能是不正確的。 大體而言,在多邊形Tk+1表單中的二個相對線 段產生具有寬度的-個中間間距。這些中間間距的 本紙張尺錢财關家標準(CNS ) A4規格(210x297公董 1
五、 發明説明(32) 工 消 費 合 社 印 製 1240223 杲二對應於一個瑕疵,如果對應寬度不在於一個既 定的臨界值中。 更精確的來說,多層體模型上的大小尺寸可顯 示層體之間的重要對準裂縫。根據既定標準來測試 中間間距。例如,二個不同物體之間的間距可被驗 ό且,以確保它並不低於一個已設定的最小間距值, 例如由PCB的製造者所設定之數值。如果它較低 的話,那麼對準的問題便被檢測於二層體之間。 根據方法300的異常處檢測可能無法檢測到 PCB之二個線段間的錯誤間距。 確貫,如上所討論的,異常檢測的完成是介於 模型中的輪廓與PCB影像中被檢測的輪廓之允許 範圍之間。然而,中間間距中所允許的瑕疵最小尺 寸則疋依賴其該中間間距的大小而定。例如,如果 輪廓位置的允許值是模型上寬度的25%的話,該區 域的最小寬度則為模型寬度的5〇%,因此,異常處 將無法用演算法300來檢測。 現在請參照第14圖,一個第一異常處go可以 造成在容許邊距内之輪廓91的偏離,並且約為標 稱寬度92的25%,靠近相對輪廓93的一個第二異 常處94也為如此。二個異常處都無法利用方法3〇〇 來檢測,因為它們都於允許邊距92與96以内。然 而,二個異常處的組合將中間間距縮減成其標稱寬 度之50%。這對應於一個瑕疵。 35 本紙張尺度適用中國國家標準(CNS ) 格(210Χ297公楚)-
1240223 A7 五、發明説明(33) " — 顯不於第15圖中之下個標準將根據本發明之方 套叹疋,以在狹窄間距(中間間距)檢測的一個區域 中檢測一個瑕疲。 在步驟400,如果中間間距的計算寬度低於該臨 界值的話,如製造者所指定的實例,則將檢測層體 的對準錯誤。 右否,而該寬度低於輪廓位置之容許邊距的四 (v驟402) ’ 一個瑕疲可能存在,並且該中間間 距的寬度在該PCB影像上被測量。 如果測量到的寬度低於模型上寬度的5〇%(步驟 4〇4)的話,那麼介於要件(中間間距)之間的區域則 為不正確的,並且一個瑕疵將被檢測到。 如第16與17圖中所示,在向量模型上之中間 間距98的測量較佳地藉由逐漸縮小該多邊形 觸(請參看箭頭10”來完成,直到多邊形的線段跨 越為止(參看第17圖)。此過程稱為侵蝕。 侵蝕率為中間間距98寬度的顯示。例如,侵蝕 率車乂佳的被没定為高,直到一個跨越發生⑽。隨 ,,該侵姓率被降低以擴展該多邊形_。隨後該 坟蝕率被再次降低以重新進行侵蝕過程,直到另一 個跨越發生。此過程一直重複,直到該侵姓率等於 或低於所需要的解析度為止。該侵餘率以像素的小 數來表現,因為該解析度較佳地為子像素的定序, 如則所討論的。 本紙張尺錢财® g|家標準(CNS ) Α4· ( 1240223 A7 五、發明説明(34) _ --- 〜像上之中間間距的測量較佳的完成,藉由 區分中間間距之輪廓的抽取。要注意的是,這些: 廓並不盡然對應於相同的要件,或者並不盡然心 產生封閉的輪廓。該輪廓隨後被封閉,以形成一個 多邊形的頂點。這裡所討論之向量模型巾的多邊形 k蝕的方法是用來測量輪廓的寬度。 其他的方法也可以被使用來測量向量模型與影 像上的中間間距,只要不分離本發明的精神。 當然,其他的定限或標準也可以被設定,以檢 測狹窄區域中的瑕疫。 • !-- -I — 1«
I- - I I ----批衣--- C請先閱讀背面之注意事項再填寫本頁) - 1- -
Is i- I 里的检廁 訂 經濟部智慧財產局員工消費合作社印製 方程式(11)所取得之重疊區域將因著上述區段 所說明之相同原因來檢測。 然而’在重疊的區域中,另一個問題可能發生: 一個層體的一個或多個輪廓可能由於一個重疊層體 而隱藏在PCB影像上。如此一來,便有二種可能。 一個線段的部分可能是可見的,其允許在上層 層體輪廓的外插。否則,只有可見輪廓可以被檢測。 因此’重疊區域中的瑕疵檢測通常根據第15圖 中所說明之相同標準,在此便不多贅述。 由於狹窄區域或是重疊區域所造成的瑕疵較佳 地被特徵化並且儲存在一個檔案中,以作進一步的 分析。該檔案可能是用以儲存並特徵化其他檢測到 線 37 本紙張尺度適用中國國家標準(CNS) M規格(210x:297公釐) 1240223 Α7 Β7 五、發明説明(35) 之瑕庇的相同檔案。 雖然本發明纟此藉由較佳實施例來說明,在不 分離本發明之精神與本質之下,可以利用以下所附 錄之申請專利範圍來調整。 Λ^ΛΜΜΜΜΛ 10 不良重疊處 12 未對準狀況 14 過小的裂縫 16 二個組件之間的橋接 18 過窄的磁執 19 壞掉的磁軌 20 系統 22 電腦 24 框接收器 26 照明組裝 經濟部智慧財產局員工消費合作社印製 28 相機 30 定位系統 32 軸控制器/電腦 34 伺服控制器 36 影像處理卡/水平線段 38 垂直線段 38 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X29*7公釐) 1240223 A7 B7 五、發明説明(36) ,經¾部智慧財產局員工消費合作社印製 40 交叉點 42 組件 44 線段 46 平面 48 平面 50 輪廓 52 線段 54 磁執 56 線段 58 線段 60 線段 62 線段 64 線段 66 直線 68 交叉點 70 點 72 角度 74 異常處 76 異常處 78 異常處 80 線段 82 線段 84 矩形 86 異常處 批泰 — 、巧口 I n 線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1240223 A7 B7 五、發明説明(37) 經濟部智慧財產局員工消費合作社印製 88 矩形 89 線段 90 第一異常處 91 線段/相對輪廓 91, 線段 92 標稱寬度/允許邊距 93 相對輪廊 94 第二異常處 96 允許邊距 98 中間間距 100 多邊形 101 箭頭 102 跨越 a 累積間隔 b 累積間隔 c 累積間隔 d 非累積間隔 e 非累積間隔 P1 多邊形 P2 多邊形 P3 多邊形 Pv1 多邊形表單 Pv2 多邊形表單 Pv3 多邊形表單 (請先閱讀背面之注意事項再填寫 頁) 裝| 、-=t _ 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1240223 五
Hr Μ濟部智慧財產局員工消費合作社印製 A7 B7 發明説明(38) T31狹窄區域 〇21新多邊形 ACC真實輪廓圖 CCC特徵輪廓圖 ECC多餘輪廓圖 MCC遺失輪廓圖 步驟200方法 步驟202提供一個PCB的數位影像 步驟204在該PCB的數位影像上辨識輪廓 步驟204a校正該PCB影像的亮度 步驟204b過濾該經校正的PCB影像 步驟204c計算數值梯度,以產生一個梯度影像 步驟204d定限該梯度影像的臨界值 步驟204e骨架化該定限的影像 步驟204f尋找輪廓 步驟206備置PCB的一個電腦模型 步驟208利用比較輪廓與電腦模型,來檢測異常 步驟210在異常中檢測瑕疵 步驟300 方法 步驟302 ECC中下一個非檢測異常處=目前異常 (CA)
步驟304 CA的AAR中是否有其他的非檢測異常? 步驟306標示其他非檢測異常為已檢測 重新評估AAR 41 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ^1Τ^ (請先閱讀背面之注意事項再填寫本頁) 1240223 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(39 ) 步驟308列於鄰近線段表單(NSL)中之圍繞在AAR 中的CCC線段 步驟310在NSL中所有的線段是否已經分析? 步驟311 NSL中下一個非分析線段=目前線段(CS) 在NSL中CS被標示為已分析 步驟312檢測ECC中的所有異常 步驟314停止 步驟316 NSL中下個非分析線段是否相對於CS? 步驟318 NSL的結束? 步驟320 計算DSEGMAX 步驟322 CAL中是否有非檢測異常處? 步驟324 CA為下個CAL中的異常 步驟326 CA的AAR是否重疊於CS與相對線段 的活動半平面? 步驟328 為CA的每一點,計算 對CS的最小距離(MD1) 對相對線段(MD2)的最小距離 最小間距(Μ丨S) 最大間距(MAS) 步驟330檢測CS與相對線段中間間距之異常是 否為(MD1+MD2>DSEGMAX %RES)? 步驟332從CA移除不位於中間間距的異常 步驟334 CAL是否是空的? 步驟336在所有佔據區域(AOR)的表單中,儲存被 42 (請先閱讀背面之注意事項再填 裝· 訂, 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X297公釐) A7 1240223 B7 五、發明説明(40) 每個異常處所佔據的區域 步驟338計算正常化間距 步驟340正常化間距是否<%RES? 步驟342 —個瑕疵被檢測並且被特徵化 步驟400 寬度 < 臨界值 步驟402 寬度<四倍的容許區域 步驟404測量寬度<50%的模型寬度 ---------批衣------1T------^ (請先閱讀背面之注意事項再填寫本頁) 經-4部智慧財產局員工消費合作社印製 43
本紙張尺度適用中國國家標準(CNS ) A4規格(210 X297公釐)

Claims (1)

  1. 經濟部智慧財產局員工消費合作社ί:ρ 1240223 r [xmW^pl 六、申請專利範圍 第90101143號申請案申請專利範圍修正本 93.07.19. 1 · 一種檢測PCB上之表面瑕疵的方法,其用以檢 測在具有包括組件之至少一層體的印刷電路板 (PCB)上之表面瑕疵,該方法包含下列步驟: 提供該PCB的一個數位影像; 5 辨識該pCB影像上的邊緣; 為該PCB之至少一層體上之每個組件,備置一 個對應的電腦模型; 藉著比較該經辨識的邊緣與該電腦模型,來檢測. 該PCB影像上的異常;以及 10 為檢測到之每個異常,鑑別是否該檢測到的異常 對應於一個表面瑕疲。 2·如申請專利範圍第1項之檢測Pcb上之表面瑕 疵的方法,其中在該至少一個層體上的各個組件 之該電腦模型包含多條線段。 15 3·如申請專利範圍第彳項之檢測pCB上之表面瑕 &的方法,其中該邊緣辨識步驟包含: 計异該PCB影像上的數值梯度,以產生_個梯 度影像; 疋出或梯度影像的臨界,以產生一個定限影像· 20 骨架化該定限影像;以及 尋找骨架化之影像上的邊緣。 4.如申請專利範圍第3項之檢測PCB上之表面瑕 疲的方法’其中該邊緣尋找步驟產生至少一鍊像 素,並且該步驟包含: ^ ^--------- (請先閱讀背面之注意事項再填寫本頁) 44 1240223 /'3 r > * > OO C3 ---------------------- 03 .—.—-----__ 六、申’請專利範圍 儲存該骨架化影像之該鍊像素的至少一個的各 個為像素座標的一個向量; (請先M讀背面之注意事項再填骂本頁) 利用該像素座標以估算該至少一鍊像素的二次 微分;以及 估算該二次微分之通過零的那一點的座標; 其中’通過零的那一點對應於該邊緣。 5·如申請專利範圍第3項之檢測PCB上之表面瑕 疲的方法,該方法另包含校正該PCB影像的亮 6·如申請專利範圍第5項之檢測PCB上之表面瑕 疵的方法,該方法另包含過濾該經校正的影像。 7·如申請專利範圍第彳項之檢測PCB上之表面瑕 疵的方法,其中該備置之電腦模型包含針對該層 體之每一層的一個向量模型。 8·如申請專利範圍第7項之檢測PCB上之表面瑕 疵的方法,其中該向量模型包含每層體上之每組 件的一個多邊形表現型態。 經«部智慧財產局員工消費合作社印# 9. 如申請專利範圍第2項之檢測pCB上之表面瑕 疲的方法,其中在進行異常檢測步驟之前,該電 腦模型之該至少一層體的每層體對準於該PCB 影像。 10. 如申請專利範圍第9項之檢測PCB上之表面瑕 症匕的方法,其中針對該電腦模型之該至少一層體 的每層體,選擇PCB影像上的至少一個參考點 45 木紙張尺1役適用〒 1240223 AS B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 被選擇,该參考點用以對準該對應層體與該pcB 影像。 11 ·如申請專利範圍第9項之檢測PCB上之表面瑕 疵的方法,其中轉換應用於該電腦模型之每層體 5 的每條線段上,以對準該每層體.與該PCB影像, 以便補償該每層體的旋轉、位移、比例縮放與不 良透視中之至少一個。 12.如申請專利範圍第9項之檢測pCB上之表面瑕 疵的方法,其中該對準層體是重疊的。 1〇 13·如申請專利範圍第12項之檢測PCB上之表面瑕 疵的方法,其中該備置之電腦模型是包含每層體 上之每組件的一個多邊形表現型態的一個向量 模型;該多邊形包含至少一個線段;該電腦模型 的邊層體是利用每層體之每個多邊形與其他層 體之每個多邊形之重疊而重疊的。 14·如申請專利範圍第13項之檢測PCB上之表面瑕 症的方法’其中該重疊動作是針對每層體,利用 以下的疊代公式而完成的: = (Pvk 一Pk+])Kjpk+' 2〇 其中Pk是目前層體中的線段之向量表現型態 的一個表單; Pvk則是前面層體之重疊所產生的線段之 向量表現型態的一個表單; pk+1則是一個層體與前面層體的重疊之 46 ———一____ (CNS)A4 :¾¾ (::Μ〇χ297 ν>ίί ) 裝---- (請先Μ讀背面之注意事項再填寫本頁) tT--------- 1240223 C3 ^---------------------- ^ 六、申請專利範圍 重疊所產生的線段之向量表現型態的一 個表單;並且 Pv1 = P1 15.如申請專利範圍第1項之檢測PCB上之表面瑕 疵的方法,其中該電腦模型包含每個組件的輪 廓。 16·如申請專利範圍第15項之檢測pcB上之表面瑕 疵的方法,其中該電腦模型另包含,針對每個輪 廓’圍繞該輪廓的一個矩形模型。 1厂如申請專利範圍第16項之檢測PCB上之表面瑕 疵的方法’其中該異常檢測步驟包含·· a)為pcB 影像的每個像素,驗證是否每個組件之該輪廓中 的對應矩形圍繞該像素;若否,則考量一個異常 的該像素部分;若是,b)驗證是否該像素為具有 圍繞該像素之對應矩形的該輪廓的一部份;若 否,則考量一個異常的該.像素部分。 經濟部智慧財產局員工消費合作社 18·如申請專利範圍第1項之檢測PCB上之表面瑕 疲的方法’其中該異常檢測步驟包含利用該電腦 模型以產生該電腦模型的一個影像,並且比較該 PCB影像與該電腦模型的該影像。 19·如申請專利範圍第2項之檢測pCB上之表面瑕 疵的方法,其中瑕疵的鑑別包含比較檢測出的異 常與設計的規格。 20·如申請專利範圍第19項之檢測Pcb上 丄 < 表面瑕 47 (CNS)A4 .¾¾ (210 κ 297 ) (請先/¾讀背面之注意事項再填寫本頁) 1240223 AS Βδ C8 D8 六、申請專利範圍 5 10 15 經¾部智慧財產局員工消費合竹 .Ϊ1- 20 疯的方法,其中檢測PCB影像上異常的步驟另 包含檢測相對於該電腦模型之該線段而言是多 餘的 〜像的邊緣,針對該檢測到的每個異 常,鑑別瑕疵,利用a)鑑別該電腦模型中的第一 線段,其定位於該檢測到異常之一的既定距離之 内;b)針對相對於該相對線段的每條線段,鑑別 是否該第一線段與該相對於第一線段的線段之 間的距離在於一個既定的臨界值之内。 21·如申請專利範圍第2〇項之檢測pcB上之表面瑕 疵的方法,其中當該第一線段與其相對線段之間 不=一個異常時,計算介於該第一線段與該相對 於第一線段的線段之間的距離,作為其中的有效 間距。 22·如申請專利範圍第21項之檢測pCB上之表面瑕 疵的方法,其中該異常包含重疊與非重疊異常; 计异該有效間距,作為介於所有重疊異常與重組 重疊異常之間的間隔總和。 3·如申請專利範圍第2G項之檢測pCB上之表面瑕 疵的方法,其中該既定距離是利用一個圍繞該檢 測到之異常的矩形來界定的。 24.如申請專利範圍第23項之檢測pCB上之表面瑕 疵的方法,其中該圍繞之矩形被擴展。 •如申請專利範圍第23項之檢測PCB上之表面瑕 疵的方法,該方法另包含驗證是否該圍繞之矩形
    48 MCNS)/V:丨規枋 '.Ιί) ® 1¾ £ 1240223 B〇 C3 D8 六 5 經濟部智慧財產局員工消費合作社' 、曱請專利範圍 圍繞另一個的異常,若是,重新界定一個圍繞該 另一個異常的矩形。 (請先M讀背面之注意事項再填S本頁) 26.如申請專利範圍第25項之檢測PCB上之表面瑕 疵的方法,其中該矩形重新界定的步驟是反覆 的。 2 7.如申請專利範圍第2 0項之檢測P C B上之表面瑕 疵的方法,其中該臨界值為一種比例形式。 2 8.如申請專利範圍第1 3項之檢測P C B上之表面瑕 疵的方法,其中該異常檢測步驟包含,為該電腦 模型的每層體k,鑑別位於該層體k之狹窄區域 的一個多邊形T k表單,利用以下的疊代公式: Tk+] = (Tk - Pk+]) u ((D(Pm ) n D(Pvk)) - D(Pk+] n Pvk)) 其中 Pk+1是前面層體中之多邊形之向量表現 型態的一個表單; Pvk則是前面層體之重疊所產生之多邊形 之向量表現型態的一個表單; Pk+1則是一個層體與目前層體的重疊之 重疊所產生的多邊形之向量表現型態的 一個表單; D則為造成一個多邊形表單中所有多邊 形擴展的函數;並且 T^D{Px)nD{P^ 49 本纸.張尺度適用中S g菜ίί準iX:NS)A:1 ,¾令(2.1C)、) 1240223
    申請專利範圍 A8 B8 CS D8 經濟部智慧財產局員工消費合作·74印盟 在該多邊形表單中的二個相對線段產生一個具 有寬度的中間間距;對應於一個瑕疵的每個該中 間間距為该對應寬度,如果不在一個既定臨界值 5 之内的話。 29.如申請專利範圍第28項之檢測PCB上之表面瑕 疵的方法,其中該中間間距的寬度是利用該每個 多邊形的侵蝕而鑑別的。 3〇·如申請專利範圍第13項之檢測PCB上之表面瑕 1〇 疵的方法,其中該異常檢測步驟包含,為該至少 一層體k的每層,鑑別位於該pcB電腦模型上 之重疊區域的一個多邊形〇k表單,利用以下的 疊代公式: 〇k+] = (Ok - pk+l) u (Pk+] n Pvk) 15 其中Pk+1是前面層體中的多邊形之向量表現 型態的一個表單; Pvk則是前面層體之重疊所產生的多邊形 之向量表現型態的一個表單; 並且 20 為零; 在2多邊形表單中的二個相對線段產生一個具 有見度的中間間距;對應於一個瑕疵的每個該中 間間距為该對應寬度,如果不在一個既定臨界值 I·裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 50
    l24〇223
    〜n日v έ古 5 鲁 .¾¾部智財產局員工消費合作社印L •如申明專利乾圍帛3Q項之檢測PCB上之夺 =法」其中該多邊形表單包含可見心 理Μ ’雜臧輪摩利用該可見輪廣進行外插處 32·如申请專利範圍第1項之檢測PCB上之表面瑕 疵的方法,遠方法另包含在一個電腦#案中檢索 該檢測到之異常。 μ 33·如申請專利範圍第1項之檢測PCB上之表面瑕 疲的方法’其中該影像為位元影像的形式。 4·如申晴專利範圍第33項之檢測pcB上之表面瑕 疵的方法,其中該位元影像包含灰階。 35·-種用以檢測一冑pCB上之表面瑕疵的系統; 該系統包含: 一台電腦,其包含PCB之一個模型並且被組配 以辨識一個PCB影像上·的邊緣,利用比較經辨 識之邊緣與該電腦模型來檢測該PCB影像上的 異吊,並且為母個檢測到的異常,鑑別是否該檢 測到的異常對應於一個表面瑕疵; 一種照明組裝,其連接到該電腦以提供該peg 上的照明; 一個框接收器,其連接到該電腦; 一台相機,其連結到該框接收器,以取得該PCB 的一個影像;以及 51 -:;S a (CNS)A4 Jiu- (210
    (請先閱讀背面之>l.t事項再填寫本頁) 1240223 A8 Βδ C8 D8 六、申請專利範圍 10 15 個疋位系統,其連結到該框接收器。 36.如申凊專利範圍第%項之系統,其中該電腦被 另組配以便控制該照明組件。 37·如申請專利範圍第%項之系統,其中該定位系 統透過-個轴控制器與一個飼服控制器、,連接到 該框接收器。 3 8 ·如申請專利範圍第3 5項之系統,其另包含一個 影像處理卡,其用以介入該框接收器與該電腦。 39. 如申請專利範圍第35項之系統,其中該相機 一種電荷耦合裝置(CCD)。 40. 如申請專利範圍第39項之系統,其中該ccd 組配以於線性模式中操作。41. 如申請專利範圍帛39項之系統,其中該ccd 組配以於矩陣模式中操作。 42. 如申請專利範圍第35項之系統,其中該定位系 統包含至少一個伺服馬達。 為 請 先 閱 丨讀 丨背 δ 之 注 意 事重I 本 · 頁I 一 ! I 被 被 經濟部智慧財產局員工消費合竹.01 52 1240223 η
TW090101143A 2000-01-18 2001-01-18 Method and system for detecting defects on a printed circuit board TWI240223B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002296143A CA2296143A1 (fr) 2000-01-18 2000-01-18 Systeme d'inspection optique

Publications (1)

Publication Number Publication Date
TWI240223B true TWI240223B (en) 2005-09-21

Family

ID=4165090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090101143A TWI240223B (en) 2000-01-18 2001-01-18 Method and system for detecting defects on a printed circuit board

Country Status (12)

Country Link
US (1) US6771807B2 (zh)
EP (1) EP1254431B1 (zh)
JP (1) JP2003520969A (zh)
KR (1) KR100744212B1 (zh)
CN (1) CN1261908C (zh)
AT (1) ATE247309T1 (zh)
AU (1) AU2001228211A1 (zh)
CA (1) CA2296143A1 (zh)
DE (1) DE60100594T2 (zh)
IL (2) IL150744A0 (zh)
TW (1) TWI240223B (zh)
WO (1) WO2001054068A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427556B (zh) * 2008-12-30 2014-02-21 Hon Hai Prec Ind Co Ltd 圖像比對系統及方法
TWI640932B (zh) * 2017-08-08 2018-11-11 富比庫股份有限公司 Electronic part pattern verification system and method thereof
US10151711B2 (en) 2014-12-05 2018-12-11 Shenzhen Kana Technology Co., Ltd. Method and apparatus for generating X-ray inspection image of electronic circuit board
TWI786838B (zh) * 2021-09-17 2022-12-11 鴻海精密工業股份有限公司 印字瑕疵檢測方法、電腦裝置及儲存介質
TWI807426B (zh) * 2021-09-17 2023-07-01 鴻海精密工業股份有限公司 文字圖像瑕疵檢測方法、電腦裝置及儲存介質
TWI848462B (zh) * 2021-12-08 2024-07-11 大陸商先進半導體材料(深圳)有限公司 引線框架的瑕疵檢測方法

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115491A (en) 1996-02-27 2000-09-05 Cyberoptics Corporation Apparatus and method for estimating background tilt and offset
GB2375392B (en) 2000-01-07 2004-12-15 Cyberoptics Corp Phase profilometry system with telecentric projector
US6593705B1 (en) 2000-01-07 2003-07-15 Cyberoptics Corporation Rapid-firing flashlamp discharge circuit
US6549647B1 (en) 2000-01-07 2003-04-15 Cyberoptics Corporation Inspection system with vibration resistant video capture
US6980685B2 (en) * 2001-01-22 2005-12-27 Siemens Corporate Research, Inc. Model-based localization and measurement of miniature surface mount components
US6920624B2 (en) * 2002-01-17 2005-07-19 Seagate Technology, Llc Methodology of creating an object database from a Gerber file
IL148829A0 (en) * 2002-03-21 2002-09-12 Camtek Ltd A method for storing information on layers of a layered product
JP3589424B1 (ja) * 2003-12-22 2004-11-17 株式会社メガトレード 基板検査装置
JP2005351631A (ja) * 2004-06-08 2005-12-22 Dainippon Screen Mfg Co Ltd 欠陥検出装置および欠陥検出方法
JP2006235762A (ja) * 2005-02-22 2006-09-07 Orion Denki Kk プリント基板用cadシステム
KR100687870B1 (ko) * 2005-04-04 2007-02-27 주식회사 하이닉스반도체 웨이퍼의 불량 검사 방법
US7653235B2 (en) * 2005-10-27 2010-01-26 Honeywell International Inc. Surface anomaly detection system and method
US7551272B2 (en) * 2005-11-09 2009-06-23 Aceris 3D Inspection Inc. Method and an apparatus for simultaneous 2D and 3D optical inspection and acquisition of optical inspection data of an object
US8441530B2 (en) * 2006-03-13 2013-05-14 Given Imaging Ltd. Cascade analysis for intestinal contraction detection
ES2405879T3 (es) * 2006-03-13 2013-06-04 Given Imaging Ltd. Dispositivo, sistema y método para la detección automática de actividad contráctil en una trama de imagen
US7684609B1 (en) * 2006-05-25 2010-03-23 Kla-Tencor Technologies Corporation Defect review using image segmentation
JP5010207B2 (ja) * 2006-08-14 2012-08-29 株式会社日立ハイテクノロジーズ パターン検査装置及び半導体検査システム
US20080117438A1 (en) * 2006-11-16 2008-05-22 Solvision Inc. System and method for object inspection using relief determination
CN101201371B (zh) * 2006-12-15 2011-12-21 鸿富锦精密工业(深圳)有限公司 印刷电路检测装置和方法
US7535560B2 (en) * 2007-02-26 2009-05-19 Aceris 3D Inspection Inc. Method and system for the inspection of integrated circuit devices having leads
US7664614B2 (en) * 2007-11-02 2010-02-16 United Microelectronics Corp. Method of inspecting photomask defect
US8059280B2 (en) 2008-01-31 2011-11-15 Cyberoptics Corporation Method for three-dimensional imaging using multi-phase structured light
US8131107B2 (en) * 2008-05-12 2012-03-06 General Electric Company Method and system for identifying defects in NDT image data
US8269836B2 (en) * 2008-07-24 2012-09-18 Seiko Epson Corporation Image capture, alignment, and registration
US20100046816A1 (en) * 2008-08-19 2010-02-25 Igual-Munoz Laura Method for automatic classification of in vivo images
US8121415B2 (en) * 2008-10-28 2012-02-21 Quality Vision International, Inc. Combining feature boundaries
US8260030B2 (en) * 2009-03-30 2012-09-04 Koh Young Technology Inc. Inspection method
US8378702B2 (en) * 2009-05-08 2013-02-19 Corning Incorporated Non-contact testing of printed electronics
JP5407632B2 (ja) 2009-07-22 2014-02-05 富士通株式会社 プリント基板試験支援装置、プリント基板試験支援方法、及びプリント基板試験支援プログラム
US8339449B2 (en) * 2009-08-07 2012-12-25 Globalfoundries Singapore Pte. Ltd. Defect monitoring in semiconductor device fabrication
JP5678737B2 (ja) * 2011-03-10 2015-03-04 セイコーエプソン株式会社 欠陥検出方法及び欠陥検出装置
US8942465B2 (en) * 2011-12-13 2015-01-27 General Electric Company Methods and systems for processing images for inspection of an object
CN103185560A (zh) * 2011-12-29 2013-07-03 鸿富锦精密工业(深圳)有限公司 Pcb板线路的线宽检测系统及方法
US9881354B2 (en) * 2012-03-15 2018-01-30 Microsoft Technology Licensing, Llc Image completion including automatic cropping
CN102721695B (zh) * 2012-05-18 2015-01-07 深圳大学 一种检测印刷电路板缺陷的方法
CN102914549B (zh) * 2012-09-10 2015-03-25 中国航天科技集团公司第五研究院第五一三研究所 针对星载表露型pcb焊点质量的光学图像匹配检测方法
WO2014063301A1 (zh) * 2012-10-23 2014-05-01 Luo Yi Smt的pcb板的检验方法及装置
CN102937595B (zh) * 2012-11-13 2015-05-20 浙江省电力公司电力科学研究院 一种pcb板检测方法、装置及系统
CN103063677A (zh) * 2012-12-24 2013-04-24 上海金东唐精机科技有限公司 多功能pcb测试系统
US9247685B2 (en) * 2013-03-15 2016-01-26 John S. Youngquist Multi-component nozzle system
US10126252B2 (en) 2013-04-29 2018-11-13 Cyberoptics Corporation Enhanced illumination control for three-dimensional imaging
KR102154075B1 (ko) * 2013-10-21 2020-09-09 삼성전자주식회사 반도체 소자의 검사 방법 및 반도체 검사 시스템
CN104636525B (zh) * 2013-11-14 2017-12-19 英业达科技有限公司 印刷电路检查方法与装置
CN103728316B (zh) * 2014-01-13 2016-04-06 深圳市永光神目科技有限公司 Pcba板用的检测装置
CN103728305A (zh) * 2014-01-13 2014-04-16 深圳市永光神目科技有限公司 Pcba板用的检测方法
CN103885216A (zh) 2014-02-10 2014-06-25 北京京东方显示技术有限公司 一种基板检测装置及方法
CN104156958B (zh) * 2014-08-06 2017-07-11 中国科学院生物物理研究所 一种电路板布线边缘提取方法及提取平台
CN105466951B (zh) * 2014-09-12 2018-11-16 江苏明富自动化科技股份有限公司 一种自动光学检测装置及其检测方法
CA2976316A1 (en) * 2015-02-27 2016-09-01 Pulsar S.R.L. A plant for processing products including a unit for detecting defective products
CN104820979A (zh) * 2015-03-20 2015-08-05 深圳市纳研科技有限公司 一种用于产品缺陷检测以及质量控制的图像减薄和特征分类方法
KR102121521B1 (ko) * 2015-04-15 2020-06-29 익슬론 인터나치오날 게엠베하 전자 부품을 테스트하는 방법
CN105069772B (zh) * 2015-06-11 2018-01-26 国家电网公司 一种电力元器件识别方法
US9715639B2 (en) 2015-06-18 2017-07-25 The Boeing Company Method and apparatus for detecting targets
US9727785B2 (en) * 2015-06-18 2017-08-08 The Boeing Company Method and apparatus for tracking targets
CN106937080A (zh) * 2015-12-30 2017-07-07 希姆通信息技术(上海)有限公司 一种移动终端上螺丝的视觉检测方法及控制设备
CN106127779B (zh) * 2016-06-29 2018-12-11 上海晨兴希姆通电子科技有限公司 基于视觉识别的缺陷检测方法及系统
CN106327496B (zh) * 2016-08-26 2019-04-23 西安电子科技大学 基于aoi的pcb裸板盲孔缺陷的检测系统及方法
CN106526448A (zh) * 2016-09-30 2017-03-22 厦门通士达照明有限公司 一种电源驱动板自动检测系统和检测方法
US11275361B2 (en) * 2017-06-30 2022-03-15 Kla-Tencor Corporation Systems and methods for predicting defects and critical dimension using deep learning in the semiconductor manufacturing process
CN110197797B (zh) * 2018-02-27 2021-07-02 上海微电子装备(集团)股份有限公司 一种缺陷检测用标准片
CN109033917A (zh) * 2018-06-04 2018-12-18 广州美维电子有限公司 一种pcb板及pcb板的信息追溯方法
CN109389597B (zh) * 2018-10-24 2021-04-27 四川长虹电器股份有限公司 一种生产线上电路板缺陷检测系统及方法
CN110285760A (zh) * 2019-06-27 2019-09-27 重庆矢崎仪表有限公司 一种fpc组装检测系统和方法
CN110555858A (zh) * 2019-08-16 2019-12-10 珠海格力电器股份有限公司 一种电控板热熔胶位置检测的方法及设备
CN110751624B (zh) * 2019-09-10 2022-08-09 华中科技大学 一种提高pcb检查精度的方法及系统
CN112579810B (zh) * 2019-09-30 2023-10-27 深圳市嘉立创科技发展有限公司 印刷电路板分类方法、装置、计算机设备和存储介质
TWI721718B (zh) 2019-12-19 2021-03-11 新加坡商鴻運科股份有限公司 電路板智慧檢測方法、裝置、系統及存儲介質
CN111570327B (zh) * 2020-04-09 2022-05-31 广州视源电子科技股份有限公司 Led显示屏的印刷线路板的分类方法、装置及设备
CN113554582B (zh) * 2020-04-22 2022-11-08 中国科学院长春光学精密机械与物理研究所 电子设备盖板上功能孔的缺陷检测方法、装置以及系统
US11803960B2 (en) 2020-08-12 2023-10-31 Kla Corporation Optical image contrast metric for optical target search
CN113222913B (zh) * 2021-04-28 2024-04-12 南京南瑞继保电气有限公司 一种电路板缺陷检测定位方法、装置和存储介质
CN113610761B (zh) * 2021-07-06 2023-11-17 上海望友信息科技有限公司 判断断头线的方法、装置、电子设备及存储介质
CN113744247A (zh) * 2021-09-03 2021-12-03 西安建筑科技大学 一种pcb焊点缺陷识别方法和系统
WO2023055375A1 (en) * 2021-09-30 2023-04-06 Hewlett-Packard Development Company, L.P. Image comparison to determine device abnormalities
CN113870257B (zh) * 2021-12-01 2022-03-18 武汉飞恩微电子有限公司 印刷电路板缺陷检测分类方法、装置及计算机储存介质
CN114384204B (zh) * 2021-12-07 2024-03-22 广州兴森快捷电路科技有限公司 Pcb拼板检测装置、系统、方法及存储介质
CN114627113B (zh) * 2022-05-12 2022-07-29 成都数之联科技股份有限公司 一种印制电路板缺陷检测方法及系统及装置及介质
CN116563357B (zh) * 2023-07-10 2023-11-03 深圳思谋信息科技有限公司 图像匹配方法、装置、计算机设备及计算机可读存储介质
CN116912250B (zh) * 2023-09-13 2023-11-28 山东众成菌业股份有限公司 基于机器视觉的菌包生产质量检测方法
CN117451728B (zh) * 2023-12-26 2024-02-20 常州漫舒医疗科技有限公司 基于视觉检测的造口产品生产检测系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0095517B1 (de) 1982-05-28 1985-11-21 Ibm Deutschland Gmbh Verfahren und Einrichtung zur automatischen optischen Inspektion
US4589140A (en) 1983-03-21 1986-05-13 Beltronics, Inc. Method of and apparatus for real-time high-speed inspection of objects for identifying or recognizing known and unknown portions thereof, including defects and the like
DE3475106D1 (en) 1983-04-15 1988-12-15 Hitachi Ltd Method and apparatus for detecting defects of printed circuit patterns
US4578810A (en) 1983-08-08 1986-03-25 Itek Corporation System for printed circuit board defect detection
JPS60263807A (ja) 1984-06-12 1985-12-27 Dainippon Screen Mfg Co Ltd プリント配線板のパタ−ン欠陥検査装置
US4648053A (en) * 1984-10-30 1987-03-03 Kollmorgen Technologies, Corp. High speed optical inspection system
US5774572A (en) 1984-12-20 1998-06-30 Orbotech Ltd. Automatic visual inspection system
EP0186874B1 (en) 1984-12-26 1994-06-08 Hitachi, Ltd. Method of and apparatus for checking geometry of multi-layer patterns for IC structures
EP0195161B1 (en) * 1985-03-14 1993-09-15 Nikon Corporation Apparatus for automatically inspecting objects and identifying or recognizing known and unknown portions thereof, including defects and the like and method
US4776022A (en) 1985-04-09 1988-10-04 Aoi Systems, Inc. System for printed circuit board defect detection
EP0236738A3 (en) 1986-02-05 1988-12-21 OMRON Corporation Input method for reference printed circuit board assembly data to an image processing printed circuit board assembly automatic inspection apparatus
US4974261A (en) 1988-11-15 1990-11-27 Matsushita Electric Works, Ltd. Optical surface inspection method
US5272763A (en) * 1990-03-02 1993-12-21 Matsushita Electric Industrial Co., Ltd. Apparatus for inspecting wiring pattern formed on a board
US5054094A (en) * 1990-05-07 1991-10-01 Eastman Kodak Company Rotationally impervious feature extraction for optical character recognition
US5115475A (en) 1990-06-04 1992-05-19 Motorola, Inc. Automatic semiconductor package inspection method
US5086477A (en) 1990-08-07 1992-02-04 Northwest Technology Corp. Automated system for extracting design and layout information from an integrated circuit
US5586058A (en) 1990-12-04 1996-12-17 Orbot Instruments Ltd. Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US5119434A (en) 1990-12-31 1992-06-02 Beltronics, Inc. Method of and apparatus for geometric pattern inspection employing intelligent imaged-pattern shrinking, expanding and processing to identify predetermined features and tolerances
JPH05223532A (ja) * 1991-07-10 1993-08-31 Raytheon Co 自動視覚検査システム
DE69331433T2 (de) 1992-10-22 2002-10-02 Advanced Interconnection Technology, Inc. Einrichtung zur automatischen optischen Prüfung von Leiterplatten mit darin verlegten Drähten
US5365596A (en) 1992-12-17 1994-11-15 Philip Morris Incorporated Methods and apparatus for automatic image inspection of continuously moving objects
US5452368A (en) 1993-08-02 1995-09-19 Motorola, Inc. Method of detecting defects in semiconductor package leads
US5517234A (en) 1993-10-26 1996-05-14 Gerber Systems Corporation Automatic optical inspection system having a weighted transition database
US5506793A (en) * 1994-01-14 1996-04-09 Gerber Systems Corporation Method and apparatus for distortion compensation in an automatic optical inspection system
US5751910A (en) * 1995-05-22 1998-05-12 Eastman Kodak Company Neural network solder paste inspection system
US5848189A (en) 1996-03-25 1998-12-08 Focus Automation Systems Inc. Method, apparatus and system for verification of patterns

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427556B (zh) * 2008-12-30 2014-02-21 Hon Hai Prec Ind Co Ltd 圖像比對系統及方法
US10151711B2 (en) 2014-12-05 2018-12-11 Shenzhen Kana Technology Co., Ltd. Method and apparatus for generating X-ray inspection image of electronic circuit board
TWI640932B (zh) * 2017-08-08 2018-11-11 富比庫股份有限公司 Electronic part pattern verification system and method thereof
TWI786838B (zh) * 2021-09-17 2022-12-11 鴻海精密工業股份有限公司 印字瑕疵檢測方法、電腦裝置及儲存介質
TWI807426B (zh) * 2021-09-17 2023-07-01 鴻海精密工業股份有限公司 文字圖像瑕疵檢測方法、電腦裝置及儲存介質
TWI848462B (zh) * 2021-12-08 2024-07-11 大陸商先進半導體材料(深圳)有限公司 引線框架的瑕疵檢測方法

Also Published As

Publication number Publication date
KR100744212B1 (ko) 2007-07-30
WO2001054068A2 (en) 2001-07-26
IL150744A0 (en) 2003-02-12
US20010028732A1 (en) 2001-10-11
CA2296143A1 (fr) 2001-07-18
US6771807B2 (en) 2004-08-03
EP1254431A2 (en) 2002-11-06
CN1401107A (zh) 2003-03-05
CN1261908C (zh) 2006-06-28
DE60100594T2 (de) 2004-06-24
ATE247309T1 (de) 2003-08-15
KR20020089325A (ko) 2002-11-29
JP2003520969A (ja) 2003-07-08
IL150744A (en) 2007-09-20
DE60100594D1 (de) 2003-09-18
EP1254431B1 (en) 2003-08-13
AU2001228211A1 (en) 2001-07-31
WO2001054068A3 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
TWI240223B (en) Method and system for detecting defects on a printed circuit board
TWI616823B (zh) 使用以cad為基礎之環境背景屬性之缺陷分類
KR100309635B1 (ko) 자동비쥬얼 검사장치, 자동비쥬얼 검사방법 및 자동비쥬얼 검사 프로그램이 기록된 기록매체
TWI597689B (zh) 使用表面形貌屬性之缺陷分類
WO2019188040A1 (ja) 画像処理装置、画像処理方法および画像処理プログラム
KR100808652B1 (ko) 패턴 검사 방법
TWI238366B (en) Image processing method for appearance inspection
KR101767923B1 (ko) 비아홀을 검사하는 방법 및 장치
WO2014103617A1 (ja) 位置合せ装置、欠陥検査装置、位置合せ方法、及び制御プログラム
US7640530B2 (en) Method for inspecting mask
CN115931874A (zh) 一种搭载式磁悬浮智能动态巡检系统及缝隙宽度检测方法
JP6960252B2 (ja) 画像分析装置及び鉄道設備部品の保守管理方法
JP2008014717A (ja) 欠陥検査システムおよび欠陥検査方法
US10627225B2 (en) Alignment inspection apparatus and lamination inspection system having the same
JPS62266406A (ja) パタ−ン検査方法
Li et al. Dynamic rail wear measurement: integration of RTK GNSS, IMU, and laser
JP2000321038A (ja) パターン欠陥検出方法
JP2001074414A (ja) パターンの位置合わせ方法
de la Calle et al. Location Monitoring System to Prevent Falls of Cathodes in Industrial Electrolysis Facilities
CA2397382A1 (en) Method and system for detecting defects on a printed circuit board
CN117083630A (zh) 信息处理装置、控制程序以及控制方法
JP2006329679A (ja) 製品パターン検査方法および装置
Saenthon et al. A new edge detection technique for an automatic visual inspection system using genetic algorithms
CN116997769A (zh) 检查装置、检查方法、玻璃板的制造方法以及检查程序
JP2005069863A (ja) 外観検査装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees