TW523797B - System and method for electrically induced breakdown of nanostructures - Google Patents
System and method for electrically induced breakdown of nanostructures Download PDFInfo
- Publication number
- TW523797B TW523797B TW090132102A TW90132102A TW523797B TW 523797 B TW523797 B TW 523797B TW 090132102 A TW090132102 A TW 090132102A TW 90132102 A TW90132102 A TW 90132102A TW 523797 B TW523797 B TW 523797B
- Authority
- TW
- Taiwan
- Prior art keywords
- nanotube
- patent application
- scope
- nanotubes
- item
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000015556 catabolic process Effects 0.000 title description 7
- 239000002086 nanomaterial Substances 0.000 title description 5
- 239000002071 nanotube Substances 0.000 claims abstract description 110
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 17
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 17
- 239000000969 carrier Substances 0.000 claims abstract description 11
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 8
- 239000004065 semiconductor Substances 0.000 claims description 62
- 239000002184 metal Substances 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000002079 cooperative effect Effects 0.000 claims description 7
- 230000005669 field effect Effects 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 2
- 229940098465 tincture Drugs 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 description 19
- 239000010410 layer Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 208000000230 African Trypanosomiasis Diseases 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/17—Memory cell being a nanowire transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/18—Memory cell being a nanowire having RADIAL composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/845—Purification or separation of fullerenes or nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/847—Surface modifications, e.g. functionalization, coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/888—Shaping or removal of materials, e.g. etching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/89—Deposition of materials, e.g. coating, cvd, or ald
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/895—Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
- Y10S977/896—Chemical synthesis, e.g. chemical bonding or breaking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Thin Film Transistor (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Switches (AREA)
- Electrodes Of Semiconductors (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
523797 A7 B7 五、發明説明( 發明領域: 本發明關係於納米結構,更明確地說,關係於一種電 性#發納米結構之崩潰的系統與方法。 發明背景: 於分子納米結構之領域中,少數材料展現成為納米管 之希望,特別是碳納米管,其包含直徑幾埃之中空圓柱石 墨。納米管取決於納米管之電氣特性,可以作成很小之電 子裝置,例如二極體及電晶體。每一納米管對於其尺寸, 形狀及物理特性均是不同的。結構上,一碳納米管像碳之 穴月晶格被捲成為一圓柱。 除了於低溫展現有趣量子行為外,碳納米管展現了至 少兩項重要特性:一納米管可以取決於其空間的螺旋特性 (即結構幾何),而為金屬或半導體。金屬納米管可以在定 電阻率下,承載巨大之電流密度。半導體納米管可以作電 氣切換開及關,而成為場效電晶體(FET)。此兩類型可以 共價結合(共享電子)。這些特點使得納米管成為製作納米 尺寸之半導體電路的絕佳材料。 現行研究納米管之方法係取決於金屬及半導體蜗米 管的隨機形成。於現行中並沒有已知方法,以可靠地備製 具有特定特性之納米管,更談不上備製納米管展現出例如 電晶體,二極體等之接面行為。同時,這些藉由選擇合成 或後合成以作納米管分離之已知方法,也完全未證明出有 任何之成功。於此之前,納米管必須由金屬及半導體納米 第4頁 本紙張尺度適用中國國家標準(CNS)A4規格(2WX297公釐) •........——丨丨 (請先閲讀背面之注意事項再填寫本頁) 、一叮· 經濟部智慧財產局員工消費合作社印製 A7
經濟部智慧財產局員工消費合作社印製 523797 五、發明説明() & < 合中個別分離或必須被隨機放置於予以研究之電 極上。然而’於此等方法並未看到具有一致性。 此等納米管之缺乏控制及複合成束的傾向已經阻礙 了'納米管之研究’並且,成為包含納米管為主電子技術的 納米管開發中之主要障礙。因此,有需要一種系統及方 去,用以備製具有想要特性之納米管。 發明目的及概t沭: 本發明關係於一種形成一裝置之方法,其包含步驟: 提供一基材’提供納米管與該基材接觸,及使用一電流選 擇性地破裂一納米管。該方法更包含步驟:空乏一半導體 納米管之載子。 空乏一半導體納米管之載子更包含步驟:施加一電壓 至一閘極電極。該方法包含施加電流經由該納米管,由一 源極電極至一汲極電極。 該納米管係為多層壁納米管,其包含金屬及半導體納 米管。該納米管可以為外金屬納米管破裂的納米管。 諸納米管為單層壁納米管索,其包含金屬及半導體納 米管。至少一金屬納米管破裂。 納米管之密度係於一單層及百分之一覆蓋率之十分 之一之間。該基材為一絕緣體並包含金屬墊片陣列。基材 係為矽石為主並包含金屬墊片陣列。每一墊片包含源極電 極’沒極電極及閘極電極之一。 假設一基材係藉由使用微影術,以在一絕緣基材上, 第5頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) .........丨餐: (請先閲讀背面之注意事項再填寫本頁) 訂· 五、發明說明() 形成一墊片陣列,每一墊片包含一相關電極。 々納米管係為碳納米管。該方法同時破裂了雜散納米 管。 I依據本發明之一實施例,提供了—種修改一納米管之 至乂 一特徵之方法。該方法包含提供柄米管之混合體,及 施加一電流至該混合體,誘發該納米管混合體之選擇崩 々°孩方法更包含由一半導體納米管上去除載子。 w該電流選擇地破裂該等金屬納米管。一施加至該混合 體之功率係约5 0 0微瓦。 該納米管為多層壁納米管及一單層壁納米管索之 。其特徵為直徑,密度及電導之一。該混合體包含金屬 及半導體納米管。該電流密度係大於1〇9安每平方公分。 依據本發明之一實施例,提供了一種形成一裝置之方 法。該方法提供一絕緣基材,其包含一源極電極,汲極電 極’及一閘極電極。該方法提供碳納米管束,其包含有金 屬及半導體成份納米管與基材接觸,其中諸納米管係提供 於約百分之一覆蓋率之密度。該方法施加一電恩給閘極電 極’以空乏該半導體成份納米管之載子,由一源極電極施 f請先閱讀背面之注意事項再場寫本頁} 經濟部智慧財產局員工消費合作社印製 份層 成多 屬為 金以 一 可 少束 至管 裂米 破納 並碳 ’ 該 極 。 電體 極晶 。 汲電管 一 效米 至場納 管 一 壁 米成層 納形單 經以或 流,管 電管米 1 米納 加納壁 如 明 說 細 詳 以 加 圖 附 考 參 將 例 施 實 佳 較 之 明 發 本 下 *!· 6 第 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 五 經濟部智慧財產局員工消費合作社印製 523797 A7 ----B7 發明説明() 108 氮原子 110 硼原子 701 金屬墊片 702 閘極電極 704 源極 706 汲極 708 閘極氧化物 710 索 發明 詳細說明: 依據本發明提供一種永久地修改一多層壁納米管 (MWNT)或一單層壁納米管(SWNT)索或束之方法。一納米 管取決於其空間的螺旋特性(即結構幾何),可以為金屬或 .是半導體。兩種類均可以於MWNT及SWNT中找到。依 據本發明之方法使用電流感應電性崩潰,以消除具有一特 定特徵之個別納米管。該方法也能藉由改變成份納米管之 比例,而調整一合成納米管之特性。應注意的是,雖然本 發明係使用碳為主納米管加以描述,但所例示之方法係可 以適用於任何之其他分子結構中,其中只要電流可以選擇 性地施加至特定表面積即可。例如,本發明可以用於氮化 硼(BN)及金屬二硫化合物(Μχ2)為主之納米結構。 碳納米管可以忍受超出1 〇9安每平方公分之電流密 度,部份是由於碳對碳鍵之強度(例如對於單一 C-C键之 鍵強度約347kJ/mol)。然而,最後,於足夠高電流時,納 米管將最後故障。例如,對於一 MWNT,於空氣中之故障 發生於某一臨限功率,例如約500微瓦,超過該值會啟始 最外層之碳外殼之快速氧化。記住功率係等於電流乘以電 位差(即電壓)。因為無缺陷石墨之熱誘發氧化只進行於極 第8頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公釐) ---------卜丨丨·-%.........訂.........線獻丨:一 (請先閲讀背面之注意事項再填寫本頁) 523797 A7 B7 五、發明説明() 端之高溫,例如>2〇〇(rc,所以,於依據本發明之啟始崩 溃足主要因素為電流謗發缺陷形成,自加熱係為一第二影 響。 一 % 參考第la圖,一納米管102包含碳或其他分子之六 角晶格。當為碳時,環104可以被建立為包含六個碳彼此 共價結合。第lb圖顯示一個別碳環,每一交接點1〇6表 示個別碳原子,鍵結係被表示為1 0 7。另一個結構為硼· 氣化物環’其形式係示於第1 c圖中。硼-氮化物環可以以 另一配置下,包含三個硼原子,例如n〇,結合至三個氮 原子,例如1 0 8。 藉由利用電流誘發缺陷形成,一依據本發明之方法選 擇地破裂承載電流納米管,而不必影響平行納米管,當平 行納米管承載很少或不承載電流時。例如,如於第2a圖 所示之MWNT有利於最外之外殼1 〇2,因為其係與外部電 極(例如源極及汲極)直接接觸。此分佈可以使最内外殼承 載很少或未承載電流,而於電流誘發氧化時,保護它們。 如於第2b圖所示之SWNT索中,個別納米管(例如i 02) 係被平行排放。經由SWNT索之電流分配係較經過一 MWNT者更均勻,因為SWNT索之個別納米管可以同時與 外部電極作良好接觸。 ‘ 一般而言,並沒有理由使電流獨厚部份SWNT,然而, 依據本發明之一實施例,一靜電耦合閘極電極可以選擇地 空乏成份半導體納米管之其他載子。換句話說,對於一藉 由施加一電壓至一相關閘極電極,而分隔開一源極電極及 第9頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 聲 線獻· 經濟部智慧財產局員工消費合作社印製 523797 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 一汲極電極之SWNT或MWNT,載子可以由成份半導體納 米管中排出。一旦空乏後,半導體納米管係被保護不受傷 害,及為源極電極所施加至SWNT或MWNT之高電流密 度可以被用以啟始成份金屬納米管之氧化。因此,這些方 法可以保護於一 SWNT中之半導體納米管及一外部半導 體MWNT外殼。 碳納米管之由這些組成導體去除可以被以電性及顯 微鏡加以觀察。電氣上,一單一竣納米管之崩潰造成一部 份電導下降,典型係完成於幾毫秒内。當加壓於足夠高偏 壓時,多數獨立下降發生,因為一碳外殼接著另一碳外殼 地破裂。用於崩潰中之電子係能控制已破裂之納米管之數 量。於電流中,感應到一下降例如約1 9微安時,諸電子 係能停止崩溃過程,因而控制所展現之特徵。 經濟部智慧財產局員工消費合作社印製 參考第3圖,以定電壓之MWNT之部份電氣崩潰進 行一連_之分立步驟,諸步驟相對應於MWNT之八個個 別層之損失。這些結果係以約450微瓦之功率,及約2伏 之電位差時取得。每外殼之約1 9微安電流之正常崩潰可 以於第3圖中看出。一部份崩潰MWNT之半徑的降低係 等於内殼間距(0.3 4納米)乘以所完成崩潰步驟之數量。一 類似薄化可以以具有金屬SWNT之SWNT束被選擇地破 裂,只留下半導體SWNT加以完成。 崩潰係藉由納米管對外部應用之敏感度加以協助,因 為相當小電場及電流可以作用個別分子。例如,一直徑1 納米之半導體納米管可以為幾百納米之閘極電極,所靜電 第10頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 523797 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 地空乏電氣載子。電流密度作為觸媒劑(足夠以作用納米 管崩潰),並啟始於納米管及諸包圍氣體間之化學反應。 例如,對於空氣中之碳納米管,反應可以被寫成為: C(納米管)+〇2(氣體)—C〇2(氣體)。 本發明同時考量其他環境,其中非破壞性電流協助之 反應可以化學地修改特定納米管。所得裝置可以加入電氣 開關及化學敏感性。例如,使用納米管之敏感性至各種氣 體上,化學修改可以用於一化學納米管之文中,其中,納 米感應器(納米管)之導電率變化通知一特定氣體的出現。 於一實際情形中,納米之控制破壞允許了半導體 SWNT自SWNT之組合體(包含金屬及半導體SWNT)中分 離及納米管為主之場效電晶體(FET)之備製。應注意的 是,於此所述之各種方法可以取決於納米管之特性及基材 設計,而用以備製電晶體(例如,FET),二極體,及電阻。 經濟部智慧財產局員工消費合作社印製 更明確地說,本製程可以促成複雜電子結構之研究及 MWNT及SWNT索之傳遞特性。藉由移除於個別傳導步騾 發生時之應力(電流),這些合成納米線可以於每一構成導 體(納米管)之損失時,再被特徵化。例如,特徵化係表示 於一崩潰處理中,由一階至另一階時之MWNT或SWNT 索之導電特性。例如,多互補傳送量測可以探測進入 MWNT之更内殼中,允許特徵化,及經由每一殼之傳送的 直接比較。 一 MWNT之不同殼係被假定以隨機方式交替於金屬 及半導體之間。這可以藉由使用控制崩潰隨後以低偏壓或 第11頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 523797 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 低溫量測,加以直接測試,該量測深測一 MWNT之最外 殼。於SWNT上之前一量測後,半導體及金屬殼可以藉由 使用一相當小之1 〇毫伏源-汲極偏壓,而量測電導G成為 閘電壓V g之函數加以區分。一金屬殼係特徵於一 G,其 係無關於Vg,或接近如此,而一半導體殼可以為該閘極 所靜電空乏載子。 參考第4圖,藉由中止於每一崩潰事件上之應力,一 MWNT可以於每一組成殼之損失後加以特徵化。第4a圖 顯示由於於每一崩潰階段中之最外殼之變化本質,低偏壓 電導(G(Vg))交替於半導體(例如402及406)及金屬(例如 404)行為之間。於第4b圖中,當最後金屬殼(η·9)被去除 時,殘留半導體殼可以完全地空乏,以給予零電導之區 域。將於G(Vg)中之所示峰值相應於電導及共價帶邊緣, 不同外殼之帶隙可以決定在一定值或一比例内。基於期待 直徑依附關係之符合計算的相對寬度係如於第 4c圖所 示,其中只有參數為管之啟始直徑及於相關殼間之0.3 4 納米之間距。 經濟部智慧財產局員工消費合作社印製 第4圖顯示於一 MWNT内之各種層之室溫G(Vg)。開 始時,MWNT具有 9.5納米之直徑,η外殼,及一金屬 G(Vg)。第4a圖顯示於移除三外殼402後所看到之G(Vg) 中之強列變化。去除一第四層外殼造成一金屬G(Vg)404, 及去除第六層外殼產生另一半導體G(Vg)406。此交替係被 解釋為被移除之碳外殼之交替特性之簽章。 對於一特定半導體殼之G不下降至零之因素為内金 第12頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 523797 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明() 屬殼之貢獻之故,該内金屬殼持續導電。殼n-3及n-4展 現:對於殼11-3之G(Vg)曲線之空乏最小值與下層之殼η-4408之電導相重合。於此時,外半導體殼n-3可以為閘極 所完全地空乏,但所量測之電導包含經由下層金屬殼之洩 漏。其他量測顯示此洩漏於低溫中被強力地逼走,低偏壓 限制表示殼間之耦合係為熱動作的。MWNT及SWNT索之 逐漸薄化可以用例如具崩潰步階數及於視在直徑上之變 化間之線性相依性之原子力及掃描式電子顯微鏡加以解 析。 於移除第十碳外殼時,MWNT開始表現出如同一完美 本質場效電晶體(FET),由於載子之完全空乏,即使於室 溫具有零電導之區域(例如第 4b圖)。雖然所用之SWNT 係為強p -型並沒有對稱之G (V g)特徵,但類似特徵可以於 個別半導體SWNT中找到。MWNT之完全空乏表示未殘留 金屬殼,並且,此行為持續,直到第四碳殼被移除為止, 於此時,MWNT電路開路。基於接近0.34納米之已知殼 間間距,配合一殼一殼地計數,一此直徑之MWNT可以 具有至多14殼。 第4b圖顯示當最後半導體殼被去除時,零電導區域 之逐漸增加。此區域之寬度係成比例於半導體之能帶隙 (需要破壞一鍵結之能量),其於能隙上下分別由於電子狀 及電洞狀載子而導通。由於使用高壓脈衝以擊破外殼,部 份捕獲電荷之重新排列發生於下層之Si02基材上。為了 簡化於外殼間之比較,示於第4b圖之曲線係對中於接近 第13頁 (請先閲讀背面之注意事項再填寫本頁) 峰 訂· 線歉 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 523797 A7 B7 五、發明説明( vg=〇處。半導體碳納米管之特徵係在於能帶隙之能量係 反比於直徑’使得逐漸變小之碳殼展現更大之能帶隙,能 帶隙之寬決定了材料之類型(導體,半導體,絕緣體)。只 使用啟始MWNT直徑及辞關明= 、λ田 且仫及成間間距,於最内殼之能帶隙間 之期待比例可以被計算出來。如μ 4e圖所#,這些比 例符合於電導間隙之任一側上之電導峰值所定義並如 4 c圖所示之實驗比例。 現參考第5圖’藉由損失個別外殼後,重新特徵 MWNT,每一殼们-V之分钸可以加以決定。基於 均勻間距的順序’每—殼於相同電流飽和,及所有殼均 中及高偏壓下對導通有所貢獻。虚線表示Η未被取得 位置。選定U之半對數圖表示出,由於在最内殼及外 極間之有效阻障之故,*内殼有一朝向指數“ν之傾向 類似阻障也於所有殼中扮演類似角色,除了最外之外 外,並且,解釋於部份MWNT所看到之非線性。 第5圖顯示高偏壓電流·電壓特性(Ι·ν)之結果,其 效地重新特徵化MWNT以具有η, n-丨,η_2等之殼,直 殘留單一殼為止。高偏壓I-V必須於高真空中取得,例 <1毫巴或於一惰性環境中取得,以抑制有害之氧化。於 一曲線間,MWNT被曝露至空氣中,以可控制地移除單 碳殼。四探測及兩探測量測法係被週期地比較,以監視 一納米管之接觸電阻(Rc)。於此所示之資料係為經由一 串之量測,展現幾千歐姆之定Rc的樣品。具有高Rc之 品相反於於此所述之一殼一殼機制,傾向於接觸時故障 第 化 之 於 之 電 殼 •有 到 如 每 每 連 樣 ................ (請先閲讀背面之注意事項再填寫本頁) 訂· 線· 第14頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 523797 A7 B7 五、發明説明() 每一 I V顯不於一穩定增加偏壓處之電流飽和,類似於個 別SWNT所看到者,但其係於相當高之電流。由MWNT 移除每一外殼配合第3圖似乎會降低此飽和程度約2〇微 安(固疋I。此一階一階地降低清楚地表示一高偏壓,表 示所有MWNT殼均對傳送及飽和有相等之貢獻。 除了電流飽和值之降低外,當諸外殼被移除時,於第 5圖中(Ι-V結果同時也展現增加非線性之情形。所選擇 之卜乂之半對數圖顯示由一線性ι_ν朝向形式 I = Aexp(V/V。)之指數特徵的傾向,其中v〇 = 〇 5〇伏。明顯 地,一穿隧阻障管理最内殼之卜v ,可能因為這些外殼只 可以纟k由由很多石墨層所構成之阻障層,而連接至外部 電極之故。對於未與電極直接接觸之中間殼,由於深度有 關(阻障層與納米管之本質縱長Ι-ν特徵串聯之故,所量 得之ι-v之不規則形狀可以定性了解。此串聯阻障解釋了 需要到達如於第5圖所示之電流飽和之偏壓的逐漸增加。 再者’於此所看到之線性轉移至非線性卜V及於文獻中之 類似非線性1-V建議傳輸實驗經常並不直接關連一 MWNT 之承載電流之碳外殼,而以穿透式電子顯微鏡觀看,接觸 部份或不完全之外殼。 第4及5圖確認MWNT之變化本質,定性檢測於這 些殼間之耦合,及傾向於隔離一單一外殼之對整個電導之 貢獻。直到現在,理論及實驗已經分散於這些事項上。一 方面,MWNT太複雜而無法實現理論上之模組,另一方 面,並沒有實驗可以直接探測内碳殼。於此引入之控制崩 第15頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐)
(請先閲讀背面之注意事項再填寫本頁;I •%. 、一:b 經濟部智慧財產局員工消費合作社印製 523797 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 潰之強力技術已經對進入這些複雜導體之傳送特性,提供 新的視野。另外,一 MWNT可以選擇地被轉換於金屬及 具有不同能帶隙之半導體之間。 線氤 於此所述用於MWNT之方法可以應用至SWNT索。 雖然,MWNT及SWNT均為合成納米管,但SWNT展現 部份不同。例如,於一索内之多數S WNT可以接觸其潛在 氧化環境,允許很多碳外殼同時故障,而不是於MWNT 所看到之均勻之一外殼一外殼地故障(例如第 3圖)。另 夕卜,·於一索内之諸SWNT並不會如於MWNT之外殼般, 彼此作靜電屏蔽。結果,於一索中之崩潰可以藉由空乏半 導體SWNT之載子,而直接只進行於金屬SWNT中(於此 時,於施加應力以空乏主要為p型SWNT之載子時,Vg 被保持為+10伏)。於碳為主SWNT中之載子密度可以範圍 由約100至約1000電子每微米。另一不同是於一小索中 之每一 SWNT個別地連接至外部電極。因此,不同於 MWNT,一索可以被模型化為一獨立平行導體,其具有總 電導G(Vg) = Gm + Gs(Vg),其中0爪為金屬納米管之作用, 及Gs為半導體納米管之閘有關電導。 經濟部智慧財產局員工消費合作社印製 參考第6a及6b圖,藉由施加應力至包含半導體及金 屬SWNT之混合體之SWNT索,同時,對該束加閘極電壓, 則於金屬SWNT之選擇性崩潰中,半導體之載子被抽空。 此啟始SWNT602及606包含金屬及半導體SWNT,同時, 被切薄之SWNT束604及608包含半導體SWNT之相當高 之比例。同樣地,MWNT之半導體納米管外殼可以被有效 第16頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 523797 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明() 地絕緣,藉由使用類似於sWNT所用之類似方法’而空乏 諸外殼之載子。因此,一 MWNT之崩潰可以被控制’以 取得想要之特徵(例如金屬或半導體性質)。合成納米管之 選擇崩潰可以藉由金屬及半導體納米管於閘極電壓上之 相關依附性而加以解釋。金屬納米管之電導顯示於閘極電 壓上很低之依附性,但,半導體納米管之電導則顯示於閘 極電壓上很強之依附性。 因此,如於第6a及6b圖所示,正閘極電壓處,SWNT 之電導接近於零,而於負閘極電壓處,當載子增加’電導 增加。第6 a及6 b圖描繪分別於控制崩潰前及後,兩小 SWNT之G(Vg)。如同於MWNT,不受干擾之樣品具有一 電導,其可以部份地為閘極電極所調變。當於索中之金屬 SWNT被破壞時,下層電導Gm降低至零。相反地,調變 Gs範圍並未改變。量測顯示出,藉由於崩潰處理時,空乏 該半導體SWNT之載子,它們可以有效地防止受破壞。此 結果建議於索中之不同SWNT間之很少電子互動。量測 G(Vg)之溫度相關之變化可以針對互動事項並決定能量範 圍為何,若有的話,此等互動變得很重要。 於半受影響之半導體SWNT中,G(Vg)曲線係依據金 屬SWNT之貢獻,而快速地向下位移。參考第6c圖,即 使對於含百計之SWNT之很大索’這些樣品可以有效地被 轉換為FET。然而,於此時,Gm之逐漸降低在其到達零之 前停止,可能因為於索中之核心處之金屬S WN T係為半導 體SWNT所包圍之故。這些弱結合金屬SWNT之最終破壞 第17頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) %' :可· 線氟 523797 A7 B7 五、發明説明() 需要較高電壓,並可能犧牲部份周圍之半導體SWNT。結 果,具有很多半導體通道及一大啟始調變Gs> 1 0 // S之索 可能只造成具有Gs〜1 y S之FET。 除了研究MWNT及SWNT互動有用外,控制崩潰技 術係極端有用於納米管為主之電子裝置的製造。直到現 在,SWNT FET已經被個別地製造。典型地,很低之表面 覆蓋率已經確保於此密度中,至多一個SWNT連接一源極 及一汲極電極,多數有希望電路保持斷路,但部份則加入 一金屬SWNT,而其他則具有一半導體SWNT。 雖然此技術已經證明對S WNT特性之啟始特徵化有 價值,但實際應用需要很多裝置平行地可靠地生產。例 如,完成密集封裝之FET需要於足夠密度之純半導體 SWNT互連於所有想要位置處。納米管可以以已知技術, 例如以化學氣相沉積之内部成長或外部成長及沉積加以 提供。高表面密度有利於多重SWNT,而由於SWNT特性 之可變性,S WNT索係為金屬管所主管,無用地作為半導 體通道。於現在,並沒有方法可以合成純半導體SWNT或 用以由SWNT混合體中分離開半導體SWNT。 參考第7a圖,顯示出一使用標準微影術製造之小陣 列之可個別定 之 SWNT FET。一陣列之金屬墊片(例如 701)係被提供,每一墊片包含一源極7〇4,汲極706或閘 極電極702。用於這些墊片之基材可以是任何之絕緣材 料,較佳係為矽石為主。基材及金屬墊片之組合係被稱為 用於納米管之基材。每一 FET包含一源極’一沒極’一閘 第18頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -¾. 訂· 經濟部智慧財產局員工消費合作社印製 523797 A7 B7 五、發明説明() 極,及至少一納米管,連接該源極及汲極。諸納米管係被 提供以連接每一源極至一相關汲極。參考第7b _,一閘 極氧化物708將閘極702與電極(704,706)分離。SWNT 密度可以被調整,以確保至少一索(例如71〇)短路每一組 電極,同時,最小化於裝置間之不想要的連接。較佳地, 納米管之雄、度沒有厚度,即低於一單層或i 〇 〇 %覆蓋率。 部份結果顯示低於百分之一 1之密度係足以確保每一源極 -没極對被至少一納米管所連接,但是密度低至約基材之 千分之一也可以提供連接性給一陣列中之每一源極-沒極 對。於源極及汲極電極間之索(例如7丨0)係藉由選擇性地 崩溃金屬納米管,而被轉換為FET,而雜散納米管係藉由 完成崩潰而被整個移除。 雖然’因為其金屬構成之故,這些索開始時顯示很低 或是沒有切換,但最後,可以可靠地獲得如於第6 d圖所 示之具良好FET特徵之裝置。部份結果顯示,S WNT FET 之生產可以由失序之啟始材料,以大於90%之確定性加以 完成。第6d圖總結加入一或多數SWNT索之三十二個元 件之結果。於修改前,例如6 1 0,個別索之電導由於索尺 寸之分佈及接觸作用,而廣泛地變化,幾乎沒有裝置可以 為閘極所實質地空乏。 於破裂金屬SWNT時,每一索之電導被降低,但殘留 之通道只有半導體並可以完全地空乏。所得裝置可以具有 主要為接觸電阻所限制之合理的FET特徵,該接觸電阻將 分開說明。多數小的SWNT束可以藉由化學氣相成長加以 第19頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) .鲁· 、-口 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 523797 A7 ------------- 五、發明説明() 生長,並可以免除大束所遭遇的困難,並造成具有優良導 電率及切換比率之FET。 雖然本揭示係針對於碳納米管之特定系統,但相同原 理可以廣泛地適用至各種分子電子系統中。一般而言,分 子裝置陣列可以藉由使用外部電氣機構之設計加以生 產,而不必對納米規格之實際控制。任意修改允許由—隨 機混合體之有用電子元件之定義。雖然此解決方案已經應 用以解決碳納米管之固有變化的問題,但熟習本技藝者可 以以本揭示得知,類似結果可以使用其他分子之混合加以 完成。 由於已經說明使用電氣崩潰,以作出碳納米管及納米 &电路的系統及方法的實施例,吾人可以知道各種修改及 變化可以由上述教導而加以為熟習於本技藝者所完成。因 此’可以了解的是’吾人仍可以對於此所揭示之本發明之 實施例作出仍在以下申請專利範圍所定義之本發明之範 圍及精神内之各種變化。本發明係依此明述諸細節及為專 利法所要求之細節,但本發明所要求及為專利證書所保護 者係於以下之申請專利範圍中。 第20頁 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) f請先閲讀背面之注意事項再填寫本頁)
Claims (1)
- 523797 ABCD 六、申請專利範圍 管。 8·如申請專利範圍第7項所述之方法,其中上述·之破裂的 步驟包含破裂至少一金屬納米管。 9·如申請專利範圍第1項所述之方法,其中上述之等納米 管係被提供呈於一單層及百分之一之十分之一覆蓋率 間之密度。 1 〇·如申請專利範圍第1項所述之方法,其中上述之基材 係為一絕緣體並包含一陣列之金屬墊片。 * · ΙΓ.............· (請先閲讀背面之注意事項再填寫本頁) 11·如申請專利範圍第1〇項所述之方法,其中上述之基材 係以矽石為主並包含該陣列之金屬墊片。 訂 經濟部智慧財產局員工消費合作社印製 12 ·如申請專利範圍第11項所述之方法,其中上述之每一 塾片包含一源極電極,一汲極電極,及一閘極電極之 * 〇 13·如申請專利範圍第丨項所述之方法,其中上述之提供 一基材之步驟係使用一微影術,以於一絕緣基材上,形 成一陣列之墊片加以完成,每一墊片包含一相關電極。 14·如申請專利範圍第丨項所述之方法,其中上述之諸納 米管係為碳納米管。 第22頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 523797 8 8 8 8 ABCD 申請專利範圍 15·如申請專利範圍第丨項所述之方法,更包含破裂多數 雜散納米管之步驟。 16. —種修改一納米管之至少一特徵的方法,該方法至少 包含步驟: 提供納米管之一混合體;及 施加一電流至該混合體,誘發該納米管混合體之選 擇崩潰。 ……::…會: (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 17. 如申請專利範圍第16項所述之方法,更包含步驟由一 半導體納米管上,移除多數載子。 18. 如申請專利範圍第ι7項所述之方法,其中上述之電流 選擇性地破裂諸金屬納米管。 19·如申請專利範圍第18項所述之方法, 六γ上攻之施加 至該混合體之功率係5 〇 0微瓦。 20.如申請專利範圍第16項所述之方法,其 ♦ T上述之納米 管係為多層壁納米管及單層壁納米管索之一。 21·如申請專利範圍第ι6項所述之方法,其中上述之 係為直徑,密度,及電導之一。 第23頁 訂 特徵 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 523797 A8 B8 C8 D8 六 、申請專利範圍 2 2 ·如申請專利範圍第1 β :tg a i 6項所述之方法,其中上述之混合 體包含金屬及半導體納米管。 23·如申請專利範圍第16瑁你、々 士丄 項所述之方法,其中上述之電流 密度係大於1〇9安每平方公分。 24. 一種形成一電子裝置之方、、土 — 士丄 又方法,該方法至少包含步驟: 提供一絕、緣基材,装— 其—源極電極,一汲極電極, 及一閘極電極; 提供多數碳納米管走 果其包含金羼及半導體成份納 米管與基材接觸,其中註 八T者納米管係提供於百分之一覆 率之密度; 施加-電麼至該閑極電極,以使半導體成份納米管 之多數載子空乏; 施加一電流經由該納米管,由一 源極電極至一没極 電極;及 破裂至少一金屬成份細丰與 项风物納米管,以形成一場效電晶 ......... !费.........訂.........^φ. (請先閱讀背面之注意事項再填寫本頁} 體 經濟部智慧財產局員工消費合作杜印製 25·如申請專利範圍第24項所述之方法,其中上述之碳納 米管束係為一多層壁納来管及單層壁納米管索之—。… 第24頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/753,845 US6423583B1 (en) | 2001-01-03 | 2001-01-03 | Methodology for electrically induced selective breakdown of nanotubes |
Publications (1)
Publication Number | Publication Date |
---|---|
TW523797B true TW523797B (en) | 2003-03-11 |
Family
ID=25032396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090132102A TW523797B (en) | 2001-01-03 | 2001-12-24 | System and method for electrically induced breakdown of nanostructures |
Country Status (11)
Country | Link |
---|---|
US (2) | US6423583B1 (zh) |
EP (1) | EP1350277B1 (zh) |
JP (1) | JP4099063B2 (zh) |
KR (1) | KR100621444B1 (zh) |
CN (1) | CN100347874C (zh) |
AT (1) | ATE526690T1 (zh) |
CA (1) | CA2431064C (zh) |
IL (2) | IL156523A0 (zh) |
MY (1) | MY127407A (zh) |
TW (1) | TW523797B (zh) |
WO (1) | WO2002054505A2 (zh) |
Families Citing this family (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2382718B (en) * | 2000-07-18 | 2004-03-24 | Lg Electronics Inc | Field effect transistor using horizontally grown carbon nanotubes |
CN1251962C (zh) * | 2000-07-18 | 2006-04-19 | Lg电子株式会社 | 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 |
KR20040000418A (ko) * | 2001-03-30 | 2004-01-03 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 나노구조체 및 나노와이어의 제조 방법 및 그로부터제조되는 디바이스 |
JP2002341060A (ja) * | 2001-05-11 | 2002-11-27 | Seiko Instruments Inc | 複合電気部品、地板構造体及びこれを用いた電子時計 |
JP2003017508A (ja) * | 2001-07-05 | 2003-01-17 | Nec Corp | 電界効果トランジスタ |
US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US7259410B2 (en) * | 2001-07-25 | 2007-08-21 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US7563711B1 (en) * | 2001-07-25 | 2009-07-21 | Nantero, Inc. | Method of forming a carbon nanotube-based contact to semiconductor |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US7566478B2 (en) * | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US7385262B2 (en) * | 2001-11-27 | 2008-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Band-structure modulation of nano-structures in an electric field |
US6784028B2 (en) * | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
KR100837393B1 (ko) * | 2002-01-22 | 2008-06-12 | 삼성에스디아이 주식회사 | 탄소와 친화도가 높은 금속을 전극으로 구비하는 전자소자 |
US20030186059A1 (en) * | 2002-02-08 | 2003-10-02 | Masukazu Hirata | Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof |
JP5165828B2 (ja) * | 2002-02-09 | 2013-03-21 | 三星電子株式会社 | 炭素ナノチューブを用いるメモリ素子及びその製造方法 |
US6515325B1 (en) * | 2002-03-06 | 2003-02-04 | Micron Technology, Inc. | Nanotube semiconductor devices and methods for making the same |
US7412428B2 (en) * | 2002-03-12 | 2008-08-12 | Knowmtech, Llc. | Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks |
US8156057B2 (en) * | 2003-03-27 | 2012-04-10 | Knowm Tech, Llc | Adaptive neural network utilizing nanotechnology-based components |
US6889216B2 (en) | 2002-03-12 | 2005-05-03 | Knowm Tech, Llc | Physical neural network design incorporating nanotechnology |
US7392230B2 (en) * | 2002-03-12 | 2008-06-24 | Knowmtech, Llc | Physical neural network liquid state machine utilizing nanotechnology |
US20040039717A1 (en) * | 2002-08-22 | 2004-02-26 | Alex Nugent | High-density synapse chip using nanoparticles |
US7398259B2 (en) * | 2002-03-12 | 2008-07-08 | Knowmtech, Llc | Training of a physical neural network |
US9269043B2 (en) | 2002-03-12 | 2016-02-23 | Knowm Tech, Llc | Memristive neural processor utilizing anti-hebbian and hebbian technology |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
US6872645B2 (en) * | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
DE10217362B4 (de) * | 2002-04-18 | 2004-05-13 | Infineon Technologies Ag | Gezielte Abscheidung von Nanoröhren |
JP4974263B2 (ja) * | 2002-05-20 | 2012-07-11 | 富士通株式会社 | 半導体装置の製造方法 |
US7752151B2 (en) * | 2002-06-05 | 2010-07-06 | Knowmtech, Llc | Multilayer training in a physical neural network formed utilizing nanotechnology |
JP3933664B2 (ja) * | 2002-08-01 | 2007-06-20 | 三洋電機株式会社 | 光センサ、光センサの製造方法および駆動方法、ならびに光強度検出方法 |
US7827131B2 (en) * | 2002-08-22 | 2010-11-02 | Knowm Tech, Llc | High density synapse chip using nanoparticles |
CN100411979C (zh) * | 2002-09-16 | 2008-08-20 | 清华大学 | 一种碳纳米管绳及其制造方法 |
US7102605B2 (en) * | 2002-09-30 | 2006-09-05 | Nanosys, Inc. | Integrated displays using nanowire transistors |
US7067867B2 (en) * | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US7135728B2 (en) * | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
TWI309845B (en) * | 2002-09-30 | 2009-05-11 | Nanosys Inc | Large-area nanoenabled macroelectronic substrates and uses therefor |
US7051945B2 (en) | 2002-09-30 | 2006-05-30 | Nanosys, Inc | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
CA2499950A1 (en) * | 2002-09-30 | 2004-04-15 | Nanosys, Inc. | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
US7619562B2 (en) * | 2002-09-30 | 2009-11-17 | Nanosys, Inc. | Phased array systems |
JP5025132B2 (ja) | 2002-10-29 | 2012-09-12 | プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ | カーボンナノチューブ素子の製造 |
US7253434B2 (en) | 2002-10-29 | 2007-08-07 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
JP4251268B2 (ja) * | 2002-11-20 | 2009-04-08 | ソニー株式会社 | 電子素子及びその製造方法 |
JP4501339B2 (ja) * | 2002-11-29 | 2010-07-14 | ソニー株式会社 | pn接合素子の製造方法 |
US6933222B2 (en) * | 2003-01-02 | 2005-08-23 | Intel Corporation | Microcircuit fabrication and interconnection |
KR100881201B1 (ko) * | 2003-01-09 | 2009-02-05 | 삼성전자주식회사 | 사이드 게이트를 구비하는 소노스 메모리 소자 및 그제조방법 |
US8937575B2 (en) | 2009-07-31 | 2015-01-20 | Nantero Inc. | Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices |
US9422651B2 (en) | 2003-01-13 | 2016-08-23 | Nantero Inc. | Methods for arranging nanoscopic elements within networks, fabrics, and films |
US7858185B2 (en) * | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
US9574290B2 (en) | 2003-01-13 | 2017-02-21 | Nantero Inc. | Methods for arranging nanotube elements within nanotube fabrics and films |
US7666382B2 (en) * | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
AU2003205098A1 (en) * | 2003-01-13 | 2004-08-13 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US6762073B1 (en) | 2003-02-24 | 2004-07-13 | Donald P. Cullen | Method of fabricating electronic interconnect devices using direct imaging of dielectric composite material |
GB0304623D0 (en) * | 2003-02-28 | 2003-04-02 | Univ Surrey | Methods for the fabrication of nanoscale structures and semiconductor devices |
US7641863B2 (en) * | 2003-03-06 | 2010-01-05 | Ut-Battelle Llc | Nanoengineered membranes for controlled transport |
US7335344B2 (en) * | 2003-03-14 | 2008-02-26 | Massachusetts Institute Of Technology | Method and apparatus for synthesizing filamentary structures |
WO2004088719A2 (en) * | 2003-03-28 | 2004-10-14 | Nantero, Inc. | Nanotube-on-gate fet structures and applications |
US7294877B2 (en) | 2003-03-28 | 2007-11-13 | Nantero, Inc. | Nanotube-on-gate FET structures and applications |
US7780918B2 (en) | 2003-05-14 | 2010-08-24 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
US7280394B2 (en) * | 2003-06-09 | 2007-10-09 | Nantero, Inc. | Field effect devices having a drain controlled via a nanotube switching element |
US7274064B2 (en) * | 2003-06-09 | 2007-09-25 | Nanatero, Inc. | Non-volatile electromechanical field effect devices and circuits using same and methods of forming same |
JP4296252B2 (ja) | 2003-07-18 | 2009-07-15 | 独立行政法人科学技術振興機構 | 光検出素子 |
US7426501B2 (en) * | 2003-07-18 | 2008-09-16 | Knowntech, Llc | Nanotechnology neural network methods and systems |
US7572426B2 (en) * | 2003-07-29 | 2009-08-11 | William Marsh Rice University | Selective functionalization of carbon nanotubes |
US7115960B2 (en) * | 2003-08-13 | 2006-10-03 | Nantero, Inc. | Nanotube-based switching elements |
JP2007502545A (ja) * | 2003-08-13 | 2007-02-08 | ナンテロ,インク. | 複数の制御装置を有するナノチューブを基礎とする交換エレメントと上記エレメントから製造される回路 |
US7583526B2 (en) | 2003-08-13 | 2009-09-01 | Nantero, Inc. | Random access memory including nanotube switching elements |
US7289357B2 (en) | 2003-08-13 | 2007-10-30 | Nantero, Inc. | Isolation structure for deflectable nanotube elements |
US7416993B2 (en) * | 2003-09-08 | 2008-08-26 | Nantero, Inc. | Patterned nanowire articles on a substrate and methods of making the same |
US7375369B2 (en) | 2003-09-08 | 2008-05-20 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
US7242041B2 (en) * | 2003-09-22 | 2007-07-10 | Lucent Technologies Inc. | Field-effect transistors with weakly coupled layered inorganic semiconductors |
US7347981B2 (en) * | 2003-09-25 | 2008-03-25 | The Penn State Research Foundation | Directed flow method and system for bulk separation of single-walled tubular fullerenes based on helicity |
US7378715B2 (en) * | 2003-10-10 | 2008-05-27 | General Electric Company | Free-standing electrostatically-doped carbon nanotube device |
US6890780B2 (en) * | 2003-10-10 | 2005-05-10 | General Electric Company | Method for forming an electrostatically-doped carbon nanotube device |
GB0324189D0 (en) * | 2003-10-16 | 2003-11-19 | Univ Cambridge Tech | Short-channel transistors |
US6921684B2 (en) * | 2003-10-17 | 2005-07-26 | Intel Corporation | Method of sorting carbon nanotubes including protecting metallic nanotubes and removing the semiconducting nanotubes |
JP3944155B2 (ja) * | 2003-12-01 | 2007-07-11 | キヤノン株式会社 | 電子放出素子、電子源及び画像表示装置の製造方法 |
WO2005057665A1 (ja) * | 2003-12-08 | 2005-06-23 | Matsushita Electric Industrial Co., Ltd. | 電界効果トランジスタ及び電気素子アレイ、並びにそれらの製造方法 |
US7038299B2 (en) * | 2003-12-11 | 2006-05-02 | International Business Machines Corporation | Selective synthesis of semiconducting carbon nanotubes |
US7374793B2 (en) * | 2003-12-11 | 2008-05-20 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
US7211844B2 (en) * | 2004-01-29 | 2007-05-01 | International Business Machines Corporation | Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage |
US20050167655A1 (en) * | 2004-01-29 | 2005-08-04 | International Business Machines Corporation | Vertical nanotube semiconductor device structures and methods of forming the same |
US7528437B2 (en) * | 2004-02-11 | 2009-05-05 | Nantero, Inc. | EEPROMS using carbon nanotubes for cell storage |
US7829883B2 (en) * | 2004-02-12 | 2010-11-09 | International Business Machines Corporation | Vertical carbon nanotube field effect transistors and arrays |
US7253431B2 (en) | 2004-03-02 | 2007-08-07 | International Business Machines Corporation | Method and apparatus for solution processed doping of carbon nanotube |
CA2561277A1 (en) * | 2004-03-26 | 2005-10-13 | Foster-Miller, Inc. | Carbon nanotube-based electronic devices made by electronic deposition and applications thereof |
US7508039B2 (en) * | 2004-05-04 | 2009-03-24 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University | Carbon nanotube (CNT) multiplexers, circuits, and actuators |
WO2005124888A1 (en) * | 2004-06-08 | 2005-12-29 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
US7709880B2 (en) * | 2004-06-09 | 2010-05-04 | Nantero, Inc. | Field effect devices having a gate controlled via a nanotube switching element |
US7161403B2 (en) | 2004-06-18 | 2007-01-09 | Nantero, Inc. | Storage elements using nanotube switching elements |
US7164744B2 (en) | 2004-06-18 | 2007-01-16 | Nantero, Inc. | Nanotube-based logic driver circuits |
US7330709B2 (en) * | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and logic |
US7288970B2 (en) * | 2004-06-18 | 2007-10-30 | Nantero, Inc. | Integrated nanotube and field effect switching device |
US7167026B2 (en) * | 2004-06-18 | 2007-01-23 | Nantero, Inc. | Tri-state circuit using nanotube switching elements |
US7652342B2 (en) | 2004-06-18 | 2010-01-26 | Nantero, Inc. | Nanotube-based transfer devices and related circuits |
US7329931B2 (en) * | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and transistors |
US7109546B2 (en) * | 2004-06-29 | 2006-09-19 | International Business Machines Corporation | Horizontal memory gain cells |
JP2006049435A (ja) * | 2004-08-02 | 2006-02-16 | Sony Corp | カーボンナノチューブ及びその配置方法と、これを用いた電界効果トランジスタとその製造方法及び半導体装置 |
US7776307B2 (en) * | 2004-09-16 | 2010-08-17 | Etamota Corporation | Concentric gate nanotube transistor devices |
US7943418B2 (en) * | 2004-09-16 | 2011-05-17 | Etamota Corporation | Removing undesirable nanotubes during nanotube device fabrication |
US7462890B1 (en) | 2004-09-16 | 2008-12-09 | Atomate Corporation | Nanotube transistor integrated circuit layout |
US7345296B2 (en) | 2004-09-16 | 2008-03-18 | Atomate Corporation | Nanotube transistor and rectifying devices |
WO2006121461A2 (en) | 2004-09-16 | 2006-11-16 | Nantero, Inc. | Light emitters using nanotubes and methods of making same |
CA2581058C (en) * | 2004-09-21 | 2012-06-26 | Nantero, Inc. | Resistive elements using carbon nanotubes |
US7233071B2 (en) * | 2004-10-04 | 2007-06-19 | International Business Machines Corporation | Low-k dielectric layer based upon carbon nanostructures |
US7345307B2 (en) * | 2004-10-12 | 2008-03-18 | Nanosys, Inc. | Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires |
US20070246784A1 (en) * | 2004-10-13 | 2007-10-25 | Samsung Electronics Co., Ltd. | Unipolar nanotube transistor using a carrier-trapping material |
US7473943B2 (en) * | 2004-10-15 | 2009-01-06 | Nanosys, Inc. | Gate configuration for nanowire electronic devices |
EP1807919A4 (en) * | 2004-11-02 | 2011-05-04 | Nantero Inc | DEVICES FOR PROTECTING ELECTROSTATIC DISCHARGES OF NANOTUBES AND NON-VOLATILE AND VOLATILE SWITCHES OF CORRESPONDING NANOTUBES |
US20100147657A1 (en) * | 2004-11-02 | 2010-06-17 | Nantero, Inc. | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
EP1820210A4 (en) | 2004-11-24 | 2014-03-05 | Nanosys Inc | CONTACT DOPING AND NANOFIL THIN FILM RECOVERY SYSTEMS AND PROCESSES |
US7560366B1 (en) | 2004-12-02 | 2009-07-14 | Nanosys, Inc. | Nanowire horizontal growth and substrate removal |
US7598544B2 (en) * | 2005-01-14 | 2009-10-06 | Nanotero, Inc. | Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same |
US8362525B2 (en) * | 2005-01-14 | 2013-01-29 | Nantero Inc. | Field effect device having a channel of nanofabric and methods of making same |
US7409375B2 (en) * | 2005-05-23 | 2008-08-05 | Knowmtech, Llc | Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream |
US7502769B2 (en) * | 2005-01-31 | 2009-03-10 | Knowmtech, Llc | Fractal memory and computational methods and systems based on nanotechnology |
US20100065820A1 (en) * | 2005-02-14 | 2010-03-18 | Atomate Corporation | Nanotube Device Having Nanotubes with Multiple Characteristics |
US7662298B2 (en) * | 2005-03-04 | 2010-02-16 | Northwestern University | Separation of carbon nanotubes in density gradients |
US7824946B1 (en) | 2005-03-11 | 2010-11-02 | Nantero, Inc. | Isolated metal plug process for use in fabricating carbon nanotube memory cells |
US8000127B2 (en) | 2009-08-12 | 2011-08-16 | Nantero, Inc. | Method for resetting a resistive change memory element |
US9390790B2 (en) | 2005-04-05 | 2016-07-12 | Nantero Inc. | Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications |
US8941094B2 (en) | 2010-09-02 | 2015-01-27 | Nantero Inc. | Methods for adjusting the conductivity range of a nanotube fabric layer |
US9287356B2 (en) * | 2005-05-09 | 2016-03-15 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7468271B2 (en) | 2005-04-06 | 2008-12-23 | President And Fellows Of Harvard College | Molecular characterization with carbon nanotube control |
US8013363B2 (en) * | 2005-05-09 | 2011-09-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8183665B2 (en) * | 2005-11-15 | 2012-05-22 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8217490B2 (en) * | 2005-05-09 | 2012-07-10 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8008745B2 (en) * | 2005-05-09 | 2011-08-30 | Nantero, Inc. | Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements |
US7782650B2 (en) * | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
TWI324773B (en) * | 2005-05-09 | 2010-05-11 | Nantero Inc | Non-volatile shadow latch using a nanotube switch |
US9196615B2 (en) * | 2005-05-09 | 2015-11-24 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7835170B2 (en) * | 2005-05-09 | 2010-11-16 | Nantero, Inc. | Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks |
US7781862B2 (en) | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Two-terminal nanotube devices and systems and methods of making same |
US7394687B2 (en) * | 2005-05-09 | 2008-07-01 | Nantero, Inc. | Non-volatile-shadow latch using a nanotube switch |
US9911743B2 (en) | 2005-05-09 | 2018-03-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US8513768B2 (en) * | 2005-05-09 | 2013-08-20 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7598127B2 (en) | 2005-05-12 | 2009-10-06 | Nantero, Inc. | Nanotube fuse structure |
TWI264271B (en) * | 2005-05-13 | 2006-10-11 | Delta Electronics Inc | Heat sink |
US7575693B2 (en) * | 2005-05-23 | 2009-08-18 | Nantero, Inc. | Method of aligning nanotubes and wires with an etched feature |
US7928521B1 (en) | 2005-05-31 | 2011-04-19 | Nantero, Inc. | Non-tensioned carbon nanotube switch design and process for making same |
US7915122B2 (en) * | 2005-06-08 | 2011-03-29 | Nantero, Inc. | Self-aligned cell integration scheme |
US7541216B2 (en) * | 2005-06-09 | 2009-06-02 | Nantero, Inc. | Method of aligning deposited nanotubes onto an etched feature using a spacer |
US7420396B2 (en) * | 2005-06-17 | 2008-09-02 | Knowmtech, Llc | Universal logic gate utilizing nanotechnology |
US20060292716A1 (en) * | 2005-06-27 | 2006-12-28 | Lsi Logic Corporation | Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes |
US7538040B2 (en) * | 2005-06-30 | 2009-05-26 | Nantero, Inc. | Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers |
US7599895B2 (en) | 2005-07-07 | 2009-10-06 | Knowm Tech, Llc | Methodology for the configuration and repair of unreliable switching elements |
US7687841B2 (en) * | 2005-08-02 | 2010-03-30 | Micron Technology, Inc. | Scalable high performance carbon nanotube field effect transistor |
WO2007018542A1 (en) * | 2005-08-08 | 2007-02-15 | The Regents Of The University Of California | Local manipulation of nanostructures |
EP1929276B1 (en) * | 2005-09-06 | 2011-07-27 | Nantero, Inc. | Nanotube sensor system and method of use |
CA2621500A1 (en) | 2005-09-06 | 2007-03-15 | Nantero, Inc. | Carbon nanotube resonators |
WO2007030483A2 (en) * | 2005-09-06 | 2007-03-15 | Nantero, Inc. | Method and system of using nanotube fabrics as joule heating elements for memories and other applications |
US7927992B2 (en) * | 2005-09-06 | 2011-04-19 | Nantero, Inc. | Carbon nanotubes for the selective transfer of heat from electronics |
WO2007038164A2 (en) * | 2005-09-23 | 2007-04-05 | Nanosys, Inc. | Methods for nanostructure doping |
US7492015B2 (en) * | 2005-11-10 | 2009-02-17 | International Business Machines Corporation | Complementary carbon nanotube triple gate technology |
JP2009528238A (ja) * | 2005-12-19 | 2009-08-06 | ナンテロ,インク. | カーボンナノチューブの生成 |
JP5034231B2 (ja) * | 2005-12-21 | 2012-09-26 | 富士通株式会社 | カーボンナノチューブトランジスタアレイ及びその製造方法 |
KR100668355B1 (ko) * | 2006-02-16 | 2007-01-12 | 삼성전자주식회사 | 캐리어 트래핑 물질을 구비한 유니폴라 탄소나노튜브 및유니폴라 전계효과 트랜지스터 |
WO2007099642A1 (ja) * | 2006-03-03 | 2007-09-07 | Fujitsu Limited | カーボンナノチューブを用いた電界効果トランジスタとその製造方法及びセンサ |
US7714386B2 (en) | 2006-06-09 | 2010-05-11 | Northrop Grumman Systems Corporation | Carbon nanotube field effect transistor |
US8217386B2 (en) * | 2006-06-29 | 2012-07-10 | University Of Florida Research Foundation, Inc. | Short channel vertical FETs |
CA2661638C (en) | 2006-08-30 | 2014-07-15 | Northwestern University | Monodisperse single-walled carbon nanotube populations and related methods for providing same |
US20080070331A1 (en) * | 2006-09-18 | 2008-03-20 | Chuan Ke, Hsi-Tien Chang, Pu Shen | Method for manufacturing a strongly refractive microlens for a light emitting diode with condensation silicone |
WO2008039496A2 (en) * | 2006-09-27 | 2008-04-03 | The Trustees Of Columbia University | Growth and applications of ultralong carbon nanotubes |
US8758717B2 (en) * | 2006-10-19 | 2014-06-24 | Rensselaer Polytechnic Institute | Electrical current-induced structural changes and chemical functionalization of carbon nanotubes |
US7786024B2 (en) * | 2006-11-29 | 2010-08-31 | Nanosys, Inc. | Selective processing of semiconductor nanowires by polarized visible radiation |
WO2008075642A1 (ja) * | 2006-12-18 | 2008-06-26 | Nec Corporation | 半導体装置及びその製造方法 |
US8168495B1 (en) | 2006-12-29 | 2012-05-01 | Etamota Corporation | Carbon nanotube high frequency transistor technology |
US9806273B2 (en) * | 2007-01-03 | 2017-10-31 | The United States Of America As Represented By The Secretary Of The Army | Field effect transistor array using single wall carbon nano-tubes |
US7930257B2 (en) * | 2007-01-05 | 2011-04-19 | Knowm Tech, Llc | Hierarchical temporal memory utilizing nanotechnology |
KR101311301B1 (ko) | 2007-02-09 | 2013-09-25 | 엘지디스플레이 주식회사 | 나노와이어 트랜지스터와 그 제조방법 |
US20080238882A1 (en) * | 2007-02-21 | 2008-10-02 | Ramesh Sivarajan | Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs |
WO2008112764A1 (en) | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
WO2009023304A2 (en) * | 2007-05-02 | 2009-02-19 | Atomate Corporation | High density nanotube devices |
US8115187B2 (en) * | 2007-05-22 | 2012-02-14 | Nantero, Inc. | Triodes using nanofabric articles and methods of making the same |
WO2009002748A1 (en) * | 2007-06-22 | 2008-12-31 | Nantero, Inc. | Two-terminal nanotube devices including a nanotube bridge and methods of making same |
CA2698093A1 (en) * | 2007-08-29 | 2009-03-12 | Northwestern University | Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same |
AU2008307486B2 (en) * | 2007-10-02 | 2014-08-14 | President And Fellows Of Harvard College | Carbon nanotube synthesis for nanopore devices |
CN101419518B (zh) * | 2007-10-23 | 2012-06-20 | 清华大学 | 触摸屏 |
CN101464763B (zh) * | 2007-12-21 | 2010-09-29 | 清华大学 | 触摸屏的制备方法 |
CN101458605B (zh) * | 2007-12-12 | 2011-03-30 | 鸿富锦精密工业(深圳)有限公司 | 触摸屏及显示装置 |
CN101458593B (zh) * | 2007-12-12 | 2012-03-14 | 清华大学 | 触摸屏及显示装置 |
CN101458594B (zh) * | 2007-12-12 | 2012-07-18 | 清华大学 | 触摸屏及显示装置 |
CN101458602B (zh) * | 2007-12-12 | 2011-12-21 | 清华大学 | 触摸屏及显示装置 |
CN101656769B (zh) * | 2008-08-22 | 2012-10-10 | 清华大学 | 移动电话 |
CN101470560B (zh) * | 2007-12-27 | 2012-01-25 | 清华大学 | 触摸屏及显示装置 |
CN101470558B (zh) * | 2007-12-27 | 2012-11-21 | 清华大学 | 触摸屏及显示装置 |
CN101470566B (zh) * | 2007-12-27 | 2011-06-08 | 清华大学 | 触摸式控制装置 |
CN101676832B (zh) * | 2008-09-19 | 2012-03-28 | 清华大学 | 台式电脑 |
CN101458603B (zh) * | 2007-12-12 | 2011-06-08 | 北京富纳特创新科技有限公司 | 触摸屏及显示装置 |
CN101458597B (zh) * | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101470559B (zh) * | 2007-12-27 | 2012-11-21 | 清华大学 | 触摸屏及显示装置 |
CN101458596B (zh) * | 2007-12-12 | 2011-06-08 | 北京富纳特创新科技有限公司 | 触摸屏及显示装置 |
CN101419519B (zh) * | 2007-10-23 | 2012-06-20 | 清华大学 | 触摸屏 |
CN101458608B (zh) * | 2007-12-14 | 2011-09-28 | 清华大学 | 触摸屏的制备方法 |
CN101458600B (zh) * | 2007-12-14 | 2011-11-30 | 清华大学 | 触摸屏及显示装置 |
CN101458595B (zh) * | 2007-12-12 | 2011-06-08 | 清华大学 | 触摸屏及显示装置 |
CN101458599B (zh) * | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101655720B (zh) * | 2008-08-22 | 2012-07-18 | 清华大学 | 个人数字助理 |
CN101458606B (zh) * | 2007-12-12 | 2012-06-20 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101458609B (zh) * | 2007-12-14 | 2011-11-09 | 清华大学 | 触摸屏及显示装置 |
CN101620454A (zh) * | 2008-07-04 | 2010-01-06 | 清华大学 | 便携式电脑 |
CN101458598B (zh) * | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏及显示装置 |
CN101458604B (zh) * | 2007-12-12 | 2012-03-28 | 清华大学 | 触摸屏及显示装置 |
EP2062515B1 (en) * | 2007-11-20 | 2012-08-29 | So, Kwok Kuen | Bowl and basket assembly and salad spinner incorporating such an assembly |
CN101458975B (zh) * | 2007-12-12 | 2012-05-16 | 清华大学 | 电子元件 |
CN101464757A (zh) * | 2007-12-21 | 2009-06-24 | 清华大学 | 触摸屏及显示装置 |
CN101458601B (zh) * | 2007-12-14 | 2012-03-14 | 清华大学 | 触摸屏及显示装置 |
CN101458607B (zh) * | 2007-12-14 | 2010-12-29 | 清华大学 | 触摸屏及显示装置 |
CN101464766B (zh) * | 2007-12-21 | 2011-11-30 | 清华大学 | 触摸屏及显示装置 |
CN101470565B (zh) * | 2007-12-27 | 2011-08-24 | 清华大学 | 触摸屏及显示装置 |
CN101464764B (zh) * | 2007-12-21 | 2012-07-18 | 清华大学 | 触摸屏及显示装置 |
US8574393B2 (en) * | 2007-12-21 | 2013-11-05 | Tsinghua University | Method for making touch panel |
CN101464765B (zh) * | 2007-12-21 | 2011-01-05 | 鸿富锦精密工业(深圳)有限公司 | 触摸屏及显示装置 |
WO2009088882A2 (en) * | 2007-12-31 | 2009-07-16 | Atomate Corporation | Edge-contacted vertical carbon nanotube transistor |
KR100930997B1 (ko) * | 2008-01-22 | 2009-12-10 | 한국화학연구원 | 탄소나노튜브 트랜지스터 제조 방법 및 그에 의한탄소나노튜브 트랜지스터 |
TWI502522B (zh) * | 2008-03-25 | 2015-10-01 | Nantero Inc | 以碳奈米管為基礎的類神經網路及其製造及使用方法 |
KR101410933B1 (ko) * | 2008-04-11 | 2014-07-02 | 성균관대학교산학협력단 | 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터 |
CN101587839B (zh) * | 2008-05-23 | 2011-12-21 | 清华大学 | 薄膜晶体管的制备方法 |
CN101582451A (zh) * | 2008-05-16 | 2009-11-18 | 清华大学 | 薄膜晶体管 |
CN101582382B (zh) * | 2008-05-14 | 2011-03-23 | 鸿富锦精密工业(深圳)有限公司 | 薄膜晶体管的制备方法 |
CN101582449B (zh) * | 2008-05-14 | 2011-12-14 | 清华大学 | 薄膜晶体管 |
CN101582445B (zh) * | 2008-05-14 | 2012-05-16 | 清华大学 | 薄膜晶体管 |
CN101582447B (zh) * | 2008-05-14 | 2010-09-29 | 清华大学 | 薄膜晶体管 |
CN101582446B (zh) * | 2008-05-14 | 2011-02-02 | 鸿富锦精密工业(深圳)有限公司 | 薄膜晶体管 |
CN101582450B (zh) * | 2008-05-16 | 2012-03-28 | 清华大学 | 薄膜晶体管 |
CN101582444A (zh) * | 2008-05-14 | 2009-11-18 | 清华大学 | 薄膜晶体管 |
CN101599495B (zh) * | 2008-06-04 | 2013-01-09 | 清华大学 | 薄膜晶体管面板 |
CN101582448B (zh) * | 2008-05-14 | 2012-09-19 | 清华大学 | 薄膜晶体管 |
CN101593699B (zh) * | 2008-05-30 | 2010-11-10 | 清华大学 | 薄膜晶体管的制备方法 |
WO2010005707A1 (en) * | 2008-06-16 | 2010-01-14 | The Board Of Trustees Of The University Of Illinois | Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates |
WO2009155359A1 (en) * | 2008-06-20 | 2009-12-23 | Nantero, Inc. | Nram arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same |
US8237677B2 (en) * | 2008-07-04 | 2012-08-07 | Tsinghua University | Liquid crystal display screen |
CN101625466B (zh) * | 2008-07-09 | 2012-12-19 | 清华大学 | 触摸式液晶显示屏 |
US8390580B2 (en) * | 2008-07-09 | 2013-03-05 | Tsinghua University | Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen |
US8022393B2 (en) | 2008-07-29 | 2011-09-20 | Nokia Corporation | Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process |
US7847588B2 (en) * | 2008-08-14 | 2010-12-07 | Nantero, Inc. | Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same |
US9263126B1 (en) | 2010-09-01 | 2016-02-16 | Nantero Inc. | Method for dynamically accessing and programming resistive change element arrays |
CN101676452B (zh) * | 2008-09-19 | 2011-11-30 | 清华大学 | 碳纳米管纱的制备方法 |
US7915637B2 (en) | 2008-11-19 | 2011-03-29 | Nantero, Inc. | Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same |
KR101026160B1 (ko) | 2008-11-26 | 2011-04-05 | 한국원자력연구원 | 하이브리드형 나노소자 논리회로 및 그 제조 방법 |
KR101076767B1 (ko) | 2009-02-11 | 2011-10-26 | 광주과학기술원 | 나노소자 논리회로 및 그 제조방법 |
CN101924816B (zh) * | 2009-06-12 | 2013-03-20 | 清华大学 | 柔性手机 |
US8128993B2 (en) * | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20110034008A1 (en) * | 2009-08-07 | 2011-02-10 | Nantero, Inc. | Method for forming a textured surface on a semiconductor substrate using a nanofabric layer |
US8351239B2 (en) * | 2009-10-23 | 2013-01-08 | Nantero Inc. | Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array |
US8895950B2 (en) | 2009-10-23 | 2014-11-25 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US8551806B2 (en) * | 2009-10-23 | 2013-10-08 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US9126836B2 (en) | 2009-12-28 | 2015-09-08 | Korea University Research And Business Foundation | Method and device for CNT length control |
US8222704B2 (en) * | 2009-12-31 | 2012-07-17 | Nantero, Inc. | Compact electrical switching devices with nanotube elements, and methods of making same |
KR101709823B1 (ko) | 2010-02-12 | 2017-02-23 | 난테로 인크. | 나노튜브 직물 층 및 필름 내의 밀도, 다공도 및/또는 간극 크기를 제어하는 방법 |
US20110203632A1 (en) * | 2010-02-22 | 2011-08-25 | Rahul Sen | Photovoltaic devices using semiconducting nanotube layers |
US10661304B2 (en) | 2010-03-30 | 2020-05-26 | Nantero, Inc. | Microfluidic control surfaces using ordered nanotube fabrics |
EP2557567A1 (en) | 2011-08-09 | 2013-02-13 | Thomson Licensing | Programmable read-only memory device and method of writing the same |
US8664091B2 (en) * | 2011-11-10 | 2014-03-04 | Institute of Microelectronics, Chinese Academy of Sciences | Method for removing metallic nanotube |
CN103101898B (zh) * | 2011-11-10 | 2015-05-20 | 中国科学院微电子研究所 | 金属性纳米管去除方法 |
US20130181352A1 (en) * | 2012-01-16 | 2013-07-18 | Industry-Academic Cooperation Foundation at NamSeoul Unversity | Method of Growing Carbon Nanotubes Laterally, and Lateral Interconnections and Effect Transistor Using the Same |
US20130285019A1 (en) * | 2012-04-26 | 2013-10-31 | Postech Academy-Industry Foundation | Field effect transistor and method of fabricating the same |
EP2915161B1 (en) | 2012-11-05 | 2020-08-19 | University of Florida Research Foundation, Inc. | Brightness compensation in a display |
US9007732B2 (en) | 2013-03-15 | 2015-04-14 | Nantero Inc. | Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same |
US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
JP6473444B2 (ja) * | 2013-05-29 | 2019-02-20 | シーエスアイアールCsir | 電界効果トランジスタ及び複数の電界効果トランジスタを含む気体検出器 |
US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
JP6256912B2 (ja) * | 2013-11-12 | 2018-01-10 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ集合体を用いた電界効果トランジスタ |
JP6300300B2 (ja) * | 2013-11-12 | 2018-03-28 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ集合体を用いた電界効果トランジスタ |
CN105097939B (zh) * | 2014-04-24 | 2018-08-17 | 清华大学 | 薄膜晶体管 |
US9147824B1 (en) * | 2014-05-08 | 2015-09-29 | International Business Machines Corporation | Reactive contacts for 2D layered metal dichalcogenides |
US9741811B2 (en) | 2014-12-15 | 2017-08-22 | Samsung Electronics Co., Ltd. | Integrated circuit devices including source/drain extension regions and methods of forming the same |
US9299430B1 (en) | 2015-01-22 | 2016-03-29 | Nantero Inc. | Methods for reading and programming 1-R resistive change element arrays |
US9947400B2 (en) | 2016-04-22 | 2018-04-17 | Nantero, Inc. | Methods for enhanced state retention within a resistive change cell |
US9934848B2 (en) | 2016-06-07 | 2018-04-03 | Nantero, Inc. | Methods for determining the resistive states of resistive change elements |
US9941001B2 (en) | 2016-06-07 | 2018-04-10 | Nantero, Inc. | Circuits for determining the resistive states of resistive change elements |
US10665798B2 (en) | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | Carbon nanotube transistor and logic with end-bonded metal contacts |
US10665799B2 (en) | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | N-type end-bonded metal contacts for carbon nanotube transistors |
CN113130620B (zh) * | 2020-01-15 | 2023-07-18 | 清华大学 | 场效应晶体管 |
CN113851536A (zh) * | 2020-06-28 | 2021-12-28 | 华为技术有限公司 | 场效应晶体管及其制备方法、半导体结构 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997036333A1 (fr) * | 1996-03-26 | 1997-10-02 | Samsung Electronics Co., Ltd | Dispositif a effet de tunnel et procede de fabrication de ce dispositif |
US6290861B1 (en) * | 1997-07-15 | 2001-09-18 | Silverbrook Research Pty Ltd | Method of manufacture of a conductive PTFE bend actuator vented ink jet printer |
US6203864B1 (en) * | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
JP2904346B1 (ja) * | 1998-06-08 | 1999-06-14 | 日本電気株式会社 | カーボンナノチューブのヘテロ接合形成方法 |
KR100277881B1 (ko) * | 1998-06-16 | 2001-02-01 | 김영환 | 트랜지스터 |
US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
AU1347501A (en) * | 1999-10-26 | 2001-05-08 | Stellar Display Corporation | Method of fabricating a field emission device with a lateral thin-film edge emitter |
US7335603B2 (en) * | 2000-02-07 | 2008-02-26 | Vladimir Mancevski | System and method for fabricating logic devices comprising carbon nanotube transistors |
-
2001
- 2001-01-03 US US09/753,845 patent/US6423583B1/en not_active Expired - Lifetime
- 2001-12-21 WO PCT/GB2001/005715 patent/WO2002054505A2/en not_active Application Discontinuation
- 2001-12-21 CN CNB018217087A patent/CN100347874C/zh not_active Expired - Fee Related
- 2001-12-21 IL IL15652301A patent/IL156523A0/xx not_active IP Right Cessation
- 2001-12-21 JP JP2002554893A patent/JP4099063B2/ja not_active Expired - Fee Related
- 2001-12-21 AT AT01272504T patent/ATE526690T1/de not_active IP Right Cessation
- 2001-12-21 EP EP01272504A patent/EP1350277B1/en not_active Expired - Lifetime
- 2001-12-21 CA CA002431064A patent/CA2431064C/en not_active Expired - Fee Related
- 2001-12-21 KR KR1020037007987A patent/KR100621444B1/ko not_active IP Right Cessation
- 2001-12-24 TW TW090132102A patent/TW523797B/zh not_active IP Right Cessation
-
2002
- 2002-01-02 MY MYPI20020002A patent/MY127407A/en unknown
- 2002-05-13 US US10/144,402 patent/US6706566B2/en not_active Expired - Lifetime
-
2003
- 2003-06-19 IL IL156523A patent/IL156523A/en active IP Right Revival
Also Published As
Publication number | Publication date |
---|---|
CA2431064C (en) | 2006-04-18 |
WO2002054505A2 (en) | 2002-07-11 |
CA2431064A1 (en) | 2002-07-11 |
IL156523A0 (en) | 2004-01-04 |
JP4099063B2 (ja) | 2008-06-11 |
EP1350277B1 (en) | 2011-09-28 |
ATE526690T1 (de) | 2011-10-15 |
US6423583B1 (en) | 2002-07-23 |
WO2002054505A3 (en) | 2002-11-14 |
CN100347874C (zh) | 2007-11-07 |
US6706566B2 (en) | 2004-03-16 |
IL156523A (en) | 2007-05-15 |
JP2004517489A (ja) | 2004-06-10 |
US20020173083A1 (en) | 2002-11-21 |
EP1350277A2 (en) | 2003-10-08 |
KR100621444B1 (ko) | 2006-09-08 |
CN1484865A (zh) | 2004-03-24 |
KR20030068175A (ko) | 2003-08-19 |
MY127407A (en) | 2006-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW523797B (en) | System and method for electrically induced breakdown of nanostructures | |
Avouris | Carbon nanotube electronics | |
Radosavljević et al. | High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes | |
Yao et al. | Electrical transport through single-wall carbon nanotubes | |
Lefebvre et al. | Fabrication of nanometer size gaps in a metallic wire | |
Perrin et al. | Single-molecule transistors | |
Collins et al. | Multishell conduction in multiwalled carbon nanotubes | |
Ngo et al. | Electron transport through metal-multiwall carbon nanotube interfaces | |
Kasumov et al. | Conductivity and atomic structure of isolated multiwalled carbon nanotubes | |
Hierold et al. | Carbon nanotube devices: properties, modeling, integration and applications | |
JP2002538606A (ja) | ナノ構造デバイス及び装置 | |
Romdhane et al. | Electrical transport through atomic carbon chains: The role of contacts | |
Berger et al. | Ballistic conduction in multiwalled carbon nanotubes | |
Nilsson et al. | Localized resistance measurements of wrinkled reduced graphene oxide using in-situ transmission electron microscopy | |
Kim et al. | Barrier height at the graphene and carbon nanotube junction | |
Kim et al. | Correlated electrical transport through multiwall carbon nanotubes in a crossed geometry | |
Shrivastava et al. | ESD behavior of metallic carbon nanotubes | |
LIAO | CE RTIFICATEOF CO MMITTEE AP PROVAL | |
Gayduchenko et al. | Contact-driven deformation of metallic carbon nanotubes observed from an unconventional field effect | |
Avouris et al. | Electrical Properties of Carbon Nanotubes: Spectroscopy Localization and Electrical Breakdown | |
Bobrinetskii et al. | Controlling electrical transport through bundles of single-wall carbon nanotubes | |
Hien | Modeling of Carbon Nanotube Field Effect Transistors | |
Issi et al. | Electrical transport properties in carbon nanotubes | |
Tsukagoshi et al. | Quasi-periodic Coulomb blockade oscillations in a single-wall carbon nanotube bundle | |
Collins et al. | Multiple-shell diffusive conduction in multiwalled carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |