KR101410933B1 - 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터 - Google Patents

탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터 Download PDF

Info

Publication number
KR101410933B1
KR101410933B1 KR1020080033882A KR20080033882A KR101410933B1 KR 101410933 B1 KR101410933 B1 KR 101410933B1 KR 1020080033882 A KR1020080033882 A KR 1020080033882A KR 20080033882 A KR20080033882 A KR 20080033882A KR 101410933 B1 KR101410933 B1 KR 101410933B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
voltage
ions
transistor
doping
Prior art date
Application number
KR1020080033882A
Other languages
English (en)
Other versions
KR20090108459A (ko
Inventor
김언정
이영희
최재영
유우종
Original Assignee
성균관대학교산학협력단
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 삼성전자주식회사 filed Critical 성균관대학교산학협력단
Priority to KR1020080033882A priority Critical patent/KR101410933B1/ko
Priority to US12/232,958 priority patent/US7723223B2/en
Publication of KR20090108459A publication Critical patent/KR20090108459A/ko
Application granted granted Critical
Publication of KR101410933B1 publication Critical patent/KR101410933B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑 이온의 위치 제어방법에 관하여 개시된다. 개시된 탄소나노튜브를 구비한 트랜지스터의 도핑방법은, 소스 및 드레인과, 이들 사이의 채널인 탄소나노튜브와, 게이트를 구비한 전계효과 트랜지스터에 있어서, 상기 게이트에 제1전압을 인가하는 단계; 및 상기 탄소나노튜브의 표면 상에 이온을 흡착시키는 단계;를 구비한다.

Description

탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑 이온의 위치 제어방법 및 트랜지스터{Method of doping transistor comprising carbon nanotube and method of controlling position of doping ion and transistors using the same}
본 발명은 탄소나노튜브를 채널로 구비한 전계효과 트랜지스터에서 상기 탄소나노튜브 상에 이온을 도핑하는 방법과, 상기 도핑된 이온의 위치를 제어하는 방법에 관한 것이다.
탄소나노튜브(carbon nanotube, CNT)는 일차원 구조를 갖는 탄소동소체로 발리스틱 이동(ballistic transport) 현상을 보이기 때문에 실리콘 반도체를 대체할 수 있는 차세대 나노 반도체 물질로 각광 받고 있다.
탄소 나노튜브(carbon nanotube)는 기계적, 화학적 특성이 좋으며, 수 나노미터 또는 수십 나노미터의 직경에서 마이크로미터 단위로 길게 형성시킬 수 있으며, 전기적 도전성이 우수하여 미세 구조의 소자로의 응용성이 매우 뛰어나다. 탄소 나노튜브를 다양한 소자에 응용하기 위한 연구가 활발히 진행중이며, 현재 전계 방출 소자, 광통신 분야의 광스위치 또는 바이오 소자 등에도 적용되고 있다.
탄소 나노튜브는 아크 방전법, 레이저 용발법, 촉매를 이용한 화학 기상 증 착(Chemical Vapor Deposition), 스크린 프린팅, 스핀 코팅 방법에 의해 제조되고 있으며, 현재 탄소 나노튜브의 제조법은 널리 알려져 있다.
탄소 나노튜브를 CMOS(complementary metal-oxide-semiconductor) 트랜지스터와 같은 반도체 소자에 적용하기 위해서는 p-타입 및 n-타입 MOS 트랜지스터가 필요하다. 일반적으로 탄소나노튜브는 홀 도핑(hole-doping : p-타입 도핑)이 되기 쉽다.
한편, 미국공개특허 2003-122,133호에는 산소 또는 포타슘 이온을 도핑하여 n형 나노튜브를 제조하는 방법을 개시하고 있다. 그러나, 산소는 원소로 분리하기가 용이하지 않고, 포타슘 이온은 취급하기가 용이하지 않다.
본 발명은 안정적으로 전계효과 트랜지스터의 채널인 탄소나노튜브를 도핑하는 방법을 제공한다.
또한, 본 발명은 전계효과 트랜지스터의 탄소나노튜브의 도핑이온의 위치를 제어하는 방법을 제공한다.
본 발명의 일 실시예에 따른 전계효과 트랜지스터의 탄소나노튜브를 도핑하는 방법은:
소스 및 드레인과, 이들 사이의 채널인 탄소나노튜브와, 게이트를 구비한 전계효과 트랜지스터에 있어서,
상기 게이트에 제1전압을 인가하는 단계; 및
상기 탄소나노튜브의 표면 상에 이온을 흡착시키는 단계;를 구비할 수 있다.
상기 흡착단계는, 니트로늄 헥사플로로 안티모네이트(nitronium hexafluoroantimonate) 용액을 상기 탄소나노튜브 표면에 접촉시키는 단계일 수 있다.
본 발명의 일 국면에 따르면, 상기 제1전압은 양전압이며, 상기 이온은 니트로늄 이온이며, 상기 탄소나노튜브는 p 도핑된다.
본 발명의 다른 국면에 따르면, 상기 제1전압은 음전압이며, 상기 이온은 헥사플로로안티모네이트 이온이며, 상기 탄소나노튜브는 n 도핑된다.
상기 용액의 용매는 메타놀일 수 있으며, 상기 게이트는 백게이트이다.
본 발명은 상기 탄소나노튜브의 표면에 흡착되지 않은 상기 용액을 제거하는 단계; 및 상기 기판을 건조시켜서 상기 이온을 상기 탄소나노튜브의 표면에 흡착시키는 단계;를 더 구비할 수 있다.
또한, 상기 탄소나노튜브의 표면 상으로 보호층을 더 형성할 수 있다.
본 발명의 다른 실시예에 따른 전계효과 트랜지스터의 도핑이온의 위치를 제어하는 방법은:
소스 및 드레인과, 이들 사이의 채널인 탄소나노튜브와, 게이트를 구비한 전계효과 트랜지스터에 있어서,
상기 게이트에 제1전압을 인가하는 단계;
상기 탄소나노튜브의 표면 상에 이온을 흡착시키는 단계; 및
상기 소스 및 상기 드레인 사이에 제2전압을 인가하여 상기 이온을 상기 탄소나노튜브의 상기 드레인 측 또는 상기 소스 측으로 이동시키는 단계;를 를 구비할 수 있다.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑 이온의 위치 제어방법을 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 가리킨다. 도면들에서, 층들 및 영역들의 두께는 명료성을 위해 과장되어 있다.
이하에서는 탄소나노튜브 전계효과 트랜지스터의 도핑방법과 도핑이온의 위 치 제어방법에 관하여 설명한다.
도 1은 본 발명에 적용되는 탄소 나노튜브를 구비한 전계효과 트랜지스터(100)의 개략적 구성도이다.
도 1을 참조하면, 도전성 기판(10), 예컨대 실리콘 기판 상에 게이트 절연층(11)이 형성되어 있다. 게이트 절연층(11)은 100nm 두께로 형성된 실리콘 산화물일 수 있다. 게이트 절연층(11) 상에는 서로 이격된 소스 전극(13) 및 드레인 전극(14)이 형성된다. 소스 전극(13) 및 드레인 전극(14)은 대략 4 ㎛ 이격되어 있으며, 10 nm Ti 접착층 위에 20 nm 두께의 Au로 형성될 수 있다.
소스 전극(13) 및 드레인 전극(14) 사이에는 탄소나노튜브(20)가 배치된다. 탄소나노튜브(20)는 2.5 ㎛ 폭으로 망목 구조의 싱글월 탄소나노튜브들(random network single-walled carbon nanotubes)일 수 있다. 탄소나노튜브(12)는 화학기상 증착법을 이용하여 소자에서 직접 성장시킬 수 있다.
본 발명의 탄소나노튜브의 도핑방법은 탄소나노튜브의 표면에 안정적으로 이온을 도핑하는 방법이다. 탄소나노튜브의 표면에 이온을 도핑하기 위해서 도펀트 용액을 준비한다. 도펀트 용액은 용이하게 양이온과 음이온이 분리되는 것으로, 니트로늄 헥사플로로안티모네이트(nitronium hexafluoroantimonate: NHFA) 용액이 바람직하다. 용매로는 메탄올을 사용한다. 메탄올은 상온에서 용이하게 건조시킬 수 있다. NHFA 파우더를 메탄올 용액에 녹여서 NHFA 용액을 만든다. 그 농도는 1 μM ~ 10 mM 로 준비할 수 있다. 마이크로 피펫을 사용하여 방울(drop)을 탄소나노튜브 표면에 드롭시켜서 탄소나노튜브의 표면에 흡착시킨다. 1드롭은 대략 500 μL가 될 수 있다.
NHFA 용액에는 니트로늄 이온 NO2 +과 헥사플로로안티모네이트 이온 SbF6 - 이 분리되어 있다.
도 2는 본 발명에 따른 p 도핑방법을 설명하는 도면이다. 도 1의 트랜지스터(100)를 사용하여 설명한다.
도 2를 참조하면, 백게이트인 기판(10)에 소정의 양전압, 예컨대 10 V 전압을 인가하고, 소스 전극(13) 및 드레인 전극(14)에는 그라운드 전압을 인가한다. 준비한 NHFA 용액을 1방울 탄소나노튜브(20) 상에 드롭시킨다. 탄소나토튜브(20)는 게이트 전압에 의해 음전하를 띠고(negatively charged), 따라서, 양이온인 니트로늄 이온이 탄소나노튜브(20) 표면에 흡착된다. 이어서, 트랜지스터(200)를 기울여서 여분의 용액과 불필요한 이온물질들을 흘러보낸다. 이어서 기판(10)을 건조시키면 양이온이 탄소나노튜브(20)의 표면에 안정적으로 이온 흡착되어서 탄소나노튜브(20)를 p 도핑을 시킨다.
상기 탄소나노튜브(20) 상에 보호층(30)을 더 형성할 수 있다. 보호층(30)은 양이온이 탄소나노튜브(20) 상에 안정적으로 흡착되게 한다. 보호층(30)으로는 포토레지스트 물질, 예컨대 폴리메틸 메타크릴레이트(polymethyl methacrylate: PMMA)가 사용될 수 있다.
도 3은 망목 구조의 탄소나노튜브들의 금속 탄소나노튜브의 선택적 제거를 보여주는 그래프이다.
도 3을 참조하면, 도 1의 구조의 트랜지스터(100)에서 드레인 전극(14)에 0.5 V 전압을 인가시, Ids-Vg 특성 플로트(P1)을 보면, 게이트 전압(Vg)의 변화에도 드레인 전류(Ids)의 변화는 거의 없었으며, 드레인 전류값이 높게 나타났다. 이는 망목 구조의 탄소나노튜브에는 금속 탄소나노튜브와 반도체 탄소나노튜브가 혼재되어 있으며 전류 특성은 금속 탄소나노튜브들이 좌우하기 때문이다.
탄소나노튜브(20)에 1 mM NHFA 용액을 한 방울 드롭시킨 도 2의 트랜지스터(200)에서, 드레인 전극(14)에 0.5 V 전압을 인가시, Ids-Vg 특성 플로트(P2)를 보면, 드레인 전류(Ids)는 ON/OFF 비율이 103 으로 명백한 변화(modulation)를 보여준다. 또한, 드레인 전류(Ids)가 크게 감소한 것을 보여준다. 이는 금속 탄소나노튜브가 선택적으로 제거된 것을 보여준다.
상기 실시예에서는 트랜지스터(탄소나노튜브)를 p 도핑시키는 방법을 설명하였으며, 이하에서는 n 도핑하는 방법을 설명한다.
n 도핑을 위해서는, 백게이트인 기판(10)에 소정의 음전압, 예컨대 -10 V 전압을 인가하고, 소스 전극(13) 및 드레인 전극(14)에는 그라운드 전압을 인가한다. 준비한 NHFA 용액을 1방울을 탄소나노튜브(20) 상에 드롭시킨다. 탄소나토튜브(20)는 게이트 전압(Vg)에 의해 양전하를 띠고(positively charged), 따라서, 음이온인 헥사플로로안티모네이트 이온 SbF6 - 이 탄소나노튜브(20) 표면에 흡착된다. 이어 서, 트랜지스터(100)를 기울여서 여분의 용액과 불필요한 이온물질들을 흘러보낸다. 이어서 기판(10)을 건조시키면 음이온이 탄소나노튜브(20)의 표면에 안정적으로 이온 흡착되어서 탄소나노튜브(20)를 n 도핑을 시킨다.
도 4는 본 발명에 따른 도핑이온의 위치를 제어하는 방법을 설명하는 도면이다.
도 4를 참조하면, 백게이트인 기판(10)에 소정의 양전압, 예컨대 10 V 전압을 인가하고, 소스 전극(13) 및 드레인 전극(14)에는 그라운드 전압을 인가한다. 준비한 NHFA 용액을 1방울 탄소나노튜브(20) 상에 드롭시킨다. 탄소나토튜브(20)는 게이트 전압에 의해 음전하를 띠고(negatively charged), 따라서, 양이온인 니트로늄 이온이 탄소나노튜브(20) 표면에 흡착된다.
이어서, 드레인 전극(14)에 +1 V 전압을 인가하면, 탄소나노튜브(20) 상의 양이온은 대부분 드레인 전극(14)에서 멀어져 소스 전극(13) 쪽으로 이동된다. 따라서, 양이온의 위치가 소스 전극(13) 쪽으로 제어된다. 이러한 소스 전극(13) 측에서의 양전하의 증가는 소스 전극(13) 및 탄소나노튜브(20) 사이에 쇼트키 배리어(Schottky barrier)를 형성한다.
이어서, 트랜지스터(300)를 기울여서 여분의 용액과 불필요한 이온물질들을 흘러보낸다. 이어서 기판(10)을 건조시키면 양이온이 탄소나노튜브(20)의 표면에서 소스 전극(13) 쪽으로 안정적으로 이온 흡착된다.
상기 탄소나노튜브(20) 상에 보호층(30)을 더 형성할 수 있다. 보호층(30)은 양이온이 탄소나노튜브(20) 상에 안정적으로 흡착되게 한다. 보호층(30)으로는 폴 리메틸 메타크릴레이트(polymethyl methacrylate: PMMA)가 사용될 수 있다.
도 5 및 도 6은 이온 위치 제어 전의 트랜지스터(200)과 이온 위치 제어 후의 본 발명에 따른 p 도핑된 트랜지스터(300)의 I-V 특성 곡선이다.
도 5를 참조하면, 드레인 전극(14)에 1 ~ -1 V 전압을 인가시 I-V 특성을 보면, 게이트 전압을 마이너스 방향으로 인가했을 때 트랜지스터가 턴온되었다. 트랜지스터가 p형임을 보여준다.
도 6을 참조하면, 드레인 전극(14)에 양전압 (0.5 V, 1 V)를 인가시 트랜지스터(300)가 턴온되었으나, 드레인 전극(14)에 0V 이하의 전압을 인가시 트랜지스터(300)는 턴온되지 않는 것을 볼 수 있다. 즉, 트랜지스터(300)의 채널인 탄소나노튜브(20)의 표면에서 양이온이 소스 전극(13) 쪽으로 이동하여 소스 전극(13) 및 채널(20) 사이에 쇼트키 배리어를 형성하였기 때문이다. 이러한 트랜지스터(300)는 순방향 다이오드 특을 보여준다.
상기 실시예에서는 양이온의 위치를 소스 전극(13) 쪽으로 제어하는 방법을 기술하였다. 이하에서는 도 7을 참조하여 양이온의 위치를 드레인 전극(14) 쪽으로 제어하는 방법을 설명한다.
백게이트인 기판(10)에 소정의 양전압, 예컨대 10 V 전압을 인가하고, 소스 전극(13) 및 드레인 전극(14)에는 그라운드 전압을 인가한다. 준비한 NHFA 용액을 1방울 탄소나노튜브(20) 상에 드롭시킨다. 탄소나토튜브(20)는 게이트 전압에 의해 음전하를 띠고(negatively charged), 따라서, 양이온인 니트로늄 이온이 탄소나노튜브(20) 표면에 흡착된다.
이어서, 드레인 전극(14)에 -1 V 전압을 인가하면, 탄소나노튜브(20) 상의 양이온은 대부분 드레인 전극(14)으로 이동된다. 따라서, 양이온의 위치가 드레인 전극(14) 쪽으로 제어된다. 이러한 드레인 전극(14) 측에서의 양전하의 증가는 소드레인 전극(14) 및 탄소나노튜브(20) 사이에 쇼트키 배리어를 형성한다.
이어서, 트랜지스터(200)를 기울여서 여분의 용액과 불필요한 이온물질들을 흘러보낸다. 이어서 기판(10)을 건조시키면 양이온이 탄소나노튜브(20)의 표면에서 소스 전극(13) 쪽으로 안정적으로 이온 흡착된다.
상기 탄소나노튜브(20) 상에 보호층(30)을 더 형성할 수 있다. 보호층(30)은 양이온이 탄소나노튜브(20) 상에 안정적으로 흡착되게 한다. 보호층(30)으로는 폴리메틸 메타크릴레이트(polymethyl methacrylate: PMMA)가 사용될 수 있다.
도 7은 이온 위치 제어 후의 본 발명에 따른 p 도핑된 트랜지스터의 I-V 특성 곡선이다.
도 7을 참조하면, 드레인 전극(14)에 음전압 (-0.5 V, -1 V)을 인가시 트랜지스터가 턴온되었으나, 드레인 전극(14)에 0V 이상의 전압을 인가시 트랜지스터는 턴온되지 않는 것을 볼 수 있다. 즉, 트랜지스터의 채널인 탄소나노튜브(20)의 표면에서 양이온이 드레인 전극(14) 쪽으로 이동하여 드레인 전극(14) 및 채널(20) 사이에 쇼트키 배리어를 형성하였기 때문이다. 이러한 트랜지스터는 역방향 다이오드 특성을 보여준다.
상기 실시예에서는 p도핑된 트랜지스터의 양이온 위치제어방법을 설명하였으나, n 도핑된 트랜지스터의 음이온 위치제어방법도 동일한 방법으로 위치제어가 가 능하며 상세한 설명은 생략한다.
본 발명에 따른 탄소나노튜브를 구비한 트랜지스터의 도핑방법에 따르면, 탄소나노튜브를 안정적으로 p 도핑 및/또는 n 도핑할 수 있으며, 따라서, 필요에 따라서 p형 트랜지스터 및 n형 트랜지스터를 용이하게 제작할 수 있다.
또한, 본 발명의 도핑 이온의 위치 제어방법에 따르면, 특정 다이오드 방향을 가진 트랜지스터를 용이하게 제작할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
도 1은 본 발명에 적용되는 탄소 나노튜브를 구비한 전계효과 트랜지스터의 개략적 구성도이다.
도 2는 본 발명에 따른 p 도핑방법을 설명하는 도면이다.
도 3은 망목 구조의 탄소나노튜브들의 금속 탄소나노튜브의 선택적 제거를 보여주는 그래프이다.
도 4는 본 발명에 따른 도핑이온의 위치를 제어하는 방법을 설명하는 도면이다.
도 5 및 도 6은 각각 이온 위치 제어 전의 트랜지스터과 이온 위치 제어 후의 본 발명에 따른 p 도핑된 트랜지스터의 I-V 특성 곡선을 보여주는 그래프이다.
도 7은 이온 위치 제어 후의 본 발명에 따른 p 도핑된 트랜지스터의 I-V 특성 곡선을 보여주는 그래프이다.

Claims (17)

  1. 소스 및 드레인과, 이들 사이의 채널인 탄소나노튜브와, 게이트를 구비한 전계효과 트랜지스터의 상기 탄소나노튜브를 도핑하는 방법에 있어서,
    상기 게이트에 제1전압을 인가하는 단계; 및
    상기 탄소나노튜브의 표면 상에 이온을 흡착시키는 단계;를 구비하는 전계효과 트랜지스터의 탄소나노튜브를 도핑하는 방법.
  2. 제 1 항에 있어서,
    상기 흡착시키는 단계는, 니트로늄 헥사플로로 안티모네이트(nitronium hexafluoroantimonate) 용액을 상기 탄소나노튜브 표면에 접촉시키는 방법.
  3. 제 2 항에 있어서,
    상기 제1전압은 양전압이며, 상기 이온은 니트로늄 이온이며, 상기 탄소나노튜브는 p 도핑되는 방법.
  4. 제 2 항에 있어서,
    상기 제1전압은 음전압이며, 상기 이온은 헥사플로로안티모네이트 이온이며, 상기 탄소나노튜브는 n 도핑되는 방법.
  5. 제 2 항에 있어서,
    상기 용액의 용매는 메타놀인 방법.
  6. 제 2 항에 있어서,
    상기 탄소나노튜브의 표면에 흡착되지 않은 상기 용액을 제거하는 단계; 및
    상기 전계효과 트랜지스터를 건조시켜서 상기 이온을 상기 탄소나노튜브의 표면에 흡착시키는 단계;를 더 구비한 방법.
  7. 제 6 항에 있어서,
    상기 흡착시키는 단계 이후에, 상기 탄소나노튜브의 표면 상으로 보호층을 더 형성하는 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항의 방법으로 제조된 전계효과 트랜지스터.
  9. 소스 및 드레인과, 이들 사이의 채널인 탄소나노튜브와, 게이트를 구비한 전계효과 트랜지스터의 도핑 이온의 위치를 제어하는 방법에 있어서,
    상기 게이트에 제1전압을 인가하는 단계;
    상기 탄소나노튜브의 표면 상에 이온을 흡착시키는 단계; 및
    상기 소스 및 상기 드레인 사이에 제2전압을 인가하여 상기 이온을 상기 탄소나노튜브의 상기 드레인 측 또는 상기 소스 측으로 이동시키는 단계;를 구비하는 전계효과 트랜지스터의 도핑이온의 위치를 제어하는 방법.
  10. 제 9 항에 있어서,
    상기 흡착시키는 단계는, 니트로늄 헥사플로로 안티모네이트(nitronium hexafluoroantimonate) 용액을 상기 탄소나노튜브 표면에 접촉시키는 방법.
  11. 제 10 항에 있어서,
    상기 제1전압은 양전압이며, 상기 이온은 니트로늄 이온이며, 상기 탄소나노튜브는 p 도핑되는 방법.
  12. 제 11 항에 있어서,
    상기 제2전압은 양전압이며, 상기 니트로늄 이온이 상기 소스 측으로 이동하여 상기 트랜지스터는 순방향 다이오드가 되는 방법.
  13. 제 11 항에 있어서,
    상기 제2전압은 음전압이며, 상기 트랜지스터의 니트로늄 이온이 상기 드레인 측으로 이동하여 상기 트랜지스터는 역방향 다이오드가 되는 방법.
  14. 제 10 항에 있어서,
    상기 용액의 용매는 메타놀인 방법.
  15. 제 10 항에 있어서,
    상기 탄소나노튜브의 표면에 흡착되지 않은 상기 용액을 제거하는 단계; 및
    상기 전계효과 트랜지스터를 건조시켜서 상기 이온을 상기 탄소나노튜브의 표면에 흡착시키는 단계;를 더 구비한 방법.
  16. 제 15 항에 있어서,
    상기 흡착시키는 단계 이후에, 상기 탄소나노튜브의 표면 상으로 보호층을 더 형성하는 방법.
  17. 제 9 항 내지 제 16 항 중 어느 한 항의 방법으로 제조된 전계효과 트랜지스터.
KR1020080033882A 2008-04-11 2008-04-11 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터 KR101410933B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080033882A KR101410933B1 (ko) 2008-04-11 2008-04-11 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터
US12/232,958 US7723223B2 (en) 2008-04-11 2008-09-26 Method of doping transistor comprising carbon nanotube, method of controlling position of doping ion, and transistors using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080033882A KR101410933B1 (ko) 2008-04-11 2008-04-11 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터

Publications (2)

Publication Number Publication Date
KR20090108459A KR20090108459A (ko) 2009-10-15
KR101410933B1 true KR101410933B1 (ko) 2014-07-02

Family

ID=41163246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080033882A KR101410933B1 (ko) 2008-04-11 2008-04-11 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터

Country Status (2)

Country Link
US (1) US7723223B2 (ko)
KR (1) KR101410933B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137356A (zh) * 2019-06-05 2019-08-16 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、电子装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435999B1 (ko) 2007-12-07 2014-08-29 삼성전자주식회사 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
US20090200176A1 (en) 2008-02-07 2009-08-13 Mccutchen Co. Radial counterflow shear electrolysis
US8847313B2 (en) * 2008-11-24 2014-09-30 University Of Southern California Transparent electronics based on transfer printed carbon nanotubes on rigid and flexible substrates
KR20110061909A (ko) 2009-12-02 2011-06-10 삼성전자주식회사 도펀트로 도핑된 그라펜 및 이를 이용한 소자
EP2439779B1 (en) 2010-10-05 2014-05-07 Samsung Electronics Co., Ltd. Transparent Electrode Comprising Doped Graphene, Process of Preparing the Same, and Display Device and Solar Cell Comprising the Electrode
KR101577896B1 (ko) 2014-05-14 2015-12-16 동국대학교 산학협력단 탄소나노튜브 층간층, 이의 제조방법 및 이를 이용한 박막트랜지스터
WO2018144069A1 (en) * 2017-02-06 2018-08-09 Northeastern University Ion-doped two-dimensional nanomaterials
US10537840B2 (en) 2017-07-31 2020-01-21 Vorsana Inc. Radial counterflow separation filter with focused exhaust
KR102098492B1 (ko) 2018-09-10 2020-04-08 동국대학교 산학협력단 박막 트랜지스터, 박막 트랜지스터의 제조 방법 및 박막 트랜지스터를 포함하는 다이오드
KR20200053663A (ko) 2018-10-18 2020-05-19 주식회사 나노웨어러블 공액고분자 바인더가 포함된 탄소나노튜브 반도체층 및 이를 이용한 박막트랜지스터
KR20200044248A (ko) 2018-10-18 2020-04-29 주식회사 나노웨어러블 탄소나노튜브 반도체층이 포함된 센서
CN113851536A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 场效应晶体管及其制备方法、半导体结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029547A (ko) * 2004-10-02 2006-04-06 삼성전자주식회사 n형 탄소 나노튜브를 구비한 n형 탄소나노튜브 전계효과트랜지스터 및 그 제조방법
KR20060050134A (ko) * 2004-10-13 2006-05-19 삼성전자주식회사 캐리어 트래핑 물질을 구비한 유니폴라 나노튜브트랜지스터 및 그 제조방법
KR20070002111A (ko) * 2005-06-30 2007-01-05 한국화학연구원 반도체 나노소자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
KR100426495B1 (ko) * 2001-12-28 2004-04-14 한국전자통신연구원 단일 탄소 나노튜브를 이용한 반도체 소자 및 그 제조 방법
TWI220269B (en) * 2002-07-31 2004-08-11 Ind Tech Res Inst Method for fabricating n-type carbon nanotube device
TWI222742B (en) * 2003-05-05 2004-10-21 Ind Tech Res Inst Fabrication and structure of carbon nanotube-gate transistor
KR100624433B1 (ko) * 2004-08-13 2006-09-19 삼성전자주식회사 P형 반도체 탄소 나노튜브 및 그 제조 방법
JP2008235752A (ja) * 2007-03-23 2008-10-02 Toshiba Corp 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029547A (ko) * 2004-10-02 2006-04-06 삼성전자주식회사 n형 탄소 나노튜브를 구비한 n형 탄소나노튜브 전계효과트랜지스터 및 그 제조방법
KR20060050134A (ko) * 2004-10-13 2006-05-19 삼성전자주식회사 캐리어 트래핑 물질을 구비한 유니폴라 나노튜브트랜지스터 및 그 제조방법
KR20070002111A (ko) * 2005-06-30 2007-01-05 한국화학연구원 반도체 나노소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137356A (zh) * 2019-06-05 2019-08-16 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、电子装置
US11844227B2 (en) 2019-06-05 2023-12-12 Boe Technology Group Co., Ltd. Thin film transistor and manufacturing method thereof, and electronic device

Also Published As

Publication number Publication date
US7723223B2 (en) 2010-05-25
KR20090108459A (ko) 2009-10-15
US20090256175A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
KR101410933B1 (ko) 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터
US9064777B2 (en) Graphene switching device having tunable barrier
JP4938272B2 (ja) n型炭素ナノチューブ電界効果トランジスタ及びその製造方法
US9401435B2 (en) Reconfigurable electronic devices and operation method thereof
JP5336031B2 (ja) 大面積ナノ可能マクロエレクトロニクス基板およびその使用
US8772910B2 (en) Doping carbon nanotubes and graphene for improving electronic mobility
US9105853B2 (en) N-dopant for carbon nanotubes and graphene
US8742400B2 (en) Graphene switching device including tunable barrier
JP2008517468A (ja) ナノワイヤを基礎にした電子デバイスにおけるゲート開閉形態および改良された接点のための方法、システム、および装置
WO2007022359A2 (en) Vertical integrated silicon nanowire field effect transistors and methods of fabrication
US9831452B2 (en) Method for forming PN junction in graphene with application of DNA and PN junction structure formed using the same
US11437482B2 (en) Field effect transistor, method of fabricating field effect transistor, and electronic device
KR20050065274A (ko) 전계 효과 트랜지스터 및 그 제조 방법
KR101659816B1 (ko) 반도체 소자 및 그 제조 방법
US20080169472A1 (en) Field effect transistor
KR102059131B1 (ko) 그래핀 소자 및 이의 제조 방법
JP4661065B2 (ja) 相補型有機半導体装置
CN101714576A (zh) 半导体装置及其制造方法和操作方法
JP5176444B2 (ja) 半導体装置
CN107994078B (zh) 具有源极控制电极的场效应晶体管、制造方法和电子器件
Ramezani et al. Fundamental phenomena in nanoscale semiconductor devices
KR101408251B1 (ko) 나노와이어의 배열 방법
JP5706077B2 (ja) 半導体素子とその製造及び動作方法
KR101940305B1 (ko) 이온성 유전체 기반 수직구조형 전계효과 트랜지스터
Chang et al. Direct-write n-and p-type graphene channel FETs

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170518

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190520

Year of fee payment: 6