TW202317776A - 熔鋼之處理方法及鋼之製造方法 - Google Patents

熔鋼之處理方法及鋼之製造方法 Download PDF

Info

Publication number
TW202317776A
TW202317776A TW111122941A TW111122941A TW202317776A TW 202317776 A TW202317776 A TW 202317776A TW 111122941 A TW111122941 A TW 111122941A TW 111122941 A TW111122941 A TW 111122941A TW 202317776 A TW202317776 A TW 202317776A
Authority
TW
Taiwan
Prior art keywords
molten steel
slag
steel
molten
potential difference
Prior art date
Application number
TW111122941A
Other languages
English (en)
Other versions
TWI824575B (zh
Inventor
根岸秀光
村井剛
溝端圭介
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202317776A publication Critical patent/TW202317776A/zh
Application granted granted Critical
Publication of TWI824575B publication Critical patent/TWI824575B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本發明提出一種熔鋼之處理方法,其防止熔鋼中之金屬成分與熔渣中之氧化物反應而再氧化,可抑制中介物之生成,又,可使熔鋼低氮化。本發明之熔鋼之處理方法係使用直流電源,將與熔鋼相接之電極作為負極,將僅與熔渣相接之電極作為正極,通過兩電極對上述熔鋼與上述熔渣之間賦予電位差者;其特徵在於,其包括有:藉由於上述熔鋼中添加去氧劑而使上述熔鋼去氧之去氧步驟;及於上述去氧步驟後賦予上述電位差之步驟。進而,本發明係一種對所得之熔鋼進行成分調整後進行鑄造之鋼之製造方法。

Description

熔鋼之處理方法及鋼之製造方法
本發明係一種對熔鋼與熔渣之間賦予電位差的熔鋼之處理方法,具體而言,係關於一種對經去氧之熔鋼與熔渣之間賦予電位差的熔鋼之處理方法、及使用藉由該方法所熔製之熔鋼的鋼之製造方法。
為了減少鋼板之表面瑕疵等缺陷,重要的是減少成為其原因之一的鋼中之非金屬中介物(以下稱為「中介物」)。為了減少鋼中之中介物,習知採取了各種對策(西山紀念技術講座第182、183回「中介物控制與高清潔度鋼製造技術」社團法人日本鐵鋼協會.2004.10)。作為其對策之一,可舉例如下技術,即,抑制使熔鋼去氧之後,鋼中之Al、Si、Ti等成分與空氣或盛桶、餵槽(tundish)內之熔鋼上之熔渣中之氧化物反應而再氧化,生成中介物的情形。該技術係藉由將盛桶、餵槽與空氣阻隔而降低熔鋼上之熔渣之氧化度。
例如,於專利文獻1中揭示了一種餵槽內之完全密封方法,其為了在注入熔鋼前降低餵槽內之氧氣濃度,而將餵槽與蓋之間完全密閉,同時向餵槽內導入Ar氣體。
又,於專利文獻2中揭示了一種高清潔度熔鋼之製造方法,其係藉由於餵槽內之熔鋼中添加熔渣去氧劑及助焊劑,而使熔鋼上之熔渣中之T.Fe、MnO均為1重量%以下。進而,於專利文獻3中亦揭示了一種熔融金屬之清潔方法,其係於熔鋼上之熔渣中添加熔渣去氧劑,同時利用惰性氣體將熔渣浴面上密封。
又,於非專利文獻1中記載了藉由自外部對熔渣-金屬界面施加直流電壓,可降低溶存氧濃度。
又,氮氣對金屬材料而言為有害成分,於習知之製鋼製程中主要使熔鐵中之氮氣N 2吸附於熔鐵之脫碳處理時所產生之一氧化碳之氣泡表面而將其去除。因此,關於碳濃度較低之熔鋼,由於一氧化碳之產生量受到限制,因此無法利用相同之方法將氮氣去除至低濃度。
另一方面,為了減少CO 2排放量,則需要將製鋼製程自習知之使用高爐、轉爐之方法轉換至使鐵屑或還原鐵熔解之方法。於該情形時,有所得之熔融鐵之碳濃度變低,因上述原因而無法熔製低氮鋼之虞。
因此,提出一些使用熔渣自熔鋼脫氮之方法。例如,於專利文獻4中教示一種熔融不鏽鋼之脫氮方法,其係利用真空吹氧脫碳(VOD,vacuum oxygen decarburization)爐將熔鋼中之Al濃度保持在0.7 mass%以上之濃度至少5分鐘,生成氮化鋁(以下稱為「AlN」)而脫氮。
又,於專利文獻5中教示一種熔鋼之脫氮方法,其係藉由電爐,將以鐵屑作為主鐵源而熔製熔鋼,將該熔鋼出鋼、保持至其他精煉容器後,添加含有含Al物質之脫氮用助焊劑,使AlN轉移至熔渣中之後,對熔鋼吹送含氧氣體而脫氮。
又,於專利文獻6中教示一種熔融金屬之脫氮方法,其係於具有氣體頂吹功能之精煉容器中裝入熔融金屬,將該熔融金屬之表面利用以CaO及Al 2O 3為主成分之熔渣覆蓋後,將氧化性氣體以該氣體不與熔融金屬直接接觸之程度吹送至該被覆熔渣面,藉此進行脫氮。
又,於專利文獻7中教示一種熔鋼之脫氮方法,其係在藉由熔鋼之熔渣進行脫氮反應時,設為熔渣側為正且熔鋼側為負之電極配置而施加直流電壓,同時進行脫氮反應。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利特開昭63-188460號公報 專利文獻2:日本專利特開平8-49011號公報 專利文獻3:日本專利特開平1-294817號公報 專利文獻4:日本專利特開平5-320733號公報 專利文獻5:日本專利特開2007-211298號公報 專利文獻6:日本專利特開平8-246024號公報 專利文獻7:日本專利特開平4-9420號公報 [非專利文獻]
非專利文獻1:Steel making(煉鋼), 28(Aug. 2012)4, p.47-50(中文)
(發明所欲解決之問題)
然而,上述習知技術中存在如下問題。關於專利文獻1中所記載之餵槽內之完全密封方法,為了向餵槽內注入熔鋼,需要可於餵槽蓋中插入熔鋼注入用噴嘴之空間。進而,考慮到餵槽蓋及餵槽本體之熱變形,其存在有難以將餵槽完全密閉之問題。若於餵槽無法密閉之狀況下使用專利文獻1中所記載之密封方法而向餵槽內吹入惰性氣體,則產生自注入點或餵槽蓋之間隙夾帶空氣,因此惰性氣體之置換不充分之問題。
又,關於專利文獻2中所記載之高清潔度熔鋼之製造方法,亦存在如下之顧慮:不一定所有熔渣去氧劑均與熔渣反應,若一部分熔解於熔鋼中,則成分脫離,於再處理、變更為其他鋼種之情形時,最壞的情況是熔鋼成為鐵屑。進而,於專利文獻3中所記載之熔融金屬之清潔方法中,關於熔渣去氧,其與專利文獻2中所記載之熔鋼之製造方法存在相同顧慮。於專利文獻3中所記載之熔融金屬之清潔方法中,關於熔渣浴面上之密封,其記載有設置密封用蓋。然而,其被認為與專利文獻1中所記載之餵槽內之密封方法同樣地難以一直完全密閉。
又,藉由非專利文獻1中所記載之技術使鋼中之溶存氧濃度降低,可減少熔鋼去氧時之所需去氧劑量,亦可減少所生成之中介物之量。然而,藉由非專利文獻1中所記載之技術,並未抑制熔鋼去氧後之空氣或熔渣所導致之鋼中之去氧成分之反應,其能否獲得再氧化抑制的效果尚不清楚。
並且,由於非專利文獻1中所記載之技術係對電壓進行控制之方式(所謂定電壓控制),因而伴隨著攪拌時所產生之浴面變動而熔鐵與浸漬於熔渣側之電極接觸時,則會對電阻幾乎為0 Ω之熔鐵施加數10 V之電壓。因此,於電路中會流通極大之電流。結果,要安裝用以容許其之配線或電源容量、斷路器功能等設備保護對策係非現實之規模,若無法安裝則會引起設備破損,因此無法成為操作上實用之手段。
又,專利文獻4及專利文獻5中所記載之技術係利用AlN之生成以進行脫氮,其存在所生成之AlN之一部分殘留於熔鋼中,於後續步驟之鑄造時成為破裂之起點之問題。
又,為了使用利用AlN之生成之脫氮方法,熔製數十massppm左右之低氮鋼,如考慮到Al與N之熔解度乘積,則至少需要Al濃度為數mass%~10 mass%左右。或者,為了有效地利用脫氮反應,需要數百massppm左右之初始氮濃度。專利文獻4及專利文獻5中所記載之技術存在有熔製低氮鋼時步驟所需之成本過高,僅可應用於不鏽鋼等溶解氮量較高之鋼種之問題。
關於專利文獻6中所記載之技術,作為用以將熔鋼與氧化性氣體阻隔之條件,可舉例如: (1)確保熔渣量為至少每1噸熔鋼為15 kg; (2)將熔渣量、底吹氣體量、頂吹氣體組成或其流量、噴槍高度及氣體環境壓力等控制在適當之範圍內。 然而,由於條件(1)係根據填充熔鋼之容器之尺寸而增大熔渣量,條件(2)並無具體控制手段、控制範圍之記載,且確認氣體與熔鋼之阻隔之方法並不明確,因此適合條件不明確。進而,本發明人等確認到,即便在與專利文獻6中所記載之適合例相同之範圍內進行試驗,實際上亦會因氧化性氣體而使僅對熔渣-金屬界面施加之氧分壓增加,抑制熔渣-金屬間之氮氣移動,而脫氮速度變慢,在操作上並不實用。
專利文獻7中所記載之技術可將熔渣-金屬界面之電壓設為ΔE(V),根據式(1)確定脫氮能力。
[數1]
Figure 02_image001
此處, L N 0:未施加外部電壓時之熔渣-熔融金屬間平衡氮分配比(-) L N:施加外部電壓時之熔渣-熔融金屬間平衡氮分配比(-) F:法拉第常數(C/mol) R:氣體常數(J/mol/K) T:絕對溫度(K) ΔE:將熔融金屬側設為負時之熔渣-熔融金屬界面之電位(V)。
然而,其無法直接測定或控制上述式(1)中之ΔE。又,式(1)之成立僅限於如下情形:在熔鋼中僅氮氣進行反應,且該反應不為氮氣之擴散速度限制,即ΔE=活化過電壓η(V)之關係式成立。另一方面,製鋼反應係數個元素同時反應之競爭反應。在不對製鋼反應賦予主動攪拌之情形時,多數情況下該反應成為擴散速度之限制。由此種觀點而言,本發明人等確認到,在以專利文獻7中所記載之技術為前提之多元素且不賦予攪拌之反應系統中,式(1)並不成立。
因此,無法根據本來需要之脫氮量,根據式(1)及電路與熔渣之電阻值求出對電路施加之電壓。即,無法根據專利文獻7中所記載之技術推定作為對熔鋼與熔渣之間賦予電位差之手段而進行電流控制時所需的電路中流通之電流量。
本發明係鑒於此種情況所成,其提出一種熔鋼之處理方法,可防止熔鋼中之金屬成分與熔渣中之氧化物反應而再氧化,抑制中介物之生成,又,可使熔鋼低氮化。進而,本發明提出一種使用利用該熔鋼之處理方法所熔製之熔鋼的鋼之製造方法。 (解決問題之技術手段)
可有利解決上述問題之本發明的熔鋼之處理方法,係使用直流電源,將與熔鋼相接之電極作為負極,將僅與熔渣相接之電極作為正極,通過該兩電極對上述熔鋼與上述熔渣之間賦予電位差者;其特徵在於,其包括有:藉由於上述熔鋼中添加去氧劑而使上述熔鋼去氧之去氧步驟;及對上述去氧步驟後所得之經去氧之熔鋼賦予上述電位差之步驟。
此處,去氧步驟係指藉由於熔鋼中添加去氧劑並進行混合而使該熔鋼中所包含之金屬成分與游離氧反應,形成金屬氧化物,同時以抑制該熔鋼之再氧化為目的而使過量之去氧劑溶存於熔鋼中為止的步驟。
再者,關於本發明之熔鋼之處理方法,認為 (a)於上述去氧步驟中,對上述熔鋼與上述熔渣之間賦予上述電位差; (b)在上述去氧步驟後賦予上述電位差時,將上述熔渣中之屬於CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)設為0.4以上且1.8以下; (c)在上述去氧步驟後賦予上述電位差時,將施加電流密度設為1000(A/m 2)以下等可為更佳之解決手段。
進而,本發明之鋼之製造方法之特徵在於對藉由上述熔鋼之處理方法所熔製之熔鋼任意地進行成分調整後進行鑄造。 (對照先前技術之功效)
根據本發明,可防止熔鋼中之金屬成分與熔渣中之氧化物反應而再氧化,抑制中介物之生成。
以下,基於圖式,對本實施形態之熔鋼之處理方法進行說明。首先,對用以實施本實施形態之熔鋼之處理方法之熔鋼處理裝置進行說明,其次,對本實施形態之熔鋼之處理方法進行說明。再者,各圖式係示意性者,其存在有與現實不同之情形。又,以下實施形態係例示用以實現本發明之技術思想之裝置或方法者,惟其構成並不被限定於下述構成。即,本發明之技術思想可於申請專利範圍所記載之技術範圍內施加各種變更。
圖1A~圖1C係適合實施本實施形態之熔鋼之處理方法之熔鋼處理裝置101~103的示意圖。圖1A係表示藉由RH真空脫氣裝置8對熔鋼進行處理時之實施形態中所使用之熔鋼處理裝置101的示意圖。圖1B係表示藉由收容有熔鋼之盛鋼桶等搬送、保持熔鋼並於盛鋼桶精煉爐中對熔鋼進行處理時之實施形態中所使用之熔鋼處理裝置102的示意圖。圖1C係表示用於自盛鋼桶向連續鑄造機供給熔鋼時之實施形態且具備用作緩衝器之餵槽之熔鋼處理裝置103的示意圖。以下,對熔鋼處理裝置101~103進行說明。
圖1A係表示本發明之熔鋼之處理方法中所使用之熔鋼處理裝置101的示意圖。圖1A所示之熔鋼處理裝置101具備用以填充熔鋼3之盛鋼桶1。於盛鋼桶1之內壁內襯有絕緣性耐火物2。作為絕緣性耐火物2,於製鋼中多數情況下使用Al 2O 3系煉磚或不定形耐火物。又,作為絕緣性耐火物2,亦可使用不具有導電性之其他絕緣性耐火物代替。
於熔鋼處理裝置101中,於內襯有絕緣性耐火物2之盛鋼桶1等容器中填充熔鋼3,於其上添加助焊劑,製成熔渣4。其次,將RH真空脫氣裝置8之下部之浸漬管浸漬於盛鋼桶1中,進行熔鋼3之環流處理。於盛鋼桶1之內部,將導電性物質5配置於熔渣4側與熔鋼3側(於圖1A所示之熔鋼處理裝置101之例中係在爐底)之兩側,通過導線6與直流穩定化電源7連接。與配置於熔渣4側之導電性物質5連接之導線6係與直流穩定化電源7之+側(正極)連接。另一方面,與配置於熔鋼3側之導電性物質5連接之導線6係與直流穩定化電源7之-側(負極)連接。
於熔鋼處理裝置101之例中,雖於爐底配置有熔鋼3側之導電性物質5,但亦可於盛鋼桶1之爐壁配置導電性物質5。又,如下述圖1B所示,配置於熔鋼3側之導電性物質5之一部分亦可以配置成貫通熔渣4而浸漬於熔鋼3中。作為導電性物質5,可使用石墨軸或MgO-C系耐火物,若為具有導電性且於熔鋼之溫度區域(1400~1750℃)不致熔解者,則亦可利用其他物質代替。
使用如圖1A所示之熔鋼處理裝置101,自外部電源流通電流,藉此可於熔渣-熔鋼間流通電流。如此,使用如圖1A所示之熔鋼處理裝置101,將導電性物質5分別浸漬於熔鋼3、熔渣4中而賦予電位差,藉此可抑制藉由RH真空脫氣裝置8對熔鋼3進行處理時熔鋼之再氧化。
其次,圖1B係表示本發明之熔鋼之處理方法中所使用之熔鋼處理裝置102的示意圖。如圖1B所示,於熔鋼處理裝置102中,配置於熔鋼3側之導電性物質5亦可其一部分與熔渣4接觸。於該情形時,需要以如下方式配置:浸漬於熔渣4側之導電性物質5之前端至熔渣-熔鋼界面之最短距離L 1小於熔渣4內之由2個導電性物質5所形成之表面間之最短距離L 2。再者,關於設置於熔鋼3側之導電性物質5之配置,亦可如圖1A所示設置於盛鋼桶1之爐底或爐壁。
使用如圖1B所示之熔鋼處理裝置102,自直流穩定化電源7流通電流,藉此可於熔渣-熔鋼間流通電流。如此,使用如圖1B所示之熔鋼處理裝置102,將導電性物質5分別浸漬於熔鋼3及熔渣4中而賦予電位差,藉此可抑制熔鋼3之搬送中、直至鑄造為止之待機中熔鋼之再氧化。
又,使用如圖1B所示之熔鋼處理裝置102,在供於盛鋼桶精煉等時,於熔渣-熔鋼間流通電流時,對熔渣4中之組成進行控制,藉此可促進自熔鋼脫氮。
此時,更佳為對熔鋼處理裝置102追加噴槍或底吹多孔,經由該等向熔鋼3中吹入氣體,對浴液賦予攪拌。又,更佳為將熔鋼處理裝置102收納於真空容器中,於減壓氣體環境下進行處理。
進而,圖1C係表示本發明之熔鋼之處理方法中所使用之熔鋼處理裝置103的示意圖。如圖1C所示,熔鋼處理裝置103係於自盛鋼桶1向連續鑄造機供給熔鋼3時使用,且具備用作為所謂緩衝器之餵槽9。
於餵槽9中插入有用以將熔鋼3注入餵槽9之本體內部之長噴嘴10。進而,於餵槽9之底部設置有用以將注入至餵槽9之本體內部之熔鋼3釋放之滑動噴嘴11。於滑動噴嘴11之下部設置有浸漬噴嘴12。藉由打開滑動噴嘴11,注入至餵槽9之本體內部之熔鋼3通過浸漬噴嘴12注入至鑄模(未圖示)中。又,於餵槽9上部設置有餵槽蓋13。
如此,使用如圖1C所示之熔鋼處理裝置103,將導電性物質5分別浸漬於熔鋼3、熔渣4中而賦予電位差,藉此可在連續鑄造熔鋼3時,有效率地抑制熔鋼3之盛鋼桶1中之空氣或熔渣4中之氧化物所導致的熔鋼3之再氧化。以下,對使用熔鋼處理裝置101~103之本實施形態之熔鋼之處理方法進行說明。
[第1實施形態] 以下對第1實施形態之熔鋼之處理方法進行說明。本實施形態係在藉由RH真空脫氣裝置對熔鋼進行處理時應用本發明之熔鋼之處理方法。本實施形態之熔鋼之處理方法係使用直流電源,將與熔鋼相接之電極作為負極,將僅與熔渣相接之電極作為正極,通過該兩電極對上述熔鋼與上述熔渣之間賦予電位差,且其包括有:藉由於上述熔鋼中添加去氧劑而使上述熔鋼去氧之去氧步驟、及對上述去氧步驟後所得之經去氧之熔鋼賦予上述電位差之步驟。以下,對各步驟進行說明。
(使熔鋼去氧之去氧步驟) 本實施形態之熔鋼之處理方法包括使熔鋼去氧之去氧步驟。熔鋼之去氧係藉由於熔鋼中添加去氧劑而進行。具體而言,可按照如下順序進行。首先,藉由轉爐將供於脫碳精煉之熔鋼3出鋼至盛鋼桶1中。再者,出鋼至盛鋼桶1內之熔鋼3上存在熔渣4。
較理想為於熔渣4中添加含Al熔渣改質劑作為熔渣去氧劑。含Al熔渣改質劑係以金屬Al粒子為主體。金屬Al粒子之粒子半徑較佳為2.0~10.0 mm。其原因在於,若金屬Al粒子之粒子半徑為上述範圍,則含Al熔渣改質劑不致熔入至熔鋼3中,與熔渣4中存在之FeO、Fe 2O 3、MnO等低級氧化物充分地反應,其反應效率提高。
其次,使用圖1A所示之熔鋼處理裝置101所具備之RH真空脫氣裝置8進行熔鋼3之脫碳處理等。於熔鋼3為未去氧之狀態下,藉由該RH真空脫氣裝置8進行RH真空脫氣精煉,而進行熔鋼3之脫碳反應。
在熔鋼3之脫碳反應結束後,對熔鋼3中存在之氧之溶存氧濃度進行測定。基於所測得之溶存氧濃度,確定去除熔鋼3中存在之氧所需之去氧劑之量、及所需組成分之金屬Al等。之後,自投入滑槽(未圖示)將去氧劑添加至真空槽內之熔鋼3中,對熔鋼3進行去氧、成分調整。藉由於熔鋼3中添加去氧劑,於熔鋼3之製鋼精煉過程中將為了去除碳、矽、磷等雜質而於熔鋼3中過量添加之氧去除。作為用以去除熔鋼3中存在之氧之去氧劑,可例示粒狀鋁(金屬Al)、錳鐵、矽鐵、鈦鐵等合金鐵;矽鈣合金等。
(對去氧後之熔鋼賦予電位差之步驟) 本實施形態之熔鋼之處理方法包括對上述去氧步驟後所得之經去氧之熔鋼賦予上述電位差的步驟。去氧步驟後賦予電位差之步驟係對去氧後之熔鋼與熔渣之間賦予所需電位差的步驟。
上述步驟中去氧後之熔鋼與熔渣之間所賦予之電位差,需要為用以使去氧後之熔鋼與熔渣之間開始流通電流的電位差以上。所需之電位差可藉由於根據熔鋼及熔渣之成分以熱力學方式算出之理論電解電壓中考慮過電壓而確定。關於去氧步驟後賦予電位差之步驟中之電位差之賦予,可藉由電流控制來控制,亦可藉由電壓控制來控制。 此處,於電壓控制(所謂定電壓控制)中,因在伴隨攪拌等之情形時所產生之浴面變動而熔鋼與浸漬於熔渣側之電極接觸時,若對電阻幾乎為0 Ω之熔鋼施加數十V之電壓,則於電路中會流通極大之電流。因此,為了容許於電路中流通極大之電流,於熔鋼處理裝置中需要用於保護配線或電源容量、斷路器功能等而安裝之保護設備。結果,熔鋼處理裝置之設備成本上升。又,在無法於熔鋼處理裝置之設備安裝上述保護設備之情形時,會導致該設備破損。考慮到此種技術事項,於去氧步驟後賦予電位差之步驟中之電位差之賦予較佳為電流控制。
如以上所說明,根據第1實施形態之熔鋼之處理方法,在利用RH真空脫氣裝置對熔鋼進行處理時於熔鋼中添加去氧劑而使熔鋼去氧,對去氧後之熔鋼賦予電位差,藉此可有效率地抑制由去氧後之熔鋼之盛鋼桶中之空氣或熔渣中之氧化物所導致的熔鋼之再氧化。
[第2實施形態] 以下對第2實施形態之熔鋼之處理方法進行說明。即,本實施形態係在為了藉由連續鑄造而鑄造RH真空脫氣精煉結束後之熔鋼3,而將盛鋼桶1搬送至連續鑄造機時,應用本發明之熔鋼之處理方法。
圖1B係表示藉由收容有熔鋼之盛鋼桶等搬送、保持熔鋼並於盛鋼桶精煉爐中對熔鋼進行處理之實施形態中所使用之熔鋼處理裝置102的示意圖。如圖1B所示,配置於熔鋼3側之導電性物質5可其一部分與熔渣4接觸。於該情形時,需要以如下方式配置:浸漬於熔渣4側之導電性物質5之前端至熔渣-熔鋼界面之最短距離L 1小於熔渣4內之導電性物質5表面間之最短距離L 2
此時,如圖1B所示,藉由將導電性物質5分別浸漬於熔鋼3、熔渣4中,賦予電位差,而抑制熔鋼3之搬送中及直至鑄造為止之待機中之熔鋼3的再氧化。此處,關於設置於熔鋼3側之導電性物質5之配置,亦可如圖1A所示設置於盛鋼桶1中。
如以上所說明,根據第2實施形態之熔鋼之處理方法,在將注入有熔鋼3之盛鋼桶1搬送至連續鑄造機時於熔鋼中添加去氧劑而使熔鋼去氧,對去氧後之熔鋼賦予電位差,藉此在將盛鋼桶搬送至連續鑄造機時,可有效率地抑制由空氣或熔渣中之氧化物所導致之熔鋼之再氧化。
[第3實施形態] 以下對第3實施形態之熔鋼之處理方法進行說明。即,本實施形態之熔鋼之處理方法係在將盛鋼桶搬送至連續鑄造機後,在連續鑄造熔鋼時應用本發明之熔鋼之處理方法。
圖1C係表示用於第3實施形態之具備用作為緩衝器之餵槽9之熔鋼處理裝置103的示意圖。如圖1C所示,盛鋼桶1到達連續鑄造機後,於餵槽9上設置盛鋼桶1,自盛鋼桶1經由長噴嘴10向餵槽9之本體內部注入熔鋼3。熔鋼3之餵槽9內之熔鋼高度達到特定位置後,打開滑動噴嘴11,通過浸漬噴嘴12向鑄模(未圖示)中注入熔鋼3,開始連續鑄造。
較理想為在向餵槽9中注入熔鋼3前,利用惰性氣體將餵槽9之內部置換。進而較理想為在熔鋼3之鑄造中亦向餵槽9之內部導入惰性氣體。又,在通過導電性物質5賦予電位差前,於餵槽9之內部添加成為熔渣4之來源之助焊劑。作為助焊劑,可使用以CaO為主成分之粉末狀助焊劑。
當熔渣4之高度與浸漬於熔渣4側之導電性物質5之高度相等時,藉由賦予電位差,而抑制其以後之處理步驟中之熔鋼之再氧化。此處,浸漬於熔渣4側之導電性物質5之高度可固定為熔鋼3之上限以上的一定高度,更理想為利用可配合熔鋼3之高度而上下移動之機構,對該導電性物質5之高度進行調整,藉此能夠確保可賦予電位差之期間。
再者,如圖1C所示,本實施形態之熔鋼之處理方法中所使用之連續鑄造機,係具備一個線料之連續鑄造機之餵槽的示意圖。然而,由於具備數個線料之連續鑄造機之餵槽亦可獲得相同效果,因此連續鑄造機所具備之線料之個數並無特別限制。
如以上所說明,根據第3實施形態之熔鋼之處理方法,藉由在搬送已去氧之熔鋼3時,對去氧後之熔鋼3賦予電位差,可在連續鑄造熔鋼時,有效率地抑制由空氣或熔渣中之氧化物所導致之熔鋼之再氧化。
再者,於上述第1~第3實施形態之熔鋼之處理方法中,電位差之賦予較理想者為於熔鋼之RH真空脫氣精煉時、熔鋼之搬送時、熔鋼之連續鑄造時之所有實施製程中進行,但由於各實施製程均可獲得效果,因此實施製程並無特別限定。
[第4實施形態] 以下對第4實施形態之熔鋼之處理方法進行說明。本實施形態之熔鋼之處理方法之特徵在於:於上述實施形態之熔鋼之處理方法中,在藉由於熔鋼中添加去氧劑而使熔鋼去氧之去氧步驟中賦予電位差。即,本實施形態之熔鋼之處理方法之特徵在於:在RH真空脫氣精煉時、將注入有RH真空脫氣精煉結束後之熔鋼之盛鋼桶搬送至連續鑄造機時,作為使熔鋼去氧之去氧步驟之預處理步驟,對去氧前之熔鋼與熔渣之間賦予預處理用電位差。
本實施形態之熔鋼之處理方法係在使熔鋼3去氧時,亦通過導電性物質5對去氧前之熔鋼3與熔渣4之間賦予預處理用電位差。藉由對去氧前之熔鋼3與熔渣4之間賦予預處理用電位差,熔鋼3中之溶存氧濃度降低,因此可減少所需去氧劑之量。又,可在真空槽內所添加之去氧劑無法完全與熔鋼3中之氧反應而流入盛鋼桶1時,抑制由該高濃度之去氧成分及熔渣4或來自大氣之氧所導致的熔鋼3之再氧化。之後,在對熔鋼3之溫度、其成分進行調整時,通過導電性物質5對經去氧之熔鋼3賦予電位差,藉此進一步抑制由熔渣4或來自大氣之氧所導致的熔鋼3中之Al等去氧元素之再氧化。
如以上所說明,根據第4實施形態之熔鋼之處理方法,於熔鋼中添加去氧劑而使熔鋼去氧,對去氧後之熔鋼賦予電位差,進而在使熔鋼去氧之去氧步驟中亦賦予電位差,藉此可有效率地抑制由去氧後之熔鋼之盛鋼桶中之空氣或熔渣中之氧化物所導致的熔鋼之再氧化。
[第5實施形態] 以下對第5實施形態之熔鋼之處理方法進行說明。本實施形態之熔鋼之處理方法之特徵在於:於上述實施形態之熔鋼之處理方法中,在賦予電位差時,將施加電流密度設為1000(A/m 2)以下。即,本實施形態之熔鋼之處理方法之特徵在於:在RH真空脫氣精煉時、為了連續鑄造RH真空脫氣精煉結束後之熔鋼而自盛鋼桶搬送至連續鑄造機時、及熔鋼之連續鑄造時,在賦予電位差之際,將施加電流密度(A/m 2)特定在最佳範圍內。
此處,藉由Al等去氧劑而去氧後之熔鋼之盛鋼桶中之空氣或熔渣所導致的存在於熔鋼中之金屬成分之再氧化行為,係藉由著眼於熔鋼中之Al濃度而明確。即,若熔鋼中之Al濃度為作為Al去氧鋼所需之Al濃度,則熔鋼中之Al濃度幾乎與時間成正比地減少。根據該情況,再氧化速度v可藉由以下之式(2)來定義。
[數2]
Figure 02_image003
此處,於上述式(2)中,[Al]表示熔鋼中之Al濃度,t表示時間,K表示再氧化速度常數,再氧化速度v等同於K再氧化速度常數。
圖2係表示屬於施加電流密度(A/m 2)與再氧化速度常數之比的Ka/Ko(-)之關係的圖。於圖2所示之圖中,▲表示使用300 kg爐實施熔鋼之處理之情形,●表示使用30 kg爐實施熔鋼之處理之情形。基於圖2,對賦予電位差之情形時之再氧化速度常數Ka(mass%/分鐘)與賦予電位差前之再氧化速度常數Ko(mass%/分鐘)進行比較。
如圖2所示,發現於使用30 kg爐實施熔鋼之處理之情形時,即便於▲為使用300 kg爐實施熔鋼之處理之情形時,再氧化速度常數之比的Ka/Ko(-)亦存在對施加電流密度(A/m 2)之依賴性。根據圖2可知,施加電流密度超過1000(A/m 2)時之再氧化速度常數Ka之增加率之斜率較小。因此,當施加電流密度超過1000(A/m 2)時並無法期待由施加電流密度之增加所引起之再氧化速度常數之增加效果。因此,於本實施形態之熔鋼之處理方法中,較理想為在賦予電位差時,將施加電流密度設為1000(A/m 2)以下。
以上述方式獲得之施加電流密度設為J a(A/m 2)。此處,在根據施加電流密度J a(A/m 2)算出電路中流通之電流量I a(A)時,使用電流量I a(A)=施加電流密度J a(A/m 2)×接觸面積A(m 2)之關係式。在使用該關係式算出電流量I a(A)時,較理想為採用盛鋼桶(容器)內所填充之熔渣與熔鋼之接觸面積A(m 2)作為接觸面積A(m 2)。然而,實際上對熔鋼進行處理時,多數情況下正確之上述接觸面積A(m 2)因對熔鋼賦予攪拌等影響而不明確。因此,可將考慮到內襯於盛鋼桶1(容器)之絕緣性耐火物2的熔渣-熔鋼界面位置之裝置之內徑截面積A'(m 2)用作為接觸面積A(m 2),算出電流量I a(A)。
其原因在於,通過導電性物質5,熔渣4本身作為+極(正極)發揮作用,熔鋼3本身作為-極(負極)發揮作用。發明人確認到,即便變更熔渣4側之導電性物質5與熔鋼3側之導電性物質5之前端部分的截面積之比率,亦不會對再氧化速度造成影響。
如以上所說明,根據第5實施形態之熔鋼之處理方法,藉由在賦予電位差時,將施加電流密度設為1000(A/m 2)以下,可有效率地抑制由去氧後之熔鋼之盛鋼桶中之空氣或熔渣中之氧化物所導致的熔鋼之再氧化。再者,上述電位差之賦予較理想為於RH真空脫氣精煉時、盛鋼桶搬送時、連續鑄造時之所有實施製程中進行,但各實施製程均可獲得效果。因此,本發明之熔鋼之處理方法可不特別限定實施製程而應用。
[第6實施形態] 以下對第6實施形態之熔鋼之處理方法進行說明。本實施形態之熔鋼之處理方法之特徵在於:於上述實施形態之熔鋼之處理方法中,在去氧步驟後賦予電位差時,使熔渣中之屬於CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)為0.4以上且1.8以下。即,於本實施形態之熔鋼之處理方法中,在對經去氧之熔鋼賦予電位差時,對熔鋼中之氮濃度進行調查,結果新發現到視條件而在去氧同時亦進行脫氮。
基於該新發現,本發明人對於藉由賦予電位差可進行脫氮之條件,著眼於熔鋼中之Al濃度[Al]進行詳細調查。在進行調查之過程中,發現了在上述專利文獻6中所記載之熔融金屬之脫氮方法中,進行脫氮所需之熔鋼中之Al濃度[Al]要求為0.3 mass%至2 mass%之濃度,即便於0.1 mass%以下亦進行脫氮,但極限氮濃度存在較大差異。
因此,於本實施形態之熔鋼之處理方法中,對熔渣組成、主要是熔渣中之屬於CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)對脫氮造成之影響進行調查。具體而言,藉由小型高頻真空感應熔解爐熔解15 kg之熔鋼,將熔鋼中之Al濃度[Al]調整為0.1 mass%,形成15 kg/t以上之含CaO及Al 2O 3之熔渣時,使C/A(-)於0.4至2.0間擺動,測定此時之極限氮濃度(massppm)。於圖3中示出熔渣中之屬於CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)與極限氮濃度(ppm)之關係(脫氮效果)。
如圖3所示,於C/A(-)為0.4~1.2之範圍內脫氮效果持平,自C/A超過1.2之點開始脫氮效果下降,當超過1.6時,極限氮濃度(massppm)急遽上升,當超過1.8時,未達到低氮濃度區域(氮濃度為35 massppm以下)。如此,熔渣組成之渣化率越高,對脫氮反應越有利,CaO與Al 2O 3之質量比C/A較佳為處於0.4~1.8之範圍內,進而更佳為處於0.7~1.7之範圍內。即,於本實施形態之熔鋼之處理方法中,為了進行脫氮,較理想為在賦予電位差時,使熔渣中之C/A(-)為0.4以上且1.8以下。
於本實施形態之熔鋼之處理方法中,熔渣中之MgO濃度較佳為較低以促進脫氮,由兼顧盛鋼桶等耐火物壽命而言,熔渣4中亦可包含MgO。熔渣4中之MgO濃度較佳為5.0 mass%以下。由保護盛鋼桶等耐火物之觀點而言,在需要使其濃度增加之情形時,較佳為MgO濃度超過5.0 mass%且每增加1.0 mass%使熔鋼之溫度增加5℃以上。又,熔渣中之MgO濃度之下限並無特別限定,亦可為0 mass%。
於本實施形態之熔鋼之處理方法中,使用圖1B所示之熔鋼處理裝置102,將導電性物質5分別浸漬於熔鋼3、及C/A(-)為0.4以上且1.8以下之熔渣4中,賦予電位差,藉此促進脫氮。此處,關於設置於熔鋼3側之導電性物質5之配置,可如圖1A所示設置於盛鋼桶1中。
於本實施形態之熔鋼之處理方法中,更佳為經由噴槍或底吹多孔塞向熔鋼3中吹入氣體,對浴液賦予攪拌。關於對浴液進行攪拌時所採用之攪拌動力密度之上限,由於即便大量吹入氣體亦無法有效地利用而吹出,因此可將5000 W/t左右設為上限,在隨著攪拌動力密度之上升可能發生之不良情況(例如基體金屬附著於爐蓋)不致發生之範圍內適當設定。
又,本實施形態之熔鋼之處理方法更佳為在減壓氣體環境下對熔鋼進行處理。於在減壓氣體環境下進行本實施形態之熔鋼之處理方法之情形時,其氣體環境壓力較佳為1.0×10 5Pa以下,進而較佳為0.7×10 5Pa以下。又,於在減壓氣體環境下進行本實施形態之熔鋼之處理方法之情形時,由於過度之減壓會導致排氣系統等設備之費用增加,因此氣體環境壓力之下限較佳為1.0×10 3Pa左右。
如以上所說明,根據第6實施形態之熔鋼之處理方法,藉由使熔鋼3去氧,對去氧後之熔鋼3與組成經控制之熔渣4賦予電位差,可不使熔鋼中之Al濃度[Al]為高濃度而有效率地促進自熔鋼之脫氮。
[第7實施形態] 以下對第7實施形態之鋼之製造方法進行說明。本實施形態之鋼之製造方法之特徵在於:對藉由上述實施形態之熔鋼之處理方法所熔製之熔鋼,任意地調整其成分後進行鑄造。即,本實施形態之鋼之製造方法之技術特徵在於:鑄造採用上述實施形態之熔鋼之處理方法所熔製之熔鋼。即,本實施形態之鋼之製造方法係將藉由上述實施形態之熔鋼之處理方法對熔鋼進行處理所熔製的熔鋼作為鋼之鑄造材料。
此處,藉由上述實施形態之熔鋼之處理方法所熔製之熔鋼由於中介物減少,且屬於低氮之熔鋼,因此可容易地調整其成分。於本實施形態之鋼之製造方法中,熔鋼之成分調整及熔鋼之鑄造並無特別限制,可藉由常規方法進行。又,由於本實施形態之鋼之製造方法將上述中介物經減少且低氮之熔鋼用作為鋼之鑄造材料,因此藉由本實施形態之鋼之製造方法所製造之鋼的中介物減少,且成為低氮之鋼。
即,藉由將利用本實施形態之鋼之製造方法所製造之鋼用作為鋼製品之材料,可獲得表面瑕疵等缺陷經減少之低氮之鋼製品。由此種技術觀點而言,藉由本實施形態之鋼之製造方法所獲得之鋼製品的用途並無限定,可廣泛且適宜地使用。其中,尤其適合藉由壓延處理所製造之薄鋼板、厚鋼板、及藉由該等所製造之鋼製品。
如以上所說明,根據第7實施形態之鋼之製造方法,藉由採用上述實施形態之熔鋼之處理方法,鑄造中介物之生成經抑制之熔鋼,可製造表面瑕疵等缺陷經減少之低氮之鋼。
[其他實施形態] 以上,已參照實施形態對本發明進行了說明,但本發明並不受限定於上述實施形態。本發明之構成或詳細在本發明之技術範圍內,熟悉此行技藝者可予理解並作各種變更。 [實施例]
<實施例1> 將碳濃度為0.02~0.06質量%之約300噸之熔鋼自轉爐以未去氧狀態直接出鋼至內徑3.6 m之盛鋼桶中。出鋼後,於RH真空脫氣裝置中進行真空脫碳處理,將碳濃度調整至0.01~0.02質量%,添加與熔鋼中之溶存氧濃度相當之量之金屬Al。
之後,對於熔渣,通過石墨軸於外部電源之+極(正極)連接導線,對於熔鋼,通過MgO-C煉磚於外部電源之-極(負極)連接導線。藉由RH進行熔鋼之成分調整等環流處理時,使用直流穩定化電源,利用定電流施加法,於電路中流通電流。藉由RH環流處理調整熔鋼之溫度及其成分後,採取盛鋼桶內之熔鋼之樣品,供於分析。作為比較例,亦實施未流通電流之情形(No.9~13)。
作為處理條件,設定RH去氧經過3分鐘後之熔鋼中之Al mass%濃度、賦予電位差時之電流施加密度Ja(A/m 2)、RH去氧後之處理時間(分鐘)。然後,算出各處理條件下之再氧化速度常數K(mass%/分鐘)、及作為發明例之流通電流之No.1~8之Al再氧化速度常數Ka與作為比較例之未流通電流之No.9~13之平均再氧化速度常數Ko之比的再氧化速度常數比Ka/Ko(-),對熔鋼之再氧化之抑制進行評價。於表1中示出處理條件及處理結果。
[表1]
No. RH去氧3分鐘後Al濃度 (mass%) 電流施加密度Ja (A/m 2) RH去氧後處理時間 (分鐘) RH結束後Al濃度 (mass%) 再氧化速度常數K (mass%/分鐘) 再氧化速度常數比Ka/Ko (-) 備註
1 0.045 10 7 0.033 0.00171 0.90 發明例
2 0.039 100 7 0.029 0.00143 0.75 發明例
3 0.041 100 6 0.032 0.00150 0.79 發明例
4 0.041 200 9 0.028 0.00144 0.76 發明例
5 0.032 600 5 0.026 0.00120 0.63 發明例
6 0.036 600 6 0.028 0.00133 0.70 發明例
7 0.034 1000 8 0.025 0.00113 0.59 發明例
8 0.048 1200 7 0.040 0.00114 0.60 發明例
9 0.052 0 8 0.036 0.00200 1.05 比較例
10 0.044 0 5 0.035 0.00180 0.94 比較例
11 0.039 0 7 0.027 0.00171 0.90 比較例
12 0.031 0 7 0.018 0.00186 0.97 比較例
13 0.043 0 6 0.030 0.00217 1.14 比較例
如表1所示可知,相較於未流通電流之No.9~13(比較例),由於流通電流之No.1~8(發明例)之再氧化速度常數較小,因此可抑制熔鋼中之金屬成分之再氧化。在以大於1000(A/m 2)之施加電流密度流通電流之試驗(No.8)中,與以1000(A/m 2)之施加電流密度流通電流之試驗(No.7)相比,再氧化速度並無變化。根據該情況,可知以超過1000(A/m 2)之電流密度流通電流不會對再氧化速度造成較大影響。
<實施例2> 將碳濃度為0.02~0.06mass%之約300噸之熔鋼自轉爐以未去氧狀態直接出鋼至內徑3.6 m之盛鋼桶中,出鋼後,於RH真空脫氣裝置中進行真空脫碳處理,使熔鋼中之碳濃度降低至0.003 mass%以下。之後,對於熔渣,通過石墨軸於外部電源之+極(正極)連接導線,對於熔鋼,通過MgO-C煉磚於外部電源之-極(負極)連接導線。藉由RH真空脫氣裝置進行成分調整等環流處理時,使用直流穩定化電源,利用定電流施加法,於電路中流通電流。
之後,藉由溶存氧測定用探針對熔鋼中之溶存氧進行測定,添加用於在未流通電流時去氧及熔鋼中殘留0.035 mass%所需量之金屬Al。添加金屬Al後亦保持流通電流之狀態,藉由RH環流處理來調整溫度、熔鋼之成分後,採取盛鋼桶內之熔鋼之樣品,供於分析。作為比較,亦實施未流通電流之情形。
作為處理條件,設定RH去氧經過3分鐘後之熔鋼中之Al濃度(mass%)、賦予電位差時之電流施加密度Ja(A/m 2)、電流施加時之氧濃度[O](massppm)、RH去氧經過3分鐘後之熔鋼中之Al濃度(mass%)、RH去氧後之處理時間(分鐘)、RH去氧結束後之熔鋼中之Al濃度(mass%)。然後,對各處理條件下之再氧化速度常數K(mass%/分鐘)進行測定。進而,算出作為發明例之流通電流之No.14~18之Al之再氧化速度常數Ka、與作為比較例之未流通電流之No.19~21之平均再氧化速度常數Ko之比的再氧化速度常數比Ka/Ko(-),對再氧化之抑制進行評價。於表2中示出處理條件及處理結果。
[表2]
No. RH脫碳 結束時[O] (massppm) 電流施加 密度Ja (A/m 2) 電流施加 時[O] (massppm) RH去氧3分 鐘後Al濃度 (mass%) RH去氧後 處理時間 (分鐘) RH結束 後Al濃度 (mass%) 再氧化速度 常數K (mass%/分鐘) 再氧化速度 常數比Ka/Ko (-) 備註
14 352 50 180 0.039 6 0.030 0.00150 0.79 發明例
15 288 50 138 0.041 7 0.031 0.00143 0.75 發明例
16 297 100 118 0.046 8 0.035 0.00138 0.72 發明例
17 334 200 104 0.051 7 0.041 0.00143 0.75 發明例
18 245 600 77 0.053 8 0.042 0.00138 0.72 發明例
19 262 0 262 0.033 5 0.024 0.00180 0.94 比較例
20 336 0 336 0.036 5 0.026 0.00200 1.05 比較例
21 277 0 277 0.033 6 0.022 0.00183 0.96 比較例
如表2所示可知,相較於未流通電流之No.19~21(比較例),由於流通電流之No.14~18(發明例)的RH去氧3分鐘後之熔鋼中之Al濃度亦較高,再氧化速度亦較慢,因此可抑制熔鋼之再氧化。
<實施例3> 將容量30 t之單線料連續鑄造機用餵槽蓋上蓋後,向餵槽內吹入Ar氣體。再者,於餵槽內置入CaO-Al 2O 3二元系、CaO-Al 2O 3-MgO三元系、或CaO-Al 2O 3-SiO 2-MgO四元系助焊劑。
自盛鋼桶經由長噴嘴向上述餵槽內注入熔鋼中之碳濃度為0.03 mass%之低碳鋼。在該低碳鋼開始注入後,餵槽內之熔鋼浴面高度達到特定位置後開始鑄造。之後,在餵槽內之熔鋼浴面高度固定後,對於熔渣,通過石墨軸於外部電源之+極(正極)連接導線,對於熔鋼,通過MgO-C煉磚於外部電源之-極(負極)連接導線,使用直流穩定化電源,利用定電流施加法,於電路中流通電流。於表3中示出處理條件及處理結果。
作為處理條件,設定RH結束後(去氧後)之熔鋼中之Al濃度、產出量(t/hr)、賦予電位差時之電流施加密度Ja(A/m 2)。作為處理結果,對由賦予電位差後之熔鋼所形成之鋼坯之清潔度進行評價。具體而言,自鑄造中期之鋼坯採取樣品,對鋼中之氧化物個數進行測定。算出流通電流之No.22~26(實施例)中之樣品之鋼中之氧化物平均個數與未流通電流之No.27~29(比較例)中之樣品之鋼中之氧化物平均個數的比(鋼坯清潔度(指數)),對熔鋼之再氧化之抑制進行評價。再者,熔鋼中之氧化物個數之測定係藉由利用掃描式電子顯微鏡對樣品剖面經研磨者進行成分分析、個數測定而進行。
[表3]
No. RH結束後Al濃度 (mass%) 產出量(t/hr) 電流施加密度Ja (A/m 2) 鋼坯清潔度(指數) 備註
22 0.036 5.2 50 0.86 發明例
23 0.029 3.5 50 0.83 發明例
24 0.027 5.5 100 0.81 發明例
25 0.028 5.2 500 0.77 發明例
26 0.032 3.8 500 0.74 發明例
27 0.028 5.2 0 1.03 比較例
28 0.035 5.5 0 1.01 比較例
29 0.040 3.3 0 0.96 比較例
如表3所示可知,相較於未流通電流之No.27~29(比較例),由於流通電流之No.22~26(發明例)之鋼坯清潔度(指數)未滿1.0,因此可減少鋼中之氧化物個數。
<實施例4> 將碳濃度為0.02~0.06質量%之約160噸之熔鋼自電爐以未去氧狀態直接出鋼至內徑2.9 m之盛鋼桶中。在熔鋼出鋼後,於LF脫硫裝置中分別投入媒溶劑及作為去氧劑之金屬Al,使熔鋼去氧及藉由電弧加熱進行CaO-SiO 2-Al 2O 3-MgO四元系熔渣之造渣、熔融。之後,對於熔渣,通過石墨軸於外部電源之+極(正極)連接導線,對於熔鋼,通過MgO-C煉磚於外部電源之-極(負極)連接導線,作為發明例,使用直流穩定化電源,利用定電流施加法,於電路中流通電流,實施熔鋼之脫氮處理(No.30~37)。 再者,於實施熔鋼之脫氮處理時,自盛鋼桶底吹塞以每分鐘450~900 L之流量對熔鋼吹入Ar,進行攪拌。
於上述脫氮處理前後採取盛鋼桶內之熔鋼之樣品,供於分析。作為比較例,不流通電流而實施熔鋼之脫氮處理(No.38~39)。於表4中示出處理條件及處理結果。
[表4]
No. 處理前N濃度 (massppm) C/A (-) 電流施加密度Ja (A/m 2) 底吹Ar (NL/min) 處理時間 (min) 處理後N 濃度 (massppm) 備註
30 60 1.7 50 450 20 39 發明例
31 60 1.7 50 900 20 35 發明例
32 60 1.7 500 450 20 22 發明例
33 60 1.7 500 900 20 20 發明例
34 60 1.7 1000 450 20 15 發明例
35 60 1.7 1000 900 20 12 發明例
36 60 1.7 1300 450 20 15 發明例
37 60 1.7 1300 900 20 12 發明例
38 60 1.7 0 450 20 47 比較例
39 60 1.7 0 900 20 44 比較例
如表4所示,相較於未於電路中流通電流而實施熔鋼之脫氮處理之No.38~39(比較例),藉由於電路中流通電流而實施熔鋼之脫氮處理之No.30~37(發明例)係脫氮得到促進。又,相較於電流施加密度設為1000(A/m 2)之No.34~35(發明例),藉由於電路中流通電流而實施熔鋼之脫氮處理時之電流施加密度大於1000(A/m 2)之No.36~37(發明例)的脫氮效果亦無變化。根據該情況可知,即便藉由以超過1000(A/m 2)之電流施加密度流通電流而實施熔鋼之脫氮處理,亦不致對其脫氮效果造成較大影響。
如此,根據本發明之熔鋼之處理方法,藉由對去氧步驟後之熔鋼賦予電位差,可使熔鋼中之金屬成分之再氧化速度常數減小,可防止再氧化而抑制中介物之生成,提高熔鋼之清潔度。 (產業上之可利用性)
由於本發明之熔鋼之處理方法可防止熔鋼中之金屬成分與熔渣中之氧化物進行反應而再氧化,抑制中介物之生成,因此在製鐵業等產業上極其有用。
1:盛鋼桶(容器) 2:絕緣性耐火物 3:熔鋼 4:熔渣 5:導電性物質(導電性耐火物) 6:導線 7:直流穩定化電源 8:RH真空脫氣裝置 9:餵槽 10:長噴嘴 11:滑動噴嘴 12:浸漬噴嘴 13:餵槽蓋 101:熔鋼處理裝置(RH真空脫氣精煉時) 102:熔鋼處理裝置(盛鋼桶搬送時) 103:熔鋼處理裝置(連續鑄造時)
圖1A係表示藉由RH真空脫氣裝置對熔鋼進行處理時之實施形態中所使用之熔鋼處理裝置101的示意圖。 圖1B係表示藉由收容有熔鋼之盛鋼桶等搬送、保持熔鋼並於盛鋼桶精煉爐中對熔鋼進行處理時之實施形態中所使用之熔鋼處理裝置102的示意圖。 圖1C係表示用於自盛鋼桶向連續鑄造機供給熔鋼時之實施形態、且具備用作緩衝器之餵槽之熔鋼處理裝置103的示意圖。 圖2係表示實施本實施形態之熔鋼之處理方法進行熔鋼處理時之施加電流密度(A/m 2)與屬於鋁之再氧化速度常數之比的Ka/Ko(-)之關係的圖。 圖3係表示熔渣中之屬於CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)、與極限氮濃度(ppm)之關係(脫氮效果)的圖。
1:盛鋼桶(容器)
2:絕緣性耐火物
3:熔鋼
4:熔渣
5:導電性物質(導電性耐火物)
6:導線
7:直流穩定化電源
8:RH真空脫氣裝置
101:熔鋼處理裝置(RH真空脫氣精煉時)

Claims (5)

  1. 一種熔鋼之處理方法,其係使用直流電源,將與熔鋼相接之電極作為負極,將僅與熔渣相接之電極作為正極,通過該兩電極對上述熔鋼與上述熔渣之間賦予電位差者;其特徵在於,其包括有: 藉由於上述熔鋼中添加去氧劑而使上述熔鋼去氧之去氧步驟;及 對上述去氧步驟後所得之經去氧之熔鋼賦予上述電位差之步驟。
  2. 如請求項1之熔鋼之處理方法,其中,於上述去氧步驟中,對上述熔鋼與上述熔渣之間賦予上述電位差。
  3. 如請求項1或2之熔鋼之處理方法,其中,在上述去氧步驟後賦予上述電位差時,將上述熔渣中之CaO濃度(mass%)與Al 2O 3濃度(mass%)之比的C/A(-)設為0.4以上且1.8以下。
  4. 如請求項1至3中任一項之熔鋼之處理方法,其中,在上述去氧步驟後賦予上述電位差時,將施加電流密度設為1000(A/m 2)以下。
  5. 一種鋼之製造方法,其特徵在於,在對藉由請求項1至4中任一項之熔鋼之處理方法所熔製之熔鋼任意地進行成分調整後進行鑄造。
TW111122941A 2021-06-22 2022-06-21 熔鋼之處理方法及鋼之製造方法 TWI824575B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103010 2021-06-22
JP2021103010 2021-06-22

Publications (2)

Publication Number Publication Date
TW202317776A true TW202317776A (zh) 2023-05-01
TWI824575B TWI824575B (zh) 2023-12-01

Family

ID=84544326

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122941A TWI824575B (zh) 2021-06-22 2022-06-21 熔鋼之處理方法及鋼之製造方法

Country Status (7)

Country Link
EP (1) EP4350012A1 (zh)
JP (1) JP7318822B2 (zh)
KR (1) KR20230173189A (zh)
CN (1) CN117529567A (zh)
AU (1) AU2022299766A1 (zh)
TW (1) TWI824575B (zh)
WO (1) WO2022270346A1 (zh)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188460A (ja) 1987-01-28 1988-08-04 Nkk Corp タンデイシユ内の完全シ−ル方法
JPH01294817A (ja) 1988-05-23 1989-11-28 Kawasaki Steel Corp 溶融金属の清浄方法
JPH049420A (ja) 1990-04-27 1992-01-14 Nippon Steel Corp 溶鋼の脱窒方法
JPH05320733A (ja) 1991-12-27 1993-12-03 Sumitomo Metal Ind Ltd ステンレス溶鋼の脱窒方法
JP3257263B2 (ja) 1994-08-05 2002-02-18 株式会社神戸製鋼所 高清浄度溶鋼の製造方法
JP3333795B2 (ja) 1995-03-03 2002-10-15 川崎製鉄株式会社 溶融金属の脱窒方法および脱窒・脱炭方法
JP5092245B2 (ja) * 2006-02-09 2012-12-05 Jfeスチール株式会社 溶鋼の脱窒方法
KR100922061B1 (ko) * 2007-12-12 2009-10-16 주식회사 포스코 극저탄소 페라이트계 스테인리스강 제조방법
CN101457276B (zh) * 2009-01-04 2010-11-17 上海大学 可调节阳极氧分压的熔渣无污染脱氧方法及其装置
CN102146496A (zh) * 2010-02-08 2011-08-10 鞍钢股份有限公司 钢液外加电场无污染脱氧精炼装置及其应用方法
CN201660669U (zh) * 2010-02-08 2010-12-01 鞍钢股份有限公司 一种无污染脱氧的rh精炼装置
JP5958152B2 (ja) * 2012-07-27 2016-07-27 Jfeスチール株式会社 高清浄度鋼の製造方法
CN202925057U (zh) * 2012-10-31 2013-05-08 上海大学 渣金间电化学脱氧用液芯电极
JP6953714B2 (ja) * 2016-12-28 2021-10-27 日本製鉄株式会社 溶鋼の昇温方法
JP6825507B2 (ja) * 2017-07-20 2021-02-03 日本製鉄株式会社 低炭素鋼薄肉鋳片の製造方法および低炭素鋼薄肉鋳片、並びに低炭素鋼薄鋼板の製造方法
CN113490755A (zh) * 2019-03-13 2021-10-08 杰富意钢铁株式会社 含Ti超低碳钢的制造方法
TWI704231B (zh) * 2019-04-11 2020-09-11 日商日本製鐵股份有限公司 轉爐設備

Also Published As

Publication number Publication date
TWI824575B (zh) 2023-12-01
CN117529567A (zh) 2024-02-06
KR20230173189A (ko) 2023-12-26
WO2022270346A1 (ja) 2022-12-29
JPWO2022270346A1 (zh) 2022-12-29
AU2022299766A1 (en) 2024-01-18
JP7318822B2 (ja) 2023-08-01
EP4350012A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP5092245B2 (ja) 溶鋼の脱窒方法
JP5910579B2 (ja) 極低窒素純鉄の溶製方法
JP2015042777A (ja) 高窒素鋼の溶製方法
JP5891826B2 (ja) 溶鋼の脱硫方法
JP2012077354A (ja) 清浄性に優れた低炭素アルミキルド鋼の溶製方法
TWI824575B (zh) 熔鋼之處理方法及鋼之製造方法
JP2776118B2 (ja) 無方向性電磁鋼板材の溶製方法
JP6547734B2 (ja) 低硫鋼の製造方法
TW202313994A (zh) 鋼水的精煉方法
JP2008169407A (ja) 溶鋼の脱硫方法
KR20060012266A (ko) 강철의 직접 합금 방법
TWI828175B (zh) 熔鋼之脫氮方法及鋼之製造方法
JP5315669B2 (ja) Rh真空脱ガス装置による溶鋼の精錬方法
JP2017025373A (ja) 溶鋼の脱硫方法
JP6414098B2 (ja) 高Si高Al極低炭素鋼の溶製方法
JPH10298631A (ja) 清浄鋼の溶製方法
TWI824546B (zh) 熔鋼之脫氮方法及鋼之製造方法
JPH0953109A (ja) 溶鋼の昇熱精錬方法
JP6744600B1 (ja) Ti含有極低炭素鋼の製造方法
JP7180821B1 (ja) 溶鋼の精錬方法
TWI824547B (zh) 熔鋼之脫氮方法、脫氮及脫硫同時處理方法暨鋼之製造方法
WO2022270225A1 (ja) 溶鋼の精錬方法
JP5387045B2 (ja) 軸受鋼の製造方法
JP3736159B2 (ja) 清浄性に優れた鋼の製造方法
JP2009173994A (ja) Alレス極低炭素鋼の溶製方法