JP3333795B2 - 溶融金属の脱窒方法および脱窒・脱炭方法 - Google Patents

溶融金属の脱窒方法および脱窒・脱炭方法

Info

Publication number
JP3333795B2
JP3333795B2 JP04388095A JP4388095A JP3333795B2 JP 3333795 B2 JP3333795 B2 JP 3333795B2 JP 04388095 A JP04388095 A JP 04388095A JP 4388095 A JP4388095 A JP 4388095A JP 3333795 B2 JP3333795 B2 JP 3333795B2
Authority
JP
Japan
Prior art keywords
denitrification
slag
molten metal
gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04388095A
Other languages
English (en)
Other versions
JPH08246024A (ja
Inventor
公治 山口
英昭 水渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04388095A priority Critical patent/JP3333795B2/ja
Publication of JPH08246024A publication Critical patent/JPH08246024A/ja
Application granted granted Critical
Publication of JP3333795B2 publication Critical patent/JP3333795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、溶融金属の脱窒方法
および脱窒・脱炭方法に関して、特に極低窒素域までの
脱窒を実現しようとするものである。
【0002】
【従来の技術】一般に、ステンレス鋼に代表されるCr含
有鋼の精錬は、その溶鋼中窒素の活量が溶鋼中のCr濃度
に反比例して低下するため、窒素濃度を低下することが
困難な鋼種であるが、例えば30wt%Cr含有鋼において
は、VOD 法を用いて、溶鋼中の炭素濃度 C ≦30ppm お
よび溶鋼中の窒素濃度 N ≦40ppm の極低炭素域かつ極
低窒素域までの精錬が工業的に行われている。
【0003】すなわち、特開昭53−94212 号公報には、
VOD 法による精錬開始時点の C を0.8 wt%以上として
COガス発生量を増大し、かつ底吹きArガス流量を増して
強攪拌とした上で、減圧下で脱窒を行うことが提案され
ている。しかしながら、脱炭工程の時間延長およびそれ
に伴う生産性の低下、さらには耐火物コストなど製鋼コ
ストの上昇が避けられず、工業的規模の生産において、
N のより一層の低減は事実上困難であった。
【0004】一方、スラグによって脱窒を行うことにつ
いては、「鉄と鋼 第78年(1992)第4号」の第564 〜
571 頁に報告されている。この報告によると、スラグ−
溶鋼間の窒素の平衡関係は
【数1】 の反応式により示され、そしてこの反応はスラグ中の窒
素濃度(N) と N との比(N)/ N である窒素分配比 LN
に影響を受ける。この窒素分配比の平衡値 LN はスラグ
組成と温度に依存するほか、溶鋼中のアルミニウム濃度
Al が高いほど、また溶鋼中のアルミニウムおよび窒
素の活量係数が大きいほど、平衡窒素分配比 LN が高く
なって、溶鋼からスラグへの窒素の移動が促進される。
【0005】しかしながら、普通鋼における LN は、
Al :1wt%の溶鋼に対して比較的脱窒に有利とされる
組成のスラグを用いた場合、15〜60程度にすぎず、同様
に30wt%Cr含有鋼では、溶鋼中窒素の活量係数が低下す
るため、 LN は1〜4程度と低くなると推定される。こ
こで、窒素が溶鋼からスラグ中へ除去されると、スラグ
の(N) が上昇して次第に平衡状態に近づくが、そのとき
の溶鋼の脱窒率ηN (%) は、溶鋼1t当たりのスラグ
量を VS ( kg)とすると、
【数2】 ηN =100 ・ LN ・ VS /(1000+ LN ・ VS ) ----(2) の式にて算出し得る。従って、 LN が1〜4程度の30wt
%Cr含有鋼では、〔Al〕:1wt%の下で50kg/tといっ
た大量のスラグを用いたとしても、脱窒率は5〜17%に
すぎず、極低窒素域までの脱窒は期待できない。
【0006】さらに、1wt%といった高Al濃度のままで
は実用鋼には適さないから、特開平5−320733号公報に
示されるように、脱窒後に溶鋼中のAlを燃焼によって除
去する工程を新たに設ける必要が生じる。この方法で
は、酸素ガスによりAlを燃焼して除去する際の発熱によ
り、100 ℃以上の大幅な温度上昇を招くことになり、後
工程の鋳造工程との整合をはかるために、大幅な工程ロ
スおよび生産性の低下は避けられない不利が伴う。
【0007】
【発明が解決しようとする課題】そこで、この発明の目
的は、上述したVDO 法による真空脱炭・脱窒処理やスラ
グによる脱窒では望めない、極低窒素域までの脱窒を、
工業的に実現し得る、新たな方途を与えるところにあ
る。
【0008】
【課題を解決するための手段】この発明は、ガス上吹き
機能を有する精錬容器に溶融金属を装入し、この溶融金
属の表面を、その1t当たり15kg以上の、CaO およびAl
2O3 を主成分とするスラグで覆った後、この被覆スラグ
面に対し酸化性ガスを、該ガスが溶融金属と直接接触し
ない程度に吹き付けることを特徴とする溶融金属の脱窒
方法である。
【0009】ここに、酸化性ガスがO2および/またはH2
O を含むものであること、脱窒処理中の少なくとも一時
期は、溶融金属中のAl濃度を0.5 wt%以上に維持するこ
と、そして底吹きガスによる攪拌を併用すること、が実
施に当たり有利に適合する。
【0010】また、この発明は、上記の脱窒処理後に、
酸化性ガスの溶融金属中への吹き込みによる脱炭処理を
行うことを特徴とする溶融金属の脱窒・脱炭方法であ
る。ここに、脱窒処理後に、酸化鉄を含むフラックスを
溶融金属に添加することが、実施に当たり有利に適合す
る。
【0011】
【作用】さて、在来の上吹きガスの吹き込みによる脱窒
処理は、次の(1) 式に従うガス−溶鋼反応にて進行す
る。
【数3】 2N=N2 ----(3) 上記 (3)式に従う反応は、溶鋼中の N 濃度に関する2
次の反応であり、 N濃度が低下すると、単位時間および
単位界面積当たりの脱窒量は、 N 濃度の2乗に比例し
て著しく低下する。例えば、VOD 炉において30wt%Cr含
有鋼をガス−溶鋼反応のみで脱窒する場合、 N <50pp
m になると脱窒速度は極端に低下し、さらに N 濃度を
低下することが困難であった。
【0012】これに対して、この発明の脱窒方法では、
次に示す、(4) 式のスラグ−溶鋼反応による脱窒と、
(5) 式のガス−スラグ反応による脱窒を並行して進行さ
せるため、高効率の脱窒処理が実現できる。
【数4】
【0013】すなわち、上記(4) 式の反応は、 N 濃度
に関して1次の反応であり、 N 濃度が低下しても、上
記した(3) 式の反応に比べて、脱窒速度の低下は緩やか
である。また、脱硫反応などから類推すれば、スラグ中
の(N) 濃度さえ十分低く保つことができれば、 N <20
ppm といった極低窒素濃度域においても十分大きな脱窒
速度を有するものと考えられる。しかし、上記(4) 式の
単純な反応のみでは、平衡窒素分配比 LN が小さいた
め、溶鋼中の窒素をわずかに除去してスラグ中の(N) 濃
度が上昇しただけで、それ以降上記(4) 式の反応による
脱窒は停滞してしまう。
【0014】そこで、発明者らは、溶鋼表面に生成した
スラグ上に酸化性ガスを吹き付けて上記(5) 式に従うガ
ス−スラグ反応にてスラグ中の(N) を除去することによ
り、その(N) 濃度を低い領域に保ちつつ、スラグ−溶鋼
反応による脱窒が可能であるかどうかについて鋭意検討
したところ、以下の結果を得るに至った。すなわち、上
記(5) 式の反応は上記(3) 式と同様にスラグ中の(N) 濃
度に関して2次の反応であるが、その反応速度は上記
(3) 式の反応に比べて著しく速いため、酸化性ガスの吹
き付けの条件下では、スラグ中の(N) 濃度は速やかに10
ppm以下まで低下可能である。さらに、適当なスラグ層
にて溶鋼表面を覆って上吹きガスを遮断することによっ
て、溶鋼中の〔Al〕濃度をあまり低下させることなし
に、スラグ中(N) の低下が可能であり、しかもスラグ層
の介在によって、酸化性ガスの吹き付けが、スラグ−溶
鋼反応による脱窒に大きな影響を及ぼすことはないか
ら、上記した(4) および(5) 式の反応を同時に並行して
進行させることが可能になる。
【0015】ここで、適当なスラグ層で溶鋼表面を覆っ
て、かつスラグの酸化脱窒に十分なガスの吹き付けを実
現するには、スラグ量、底吹きガス流量、上吹きガスの
組成やその流量、ランス高さおよび雰囲気圧力などを適
当な範囲に制御すればよい。特に、溶鋼表面をスラグ層
で覆うためには、溶鋼1t当たり15kg以上のスラグが必
要であり、脱窒速度を増すために強い攪拌を溶鋼に与え
る場合には、さらにスラグ量を増加することが望まし
い。しかし、この発明法によれば、スラグ中に窒素が蓄
積されることなく、その系外に除去されるため、15kg/
tといった比較的少ないスラグ量でも大幅な脱窒が可能
である。
【0016】なお、脱窒速度は、スラグ組成および温度
と〔Al〕濃度で決まる平衡窒素分配比 LN の値が大きい
ほど速くなるが、 LN が2程度と小さい場合でも、ある
程度以上の脱窒速度が得られるのが、この発明の特徴で
ある。これは、スラグ中(N)濃度が低くても、スラグの
酸化によるガス−スラグ脱窒反応が大きな反応速度を有
することによると考えられる。従って、この発明は、平
衡窒素分配比の小さい高Cr鋼の脱窒において、とりわけ
有効である。
【0017】また、スラグは、比較的大きな LN が得ら
れるCaO およびAl2O3 を主成分としたスラグが適してお
り、これに耐火物の溶損を低減するために少量のMgO を
加えてもよい。具体的には、 CaO : 35〜65wt% Al2O3 : 30〜55wt% MgO : 0 〜10wt% の組成が有利に適合する。
【0018】次に、上述した(4) 式の反応の促進に必要
となる溶鋼中の〔Al〕濃度は、製品成分の規制や後工程
での負荷の許す範囲で高い方が望ましいが、〔Al〕≧0.
3 wt%であれば、 LN :5〜10程度の平衡窒素分配比が
得られ、(4) 式の反応が停滞することなく促進され、所
期した脱窒速度が確保できる。
【0019】そして、脱窒処理中の少なくとも一時期
は、〔Al〕≧0.3 wt%に維持することが、高速度での脱
窒を実現するために好ましい。なお、脱窒処理に要する
時間は、通常10分間以上であるから、〔Al〕≧0.3 wt%
に維持する時間も10分間以上とすることが好ましい。
【0020】ここに、酸化性ガス吹き付け中に〔Al〕濃
度を維持するためには、スラグ層によってガスと溶鋼を
遮断することを基本にして、Al合金を添加する方法など
を併用してもよい。
【0021】一方、酸化性ガスの吹き付け方法として
は、大気圧下においてO2および/またはH2O にArを混合
したガスを吹き付ける手法、または減圧雰囲気において
のO2および/またはH2O ガスあるいはO2および/または
H2O にArを混合したガスを吹き付ける手法など適宜選択
できる。また、酸化性ガスのO2換算流量としては、 N濃
度が100 ppm 程度で0.05Nm3O2 /t以上であれば、脱窒
速度に影響を与えることはない。ここでとりわけ重要な
ことは、Alの燃焼を抑制するため、酸化性ガスの吹き付
けをある程度ソフトブローとしてガスジェットエネルギ
ーを減殺し、スラグ面上に広く吹き付けることである。
酸化性ガスとしてはO2またはH2O が推奨されるほか、Ca
(OH)2 の粉体吹き付けでも同様な効果が得られる。
【0022】なお、上記した(4) 式に従うスラグ−溶鋼
反応において、溶鋼中に含まれるAlは、溶鋼中の酸素分
圧を低下させるものであり、このような作用は、Al以外
の金属として、Mg,Zr,Tiなどにも期待できる。従って、
精錬の対象となる溶融金属に、上記のいずれかの成分が
含まれていれば、上記(4) 式に従うスラグ−溶鋼反応が
起こるから、この発明で所期する脱窒を実現できる。
【0023】以上に述べた脱窒処理後に行う脱炭処理
は、特に上吹き酸化性ガスを溶鋼中に吹き込むことが肝
要であり、そのときの酸化性ガスのO2換算流量は通常15
〜25Nm 3O2 /tの範囲とすることが好ましい。ここで、
脱窒処理後に溶鋼中に残存したAlを除去することが好ま
しく、脱炭処理時に上吹き酸化性ガスの吹き込みによっ
てAlを燃焼するか、または酸化鉄を含むフラックスを、
脱窒処理後かつ脱炭処理前あるいは脱炭処理中に添加
し、吸熱を伴う酸化鉄の還元反応によって脱Al処理を行
うことができる。特に、後者の手法は、AlをO2で酸化除
去する際の温度上昇を避ける上で、より効果的である。
【0024】
【実施例】この発明に従って、VOD 炉を用いて30wt%Cr
含有鋼の精錬を行った。すなわち、上底吹き転炉を用い
て一次脱炭した30wt%Cr含有鋼60tを取鍋へ出鋼後、こ
の取鍋を減圧槽内に配置してから取鍋内に、Al:750 k
g、CaO :600 kgおよび軽焼ドロマイト:200 kgを添加
した。そして、減圧槽内を約30Torrまで減圧し、Arガス
0.6 Nm3 /min を底吹きしつつ、上吹きランスよりO2
スを40Nm3 /min の流量で4分間吹き付け、Alを燃焼し
て昇温および造滓を行った。このときのスラグ量は約25
kg/tおよび[Al]:0.85%であった。
【0025】次に、上吹きガスをO2: 3 Nm3/min およ
びAr: 3 Nm3/min の混合に変更するとともに、底吹き
Arガス流量を0.01Nm3 /min に変更した上で、底吹き攪
拌およびスラグへのガス吹き付けを40分間継続し、脱窒
精錬期とした。その後、再び上吹きガスをO2: 40Nm3
min に変更するとともに、スラグ組成および温度調整の
ために、CaO :600 kg、軽焼ドロマイト:200 kgおよび
鉄鉱石:600 kgを添加してAlを燃焼し、Alを全て燃焼し
た時点からO2ガス流量を次第に低下するとともに、底吹
きArガス流量を1.2 Nm3 /min 以上に増加して脱炭精錬
を行った。最後に、脱炭終了後に、FeSiおよびAlを添加
して還元精錬を行い成分調整を行った。
【0026】また、比較例として、脱窒精錬期に酸化性
ガスのスラグへの吹き付けを行わない他は、上記の操業
と同様の条件に従う精錬も行った。ただし、VOD 処理前
の C濃度は、適合例で従来の30wt%Cr含有鋼の溶製方法
よりも大幅に低い0.4 wt%としたのに対し、比較例では
従来法と同様に1.0 wt%とした。上記各操業の各段階に
おける、主な溶鋼成分の推移を、表1に示す。同表か
ら、この発明に従う適合例では、比較的軽微な精錬負荷
の増大で、従来得られなかった極低窒素濃度域までの脱
窒を達成したことがわかる。
【0027】
【表1】
【0028】また、上記の各精錬と同様の方法におい
て、脱窒精錬期のスラグ量を種々に変更したときのスラ
グ量と脱窒後の到達 N 濃度との関係を調査した。その
結果を図1に示すように、スラグへの酸化性ガスの吹き
付けを行わない場合はスラグ量に係わらずに到達 N 濃
度は一定であったのに対して、この発明に従う方法で
は、スラグ量を15kg/t以上に維持すると到達 N 濃度
は大きく低減した。これは、スラグへの酸化性ガスの吹
き付けを行う場合にスラグ量が15kg/t未満に減少する
と、溶鋼中のAlの酸化を招くばかりでなく、スラグによ
る脱窒反応自体にも影響が及ぶためと考えられる。
【0029】なお、上記の実施例では、30wt%Cr含有鋼
について説明したが、この発明はCr含有鋼に限るもので
はなく、普通鋼やステンレス鋼のほか、多種の金属の脱
窒精錬に適用可能である。
【0030】
【発明の効果】この発明によれば、従来の大量生産技術
では溶製できなかった極低窒素濃度レベルまでの脱窒が
可能であり、高品質の製品を提供し得る。
【図面の簡単な説明】
【図1】脱窒精錬期のスラグ量と到達 N 濃度との関係
を示すグラフである。
───────────────────────────────────────────────────── フロントページの続き 審査官 木村 孔一 (56)参考文献 特開 平5−320733(JP,A) 特開 昭64−42519(JP,A) 特開 平7−70630(JP,A) 特開 平4−259320(JP,A) 特開 昭60−184618(JP,A) 特開 平1−116024(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/00 C21C 7/04 C21C 7/068 C21C 7/072 C21C 7/076

Claims (6)

    (57)【特許請求の範囲】
  1. 【請求項1】 ガス上吹き機能を有する精錬容器に溶融
    金属を装入し、この溶融金属の表面を、その1t当たり
    15kg以上の、CaO およびAl2O3 を主成分とするスラグで
    覆った後、この被覆スラグ面に対し酸化性ガスを、該ガ
    スが溶融金属と直接接触しない程度に吹き付けることを
    特徴とする溶融金属の脱窒方法。
  2. 【請求項2】 酸化性ガスが、O2および/またはH2O を
    含むものである請求項1に記載の溶融金属の脱窒方法。
  3. 【請求項3】 脱窒処理中の少なくとも一時期は、溶融
    金属中のAl濃度を0.3 wt%以上に維持する請求項1また
    は2に記載の溶融金属の脱窒方法。
  4. 【請求項4】 底吹きガスによる攪拌を併用する請求項
    1、2または3に記載の溶融金属の脱窒方法。
  5. 【請求項5】 請求項1〜4のいずれか1項に記載の脱
    窒処理後に、酸化性ガスの溶融金属中への吹き込みによ
    る脱炭処理を行うことを特徴とする溶融金属の脱窒・脱
    炭方法。
  6. 【請求項6】 脱窒処理後に、酸化鉄を含むフラックス
    を溶融金属に添加する請求項5に記載の溶融金属の脱窒
    ・脱炭方法。
JP04388095A 1995-03-03 1995-03-03 溶融金属の脱窒方法および脱窒・脱炭方法 Expired - Fee Related JP3333795B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04388095A JP3333795B2 (ja) 1995-03-03 1995-03-03 溶融金属の脱窒方法および脱窒・脱炭方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04388095A JP3333795B2 (ja) 1995-03-03 1995-03-03 溶融金属の脱窒方法および脱窒・脱炭方法

Publications (2)

Publication Number Publication Date
JPH08246024A JPH08246024A (ja) 1996-09-24
JP3333795B2 true JP3333795B2 (ja) 2002-10-15

Family

ID=12676027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04388095A Expired - Fee Related JP3333795B2 (ja) 1995-03-03 1995-03-03 溶融金属の脱窒方法および脱窒・脱炭方法

Country Status (1)

Country Link
JP (1) JP3333795B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092245B2 (ja) 2006-02-09 2012-12-05 Jfeスチール株式会社 溶鋼の脱窒方法
KR100922061B1 (ko) * 2007-12-12 2009-10-16 주식회사 포스코 극저탄소 페라이트계 스테인리스강 제조방법
JP6645374B2 (ja) * 2016-07-27 2020-02-14 日本製鉄株式会社 極低硫低窒素鋼の溶製方法
JP7424350B2 (ja) 2021-06-11 2024-01-30 Jfeスチール株式会社 溶鋼の脱窒方法および鋼の製造方法
JP7211454B2 (ja) 2021-06-11 2023-01-24 Jfeスチール株式会社 溶鋼の脱窒方法、脱窒及び脱硫同時処理方法および鋼の製造方法
JP7480751B2 (ja) 2021-06-11 2024-05-10 Jfeスチール株式会社 溶鋼の脱窒方法および鋼の製造方法
AU2022299766A1 (en) 2021-06-22 2024-01-18 Jfe Steel Corporation Treatment method of molten steel and steel production method

Also Published As

Publication number Publication date
JPH08246024A (ja) 1996-09-24

Similar Documents

Publication Publication Date Title
CN110846581B (zh) 一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法
CN102199684B (zh) 超低氧含钛铁素体不锈钢的生产方法
CN110983161B (zh) 一种控制低铝低钛硅铁加入时机结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法
JP3333795B2 (ja) 溶融金属の脱窒方法および脱窒・脱炭方法
JP3918568B2 (ja) 極低硫鋼の製造方法
JP3606170B2 (ja) 低窒素含クロム鋼の製造方法
JP2001355018A (ja) Ti含有鋼の溶製方法
JPH09165615A (ja) 溶融金属の脱窒方法
JP2947063B2 (ja) ステンレス鋼の製造方法
JP3752801B2 (ja) 極低炭素及び極低窒素ステンレス鋼の溶製方法
JP2991796B2 (ja) マグネシウム脱酸による薄鋼板の溶製方法
JP3241910B2 (ja) 極低硫鋼の製造方法
JPH0346527B2 (ja)
KR100191010B1 (ko) 저탄소강의 산화정련방법
JPH0153329B2 (ja)
JPH0558050B2 (ja)
JP3411220B2 (ja) 高窒素低酸素含クロム溶鋼の精錬方法
JPH07173515A (ja) ステンレス鋼の脱炭精錬方法
JP2002309310A (ja) 低燐溶銑の製造方法
JP7480751B2 (ja) 溶鋼の脱窒方法および鋼の製造方法
JP2607337B2 (ja) クロム含有鋼の脱燐方法
JPS6010087B2 (ja) 鋼の精練法
JPH0978119A (ja) 溶融金属の脱窒方法および脱窒用フラックス
JP3800866B2 (ja) 溶銑の脱珪方法
JP3439517B2 (ja) 含クロム溶鋼の精錬法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees