TW202310681A - 用於匹配網路的可變增益調諧之系統及方法 - Google Patents

用於匹配網路的可變增益調諧之系統及方法 Download PDF

Info

Publication number
TW202310681A
TW202310681A TW111124311A TW111124311A TW202310681A TW 202310681 A TW202310681 A TW 202310681A TW 111124311 A TW111124311 A TW 111124311A TW 111124311 A TW111124311 A TW 111124311A TW 202310681 A TW202310681 A TW 202310681A
Authority
TW
Taiwan
Prior art keywords
capacitor
matching network
variable gain
gain value
determining
Prior art date
Application number
TW111124311A
Other languages
English (en)
Inventor
狄恩 毛
安東尼 奧利維帝
基斯 勞斯
蓋瑞 羅素
提格蘭 匹克奧森
Original Assignee
美商彗星科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商彗星科技公司 filed Critical 美商彗星科技公司
Publication of TW202310681A publication Critical patent/TW202310681A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges

Abstract

揭露用於利用可變增益演算法來調整在自動射頻(RF)阻抗匹配網路中的電容器之方法及裝置。所述裝置可操作在閉迴路反饋控制系統中,其中一個或多個誤差訊號驅動在系統內的電容器。為了達成臨界阻尼控制系統響應,可以識別用於匹配網路與其構成元件的多個操作區域,且當操作在那些區域的時候可以施加一組增益(例如:每個區域不同)到控制系統中的誤差訊號。操作區域可由裝置所測量的輸入訊號之特徵來界定,由裝置或裝置其本身的狀態來計算。這些特點可被安排在用於裝置的查找表(或由計算所確定)以用來確定在系統中的可變增益。

Description

用於匹配網路的可變增益調諧之系統及方法
本申請案關於用於匹配網路的可變增益調諧之系統及方法。 相關申請案之交互參照
本申請案主張2021年7月28日申請的第17/386,880號美國非臨時專利申請案之優先權,其具有如同本申請案的相同發明人與標題,整體內容以參照方式納入本文中。主張所有可用的權利,包括優先權的權利。
射頻(RF, radio frequency)電漿增強處理被廣泛使用在半導體製造以蝕刻不同型式的薄膜、於低到中間處理溫度來沉積薄膜、且實行表面處理與清洗。上述處理的一個特徵是電漿(即:部分離子化氣體)之運用,其用以從反應室內的前驅物來產生中性物種與離子、提供用於離子轟擊的能量、且/或實行其他動作。射頻電漿增強處理藉由習稱為射頻處理裝置者來實行。
射頻電漿處理裝置可包括將訊號發送到電漿反應室之射頻功率產生器。可具有可變阻抗之射頻匹配裝置可位在射頻功率產生器與電漿反應室之間。射頻匹配裝置可藉由改變射頻匹配裝置的阻抗來控制或用其他方式調諧。調諧射頻匹配裝置降低來自電漿反應室及/或射頻匹配裝置的反射功率,此可提高從射頻功率產生器轉移到電漿反應室且進入電漿處理的功率。
調諧可部分經由可具有由馬達所調整的其電容之可變電容器來實行。調整之目標是提供適當設定,使得在調諧網路不同部分上的電容器之組合實行調諧以使得功率從輸入有效率轉移到電漿室。在這情況下,效率關於使反射為最小化且適當轉換反應室的阻抗,使得(從輸入查看)順向功率看到適當阻抗(例如:50歐姆)。當計算用於可變電容器的調整,典型的調諧演算法利用固定增益。
提供一種用於調整在射頻電漿處理裝置的匹配網路中的電容器之方法。所述方法包括:識別在匹配網路內的複數個電容器;部分基於和第一電容器有關聯的匹配操作區域來確定用於第一電容器的第一可變增益值;將第一可變增益值施加到來自匹配網路的第一組反饋訊號以確定用於第一電容器的一個或多個第一調整;實施經確定的一個或多個第一調整;及,得到第二組反饋訊號以重複確定及施加之步驟。
提供一種匹配網路。所述匹配網路包含經連接到匹配網路之可程式邏輯控制器。可程式邏輯控制器執行指令來致使可程式邏輯控制器以:識別在匹配網路內的複數個電容器;部分基於和第一電容器有關聯的匹配操作區域來確定用於第一電容器的第一可變增益值;將第一可變增益值施加到來自匹配網路的第一組反饋訊號以確定用於第一電容器的一個或多個第一調整;起始經確定的一個或多個第一調整之實施;及,得到第二組反饋訊號以重複確定及施加之步驟。
提供一種電漿產生系統。所述電漿產生系統包含:射頻產生器;匹配網路,其耦接到射頻產生器以產生阻抗匹配輸出;及,電漿室,其耦接到匹配網路以接收來自匹配網路的阻抗匹配輸出。可程式邏輯控制器執行指令來致使可程式邏輯控制器以:識別在匹配網路內的複數個電容器;部分基於和第一電容器有關聯的匹配操作區域來確定用於第一電容器的第一可變增益值;將第一可變增益值施加到來自匹配網路的第一組反饋訊號以確定用於第一電容器的一個或多個第一調整;起始經確定的一個或多個第一調整之實施;及,得到第二組反饋訊號以重複確定及施加之步驟。
以下所主張標的之說明實例將作揭示。為了清楚起見,並非實際實施的所有特徵是用於在此說明書中的每個實例來描述。將理解的是,在任何所述實際實施之開發中,諸多特定實施的決策可作成以達成開發者的特定目的,諸如:關於系統相關與商業相關的限制之符合性,其將從一種實施到另一種而變化。甚者,將理解的是,即使複雜且耗時,上述開發努力將是針對於具有此揭露內容的裨益之一般技藝人士所進行的例行事務。
再者,如本文所使用,冠詞“一”意圖具有其在專利技術的通常意義,即:“一個或多個”。在此,當應用到某值之術語“大約”概括意指在用以產生所述值之設備的容許度範圍內,或在一些實例中,意指加或減10%,或加或減5%,或加或減1%,除非另為明確指出。再者,在此,如本文所使用的術語“實質”意指大多數、或幾乎全部、或全部、或具有例如大約51%到大約100%之範圍的量。甚者,本文的實例意圖僅為說明性且為了論述目的而並非作為限制所呈現。
本揭露內容的實施例可提出用於調諧及以其他方式控制在射頻電漿處理裝置中的匹配網路之系統及方法。在操作期間,射頻功率產生器可被激能以形成在反應室內的電漿。電漿可在源氣體被注入到反應室中之後而產生且功率是由射頻功率產生器所供應在反應室內。
在某些條件下,經供應到反應室的功率可從反應室而反射回來。反射功率的一個原因可能是在系統的特性阻抗與反應室內的電漿所形成的負載之不匹配。為了有助於防止反射功率,一種阻抗匹配網路可配置在射頻功率產生器與反應室之間。上述阻抗匹配網路可包括若干個可變電容器或其他阻抗元件。可變電容器可經調諧以使得在反應室內的複雜負載阻抗匹配射頻功率產生器的阻抗。
儘管控制或以其他方式調諧阻抗匹配網路之多種方法已經使用,所述方法可能並未可靠且有效率造成阻抗匹配。匹配網路可包括步進馬達,其具有對於特定步進馬達為獨特的運作之特定數目個步級。在操作期間,電容器可由具有在零與百分之一百之間的範圍之馬達所驅動。本揭露內容的實施例可至少部分基於“可變增益演算法”而提供電容器位置之調整,其中使用在調整計算中的增益值來自預定義的表或來自基於目前及/或最近測量值的計算。所述計算可能或可能並未利用來自上述預定義的表之值(即:增益值可僅為基於計算)。在某些情況,調整將在當目前條件為較遠離其目標值時而具有較大量級且當測量接近目標時而具有較小量級。
本揭露內容的實施例可提出用於匹配網路的操作之系統及方法,使用可變增益演算法以使得最小化或至少對付上文指出的目前遭受問題。舉例來說,對付上述議題可包括調整在匹配網路內的一個或多個電容器之性質。在一些實施例中,對於阻抗的變化可用非線性方式來作成。在某些情況,不同增益值可使用於高操作區域對低操作區域(參閱圖5)。明確而言,不同電容器步進馬達增益值可使用於不同電容器操作區域。
一些電容器可具有二或多個操作區域(例如:針對於本文所揭示的使用為穩定的區域)。舉例來說,電容器可具有均指定為用於那個電容器的操作區域之區域A與區域B。若固定增益被使用,調整可在區域A為穩定,但針對於區域B為太慢。若提高固定增益值,振盪可能發生在區域A而具有針對於區域B的穩定度。是以,可合意為利用可變增益值,其用於各別電容器的不同操作區域而改變。已經最佳化及針對於區域A與區域B二者(彼此為不同)的可變增益值可消除振盪或緩慢調諧。電容器的非線性本質被概述在以下的表1。注意,表1僅為用於說明目的之單一個實例,不同電容器將具有不同於顯示者的值。
Figure 02_image001
表1
針對於一些(若非大多數)系統而言,可能難以讓控制系統的響應在具有固定增益的所有操作區域為臨界阻尼。控制系統的響應可能在具有固定增益的不同區域為過阻尼與欠阻尼。藉由基於操作區域而改變增益,同個系統可在所有操作區域為臨界阻尼。
此外,在一些情形,可變增益量可基於諸如來自射頻功率產生器的頻率與工作週期設定之二個相關因數。是以,用於既定頻率的增益量可基於工作週期值而為不同(參閱圖4)。總體上,本揭示的匹配網路之一個目標是朝向50歐姆的設定點或用於調整電容器來使調諧最佳化。另一個目標是考慮到臨界阻尼在跨於用於電容器的不同操作區域為可能。簡言之,已經理解的是,使用如本文所論述的可變增益演算法提供優於如傳統實施的固定增益利用之改良與彈性。
轉到圖1,根據本揭露內容的實施例之一種射頻電漿處理系統100的方塊圖示被說明。射頻電漿處理系統100可包括諸如第一射頻功率產生器105與第二射頻功率產生器110之一個或多個射頻功率產生器。射頻電漿處理系統100亦可包括第一阻抗匹配網路115、第二阻抗匹配網路120、鞘125、諸如噴灑頭130或諸如電極的等效供電元件之電漿供電裝置、與台座135。如在本文所使用,電漿供電裝置可指其引入功率以產生電漿的任何裝置且可包括例如噴灑頭130及/或其他型式的電極、以及天線與類似者。
第一與第二射頻功率產生器105、110之一者或多者可透過一個或多個阻抗匹配網路115、120將功率遞送到反應室140。在此實例中,射頻功率從第一射頻功率產生器105透過第一阻抗匹配網路115而流通到噴灑頭130成為在反應室140中的電漿、到不同於噴灑頭130的電極(未顯示)、或到將功率以電磁式提供到天線的電感式天線(亦未顯示)。功率從電漿而流通到接地及/或台座135及/或第二阻抗匹配網路120。概括而言,第一阻抗匹配網路115補償在反應室140內的負載阻抗的變化,故噴灑頭130與第一阻抗匹配網路115的組合阻抗等於第一射頻功率產生器105的最佳負載阻抗,藉由調整第一阻抗匹配網路115內的電抗構件(未單獨顯示),例如:可變電容器。
在某些實例中,第一射頻功率產生器105可提供在大約350 KHz與162 MHz之間的RF頻率的功率,而經連接到台座135之第二射頻功率產生器110可供應在低於第一射頻功率產生器105之射頻的功率。然而,在某些實施中,第二射頻功率產生器110可能未供應在低於第一射頻功率產生器105之射頻的功率。典型而言,第一與第二射頻功率產生器105、110的頻率為俾使第一射頻功率產生器105在並非第二射頻功率產生器110的頻率之整數倍數(亦非整數分數)的射頻。
阻抗匹配網路115、120被設計以調整其內部電抗元件,俾使負載阻抗匹配源阻抗。在電漿處理系統100的其他實例中,不同數目個射頻功率產生器105/110可被使用,而且不同數目個阻抗匹配網路115/120可被使用。阻抗匹配網路115/120可包括若干個內部構件,諸如電感器與將在下文更詳細論述的可變電容器。
轉到圖2,根據本揭露內容的實施例之可實施為在圖1的第一阻抗匹配網路115之一種阻抗匹配網路200的示意圖被顯示。在此實施例中,諸如關於圖1的上述者之匹配網路200被說明為具有匹配分支205與分割器分支210。匹配分支205透過輸入215接收來自射頻功率產生器的射頻功率。匹配分支205的第一可變電容器220接收來自輸入215的射頻功率。第一可變電容器220可包括具有電容範圍為大約10至2000 pF的電容器。第一可變電容器220可用以針對於包括分割器分支210之阻抗匹配網路200而調諧相位及/或大小。
第一可變電容器220被連接到第二電容器225,其被連接到接地230。第一可變電容器220與第二電容器225亦被連接到第三可變電容器235。第三可變電容器235可包括具有電容範圍為大約10至2000 pF的電容器。第三可變電容器235亦被連接到電感器240,其進而連接到分割器分支210。第三可變電容器235可用以針對於包括分割器分支210 (內分支到外分支)之阻抗匹配網路200而調整相位及/或大小。
分割器分支210接收來自匹配分支205的射頻功率,將接收的射頻功率分割在第四可變電容器245與第五可變電容器250之間。第四可變電容器245與第五可變電容器250控制分割器分支210的電流分割比。第四可變電容器245可具有大約10至2000 pF的電容範圍而且第五可變電容器250可具有大約10至2000 pF的電容範圍。
第五可變電容器250被連接到內線圈255 (例如:如上所述,將功率以電磁式提供到電漿的電感式天線)。在第五可變電容器250與分割器分支210的內分支段上的內線圈255之間,一個或多個感測器260可經配置。感測器260可被用以測量例如在第五可變電容器250與接地275之間的電壓。同理,第四可變電容器245被連接到分割器分支210的外分支段上的外線圈265。在第四可變電容器245與外線圈265之間,一個或多個感測器270可經配置。感測器270可被用以測量例如在第四可變電容器245與接地290之間的電壓。
內線圈255可進而連接到接地275且外線圈265可被連接到其包括感測器280與第六電容器285之電路。感測器280可使用以測量例如在外線圈265與接地290之間的電壓。內線圈255與外線圈265可位在如由偏移框295所指出的匹配網路200的電路之外。
如上所論述,在圖2的阻抗匹配網路200可使用第一可變電容器220、第三可變電容器235、第四可變電容器245、與第五可變電容器250來調諧。藉由調諧第一可變電容器220、第三可變電容器235、第四可變電容器245、與第五可變電容器250,提供到內線圈255與外線圈265的功率可作調整。
在一個實施例中可運用為電流分割比匹配網路之阻抗匹配網路200可使用諸如在圖8所示且進而論述在下文的計算裝置825之可程式邏輯控制器來控制。在一些實施例中,可程式邏輯控制器可被配置在或用其他方式連接到匹配網路200。適合的可程式邏輯控制器與關聯的構件將關於圖3而進一步論述。
在其他實施例中,匹配網路200的電路可包括較少或附加的構件且電路的方位可能不同。舉例來說,較少或較多個可變電容器、電感器、感測器、與類似者可能存在。此外,在某些實施例中,線圈、天線、與類似者的不同方位可被用以將調諧的射頻功率提供到反應室,諸如:在圖1所示的反應室140。本文所揭示的系統及方法可使用電感耦合電漿(ICP, inductively coupled plasma)、電容耦合電漿(CCP, capacitively coupled plasma)、螺旋波源(HWS, helicon wave source)、或任何其他電漿處理裝置。
轉到圖3,根據本揭露內容的實施例之一種射頻電漿處理裝置300的示意圖被顯示。在此實施例中,射頻電漿處理裝置300包括射頻功率產生器305。射頻功率產生器305被裝配以將功率提供到反應室310。射頻功率產生器305可提供在大約350 KHz與大約162 MHz之間的射頻的功率。在某些實施例中,第二射頻功率產生器(未顯示)亦可存在於射頻電漿處理裝置300且可提供在如同、低於、或高於射頻功率產生器305的射頻的功率。
反應室310可包括考慮到製造作業之處理的種種構件,諸如關聯於半導體產業的那些者。反應室310可包括用於測量發生在反應室310內的某些性質之一個或多個感測器(未顯示)。反應室310亦可包括待製造的基板可於操作期間被置放在其上之台座(亦未顯示)。反應室310亦可包括或者被連接到線圈(未個別顯示),諸如上文所論述者、以及噴灑頭、等等。
射頻電漿處理裝置300亦可包括匹配網路315。匹配網路315可位在射頻功率產生器305與反應室310之間。匹配網路315可包括可變電容器(未顯示)、以及其他構件以平衡在射頻功率產生器305與反應室310之間的阻抗,如在上文所更詳細論述。舉例來說,將反應室310的阻抗轉變為射頻功率產生器305的“理想”負載阻抗。在操作期間,匹配網路可例如藉由調整電容器位置來調諧以提供匹配阻抗。調整可使用如本文所述的可變增益演算法來部分確定。
在操作期間,隨著功率從射頻功率產生器305被供應到在反應室310之內的電漿(未顯示),可能發生一種情況,諸如功率可能從反應室310而反射。上述反射功率可造成不合意情況,其造成無效率的處理、對於基板的損壞、對於射頻電漿處理裝置300之構件的損壞、與類似者。為了解決所述情況且改善射頻電漿處理裝置300的操作性,調諧模組337包括可程式邏輯控制器335,其可提供命令到匹配網路315以調整電容器位置,因而提供匹配阻抗以使反射功率為最小化。可程式邏輯控制器335可被連接到儲存裝置340以儲存在操作期間所得到的這些命令或資料。
在操作期間,可程式邏輯控制器335可識別在匹配網路315之內的電容器。舉例來說,若阻抗匹配網路315以在圖2所示的方式來實施,識別的電容器可為可變電容器220、235、245、及/或250的任一者。識別可自動發生—即:在程式控制下或者無需人工介入—或由操作者所控制。
對於可變電容器之調整可用不同方式來作成。在一個實例中,調整可藉由使用和電容器有關聯的步進馬達來改變電容器的電容而作成。在某些情況下,零步級值可代表在電容器可用範圍內的最小電容點。同個電容器可具有代表在電容器可用範圍內的最大電容點之最大步級值(例如:100步級)。在操作期間,電容器的電容可藉由將步級值改變到例如在零與1000之間的數目而變化。
為了助於可變增益演算法實施,如同本揭露內容,不同量的調整可能受到經計算或從預定義表來確定的增益值所影響。計算與增益值表之實例被論述於下。這些計算或表可被儲存在可程式邏輯(例如:由可程式邏輯控制器335所使用)或在資料庫(例如:在儲存裝置340的資料庫),其可使用在操作期間以調整匹配網路315的操作。如此,對於特定電容器位置的阻抗可在匹配網路315的操作期間來確定。使用對於用於匹配網路315的電容器的各個位置之測量阻抗,一個表被構成來反映要施加到電容器的一者或多者之可變增益調整,因而使得針對於電漿處理裝置的調諧條件最佳化。
轉到圖4與圖5,在圖4,利用雙組的索引(例如:頻率與工作週期)之實例的表400被說明,且在圖5,基於電容器是否增大或減小電容以及針對於不同電流分割比的目標而提供不同的上升增益與下降增益值之另一個實例的表500被說明。即,增益值可取決於數個因素。在某些情況,增益值可利用計算(例如:不同型式的增益方程式)而無須參考任何預定義表值來確定。在某些情況,動態平均技術可使用為部分的計算以確定針對於可變增益技術的特定增益值(例如:基於匹配為多麼接近目標操作區域)。愈遠離目標,愈少的平均可被用以更快速響應(粗調整),而愈接近目標,愈多的平均(細調整)可被使用。包括在增益確定計算的值可包括:產生器脈衝頻率、產生器脈衝工作週期、負載阻抗、電漿處理條件、電容範圍、或其組合。此列舉並無意為詳盡且其他值可取決於實施而用於計算。
本文揭示的技術可控制可變電容器基於匹配操作區域來調整的速度、以及電容器是否試圖增大或減小電容來達成目標匹配操作區域。速度增益基於匹配操作區域被列表在表500 (圖5)。再者,速度增益可基於射頻產生器脈衝頻率與工作週期來列表,如在表400 (圖4)所示。此外,可變電容器速度之控制可基於期望的電容變化率。電容器可當遠離目標而為快速驅動、且然後隨著其接近目標而穩定化(例如:藉由降低變化率)。
如在此揭露內容中所解說,使用可變增益可具有優於先前實施的固定增益調整之改良。舉例來說,傳統的馬達速度調整可藉由如在此顯示之計算所確定:
Figure 02_image003
其中:Polarity指示電容器移動的方向;Gain傳統為固定值;Speed_to_Signal典型為固定值;且Error_Signal指示與匹配目標區域的距離。
使用可變增益調整,上述的Gain值並非固定。Gain值可由方程式或一個表而得到。方程式可能或可能未利用來自一個表的預定義值。
再者,基於匹配操作區域(簡稱:區域)以確定可變電容器速度之一個實例的方程式被顯示在此:
Figure 02_image005
針對使用可變增益調整之用於動態平均(如上所論述)的另一個實例被顯示在此:
Figure 02_image007
其中: alpha隨著接近匹配目標區域而減小。 注意此為遞迴方程式的實例,其中濾波值(ErrorFilt current)被利用以基於未濾波的調整值(ErrorRaw)來確定下個濾波值(ErrorFilt next)。動態平均可使用在固定窗內或用基於與目標匹配操作區域的距離之動態窗的滾動平均來實施。
轉到圖6A至圖6C,不同的時序圖被說明。圖6A說明在匹配操作區域2與匹配操作區域3之間為太慢(例如:因為在時間1與時間1.5之間的調整的延遲)之使用固定增益的調諧處理的曲線圖。在此情況下,具有欠阻尼的調整。圖6B說明其為太快(例如:因為在時間0.5與時間1之間的曲線的不穩定性質)之亦使用固定增益的調諧處理的曲線圖。不穩定性質說明那些調整被太快速作成且超越期望的穩定調整而使得具有過阻尼的調整。圖6C說明使用揭示的可變增益演算法所可預期者的曲線圖,且如在此圖所指出,在圖6A與6B所示的問題不再存在。在此情況下,具有臨界阻尼的調整。
轉到圖7,根據本揭露內容的實施例之用於使用可變增益演算法以調整在射頻電漿處理裝置的匹配網路中的電容器之方法700的流程圖被顯示。方法700可包括識別在匹配網路中的電容器(方塊710)。識別可包括確定在匹配網路內的特定電容器且/或包括確定在匹配網路內的超過一個電容器。所述電容器可包括可變電容器,諸如上文所論述者。
在操作期間,方法700可包括確定匹配操作區域(方塊715),針對於既定電容器的匹配操作區域指出那些增益值可被使用,如上所解說,因為可能合意為具有不同增益值以考慮在針對於電容器的不同操作區域內的臨界阻尼。此外,如針對於圖5之上文所解說,匹配操作區域可被用來確定針對於上升增益或下降增益的值以利用在匹配網路內的電容器之調整。當匹配操作區域為遠離期望區域,調整可相對於當匹配操作區域為接近目標所作成之調整而提高。
在操作期間,方法700可更包括確定增益值(方塊720)以使用於在匹配網路內的一個或多個電容器之調整。如上所述,典型匹配網路利用固定增益值,而本文所述的匹配網路利用可變增益特徵。針對於所揭示實施例的增益值可利用從其查找為基於匹配網路的目前(或最近)操作特性之一個或多個預定義表所得到的增益值。在其他實例中,增益值可從基於匹配網路的目前屬性(例如:測量)之計算來導出。在某些情況,查找與計算之組合可經利用。
在操作期間,方法700可更包括基於先前確定的可變增益值來確定電容器調整(方塊725)。調整可被作成以實現針對於匹配網路的最佳可用調諧參數。如上所述,適當調諧的匹配網路使得操作時所遞送到電漿室的功率為最佳化。
在操作期間,方法700可更包括對於電容器提供調整資訊(方塊730)以將電容器調整到基於測量值的特定阻抗。當針對於在匹配網路內的特定電容器之電容器位置範圍為已知,電容器位置可經調諧以針對於特定操作來提供最佳化電容器位置。最後,在操作期間,方法700可在整個電漿產生操作中重複(方塊735迴路到方塊715)其本身。
現在轉到圖8,具有硬體處理器與可存取的機器可讀取指令(以實施實例方法700)之一種實例計算裝置是根據本揭露內容的一個或多個實例而顯示。圖8提出一種實例的計算裝置825,具有硬體處理器830、與儲存在機器可讀取媒體835之可存取的機器可讀取指令以供管理資料,如關於一個或多個揭示實例實施之上文所論述。圖8說明經裝配以實行在關於圖7所詳細論述的實例方法中之流程的計算裝置825。然而,計算裝置825亦可被裝配以實行在此揭露內容所述的其他方法、技術、功能、或處理之流程。
圖9說明包括可用以實施方法700或本文所述的其他功能之多個構件的方塊圖950。明確而言,方塊圖950說明在阻抗分析器955、匹配構件965、與分割器975之間的一種可能關係。基於在阻抗分析器955所得到的感測器或測量值之讀數、圖4A至圖4B之表、圖5A至圖5B之方程式、與本文所述的處理裝置,利用可變增益演算法之調諧網路可根據一個或多個揭示的實施例來實施。
現在參考圖9,顯示可使用以實施根據本揭露內容的一個或多個實例的功能與處理之電腦處理裝置900的示意圖。圖9說明可使用以實施此揭露內容的系統、方法、與處理之電腦處理裝置900。舉例來說,在圖9所示的電腦處理裝置900可代表客戶端裝置或實際伺服器裝置且取決於計算裝置的抽象化層級而包括硬體或虛擬處理器。在某些情況(無抽象化),如在圖9所示,電腦處理裝置900與其元件各自關於實際的硬體。替代而言,在某些情況,元件的一者、多者、或全部可使用模擬器或虛擬機器作為抽象化層級來實施。在任何情況下,無論遠離實際硬體有多少抽象化層級,電腦處理裝置900在其最低層級而言可被實施在實際硬體。在一個實施中,電腦處理裝置900可允許用戶遠距存取一個或多個資料中心。同理,用戶所使用的管理工具可包括執行在上述電腦處理裝置900的軟體解決方案。
圖9顯示根據本揭露內容的一個或多個實例之電腦處理裝置900。電腦處理裝置900可被使用以實施本揭露內容的觀點,諸如:關聯於調諧模組、匹配網路、或射頻電漿處理裝置的其他構件之觀點。電腦處理裝置900可包括經配置在一個或多個印刷電路板(未另外顯示)的一個或多個中央處理單元(CPU, central processing unit)(單個CPU或複數個CPU) 905。電腦處理裝置900可更包括在此技藝所習知之任何型式的處理裝置或可程式邏輯控制器。電腦處理裝置900亦可實行控制器的功能,如同處理器,且根據關於圖1至圖9之上述的方法及系統而使用。如此,電腦處理裝置900可為控制器、處理器,實行控制器及/或處理器的功能,且可用以確定及/或調整在匹配網路內的電容器位置。
一個或多個CPU 905的各者可為單核心處理器(未獨立圖示)或多核心處理器(未獨立圖示)。多核心處理器典型包括複數個處理器核心。電腦處理裝置900可包括諸如例如主機橋接器910與輸入/輸出(IO, input/output)橋接器915之一個或多個核心邏輯裝置。
CPU 905可包括對於主機橋接器910的介面908、對於系統記憶體920的介面918、及對於諸如例如圖形處理單元(GFX) 925之一個或多個IO裝置的介面923。GFX 925可包括一個或多個圖形處理器核心(未獨立圖示)及對於顯示器930的介面928。在某些實施例中,CPU 905可整合GFX 925的功能性且直接(未顯示)和顯示器930介面連接。主機橋接器910可包括對於CPU 905的介面908、對於IO橋接器915的介面913 (針對於CPU 905不包括對於系統記憶體920的介面918之實施例)、對於系統記憶體920的介面916 (針對於CPU 905不包括整合GFX 925或對於GFX 925的介面923之實施例)、對於GFX 925的介面921。
一般技藝人士將理解的是,CPU 905與主機橋接器910可整體或部分整合以降低晶片計數、主機板佔用面積、熱設計功率、與功率消耗。IO橋接器915可包括對於主機橋接器910的介面913、對於一個或多個IO擴充裝置935的一個或多個介面933、對於鍵盤940的介面938、對於滑鼠945的介面943、對於一個或多個局部儲存裝置950的介面948、以及對於一個或多個網路介面裝置955的介面953。
各個局部儲存裝置950可為固態記憶體裝置、固態記憶體裝置陣列、硬碟機、硬碟機陣列、或任何其他非暫時性電腦可讀取媒體。各個網路介面裝置955可提供一個或多個網路介面,包括例如乙太網路、光纖通道、WiMAX、Wi-Fi、藍牙、乙太網路控制自動化技術(EtherCAT)、裝置網路(Device Net)、Mod Bus、RS-232、或適以利於網路通訊的任何其他網路通訊協定。除了或代替一個或多個局部儲存裝置950,電腦處理裝置900可包括一個或多個網路附接儲存裝置960。網路附接儲存裝置960可為固態記憶體裝置、固態記憶體裝置陣列、硬碟機、硬碟機陣列、或任何其他非暫時性電腦可讀取媒體。網路附接儲存裝置960可能或可能並未和電腦處理裝置900為搭配且可經由一個或多個網路介面裝置955所提供的一個或多個網路介面而對於電腦處理裝置900為可存取。
一般技藝人士將理解的是,電腦處理裝置900可包括經裝配以更有效率的方式來實行諸如例如散列(hashing)(未顯示)的某種功能之一個或多個特定應用積體電路(ASIC, application specific integrated circuit)。一個或多個ASIC可直接和CPU 905、主機橋接器910、或IO橋接器915的介面為介面連接。替代而言,有時稱作為挖礦(mining)系統之特定應用計算裝置(未顯示)可經縮減到實行期望功能(諸如:經由一個或多個散列ASIC之散列)必要的僅有那些構件以降低晶片計數、主機板佔用面積、熱設計功率、與功率消耗。如此,一般技藝人士將理解的是,一個或多個CPU 905、主機橋接器910、IO橋接器915、或ASIC或是其功能或特徵的種種子集、超集、或組合可能以可根據一個或多個實例實施例基於應用、設計、或形狀因數而變化的方式被整體或部分整合或分佈在種種裝置間。如此,電腦處理裝置900的說明僅為示範性質且無意限制其構成適用於實行包括而不限於散列功能的計算操作之計算裝置的構件的型式、種類、或配置。此外,一般技藝人士將理解的是,電腦裝置900、特定應用計算裝置(未顯示)、或其組合可用獨立式、桌上型、伺服器、或機架安裝式的形狀因數來配置。
一般技藝人士將理解的是,電腦處理裝置900可為基於雲端的伺服器、伺服器、工作站、桌上型電腦、膝上型電腦、小筆電、平板電腦、智慧型手機、行動裝置、及/或根據一個或多個實例實施例之任何其他型式的計算裝置。
在某些實施例中,本揭露內容的優點可提供電腦可執行指令以供和在射頻電漿處理裝置中的匹配網路有關聯的電容器位置之調整。
在某些實施例中,本揭露內容的優點可提供改良的調整設定以供和在射頻電漿處理裝置中的匹配網路有關聯的電容器之調諧。
在某些實施例中,本揭露內容的優點可提供用於儲存針對於電漿處理條件的可變增益表資訊之方法,其可當企圖匹配可能存在於電漿室的操作期間之迅速改變條件而助於適當控制不同電容器軌跡。
為了解說目的,上述說明使用特定術語以提供此揭露內容的徹底瞭解。然而,對於熟習此技藝人士將顯而易知的是特定細節並非必要以實行本文所述的系統及方法。特定實例的上述說明是為了舉例說明目的而呈現。上述說明無意為詳盡或將此揭露內容限制為已描述的精確形式。顯然,鑒於以上教示內容的諸多修改與變化為可能。實例被顯示且描述以最佳解說此揭露內容的原理與實際應用,因而致使熟習此技藝的其他人士能夠最佳利用此揭露內容與如適合預期的特定運用之具有種種修改的種種實例。意圖的是,此揭露內容的範疇是由以下的申請專利範圍與其等效者所界定。
100:射頻電漿處理系統 105:第一射頻功率產生器 110:第二射頻功率產生器 115:第一阻抗匹配網路 120:第二阻抗匹配網路 125:鞘 130:噴灑頭 135:台座 140:反應室 200:阻抗匹配網路 205:匹配分支 210:分割器分支 215:輸入 220:第一可變電容器 225:第二電容器 230:接地 235:第三可變電容器 240:電感器 245:第四可變電容器 250:第五可變電容器 255:內線圈 260:感測器 265:外線圈 270:感測器 275:接地 280:感測器 285:第六電容器 290:接地 295:偏移框 300:射頻電漿處理裝置 305:射頻功率產生器 310:反應室 315:匹配網路 335:可程式邏輯控制器 337:調諧模組 340:儲存裝置 400:表 500:表 700:方法 710至735:方法700的步驟(方塊) 825:計算裝置 830:硬體處理器 835:機器可讀取媒體 900:電腦處理裝置 905:中央處理單元(CPU) 908:介面 910:主機橋接器 913:介面 915:輸入/輸出(IO)橋接器 916:介面 918:介面 920:系統記憶體 921:介面 923:介面 925:圖形處理單元(GFX) 928:介面 930:顯示器 933:介面 935:IO擴充裝置 938:介面 940:鍵盤 943:介面 945:滑鼠 948:介面 950:局部儲存裝置 953:介面 955:網路介面裝置 960:網路附接儲存裝置
本揭露內容在連同所附圖式來解讀時從以下詳細的說明能夠最佳理解。強調的是,根據在產業中的標準實務,種種特徵並未依比例來繪製。實際上,種種特徵的尺度可能為了論述清楚而任意增大或減小。
[圖1]是根據本揭露內容的實施例之射頻電漿處理裝置的方塊圖。
[圖2]是可用在根據本揭露內容的實施例之射頻電漿處理裝置中的匹配網路的示意圖。
[圖3]是根據本揭露內容的實施例之射頻電漿處理裝置的示意圖。
[圖4]是顯示根據本揭露內容的實施例之用於不同可變增益值與技術(基於射頻功率產生器的頻率與工作週期)的諸多可能實施之一個實例的表。
[圖5]是顯示根據本揭露內容的實施例之用於不同可變增益值與技術(基於用於匹配網路的操作區域且包括不同的升/降增益值)的諸多可能實施之一個實例的表。
[圖6A]至[圖6C]是描繪用於調諧的種種時序之曲線圖,以共同說明可在此揭露內容的可變增益調諧實施中所見到的可能改良。
[圖7]是根據本揭露內容的實施例之用於使用可變增益演算法來作為調諧在射頻電漿處理裝置中的匹配網路之部分的一個實例方法的流程圖。
[圖8]是根據本揭露內容的一個或多個實例之具有硬體處理器與可存取機器可讀取指令(例如:儲存在非暫時性電腦可讀取媒體中的指令)以實施圖7的實例方法之實例計算裝置。
[圖9]是可用以實施根據本揭露內容的一個或多個實例的功能與處理之電腦處理裝置的示意圖。
100:射頻電漿處理系統
105:第一射頻功率產生器
110:第二射頻功率產生器
115:第一阻抗匹配網路
120:第二阻抗匹配網路
125:鞘
130:噴灑頭
135:台座
140:反應室

Claims (20)

  1. 一種用於調整在射頻電漿處理裝置的匹配網路中的電容器之方法,所述方法包括: 識別在所述匹配網路內的複數個電容器; 部分基於和第一電容器有關聯的匹配操作區域來確定用於所述第一電容器的第一可變增益值; 將所述第一可變增益值施加到來自所述匹配網路的第一組反饋訊號以確定用於所述第一電容器的一個或多個第一調整; 實施經確定的所述一個或多個第一調整;及 得到第二組反饋訊號以重複上述的確定及施加之步驟。
  2. 如請求項1之方法,其中所述第一可變增益值使用含有預定義值的查找表來確定。
  3. 如請求項2之方法,其中: 所述第一電容器具有複數個不同匹配操作區域;且 所述查找表包括用於所述複數個不同匹配操作區域的不同增益值。
  4. 如請求項2之方法,其中所述查找表包括用於不同射頻功率產生器脈衝頻率的不同增益值。
  5. 如請求項2之方法,其中所述查找表包括用於不同射頻功率產生器脈衝工作週期的不同增益值。
  6. 如請求項2之方法,其中確定所述第一可變增益量包括從使用射頻功率產生器脈衝頻率測量與射頻功率產生器脈衝工作週期二者之查找表來確定所述第一可變增益量。
  7. 如請求項2之方法,其中: 所述第一電容器具有複數個不同匹配操作區域;且 所述複數個不同匹配操作區域具有所述第一電容器所響應的正誤差與負誤差二者。
  8. 如請求項1之方法,其中所述第一可變增益值使用部分基於含有預定義值的查找表之計算來確定。
  9. 如請求項1之方法,其中所述第一可變增益值使用無關於任何查找表之計算來確定。
  10. 如請求項1之方法,其中所述第一可變增益值使用基於對目標的鄰近度作調整之動態平均來確定。
  11. 如請求項1之方法,其中得到所述第二組反饋訊號以重複上述的確定及施加之步驟包含: 部分基於和所述第一電容器有關聯的所述匹配操作區域來確定用於所述第一電容器的第二可變增益值; 將所述第二可變增益值施加到來自所述匹配網路的所述第二組反饋訊號以確定用於所述第一電容器的一個或多個第二調整;及 施加經確定的所述一個或多個第二調整。
  12. 一種匹配網路,其包含: 連接到所述匹配網路之可程式邏輯控制器,所述可程式邏輯控制器執行指令,使得所述可程式邏輯控制器用以: 識別在所述匹配網路內的複數個電容器; 部分基於和第一電容器有關聯的匹配操作區域來確定用於所述第一電容器的第一可變增益值; 將所述第一可變增益值施加到來自所述匹配網路的第一組反饋訊號以確定用於所述第一電容器的一個或多個第一調整; 起始經確定的所述一個或多個第一調整之實施;及 得到第二組反饋訊號以重複上述的確定及施加之步驟。
  13. 如請求項12之匹配網路,其中使得所述可程式邏輯控制器用以得到所述第二組反饋訊號以重複上述的確定及施加之步驟的指令進一步使得所述可程式邏輯控制器用以: 部分基於和所述第一電容器有關聯的所述匹配操作區域來確定用於所述第一電容器的第二可變增益值; 將所述第二可變增益值施加到來自所述匹配網路的所述第二組反饋訊號以確定用於所述第一電容器的一個或多個第二調整;及 施加經確定的所述一個或多個第二調整。
  14. 如請求項12之匹配網路,其中所述第一可變增益值使用含有預定義值之查找表或使用無關任何查找表之計算來確定。
  15. 如請求項12之匹配網路,其中所述第一可變增益值使用遞迴演算法用動態平均來確定。
  16. 如請求項12之匹配網路,其中確定所述第一可變增益量包括從使用射頻功率產生器脈衝頻率測量與射頻功率產生器脈衝工作週期二者之查找表來確定所述第一可變增益量。
  17. 一種電漿產生系統,其包含: 射頻產生器; 匹配網路,其耦接到所述射頻產生器以產生阻抗匹配輸出,所述匹配網路包含: 連接到所述匹配網路之可程式邏輯控制器,所述可程式邏輯控制器執行指令,使得所述可程式邏輯控制器用以: 識別在所述匹配網路內的複數個電容器; 部分基於和第一電容器有關聯的匹配操作區域來確定用於所述第一電容器的第一可變增益值; 將所述第一可變增益值施加到來自所述匹配網路的第一組反饋訊號以確定用於所述第一電容器的一個或多個第一調整; 起始經確定的所述一個或多個第一調整之實施;及 得到第二組反饋訊號以重複上述的確定及施加之步驟;及 電漿室,其耦接到所述匹配網路以接收來自所述匹配網路的所述阻抗匹配輸出。
  18. 如請求項17之電漿產生系統,其中使得所述可程式邏輯控制器用以得到所述第二組反饋訊號以重複上述的確定及施加之步驟的指令進一步使得所述可程式邏輯控制器用以: 部分基於和所述第一電容器有關聯的所述匹配操作區域來確定用於所述第一電容器的第二可變增益值; 將所述第二可變增益值施加到來自所述匹配網路的所述第二組反饋訊號以確定用於所述第一電容器的一個或多個第二調整;及 施加經確定的所述一個或多個第二調整。
  19. 如請求項17之電漿產生系統,其中所述第一可變增益值使用含有預定義值之查找表或使用無關任何查找表之計算來確定。
  20. 如請求項17之電漿產生系統,其中所述第一可變增益值使用遞迴演算法用動態平均來確定。
TW111124311A 2021-07-28 2022-06-29 用於匹配網路的可變增益調諧之系統及方法 TW202310681A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/386,880 US11923175B2 (en) 2021-07-28 2021-07-28 Systems and methods for variable gain tuning of matching networks
US17/386,880 2021-07-28
WOPCT/US22/34284 2022-06-21
PCT/US2022/034284 WO2023009245A1 (en) 2021-07-28 2022-06-21 Systems and methods for variable gain tuning of matching networks

Publications (1)

Publication Number Publication Date
TW202310681A true TW202310681A (zh) 2023-03-01

Family

ID=85039399

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124311A TW202310681A (zh) 2021-07-28 2022-06-29 用於匹配網路的可變增益調諧之系統及方法

Country Status (3)

Country Link
US (1) US11923175B2 (zh)
TW (1) TW202310681A (zh)
WO (1) WO2023009245A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596309B2 (en) * 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology

Family Cites Families (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679007A (en) 1985-05-20 1987-07-07 Advanced Energy, Inc. Matching circuit for delivering radio frequency electromagnetic energy to a variable impedance load
JP3007435B2 (ja) 1991-01-11 2000-02-07 新電元工業株式会社 Rf発生装置のマッチング制御回路
JPH05284046A (ja) 1991-01-29 1993-10-29 Shindengen Electric Mfg Co Ltd Rf発生装置のインピーダンスマッチング制御回路
US5195045A (en) 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
US5849136A (en) 1991-10-11 1998-12-15 Applied Materials, Inc. High frequency semiconductor wafer processing apparatus and method
US5175472A (en) 1991-12-30 1992-12-29 Comdel, Inc. Power monitor of RF plasma
JPH0732078B2 (ja) 1993-01-14 1995-04-10 株式会社アドテック 高周波プラズマ用電源及びインピーダンス整合装置
JP2642849B2 (ja) 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
TW296534B (zh) 1993-12-17 1997-01-21 Tokyo Electron Co Ltd
US5474648A (en) 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
US5576629A (en) 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
US5629653A (en) 1995-07-07 1997-05-13 Applied Materials, Inc. RF match detector circuit with dual directional coupler
US5907221A (en) 1995-08-16 1999-05-25 Applied Materials, Inc. Inductively coupled plasma reactor with an inductive coil antenna having independent loops
US5810963A (en) 1995-09-28 1998-09-22 Kabushiki Kaisha Toshiba Plasma processing apparatus and method
US6252354B1 (en) 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
US5737175A (en) 1996-06-19 1998-04-07 Lam Research Corporation Bias-tracking D.C. power circuit for an electrostatic chuck
US5889252A (en) 1996-12-19 1999-03-30 Lam Research Corporation Method of and apparatus for independently controlling electric parameters of an impedance matching network
US5914974A (en) 1997-02-21 1999-06-22 Cymer, Inc. Method and apparatus for eliminating reflected energy due to stage mismatch in nonlinear magnetic compression modules
US5866869A (en) 1997-02-24 1999-02-02 Illinois Tool Works Inc. Plasma pilot arc control
WO1998057417A1 (en) 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. A switched-mode power supply
US5842154A (en) 1997-09-15 1998-11-24 Eni Technologies, Inc. Fuzzy logic tuning of RF matching network
US5910886A (en) 1997-11-07 1999-06-08 Sierra Applied Sciences, Inc. Phase-shift power supply
US6313587B1 (en) 1998-01-13 2001-11-06 Fusion Lighting, Inc. High frequency inductive lamp and power oscillator
US6164241A (en) 1998-06-30 2000-12-26 Lam Research Corporation Multiple coil antenna for inductively-coupled plasma generation systems
US6313584B1 (en) * 1998-09-17 2001-11-06 Tokyo Electron Limited Electrical impedance matching system and method
US6455437B1 (en) 1999-04-07 2002-09-24 Applied Materials Inc. Method and apparatus for monitoring the process state of a semiconductor device fabrication process
US6326597B1 (en) 1999-04-15 2001-12-04 Applied Materials, Inc. Temperature control system for process chamber
US7215697B2 (en) 1999-08-27 2007-05-08 Hill Alan E Matched impedance controlled avalanche driver
JP3626047B2 (ja) 1999-10-05 2005-03-02 株式会社ケンウッド 同期捕捉回路及び同期捕捉方法
US6407648B1 (en) 1999-11-15 2002-06-18 Werlatone, Inc. Four-way non-directional power combiner
US8114245B2 (en) 1999-11-26 2012-02-14 Tadahiro Ohmi Plasma etching device
US20110121735A1 (en) 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US6894245B2 (en) 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US7030335B2 (en) 2000-03-17 2006-04-18 Applied Materials, Inc. Plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US7220937B2 (en) 2000-03-17 2007-05-22 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US7196283B2 (en) 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
US6507155B1 (en) 2000-04-06 2003-01-14 Applied Materials Inc. Inductively coupled plasma source with controllable power deposition
US8744384B2 (en) 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
US6677828B1 (en) 2000-08-17 2004-01-13 Eni Technology, Inc. Method of hot switching a plasma tuner
US20020123237A1 (en) * 2001-03-05 2002-09-05 Tue Nguyen Plasma pulse semiconductor processing system and method
US7960670B2 (en) 2005-05-03 2011-06-14 Kla-Tencor Corporation Methods of and apparatuses for measuring electrical parameters of a plasma process
US7132996B2 (en) 2001-10-09 2006-11-07 Plasma Control Systems Llc Plasma production device and method and RF driver circuit
TW200300951A (en) 2001-12-10 2003-06-16 Tokyo Electron Ltd Method and device for removing harmonics in semiconductor plasma processing systems
US7480571B2 (en) 2002-03-08 2009-01-20 Lam Research Corporation Apparatus and methods for improving the stability of RF power delivery to a plasma load
US7247221B2 (en) 2002-05-17 2007-07-24 Applied Films Corporation System and apparatus for control of sputter deposition process
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
US6819052B2 (en) 2002-05-31 2004-11-16 Nagano Japan Radio Co., Ltd. Coaxial type impedance matching device and impedance detecting method for plasma generation
US6830650B2 (en) 2002-07-12 2004-12-14 Advanced Energy Industries, Inc. Wafer probe for measuring plasma and surface characteristics in plasma processing environments
US20040016402A1 (en) 2002-07-26 2004-01-29 Walther Steven R. Methods and apparatus for monitoring plasma parameters in plasma doping systems
KR100486712B1 (ko) 2002-09-04 2005-05-03 삼성전자주식회사 복층 코일 안테나를 구비한 유도결합 플라즈마 발생장치
US6876155B2 (en) 2002-12-31 2005-04-05 Lam Research Corporation Plasma processor apparatus and method, and antenna
US6902646B2 (en) 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
US7244343B2 (en) 2003-08-28 2007-07-17 Origin Electric Company Limited Sputtering apparatus
US7042311B1 (en) 2003-10-10 2006-05-09 Novellus Systems, Inc. RF delivery configuration in a plasma processing system
WO2005057993A1 (ja) 2003-11-27 2005-06-23 Daihen Corporation 高周波電力供給システム
US7307475B2 (en) 2004-05-28 2007-12-11 Ixys Corporation RF generator with voltage regulator
JP4099597B2 (ja) 2004-05-31 2008-06-11 ソニー株式会社 スイッチング電源回路
US7292045B2 (en) 2004-09-04 2007-11-06 Applied Materials, Inc. Detection and suppression of electrical arcing
WO2016097730A1 (en) 2014-12-16 2016-06-23 John Wood A power coupler
KR20070098860A (ko) 2005-01-11 2007-10-05 이노베이션 엔지니어링, 엘엘씨 로드로 전달된 알에프 파워를 검출하는 방법 및 로드의복소 임피던스
US20060172536A1 (en) 2005-02-03 2006-08-03 Brown Karl M Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece
JP4799947B2 (ja) 2005-02-25 2011-10-26 株式会社ダイヘン 高周波電源装置および高周波電源の制御方法
US7251121B2 (en) 2005-03-05 2007-07-31 Innovation Engineering Llc Electronically variable capacitor array
EP1878098B1 (en) 2005-04-19 2011-11-30 Knite, Inc. Method and apparatus for operating traveling spark igniter at high pressure
KR20080031153A (ko) 2005-08-04 2008-04-08 더 리전트 오브 더 유니버시티 오브 캘리포니아 인터리브된 3차원 온칩 차동 인덕터 및 트랜스포머
US20080317974A1 (en) 2005-08-26 2008-12-25 Fujifilm Manufacturing Europe B.V. Method and Arrangement for Generating and Controlling a Discharge Plasma
US20080179948A1 (en) 2005-10-31 2008-07-31 Mks Instruments, Inc. Radio frequency power delivery system
US7538562B2 (en) 2006-03-20 2009-05-26 Inficon, Inc. High performance miniature RF sensor for use in microelectronics plasma processing tools
US20080061901A1 (en) 2006-09-13 2008-03-13 Jack Arthur Gilmore Apparatus and Method for Switching Between Matching Impedances
US7554334B2 (en) 2006-09-28 2009-06-30 Applied Marterials, Inc. Matching network characterization using variable impedance analysis
US7795877B2 (en) 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
US7728602B2 (en) 2007-02-16 2010-06-01 Mks Instruments, Inc. Harmonic derived arc detector
KR100870121B1 (ko) 2007-04-19 2008-11-25 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 매칭 시스템
WO2009012735A1 (de) 2007-07-23 2009-01-29 Hüttinger Elektronik Gmbh + Co. Kg Plasmaversorgungseinrichtung
EP2250652A1 (en) 2008-02-18 2010-11-17 Advanced Magnet Lab, Inc. Helical coil design and process for direct fabrication from a conductive layer
CN101772992B (zh) 2008-03-26 2012-08-29 株式会社京三制作所 真空装置用异常放电抑制装置
US8008960B2 (en) 2008-04-22 2011-08-30 Cisco Technology, Inc. Synchronous rectifier post regulator
US8391025B2 (en) 2008-05-02 2013-03-05 Advanced Energy Industries, Inc. Preemptive protection for a power convertor
JP2011521735A (ja) 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション プラズマを発生させるためのシステム、方法、および装置
JP2010016124A (ja) 2008-07-02 2010-01-21 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
US9017533B2 (en) 2008-07-15 2015-04-28 Applied Materials, Inc. Apparatus for controlling radial distribution of plasma ion density and ion energy at a workpiece surface by multi-frequency RF impedance tuning
JP5295833B2 (ja) 2008-09-24 2013-09-18 株式会社東芝 基板処理装置および基板処理方法
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8070925B2 (en) 2008-10-17 2011-12-06 Applied Materials, Inc. Physical vapor deposition reactor with circularly symmetric RF feed and DC feed to the sputter target
US20100098882A1 (en) 2008-10-21 2010-04-22 Applied Materials, Inc. Plasma source for chamber cleaning and process
US8395078B2 (en) 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
US20100159120A1 (en) 2008-12-22 2010-06-24 Varian Semiconductor Equipment Associates, Inc. Plasma ion process uniformity monitor
JP5476396B2 (ja) 2009-01-26 2014-04-23 ビーエスエヌ メディカル,インク. 防水包帯
US8319436B2 (en) 2009-02-02 2012-11-27 Advanced Energy Industries, Inc. Passive power distribution for multiple electrode inductive plasma source
US9287086B2 (en) 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US8716984B2 (en) 2009-06-29 2014-05-06 Advanced Energy Industries, Inc. Method and apparatus for modifying the sensitivity of an electrical generator to a nonlinear load
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US8501631B2 (en) 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
US8330432B2 (en) 2009-12-22 2012-12-11 Advanced Energy Industries, Inc Efficient active source impedance modification of a power amplifier
US8889021B2 (en) 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
JP5632626B2 (ja) * 2010-03-04 2014-11-26 東京エレクトロン株式会社 自動整合装置及びプラズマ処理装置
JP5631088B2 (ja) 2010-07-15 2014-11-26 国立大学法人東北大学 プラズマ処理装置及びプラズマ処理方法
US8491759B2 (en) 2010-10-20 2013-07-23 COMET Technologies USA, Inc. RF impedance matching network with secondary frequency and sub-harmonic variant
US8803424B2 (en) 2010-10-20 2014-08-12 COMET Technologies USA, Inc. RF/VHF impedance matching, 4 quadrant, dual directional coupler with V RMS/IRMS responding detector circuitry
US8779662B2 (en) 2010-10-20 2014-07-15 Comet Technologies Usa, Inc Pulse mode capability for operation of an RF/VHF impedance matching network with 4 quadrant, VRMS/IRMS responding detector circuitry
US20120097104A1 (en) 2010-10-20 2012-04-26 COMET Technologies USA, Inc. Rf impedance matching network with secondary dc input
US9065426B2 (en) 2011-11-03 2015-06-23 Advanced Energy Industries, Inc. High frequency solid state switching for impedance matching
JP5578619B2 (ja) 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
JP5711953B2 (ja) 2010-12-13 2015-05-07 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20120164834A1 (en) 2010-12-22 2012-06-28 Kevin Jennings Variable-Density Plasma Processing of Semiconductor Substrates
WO2012094416A1 (en) 2011-01-04 2012-07-12 Advanced Energy Industries, Inc. System level power delivery to a plasma processing load
US8416008B2 (en) 2011-01-20 2013-04-09 Advanced Energy Industries, Inc. Impedance-matching network using BJT switches in variable-reactance circuits
US8723423B2 (en) 2011-01-25 2014-05-13 Advanced Energy Industries, Inc. Electrostatic remote plasma source
US9263241B2 (en) 2011-05-10 2016-02-16 Advanced Energy Industries, Inc. Current threshold response mode for arc management
US8471746B2 (en) 2011-07-08 2013-06-25 Tektronix, Inc. Digital-to-analog conversion with combined pulse modulators
US9759789B2 (en) 2011-12-02 2017-09-12 Koninklijke Philips N.V. Coil arrangement for MPI
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
US8932429B2 (en) 2012-02-23 2015-01-13 Lam Research Corporation Electronic knob for tuning radial etch non-uniformity at VHF frequencies
US8911588B2 (en) 2012-03-19 2014-12-16 Lam Research Corporation Methods and apparatus for selectively modifying RF current paths in a plasma processing system
US20130278140A1 (en) 2012-04-19 2013-10-24 Luxim Corporation Electrodeless plasma lamp utilizing acoustic modulation
US9171700B2 (en) 2012-06-15 2015-10-27 COMET Technologies USA, Inc. Plasma pulse tracking system and method
JP5534366B2 (ja) 2012-06-18 2014-06-25 株式会社京三製作所 高周波電力供給装置、及びイグニッション電圧選定方法
US9490353B2 (en) 2012-08-28 2016-11-08 Advanced Energy Industries, Inc. Three terminal PIN diode
KR102025540B1 (ko) 2012-08-28 2019-09-26 에이이에스 글로벌 홀딩스 피티이 리미티드 넓은 다이내믹 레인지 이온 에너지 바이어스 제어; 고속 이온 에너지 스위칭; 이온 에너지 제어와 펄스동작 바이어스 서플라이; 및 가상 전면 패널
KR101942146B1 (ko) 2012-08-31 2019-01-24 어드밴스드 에너지 인더스트리즈 인코포레이티드 전압 반전 및 개선된 회복을 갖는 아크 처리
US9082589B2 (en) 2012-10-09 2015-07-14 Novellus Systems, Inc. Hybrid impedance matching for inductively coupled plasma system
US9226380B2 (en) 2012-11-01 2015-12-29 Advanced Energy Industries, Inc. Adjustable non-dissipative voltage boosting snubber network
US9287098B2 (en) 2012-11-01 2016-03-15 Advanced Energy Industries, Inc. Charge removal from electrodes in unipolar sputtering system
US9129776B2 (en) 2012-11-01 2015-09-08 Advanced Energy Industries, Inc. Differing boost voltages applied to two or more anodeless electrodes for plasma processing
US9294100B2 (en) 2012-12-04 2016-03-22 Advanced Energy Industries, Inc. Frequency tuning system and method for finding a global optimum
KR102220078B1 (ko) 2012-12-14 2021-02-25 램 리써치 코포레이션 통계 데이터 데시메이션을 위한 통계의 계산
US10374070B2 (en) 2013-02-07 2019-08-06 John Wood Bidirectional bipolar-mode JFET driver circuitry
JP2014154421A (ja) 2013-02-12 2014-08-25 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法、および高周波発生器
US9536713B2 (en) 2013-02-27 2017-01-03 Advanced Energy Industries, Inc. Reliable plasma ignition and reignition
JP5529311B1 (ja) 2013-03-04 2014-06-25 株式会社コスモライフ ウォーターサーバー
US9166481B1 (en) 2013-03-14 2015-10-20 Vlt, Inc. Digital control of resonant power converters
JP6217096B2 (ja) 2013-03-14 2017-10-25 株式会社リコー 高電圧インバータ及び誘電体バリア放電発生装置とシート材改質装置
CN104134532B (zh) 2013-05-03 2017-09-08 胜美达电机(香港)有限公司 一种可变内径的线圈及利用其制成的电子模块
US10469108B2 (en) 2013-05-09 2019-11-05 Lam Research Corporation Systems and methods for using computer-generated models to reduce reflected power towards a high frequency RF generator during a cycle of operations of a low frequency RF generator
US20140367043A1 (en) 2013-06-17 2014-12-18 Applied Materials, Inc. Method for fast and repeatable plasma ignition and tuning in plasma chambers
US9711335B2 (en) 2013-07-17 2017-07-18 Advanced Energy Industries, Inc. System and method for balancing consumption of targets in pulsed dual magnetron sputtering (DMS) processes
US9589767B2 (en) 2013-07-19 2017-03-07 Advanced Energy Industries, Inc. Systems, methods, and apparatus for minimizing cross coupled wafer surface potentials
JP6161482B2 (ja) 2013-09-19 2017-07-12 ルネサスエレクトロニクス株式会社 半導体記憶装置
US9148086B2 (en) 2013-10-22 2015-09-29 Advanced Energy Industries, Inc. Photovoltaic DC sub-array control system and method
US9345122B2 (en) 2014-05-02 2016-05-17 Reno Technologies, Inc. Method for controlling an RF generator
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9196459B2 (en) 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US9728378B2 (en) 2014-05-02 2017-08-08 Reno Technologies, Inc. Method for controlling an RF generator
US9745660B2 (en) 2014-05-02 2017-08-29 Reno Technologies, Inc. Method for controlling a plasma chamber
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US10224184B2 (en) 2014-03-24 2019-03-05 Aes Global Holdings, Pte. Ltd System and method for control of high efficiency generator source impedance
JP6586424B2 (ja) 2014-03-24 2019-10-02 エーイーエス グローバル ホールディングス, プライベート リミテッド 高周波発生器ソースインピーダンスの制御のためのシステムおよび方法
JP6369536B2 (ja) 2014-03-28 2018-08-08 株式会社村田製作所 コイルモジュール
US9591739B2 (en) 2014-05-02 2017-03-07 Reno Technologies, Inc. Multi-stage heterodyne control circuit
US9952297B2 (en) 2014-05-08 2018-04-24 Auburn University Parallel plate transmission line for broadband nuclear magnetic resonance imaging
US9544987B2 (en) 2014-06-30 2017-01-10 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
US9386680B2 (en) 2014-09-25 2016-07-05 Applied Materials, Inc. Detecting plasma arcs by monitoring RF reflected power in a plasma processing chamber
US9854659B2 (en) 2014-10-16 2017-12-26 Advanced Energy Industries, Inc. Noise based frequency tuning and identification of plasma characteristics
US10139285B2 (en) 2014-12-23 2018-11-27 Advanced Energy Industries, Inc. Fully-differential amplification for pyrometry
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10679823B2 (en) 2015-02-18 2020-06-09 Reno Technologies, Inc. Switching circuit
KR101930241B1 (ko) 2015-03-13 2018-12-18 어드밴스드 에너지 인더스트리즈 인코포레이티드 플라즈마 소스 디바이스 및 방법들
US9812305B2 (en) 2015-04-27 2017-11-07 Advanced Energy Industries, Inc. Rate enhanced pulsed DC sputtering system
US10373811B2 (en) 2015-07-24 2019-08-06 Aes Global Holdings, Pte. Ltd Systems and methods for single magnetron sputtering
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10008317B2 (en) 2015-12-08 2018-06-26 Smart Wires Inc. Voltage or impedance-injection method using transformers with multiple secondary windings for dynamic power flow control
US9577516B1 (en) 2016-02-18 2017-02-21 Advanced Energy Industries, Inc. Apparatus for controlled overshoot in a RF generator
KR20170103661A (ko) * 2016-03-04 2017-09-13 램 리써치 코포레이션 보다 저 주파수 rf 생성기의 기간 동안 보다 고 주파수 rf 생성기를 향하여 반사된 전력을 감소시키고 그리고 반사된 전력을 감소시키도록 관계를 사용하기 위한 시스템들 및 방법들
US9748076B1 (en) 2016-04-20 2017-08-29 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator
KR20170127724A (ko) 2016-05-12 2017-11-22 삼성전자주식회사 플라즈마 처리 장치
JP6630630B2 (ja) 2016-05-18 2020-01-15 東京エレクトロン株式会社 プラズマ処理装置
US10229816B2 (en) 2016-05-24 2019-03-12 Mks Instruments, Inc. Solid-state impedance matching systems including a hybrid tuning network with a switchable coarse tuning network and a varactor fine tuning network
US9807863B1 (en) 2016-06-09 2017-10-31 Advanced Energy Industries, Inc. Switching amplifier
US10026592B2 (en) 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
DE112017003582T5 (de) 2016-07-15 2019-05-02 Mitsubishi Electric Corporation Resonanzwechselrichter
KR101909479B1 (ko) 2016-10-06 2018-10-19 세메스 주식회사 기판 지지 유닛, 그를 포함하는 기판 처리 장치, 그리고 그 제어 방법
US10263577B2 (en) 2016-12-09 2019-04-16 Advanced Energy Industries, Inc. Gate drive circuit and method of operating the same
US10410836B2 (en) 2017-02-22 2019-09-10 Lam Research Corporation Systems and methods for tuning to reduce reflected power in multiple states
US10109462B2 (en) 2017-03-13 2018-10-23 Applied Materials, Inc. Dual radio-frequency tuner for process control of a plasma process
US10734195B2 (en) * 2017-06-08 2020-08-04 Lam Research Corporation Systems and methods for transformer coupled plasma pulsing with transformer coupled capacitive tuning switching
WO2019067451A1 (en) 2017-09-26 2019-04-04 Advanced Energy Industries, Inc. SYSTEM AND METHOD FOR IGNITION OF PLASMA
US10020752B1 (en) 2017-09-26 2018-07-10 Vlt, Inc. Adaptive control of resonant power converters
KR20190038070A (ko) 2017-09-29 2019-04-08 삼성전자주식회사 반도체 장치의 제조 시스템 및 반도체 장치의 제조 방법
KR102424953B1 (ko) 2017-11-17 2022-07-25 에바텍 아크티엔게젤샤프트 진공 플라즈마 공정에의 rf 전력 공급
US10269540B1 (en) 2018-01-25 2019-04-23 Advanced Energy Industries, Inc. Impedance matching system and method of operating the same
US10510512B2 (en) 2018-01-25 2019-12-17 Tokyo Electron Limited Methods and systems for controlling plasma performance
US10916409B2 (en) 2018-06-18 2021-02-09 Lam Research Corporation Active control of radial etch uniformity
KR20230048459A (ko) 2018-06-22 2023-04-11 도쿄엘렉트론가부시키가이샤 제어 방법 및 플라즈마 처리 장치
US10910197B2 (en) * 2018-10-19 2021-02-02 Mks Instruments, Inc. Impedance matching network model based correction scheme and performance repeatability
EP3881423A4 (en) 2018-11-14 2022-08-03 AES Global Holdings, Pte. Ltd. ADDITIVE SYNTHESIS OF INTERLEAVED SWITCH MODE POWER STAGES FOR MINIMUM DELAY IN SETPOINT TRACKING

Also Published As

Publication number Publication date
WO2023009245A1 (en) 2023-02-02
US20230031768A1 (en) 2023-02-02
US11923175B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
TWI716436B (zh) 用於處理基板之射頻功率傳輸調節
TWI764988B (zh) 利用變頻產生器的智慧rf脈衝調整
KR102329910B1 (ko) 정합된 소스 임피던스 구동 시스템 및 그 동작 방법
US10381201B2 (en) Control of etch rate using modeling, feedback and impedance match
US20170103873A1 (en) Rf pulse reflection reduction for processing substrates
TWI523417B (zh) RF power supply system and the use of RF power supply system impedance matching method
US20190318915A1 (en) Plasma generating method
US11527385B2 (en) Systems and methods for calibrating capacitors of matching networks
EP3782184B1 (en) System and method for control of high efficiency generator source impedance
KR20150039125A (ko) 모델링, 피드백 및 임피던스 매칭을 사용하는 에칭 레이트 제어
US20190318919A1 (en) Control of etch rate using modeling, feedback and impedance match
TW202310681A (zh) 用於匹配網路的可變增益調諧之系統及方法
US20230104096A1 (en) Plasma generation systems with multi-dimensional impedance matching networks
US20210335576A1 (en) Control Method of Driving Frequency of Pulsed Variable Frequency RF Generator
TW202236349A (zh) 組合匹配網路和頻率調諧的系統和方法
US11749506B2 (en) Systems and methods for repetitive tuning of matching networks
US20230253185A1 (en) Systems and Methods for Radiofrequency Signal Generator-Based Control of Impedance Matching System
US20220181121A1 (en) Match efficiency-variation compensation
JP2005011858A (ja) プラズマを用いた半導体製造におけるμ波パワー設定方法並びに当該設定方法を適用した半導体装置の製造装置及び上記設定方法を用いた半導体装置の製造方法