TW202215643A - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TW202215643A
TW202215643A TW110130870A TW110130870A TW202215643A TW 202215643 A TW202215643 A TW 202215643A TW 110130870 A TW110130870 A TW 110130870A TW 110130870 A TW110130870 A TW 110130870A TW 202215643 A TW202215643 A TW 202215643A
Authority
TW
Taiwan
Prior art keywords
wiring
layer
wire
semiconductor device
ruthenium
Prior art date
Application number
TW110130870A
Other languages
English (en)
Other versions
TWI809481B (zh
Inventor
李將銀
李民妵
金完敦
申鉉振
李賢培
林炫錫
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202215643A publication Critical patent/TW202215643A/zh
Application granted granted Critical
Publication of TWI809481B publication Critical patent/TWI809481B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • H01L23/53252Additional layers associated with noble-metal layers, e.g. adhesion, barrier, cladding layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)

Abstract

本發明提供一種半導體裝置。半導體裝置包含:基底,包含元件隔離層,元件隔離層界定主動區;多個字元線,在第一方向上橫穿主動區;以及多個位元線結構,位於基底上且連接至主動區,多個位元線結構在不同於第一方向的第二方向上延伸。多個位元線結構中的每一者包含:釕線佈線,包含底表面及與底表面相對的頂表面;下部石墨烯層,與釕線佈線的底表面接觸且沿著釕線佈線的底表面延伸;以及佈線封蓋層,沿著釕線佈線的頂表面延伸。

Description

半導體裝置
[相關申請案的交叉參考]
本申請案主張2020年9月11日在韓國智慧財產局申請的韓國專利申請案第10-2020-0116954號的優先權及自其產生的所有權益,所述申請案的全部內容以引用的方式併入本文中。
一些實例實施例是關於一種半導體裝置,且更特定言之,是關於一種使用電容器作為資料儲存元件的半導體裝置。
隨著半導體裝置變得更加高度整合,個別電路圖案已變得更小型化以在相同區域內實現更多半導體裝置。舉例而言,隨著半導體裝置的整合密度增加,半導體裝置的組件的設計規則減少。
在高度縮放的半導體裝置中,由於電極的臨界尺寸(critical dimension;CD)變得更小,因此正在對整合密度的新技術進行大量研究。
根據本發明概念的一些實例實施例,提供一種半導體裝置,包含:基底,包含元件隔離層,元件隔離層界定主動區;多個字元線,在第一方向上橫穿主動區;以及多個位元線結構,位於基底上且連接至主動區,多個位元線結構在不同於第一方向的第二方向上延伸。多個位元線結構中的每一者包含:釕線佈線,包含底表面及與底表面相對的頂表面;下部石墨烯層,與釕線佈線的底表面接觸且沿著釕線佈線的底表面延伸;以及佈線封蓋層,沿著釕線佈線的頂表面延伸。
根據本發明概念的一些實例實施例,提供一種半導體裝置,包含:基底,包含元件隔離層,元件隔離層界定主動區;多個字元線,在第一方向上橫穿主動區;以及多個位元線結構,在基底上在不同於第一方向的第二方向上延伸且連接至主動區。多個位元線結構中的每一者包含:釕線佈線,包含底表面及與底表面相對的頂表面;上部石墨烯層,與釕線佈線的頂表面接觸且沿著釕線佈線的頂表面延伸;以及佈線封蓋層,位於上部石墨烯層上且沿著上部石墨烯層延伸。
根據本發明概念的一些實例實施例,提供一種半導體裝置,包含:基底,包含元件隔離層,元件隔離層界定主動區;多個字元線,在第一方向上橫穿主動區;以及多個位元線結構,位於基底上且連接至主動區,多個位元線結構在不同於第一方向的第二方向上延伸。多個位元線結構中的每一者包含:釕線佈線,包含底表面及與底表面相對的頂表面;下部石墨烯層,接觸釕線佈線的底表面且沿著釕線佈線的底表面延伸;上部石墨烯層,與釕線佈線的頂表面接觸且沿著釕線佈線的頂表面延伸;以及佈線封蓋層,位於上部石墨烯層上且沿著上部石墨烯層延伸。
然而,本發明概念的態樣不受本文中所闡述的態樣限制。藉由參考下文給出的本發明概念的詳細描述,本發明概念的上述及其他態樣對於本發明概念所屬領域中具有通常知識者將變得更顯而易見。
圖1為示出根據一些實例實施例的半導體裝置的示意性佈局圖。圖2為沿圖1的線A-A截取的橫截面圖。圖3為沿圖1的線B-B截取的橫截面圖。
儘管圖1示出不包含電容器190的動態隨機存取記憶體(dynamic random access memory;DRAM)的實例佈局圖,但本發明概念不限於此。
參考圖1,根據一些實例實施例的半導體裝置可包含多個主動區ACT。主動區ACT可由形成於基底100(參見圖2)中的元件隔離層105(參見圖1)界定。
隨著半導體裝置的設計規則減少,如所示出,主動區ACT可以對角線或傾斜棒形狀安置。主動區ACT可具有在第三方向D3上延伸的棒形狀。多個主動區ACT可沿著第三方向D3共線地延伸。
在主動區ACT上,多個閘極電極可跨越主動區ACT在第一方向D1上配置。多個閘極電極可彼此平行延伸。多個閘極電極可為或對應於例如多個字元線WL。
字元線WL可以相等間隔配置。字元線WL的寬度、相鄰字元線WL之間的間隔以及/或字元線WL之間的間隔(例如,字元線WL的間距)可根據設計規則來判定。
在字元線WL上,可安置在垂直於字元線WL的第二方向D2上延伸的多個位元線BL。多個位元線BL可跨越主動區ACT在第二方向D2上延伸。第二方向D2可與第一方向D1成直角;然而,實例實施例不限於此。此外,第三方向D3可與第一方向D1成除直角以外的角,例如,成45度及/或70度的角;然而,實例實施例不限於此。位元線BL亦可稱為數位線。
多個位元線BL可彼此平行延伸。位元線BL可以相等間隔配置。位元線BL的寬度、相鄰位元線BL之間的間隔以及/或位元線BL之間的間隔(例如,間距)可根據設計規則來判定。
根據一些實例實施例的半導體裝置可包含形成於主動區ACT上的各種觸點配置。各種觸點配置可包含例如數位線觸點(digit line contact;DC)、內埋觸點(buried contact;BC)、著陸襯墊(landing pad;LP)以及/或類似者。
此處,數位線觸點DC可指代將主動區ACT電連接(例如,直接連接)至位元線BL的觸點。內埋觸點BC可指代將主動區ACT連接(例如,直接連接)至電容器190(參見圖2)的下部電極191(參見圖2)的觸點。
在配置結構中,內埋觸點BC與主動區ACT之間的接觸面積可能較小。因此,為了增加與主動區ACT的接觸面積且為了增加與下部電極191(參見圖2)的接觸面積,可引入導電著陸襯墊LP。接觸面積的增加可導致內埋觸點BC與主動區ACT之間的電阻減小。
著陸襯墊LP可安置於主動區ACT與內埋觸點BC之間,或可安置於內埋觸點BC與電容器190的下部電極191之間(參見圖2)。在根據本發明概念的一些實例實施例的半導體裝置中,著陸襯墊LP可安置於內埋觸點BC與電容器的下部電極191(參見圖2)之間。藉由經由引入第二著陸襯墊LP來擴大接觸面積,可減小主動區ACT與電容器的下部電極191(參見圖2)之間的接觸電阻。半導體裝置的速度可隨著接觸電阻的減小而增加。
在根據一些實例實施例的半導體裝置中,數位線觸點DC可安置於主動區ACT的中心部分中。內埋觸點BC可安置於主動區ACT的兩端處。
由於內埋觸點BC安置於主動區ACT的兩端處,因此著陸襯墊LP可鄰近於主動區ACT的兩端安置以與內埋觸點BC部分地重疊。
舉例而言,內埋觸點BC可形成為與元件隔離層105(參見圖2)以及相鄰字元線WL之間及相鄰位元線BL之間的主動區ACT重疊。
字元線WL可形成為內埋於基底100中。字元線WL可跨越數位線觸點DC或內埋觸點BC之間的主動區ACT安置。
如所示出,兩個字元線WL可安置為橫越一個主動區ACT。由於主動區ACT以傾斜形狀安置,故字元線WL相對於主動區ACT可具有小於90度的角。
數位線觸點DC及內埋觸點BC可對稱地配置。因此,數位線觸點DC及內埋觸點BC可沿著第一方向D1及第二方向D2以直線(例如,共線地)安置。
另一方面,不同於數位線觸點DC及內埋觸點BC,著陸襯墊LP可在位元線BL延伸的第二方向D2上以鋸齒形狀配置。此外,著陸襯墊LP可安置為在字元線WL延伸的第一方向D1上與每一位元線BL的相同側表面重疊。
舉例而言,第一線中的著陸襯墊LP中的每一者可與對應位元線BL的左側表面重疊,且第二線中的著陸襯墊LP中的每一者可與對應位元線BL的右側表面重疊。
參考圖1至圖3,根據一些實例實施例的半導體裝置可包含元件隔離層105、多個閘極結構110、多個位元線結構140ST、位元線觸點146、儲存觸點120以及資訊儲存單元190。
基底100可為或可包含矽基底或絕緣層上矽(silicon-on-insulator;SOI)基底。替代地,基底100可包含矽鍺、絕緣層上矽鍺(silicon germanium on insulator;SGOI)、銻化銦、鉛碲化合物、砷化銦、磷化銦、砷化鎵或銻化鎵,但不限於此。基底100可經摻雜,例如可輕微地摻雜有諸如磷的雜質;然而,實例實施例不限於此。
元件隔離層105可形成於基底100中。元件隔離層105可具有淺溝渠隔離(shallow trench isolation;STI)結構,所述淺溝渠隔離結構具有良好的(例如,極佳的)元件隔離(或電隔離)特性。元件隔離層105可界定基底100中的主動區ACT。元件隔離層105可包含於基底100中。
由元件隔離層105界定的主動區ACT可具有長島形狀,所述長島形狀具有短軸及長軸,如圖1中所繪示。主動區ACT可具有傾斜形狀以相對於形成於元件隔離層105中的字元線WL具有小於90度的角。
此外,主動區ACT可具有傾斜形狀以相對於形成於元件隔離層105上的位元線BL具有小於90度的角。舉例而言,主動區ACT可在相對於第一方向D1及第二方向D2具有特定(或替代地,預定)角度的第三方向D3上延伸。
元件隔離層105可包含例如氧化矽層、氮化矽層或氮氧化矽層中的至少一者,但本發明概念不限於此。儘管示出元件隔離層105為單層,但本發明概念不限於此。儘管未繪示,但作為實例,元件隔離層105可包含絕緣襯裡及填充由絕緣襯裡界定的溝渠的填充絕緣層。元件隔離層105可藉由諸如高密度電漿(high-density plasma;HDP)化學氣相沈積(chemical vapor deposition;CVD)製程以及/或旋塗式玻璃(spin-on glass;SOG)製程的沈積製程形成。
在圖2中,繪示元件隔離層105的頂表面及基底100的對應於主動區ACT的頂表面處於同一水平面,例如處於同一平面上。然而,此僅為描述簡單起見,且本發明概念不限於此。
閘極結構110可形成於基底100及元件隔離層105中。閘極結構110可跨越元件隔離層105及由元件隔離層105界定的主動區ACT形成。舉例而言,一個閘極結構110可形成於元件隔離層105及基底100中,所述基底100位於閘極結構110延伸的第一方向D1上。
閘極結構110可包含形成於基底100及元件隔離層105中的閘極溝渠114、閘極絕緣層111、閘極電極112以及閘極封蓋圖案113。此處,閘極電極112可對應於字元線WL。
閘極絕緣層111可沿著閘極溝渠114的側壁及底表面延伸。閘極絕緣層111可沿著閘極溝渠114的輪廓的至少一部分延伸。
閘極絕緣層111可包含氧化矽、氮化矽、氮氧化矽或具有比氧化矽更高的介電常數的高k材料中的至少一者。高k材料可包含例如自由以下各者所組成的族群中選出的至少一者:氮化硼、氧化鉿、氧化鉿矽、氧化鉿鋁、氧化鑭、氧化鑭鋁、氧化鋯、氧化鋯矽、氧化鉭、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦、氧化鍶鈦、氧化釔、氧化鋁、氧化鉛鈧鉭、鈮酸鉛鋅以及其組合。閘極絕緣層111可由諸如原位蒸汽生成(in-situ steam generation;ISSG)製程的氧化製程形成;然而,實例實施例不限於此。
已針對氧化物描述上述高k材料。然而,高k材料可包含上文金屬材料(例如,鉿)的氮化物(例如,氮化鉿)或氮氧化物(例如,氮氧化鉿)中的一或多者,但不限於此。
閘極電極112可形成於閘極絕緣層111上。閘極電極112可填充閘極溝渠114的一部分。
閘極電極112可包含金屬、導電金屬氮化物、導電金屬碳氮化物、導電金屬碳化物、金屬矽化物、摻雜半導體材料(諸如,摻雜多晶矽)、導電金屬氮氧化物或導電金屬氧化物中的至少一者。閘極電極112可包含例如自由以下各者所組成或包含以下各者的族群中選出的至少一者:氮化鈦(TiN)、碳化鉭(TaC)、氮化鉭(TaN)、氮化鈦矽(TiSiN)、氮化鉭矽(TaSiN)、氮化鉭鈦(TaTiN)、氮化鈦鋁(TiAlN)、氮化鉭鋁(TaAlN)、氮化鎢(WN)、釕(Ru)、鈦鋁(TiAl)、碳氮化鈦鋁(TiAlC-N)、碳化鈦鋁(TiAlC)、碳化鈦(TiC)、碳氮化鉭(TaCN)、鎢(W)、鋁(Al)、銅(Cu)、鈷(Co)、鈦(Ti)、鉭(Ta)、鎳(Ni)、鉑(Pt)、鎳鉑(Ni-Pt)、鈮(Nb)、氮化鈮(NbN)、碳化鈮(NbC)、鉬(Mo)、氮化鉬(MoN)、碳化鉬(MoC)、碳化鎢(WC)、銠(Rh)、鈀(Pd)、銥(Ir)、鋨(Os)、銀(Ag)、金(Au)、鋅(Zn)、釩(V)以及其組合。
閘極封蓋圖案113可形成於閘極電極112上。閘極封蓋圖案113可填充其中形成閘極電極112的閘極溝渠114的剩餘部分。閘極封蓋圖案113可包含例如以下中的至少一者:氮化矽(SiN)、氮氧化矽(SiON)、氧化矽(SiO 2)、碳氮化矽(SiCN)、碳氮氧化矽(SiOCN)或其組合。
在圖3中,繪示閘極封蓋圖案113的頂表面及元件隔離層105的頂表面處於同一平面上。然而,此僅為描述簡單起見,且本發明概念不限於此。
另外,閘極絕緣層111繪示為不延伸至閘極封蓋圖案113的頂表面,但不限於此。
儘管未繪示,但雜質摻雜區可形成於閘極結構110的至少一側上。雜質摻雜區可為或對應於電晶體的源極/汲極區。雜質摻雜區可摻雜有雜質,諸如硼、磷、砷、碳或鍺中的至少一者;然而,實例實施例不限於此。
位元線結構140ST可包含佈線結構140及佈線封蓋層144。
佈線結構140可形成於元件隔離層105及其中形成閘極結構110的基底100上方。佈線結構140可穿過元件隔離層105及由元件隔離層105界定的主動區ACT。
舉例而言,一個佈線結構140可形成於元件隔離層105及基底100上方,所述基底100位於佈線結構140延伸的第二方向D2上。佈線結構140可形成為穿過閘極結構110。此處,佈線結構140可為或對應於位元線BL。
佈線結構140可包含第一線佈線143、第二線佈線141以及下部障壁層148。
第一線佈線143可安置於基底100及元件隔離層105上方。第一線佈線143可沿著第二方向D2延長(例如,可沿著第二方向D2延伸)。
第一線佈線143可包含彼此相對的頂表面143us及底表面143bs。第一線佈線的頂表面143us及第一線佈線的底表面143bs可平行於基底100的頂表面。
隨著半導體裝置按比例縮小或收縮,第一線佈線143的寬度(在第一方向D1上的寬度)可能減小。
一般而言,藉由使用具有較小體電阻率及/或較大電子平均自由路徑(electron mean free path;eMFP)的材料進行佈線,可改良半導體裝置的效能。然而,當佈線的寬度小於或等於12奈米時,佈線的電阻可藉由使用具有較大電子平均自由路徑(eMFP)的材料進行佈線而增加。隨著佈線的寬度減小,具有較大電子平均自由路徑(eMFP)的材料中的電子與佈線的表面碰撞的次數可增加。歸因於碰撞數目的增加,佈線的電阻可增加,由此降低半導體裝置的效能,例如速度及/或功率。
隨著半導體裝置按比例縮小或收縮,位元線BL(參見圖1)的佈線的寬度亦減小。為了改良半導體裝置的效能,需要或選擇具有較小電子平均自由路徑(eMFP)及較小體電阻率的材料以用於位元線的佈線。
第一線佈線143可包含例如釕(Ru)、銠(Rh)、銥(Ir)、鉬(Mo)、RuAl、NiAl、NbB2、MoB2、TaB2、V2AlC或CrAlC中的至少一者。在根據一些實例實施例的半導體裝置中,第一線佈線143可包含釕或由釕構成。舉例而言,第一線佈線143可為或對應於釕線佈線。
下部障壁層148可安置於第一線佈線143與基底100之間。下部障壁層148可沿著第一線佈線的底表面143bs延伸。下部障壁層148可接觸第一線佈線143。
下部障壁層148可包含例如石墨烯或氧化鎂(MgO)中的至少一者。在根據一些實例實施例的半導體裝置中,下部障壁層148可包含石墨烯,例如至少一個石墨烯單層。舉例而言,下部障壁層的厚度可在0.334奈米至3.185奈米之間;然而,實例實施例不限於此。舉例而言,下部障壁層148可為或對應於下部石墨烯層。
當下部障壁層148為下部石墨烯層時,下部障壁層148可增大包含於第一線佈線143中的金屬材料的晶粒的大小。舉例而言,將描述第一線佈線143為釕線佈線的情況;然而,實例實施例不限於此。
形成於石墨烯層上的釕層的晶粒大小大於未形成有石墨烯層的釕層的晶粒大小。隨著晶粒大小增大,晶粒之間的晶粒界線可能減少。由於晶粒界線可充當電子轉移的電阻,故隨著釕層的晶粒大小增大,釕層的電阻可減小。舉例而言,下部石墨烯層可減小第一線佈線143的電阻。
替代地或另外,當下部障壁層148為下部石墨烯層時,下部石墨烯層可改良佈線結構140與位元線觸點146之間的電流擴散。
第二線佈線141可安置於下部障壁層148與基底100之間。第二線佈線141可沿著下部障壁層148在第二方向D2上延伸。
第二線佈線141可包含例如摻雜有雜質的半導體材料。第二線佈線141可包含例如雜質摻雜矽、雜質摻雜矽鍺或雜質摻雜鍺中的至少一者,且可呈多晶相;然而,實例實施例不限於此。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、下部障壁層148以及第一線佈線143。
位元線觸點146可形成於佈線結構140與基底100之間。舉例而言,佈線結構140可形成於位元線觸點146上。
舉例而言,位元線觸點146可形成於佈線結構140與具有長島形狀的主動區ACT的中心部分相交的點處。位元線觸點146可在主動區ACT的中心部分中形成於佈線結構140與基底100之間。
位元線觸點146可將佈線結構140電連接至基底100。位元線觸點146可將佈線結構140電連接至主動區ACT。舉例而言,位元線結構140ST可經由位元線觸點146連接至主動區ACT。
更具體言之,位元線觸點146可將基底100的在相鄰閘極結構110之間的雜質摻雜區電連接至佈線結構140。此處,位元線觸點146可對應於上文關於圖2所描述的數位線觸點(DC)。
舉例而言,自閘極封蓋圖案113的頂表面至位元線觸點146的底表面的深度小於自閘極封蓋圖案113的頂表面至閘極電極112的頂表面的深度。
位元線觸點146可包含例如摻雜有雜質的半導體材料、導電矽化物化合物、導電金屬氮化物或金屬中的至少一者。在根據一些實例實施例的半導體裝置中,位元線觸點146可包含摻雜有雜質的半導體材料。
在圖3中,在與位元線觸點146的頂表面重疊的區中,佈線結構140可包含第一線佈線143及下部障壁層148。在不與位元線觸點146的頂表面重疊的區中,佈線結構140可包含第一線佈線143、下部障壁層148以及第二線佈線141。在製造(manufacturing/fabrication)製程中,當第二線佈線141形成於基底100上方且接著形成穿過第二線佈線141的位元線觸點146時,可出現如上文所描述的形狀。
不同於所示出實例,在與位元線觸點146的頂表面重疊的區中,佈線結構140可包含第一線佈線143、下部障壁層148以及第二線佈線141。在製造(manufacturing/fabrication)製程中,當形成位元線觸點146且接著第二線佈線141形成於位元線觸點146及基底100上時,可出現與圖3中所繪示的形狀不同的形狀。
佈線封蓋層144可安置於佈線結構140上。佈線封蓋層144可在第二方向D2上沿著第一線佈線的頂表面143us延伸。在此情況下,佈線封蓋層144可包含例如氮化矽層、氮氧化矽層或氧化矽層中的至少一者,但實例實施例不限於此。
胞元絕緣層130可形成於基底100及元件隔離層105上。更具體言之,胞元絕緣層130可形成於元件隔離層105及其上未形成有位元線觸點146的基底100上。
胞元絕緣層130可形成於基底100與佈線結構140之間以及元件隔離層105與佈線結構140之間。
胞元絕緣層130可為單層,但如所繪示,胞元絕緣層130可為包含第一胞元絕緣層131及第二胞元絕緣層132的多層。舉例而言,第一胞元絕緣層131可包含氧化物層,且第二胞元絕緣層132可包含氮化物層,但其不限於此。
佈線間隔件150可安置於佈線結構140及佈線封蓋層144的側壁上。佈線間隔件150可在佈線結構140的其上形成有位元線觸點146的一部分中形成於基底100及元件隔離層105上。佈線間隔件150可在佈線結構140及佈線封蓋層144的側壁上在第二方向D2上延伸。
然而,在佈線結構140的其上未形成有位元線觸點146的剩餘部分中,佈線間隔件150可安置於胞元絕緣層130上。佈線間隔件150可在佈線結構140及佈線封蓋層144的側壁上在第二方向D2上延伸。
佈線間隔件150可為單層,但如所繪示,佈線間隔件150可為包含第一間隔件151及第二間隔件152的多層。舉例而言,第一間隔件151及第二間隔件152可包含氧化矽層、氮化矽層、氮氧化矽層(SiON)、碳氮氧化矽層(SiOCN)、空氣以及其組合中的一者,但不限於此。
儲存觸點120可形成於相鄰佈線結構140之間。儲存觸點120可在相鄰佈線結構140之間使基底100與元件隔離層105重疊。此處,儲存觸點120可對應於內埋觸點BC。
儲存觸點120可包含例如摻雜有雜質的半導體材料、導電矽化物化合物、導電金屬氮化物或金屬中的至少一者。
儲存襯墊160可形成於儲存觸點120上。儲存襯墊160可電連接至儲存觸點120。此處,儲存襯墊160可對應於著陸襯墊LP。
儲存襯墊160可與位元線結構140ST的頂表面的一部分重疊。儲存襯墊160可包含例如摻雜有雜質的半導體材料、導電矽化物化合物、導電金屬氮化物或金屬中的至少一者。
襯墊分離絕緣層180可形成於儲存襯墊160及位元線結構140ST上。舉例而言,襯墊分離絕緣層180可安置於佈線封蓋層144上。
襯墊分離絕緣層180可界定儲存襯墊160的形成多個隔離區域的區域。另外,可圖案化襯墊分離絕緣層180以暴露儲存襯墊160的頂表面的一部分。
襯墊分離絕緣層180可包含絕緣材料以使多個儲存襯墊160彼此電分離。舉例而言,襯墊分離絕緣層180可包含氧化矽層、氮化矽層、氮氧化矽層以及其組合中的一者,但不限於此。
資訊儲存單元190可形成於襯墊分離絕緣層180上。資訊儲存單元190可電連接至儲存襯墊160。亦即,資訊儲存單元190可電連接至儲存觸點120。
資訊儲存單元190可包含例如電容器,但不限於此。資訊儲存單元190包含下部電極191、電容器絕緣層192以及上部電極193。
下部電極191可安置於儲存襯墊160上。下部電極191示出為具有柱形狀,但不限於此。下部電極191可具有圓柱體形狀。
電容器絕緣層192形成於下部電極191上。電容器絕緣層192可沿著下部電極191的輪廓形成。
上部電極193形成於電容器絕緣層192上。上部電極193可包圍下部電極191的外壁。
下部電極191可包含例如摻雜半導體材料(諸如,摻雜多晶矽)、導電金屬氮化物(例如,氮化鈦、氮化鉭、氮化鈮或氮化鎢)、金屬(例如,釕、銥、鈦或鉭)、導電金屬氧化物(例如,氧化銥或氧化鈮)或類似者,但本發明概念不限於此。在根據一些實例實施例的半導體裝置中,下部電極191可包含氮化鈦(TiN)。替代地或另外,在根據一些實例實施例的半導體裝置中,下部電極191可包含氮化鈮(NbN)。
電容器絕緣層192可包含例如自由以下各者所組成或包含以下各者的族群中選出的一者:氧化矽、氮化矽、氮氧化矽、氧化鉿、氧化鉿矽、氧化鑭、氧化鑭鋁、氧化鋯、氧化鋯矽、氧化鉭、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦、氧化鍶鈦、氧化釔、氧化鋁、氧化鉛鈧鉭、鈮酸鉛鋅以及其組合,但不限於此。儘管示出電容器絕緣層192為單層,但僅為了描述簡單起見且本發明概念不限於此。
在根據一些實例實施例的半導體裝置中,電容器絕緣層192可包含其中依序堆疊氧化鋯、氧化鋁以及氧化鋯的堆疊結構。
在根據一些實例實施例的半導體裝置中,電容器絕緣層192可包含包括鉿(Hf)的介電層。
在根據一些實例實施例的半導體裝置中,電容器絕緣層192可具有包含鐵電材料層及順電材料層的堆疊結構。
鐵電材料層可具有鐵電特性。鐵電材料層可具有足以具有鐵電特性的厚度。具有鐵電特性的鐵電材料層的厚度範圍可視鐵電材料而變化。
舉例而言,鐵電材料層可包含單金屬氧化物。鐵電材料層可包含單金屬氧化物層。此處,單金屬氧化物可為由一種金屬及氧氣構成的二元化合物。包含單金屬氧化物的鐵電材料層可包含具有斜方晶系的晶粒。
作為實例,單金屬氧化物層中所包含的金屬可為鉿(Hf)。單金屬氧化物層可為或包含氧化鉿(HfO)層。此處,氧化鉿層可具有符合化學計量的化學式,或可具有不符合化學計量的化學式。
作為另一實例,單金屬氧化物層中所包含的金屬可為屬於鑭系元素的稀土金屬中的一者。單金屬氧化物層可為由屬於鑭系元素的稀土金屬所形成的稀土金屬氧化物層。此處,稀土金屬(屬於鑭系元素)氧化物層可具有符合化學計量的化學式,或可具有不符合化學計量的化學式。
鐵電材料層可更包含摻雜至單金屬氧化物層中的摻雜物。摻雜濃度可視摻雜物的類型而變化,但鐵電材料層中所包含的摻雜物的摻雜濃度可為10%或小於10%。
作為實例,當單金屬氧化物層為氧化鉿層時,摻雜物可包含釓(Gd)、矽(Si)、鋁(Al)、釔(Y)、鑭(La)、鈧(Sc)、鈰(Ce)、鏑(Dy)、鉭(Ta)、鍶(Sr)或鈮(Nb)中的至少一者。作為另一實例,當單金屬氧化物層為稀土金屬(屬於鑭系元素)氧化物層時,摻雜物可包含矽(Si)、鋁(Al)、鉿(Hf)、鋯(Zr)或鈮(Nb)中的至少一者。
作為另一實例,鐵電材料層可不包含摻雜至單金屬氧化物層中的摻雜物。
當鐵電材料層包含單金屬氧化物層時,鐵電材料層可具有例如1奈米或大於1奈米及10奈米或小於10奈米的厚度。
舉例而言,鐵電材料層可包含雙金屬氧化物。鐵電材料層可包含雙金屬氧化物層。此處,雙金屬氧化物可為由兩種金屬及氧氣構成的三元化合物。包含雙金屬氧化物的鐵電材料層可包含具有斜方晶系的晶粒。
雙金屬氧化物層中所包含的金屬可為例如鉿(Hf)及鋯(Zr)。雙金屬氧化物層可為鉿氧化鋯層(HfxZr(1-x)O)。在雙金屬氧化物層中,x可為0.2或大於0.2及0.8或小於0.8。此處,氧化鉻鋯層(HfxZr(1-x)O)可具有符合化學計量的化學式,或可具有不符合化學計量的化學式。
作為實例,鐵電材料層可更包含摻雜至雙金屬氧化物層中的摻雜物。摻雜物可包含釓(Gd)、矽(Si)、鋁(Al)、釔(Y)、鑭(La)、鈧(Sc)、鈰(Ce)、鏑(Dy)、鉭(Ta)或鍶(Sr)中的至少一者。作為另一實例,鐵電材料層可不包含摻雜至雙金屬氧化物層中的摻雜物。
當鐵電材料層包含雙金屬氧化物層時,鐵電材料層可具有例如1奈米或大於1奈米及20奈米或小於20奈米的厚度。
舉例而言,順電材料層可為包含鋯(Zr)的介電層或包含鋯(Zr)的堆疊層,但不限於此。儘管其具有相同化學式,但其可視介電材料的晶體結構而呈現鐵電特性或呈現順電特性。
順電材料可具有正介電常數,且鐵電材料可具有特定(或替代地,預定)範圍內的負介電常數。舉例而言,順電材料可具有正電容,且鐵電材料可具有負電容。
一般而言,當具有正電容的兩個或大於兩個電容器串聯連接時,電容的總和減小。然而,當具有負電容的負電容器及具有正電容的正電容器串聯連接時,電容的總和增加。
上部電極193可包含例如摻雜半導體材料(諸如,摻雜多晶矽)、導電金屬氮化物(例如,氮化鈦、氮化鉭、氮化鈮或氮化鎢)、金屬(例如,釕、銥、鈦或鉭)、導電金屬氧化物(例如,氧化銥或氧化鈮)或類似者,但本發明概念不限於此。在根據一些實例實施例的半導體裝置中,上部電極193可包含氮化鈦(TiN)。替代地或另外,在根據一些實例實施例的半導體裝置中,上部電極193可為或包含氮化鈮(NbN)。
圖4為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。
參考圖4,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含第三線佈線145。
第三線佈線145可安置於第二線佈線141與下部障壁層148之間。第三線佈線145可在第二方向D2上沿著下部障壁層148延伸。
第三線佈線145可安置於位元線觸點146上。第二線佈線141可沿著第三線佈線145延伸。
第三線佈線145可包含例如金屬矽化物材料或由金屬矽化物材料構成。舉例而言,第三線佈線145可為金屬矽化物線佈線。
第三線佈線145可包含例如鈦(Ti)矽化物、鈷(Co)矽化物、鎳(Ni)矽化物、鉬(Mo)矽化物、釕(Ru)矽化物以及鎢(W)矽化物中的至少一者或由所述矽化物構成,但不限於此。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第三線佈線145及下部障壁層148以及第一線佈線143。
圖5為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖4的描述的差異。
參考圖5,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含第四線佈線142。
第四線佈線142可安置於第三線佈線145與下部障壁層148之間。第四線佈線142可在第二方向D2上沿著下部障壁層148延伸。
第四線佈線142可包含例如包含金屬的導電材料或由所述導電材料構成。第四線佈線142可包含例如鉭(Ta)、氮化鉭(TaN)、氮化鉭矽(TaSiN)、鈦(Ti)、氮化鈦(TiN)、氮化鈦矽(TiSiN)、鎢(W)、氮化鎢(WN)或氮化鎢矽(WSiN)中的至少一者,但不限於此。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第三線佈線145、第四線佈線142、下部障壁層148以及第一線佈線143。
圖6為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。
參考圖6,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含第四線佈線142。
第四線佈線142可安置於第二線佈線141與下部障壁層148之間。第四線佈線142可在第二方向D2上沿著下部障壁層148延伸。
第四線佈線142可安置於位元線觸點146上。第二線佈線141可沿著第四線佈線142延伸。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第四線佈線142、下部障壁層148以及第一線佈線143。
圖7及圖8為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。圖7為沿圖1的線A-A截取的橫截面圖。圖8為沿圖1的線B-B截取的橫截面圖。
參考圖7及圖8,在根據一些實例實施例的半導體裝置中,佈線結構140可包含第一線佈線143、第二線佈線141以及上部障壁層149。佈線結構140不包含下部障壁層148(參見圖2及圖3)。
上部障壁層149可安置於第一線佈線143與佈線封蓋層144之間。上部障壁層149可沿著第一線佈線的頂表面143us延伸。上部障壁層149可接觸第一線佈線143。佈線封蓋層144可沿著上部障壁層149延伸。
上部障壁層149可包含例如石墨烯或氧化鎂(MgO)中的至少一者。在根據一些實例實施例的半導體裝置中,上部障壁層149可為或包含石墨烯。舉例而言,上部障壁層149可為上部石墨烯層,且可具有與下部障壁層148的厚度相同或不同的厚度。
當預佈線封蓋層144p(參見圖24)沈積於第一預導電層143p(參見圖24)上方時,上部障壁層149可保護第一線佈線143。替代地或另外,在上部障壁層149為上部石墨烯層的情況下,當在第一線佈線143內移動的電子與第一線佈線的頂表面143us碰撞時,上部障壁層149可允許電子自第一線佈線的頂表面143us反射,例如可以鏡面方式反射。
此外,在上部障壁層149為上部石墨烯層的情況下,在製造(manufacturing/fabrication)製程期間,安置於第一線佈線143與基底100之間的第二線佈線141、第三線佈線145以及第四線佈線142(參見圖9至圖11)中所包含的材料可防止或減少擴散至第一線佈線的頂表面143us的可能性。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第一線佈線143以及上部障壁層149。
圖9為示出根據一些實例實施例的半導體裝置的圖。圖10為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖7及圖8的描述的差異。
參考圖9,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含設置於第一線佈線143與第二線佈線141之間的第三線佈線145。
第三線佈線145可在第二方向D2上沿著第一線佈線的底表面143bs延伸。第三線佈線145可安置於位元線觸點146上。第二線佈線141可沿著第三線佈線145延伸。
第三線佈線145可包含例如金屬矽化物材料或由金屬矽化物材料構成。舉例而言,第三線佈線145可為金屬矽化物線佈線。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第三線佈線145、第一線佈線143以及上部障壁層149。
參考圖10,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含設置於第一線佈線143與第二線佈線141之間的第四線佈線142。
第四線佈線142可在第二方向D2上沿著第一線佈線的底表面143bs延伸。第四線佈線142可安置於位元線觸點146上。第二線佈線141可沿著第四線佈線142延伸。
第四線佈線142可包含例如包含金屬的導電材料或由所述導電材料構成。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第四線佈線142、第一線佈線143以及上部障壁層149。
圖11為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖10的描述的差異。
參考圖11,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含設置於第二線佈線141與第四線佈線142之間的第三線佈線145。
第三線佈線145可安置於第四線佈線142與第二線佈線141之間及第四線佈線142與位元線觸點146之間。第三線佈線145可在第二方向D2上沿著第四線佈線142延伸。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、第三線佈線145、第四線佈線142、第一線佈線143以及上部障壁層149。
圖12及圖13為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。圖12為沿圖1的線A-A截取的橫截面圖。圖13為沿圖1的線B-B截取的橫截面圖。
參考圖12及圖13,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含上部障壁層149。
上部障壁層149可安置於第一線佈線的頂表面143us上。上部障壁層149可沿著第一線佈線的頂表面143us延伸。上部障壁層149可接觸第一線佈線143。
佈線封蓋層144可安置於上部障壁層149上。佈線封蓋層144可沿著上部障壁層149延伸。
佈線結構140可包含與第一線佈線143接觸的下部障壁層148及上部障壁層149。在下部障壁層148及上部障壁層149為或包含石墨烯層的情況下,佈線結構140可包含沿著第一線佈線的頂表面143us延伸的上部石墨烯層及沿著第一線佈線的底表面143bs延伸的下部石墨烯層。
舉例而言,下部障壁層148的厚度t11可大於上部障壁層149的厚度t12。厚度t11及厚度t12可對應於石墨烯層的可為大於或等於一的整數的數目。
在根據一些實例實施例的半導體裝置中,佈線結構140可包含依序堆疊於基底100上的第二線佈線141、下部障壁層148及第一線佈線143以及上部障壁層149。
儘管未繪示,但作為實例,佈線結構140可更包含設置於下部障壁層148與第二線佈線141之間的第三線佈線145(參見圖4)。舉例而言,佈線結構140可更包含設置於下部障壁層148與第二線佈線141之間的第四線佈線142(參見圖6)。作為另一實例,佈線結構140可更包含設置於下部障壁層148與第二線佈線141之間的第三線佈線145(參見圖5)及第四線佈線142(參見圖5)。
圖14為示出根據一些實例實施例的半導體裝置的圖。圖15為圖14的部分P的放大視圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。
參考圖14及圖15,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含沿著第一線佈線的側壁143sw、下部障壁層148的側壁以及第二線佈線141的側壁延伸的側壁障壁層147。
佈線間隔件150覆蓋側壁障壁層147。在佈線結構140與基底100電連接的區中,側壁障壁層147可安置於位元線觸點146的側壁上。當在形成位元線觸點146的製程期間暴露基底100的一部分時,側壁障壁層147甚至可形成於暴露的基底100上。
側壁障壁層147可接觸第一線佈線143。舉例而言,側壁障壁層147可接觸第二線佈線141及下部障壁層148。
側壁障壁層147可包含例如石墨烯或氧化鎂(MgO)中的至少一者。在根據一些實例實施例的半導體裝置中,側壁障壁層147可為或包含石墨烯。舉例而言,側壁障壁層147可為側壁石墨烯層。
在側壁障壁層147為側壁石墨烯層的情況下,當在第一線佈線143內移動的電子與第一線佈線的側壁143sw碰撞時,側壁障壁層147可允許電子以鏡面方式自第一線佈線的側壁143sw反射。
舉例而言,下部障壁層148的厚度t11可小於或等於側壁障壁層147的厚度t13。
儘管未繪示,但作為實例,當佈線結構140更包含下部障壁層148與第二線佈線141之間的第三線佈線145(參見圖4)時,側壁障壁層147可形成於第三線佈線145的側壁上。替代地或另外,當佈線結構140更包含下部障壁層148與第二線佈線141之間的第四線佈線142(參見圖6)時,側壁障壁層147可形成於第四線佈線142的側壁上。替代地或另外,當佈線結構140更包含下部障壁層148與第二線佈線141之間的第三線佈線145(參見圖5)及第四線佈線142(參見圖5)時,側壁障壁層147可形成於第三線佈線145的側壁及第四線佈線142的側壁上。
圖16為示出根據一些實例實施例的半導體裝置的圖。圖17為圖16的部分P的放大視圖。為描述簡單起見,以下描述將集中於與參考圖7及圖8的描述的差異。
出於參考目的,由於側壁障壁層147的描述與參考圖14及圖15所描述的描述類似,故將主要描述差異。
參考圖16及圖17,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含沿著上部障壁層149的側壁、第一線佈線的側壁143sw以及第二線佈線141的側壁延伸的側壁障壁層147。
舉例而言,側壁障壁層147可接觸第一線佈線143、第二線佈線141以及上部障壁層149。
舉例而言,上部障壁層149的厚度t12可大於或等於側壁障壁層147的厚度t13。
儘管未繪示,但作為實例,當佈線結構140更包含第一線佈線143與第二線佈線141之間的第三線佈線145(參見圖9)時,側壁障壁層147可形成於第三線佈線145的側壁上。替代地或另外,當佈線結構140更包含第一線佈線143與第二線佈線141之間的第四線佈線142(參見圖10)時,側壁障壁層147可形成於第四線佈線142的側壁上。替代地或另外,當佈線結構140更包含第一線佈線143與第二線佈線141之間的第三線佈線145(參見圖11)及第四線佈線142(參見圖11)時,側壁障壁層147可形成於第三線佈線145的側壁及第四線佈線142的側壁上。
圖18為示出根據一些實例實施例的半導體裝置的圖。圖19為圖18的部分P的放大視圖。為描述簡單起見,以下描述將集中於與參考圖12及圖13的描述的差異。
出於參考目的,由於側壁障壁層147的描述與參考圖14及圖15的描述類似,故將主要描述差異。
參考圖18及圖19,在根據一些實例實施例的半導體裝置中,佈線結構140可更包含沿著上部障壁層149的側壁、第一線佈線的側壁143sw、下部障壁層148的側壁以及第二線佈線141的側壁延伸的側壁障壁層147。
舉例而言,側壁障壁層147可接觸第一線佈線143、第二線佈線141、下部障壁層148以及上部障壁層149。
舉例而言,上部障壁層149的厚度t12可大於或等於側壁障壁層147的厚度t13。下部障壁層148的厚度t11可小於或等於側壁障壁層147的厚度t13。下部障壁層148的厚度t11可小於上部障壁層149的厚度t12。
不同於所示出實例,佈線結構140可更包含設置於下部障壁層148與第二線佈線141之間的第三線佈線145(參見圖4)及/或第四線佈線142(參見圖6)中的至少一者。
圖20為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。
參考圖20,在根據一些實例實施例的半導體裝置中,佈線結構140可包含第一線佈線143、第二線佈線141以及側壁障壁層147。佈線結構140不包含下部障壁層148(參見圖2及圖3)。
側壁障壁層147可沿著第一線佈線143的側壁及第二線佈線141的側壁延伸。側壁障壁層147可形成於位元線觸點146的側壁上。
由於側壁障壁層147的描述與參考圖14及圖15的描述實質上相同,故為描述簡潔起見下文將省略詳細描述。
不同於所示出實例,佈線結構140可更包含設置於第一線佈線143與第二線佈線141之間的第三線佈線145(參見圖4)及/或第四線佈線142(參見圖6)中的至少一者。
圖21及圖22為示出根據一些實例實施例的半導體裝置的圖。為描述簡單起見,以下描述將集中於與參考圖1至圖3的描述的差異。圖21為沿圖1的線A-A截取的橫截面圖。圖22為沿圖1的線B-B截取的橫截面圖。
參考圖21及圖22,在根據一些實例實施例的半導體裝置中,下部障壁層148可接觸胞元絕緣層130及位元線觸點146。
第二線佈線141(參見圖2及圖3)並不設置於下部障壁層148與胞元絕緣層130之間。
圖23至圖27為示出根據一些實例實施例的製造半導體裝置的方法的中間步驟的視圖。
參考圖23,元件隔離層105形成於基底100中。基底100包含由元件隔離層105界定的主動區ACT。
舉例而言,元件隔離溝渠可形成於基底100中。元件隔離溝渠可用絕緣材料填充以在基底100中形成元件隔離層105。
參考圖24,預胞元絕緣層130p、包含連接至基底100的預位元線觸點146p的預佈線結構140p以及預佈線封蓋層144p可依序形成於基底100上。
具體言之,預胞元絕緣層130p可形成於基底100及元件隔離層105上。第二預導電層141p可形成於預胞元絕緣層130p上。
預胞元絕緣層130p可包含第一預胞元絕緣層131p及第二預胞元絕緣層132p,但實例實施例不限於此。
隨後,在形成同時覆蓋圖1中在第一方向D1上相鄰的主動區ACT的末端的遮罩圖案之後,可使用遮罩圖案移除第二預導電層141p及預胞元絕緣層130p。因此,可形成位元線觸點開口146_op。可形成填充位元線觸點開口146_op的預位元線觸點146p。
預下部障壁層148p及第一預導電層143p可依序形成於預位元線觸點146p及第二預導電層141p上。預上部障壁層149p可形成於第一預導電層143p上。
以此方式,包含第一預導電層143p及第二預導電層141p、預下部障壁層148p以及預上部障壁層149p的預佈線結構140p可形成於預胞元絕緣層130p上。
隨後,預佈線封蓋層144p可形成於預佈線結構140p上。
參考圖25,蝕刻預佈線結構140p及預佈線封蓋層144p以在基底100及預胞元絕緣層130p上形成在第二方向D2(參見圖1)上延伸的第一線佈線143、第二線佈線141、下部障壁層148、上部障壁層149以及佈線封蓋層144。
此外,可圖案化預位元線觸點146p以在下部障壁層148與基底100之間形成位元線觸點146。
舉例而言,第一線佈線143可為釕線佈線。在蝕刻製程之後,第一線佈線143中所包含的金屬的氧化物可形成於第一線佈線143的側壁上。形成於第一線佈線143的側壁上的金屬氧化物可使第一線佈線143的特性劣化。
為了防止或減少第一線佈線143的特性劣化的可能性,在用於形成第一線佈線143的蝕刻製程之後,可執行用於減小第一線佈線143的表面的還原製程。
用於減小第一線佈線143的表面的還原製程可為例如使用還原氣體的熱處理製程、使用還原氣體的高溫電漿製程或使用還原氣體的自由基製程中的至少一者。舉例而言,還原氣體可包含氫氣(H2),但不限於此。
作為實例,可原位(例如,在一個腔室內或在一個工具內)執行用於形成第一線佈線143的蝕刻製程及用於減小第一線佈線143的表面的還原製程。作為另一實例,可異位(例如,用單獨腔室及/或工具)執行用於形成第一線佈線143的蝕刻製程及用於減小第一線佈線143的表面的還原製程。
參考圖26,側壁障壁層147可形成於第一線佈線143的側壁上。
側壁障壁層147可形成於第二線佈線141的側壁、下部障壁層148的側壁以及上部障壁層149的側壁上。
以此方式,包含第一線佈線143、第二線佈線141、下部障壁層148、上部障壁層149以及側壁障壁層147的佈線結構140可形成於基底100上方。此外,包含佈線結構140及佈線封蓋層144的位元線結構140ST可形成於基底100上方。
側壁障壁層147可形成於位元線觸點146的側壁上。另外,側壁障壁層147可形成於經由位元線觸點開口146_op暴露的基底100上。
作為實例,可原位執行側壁障壁層147的沈積製程及用於減小第一線佈線143的表面的還原製程(參考圖25描述)。作為另一實例,可異位執行側壁障壁層147的沈積製程及用於減小第一線佈線143的表面的還原製程。
參考圖27,佈線間隔件150可形成於位元線結構140ST的側壁上。
佈線間隔件150可形成於元件隔離層105及在佈線結構140的一部分中位元線觸點146形成於其上的基底100上。佈線間隔件150可在第二方向D2(參見圖1)上沿著位元線結構140ST的側壁延伸。
可移除並不與位元線結構140ST及佈線間隔件150重疊的預胞元絕緣層130p。在位元線結構140ST之間,可暴露基底100及元件隔離層105。
隨後,參考圖18,可移除位元線結構140ST之間的基底100及元件隔離層105的一部分以形成儲存觸點120。隨後,可形成儲存襯墊160及資訊儲存單元190。
不同於上述內容,可能不形成側壁障壁層147、下部障壁層148以及上部障壁層149中的一些。
綜上所述,本領域具有通常知識者將瞭解,在實質上不脫離本發明概念的原理的情況下,可對實例實施例作出許多變化及修改。因此,本發明概念的所揭露實例實施例僅用於一般及描述性意義,且並非出於限制的目的。
100:基底 105:元件隔離層 110:閘極結構 111:閘極絕緣層 112:閘極電極 113:閘極封蓋圖案 114:閘極溝渠 120:儲存觸點 130:胞元絕緣層 130p:預胞元絕緣層 131:第一胞元絕緣層 131p:第一預胞元絕緣層 132:第二胞元絕緣層 132p:第二預胞元絕緣層 140:佈線結構 140p:預佈線結構 140ST:位元線結構 141:第二線佈線 141p:第二預導電層 142:第四線佈線 143:第一線佈線 143bs:底表面 143p:第一預導電層 143sw:側壁 143us:頂表面 144:佈線封蓋層 144p:預佈線封蓋層 145:第三線佈線 146:位元線觸點 146p:預位元線觸點 146_op:位元線觸點開口 147:側壁障壁層 148:下部障壁層 148p:預下部障壁層 149:上部障壁層 149p:預上部障壁層 150:佈線間隔件 151:第一間隔件 152:第二間隔件 160:儲存襯墊 180:襯墊分離絕緣層 190:電容器/資訊儲存單元 191:下部電極 192:電容器絕緣層 193:上部電極 ACT:主動區 A-A、B-B:線 BC:內埋觸點 BL:位元線 D1:第一方向 D2:第二方向 D3:第三方向 DC:數位線觸點 LP:著陸襯墊 P:部分 t11、t12、t13:厚度 WL:字元線
本發明概念的上述及其他態樣以及特徵將藉由參考隨附圖式詳細描述其一些實例實施例而變得更顯而易見,在隨附圖式中: 圖1為示出根據一些實例實施例的半導體裝置的示意性佈局圖。 圖2為沿圖1的線A-A截取的橫截面圖。 圖3為沿圖1的線B-B截取的橫截面圖。 圖4為示出根據一些實例實施例的半導體裝置的圖。 圖5為示出根據一些實例實施例的半導體裝置的圖。 圖6為示出根據一些實例實施例的半導體裝置的圖。 圖7及圖8為示出根據一些實例實施例的半導體裝置的圖。 圖9為示出根據一些實例實施例的半導體裝置的圖。 圖10為示出根據一些實例實施例的半導體裝置的圖。 圖11為示出根據一些實例實施例的半導體裝置的圖。 圖12及圖13為示出根據一些實例實施例的半導體裝置的圖。 圖14為示出根據一些實例實施例的半導體裝置的圖。 圖15為圖14的部分P的放大視圖。 圖16為示出根據一些實例實施例的半導體裝置的圖。 圖17為圖16的部分P的放大視圖。 圖18為示出根據一些實例實施例的半導體裝置的圖。 圖19為圖18的部分P的放大視圖。 圖20為示出根據一些實例實施例的半導體裝置的圖。 圖21及圖22為示出根據一些實例實施例的半導體裝置的圖。 圖23至圖27為示出根據一些實例實施例的製造半導體裝置的方法的中間步驟的視圖。
100:基底
105:元件隔離層
110:閘極結構
111:閘極絕緣層
112:閘極電極
113:閘極封蓋圖案
114:閘極溝渠
130:胞元絕緣層
131:第一胞元絕緣層
132:第二胞元絕緣層
140:佈線結構
140ST:位元線結構
141:第二線佈線
143:第一線佈線
143bs:底表面
143us:頂表面
144:佈線封蓋層
146:位元線觸點
148:下部障壁層
180:襯墊分離絕緣層
192:電容器絕緣層
193:上部電極
ACT:主動區
B-B:線

Claims (20)

  1. 一種半導體裝置,包括: 基底,包含元件隔離層,所述元件隔離層界定主動區; 多個字元線,在第一方向上橫穿所述主動區;以及 多個位元線結構,位於所述基底上且連接至所述主動區,所述多個位元線結構在不同於所述第一方向的第二方向上延伸, 其中所述多個位元線結構中的每一者包含: 釕線佈線,包含底表面及與所述底表面相對的頂表面, 下部石墨烯層,與所述釕線佈線的所述底表面接觸且沿著所述釕線佈線的所述底表面延伸,以及 佈線封蓋層,沿著所述釕線佈線的所述頂表面延伸。
  2. 如請求項1所述的半導體裝置,更包括: 第一線佈線,位於所述下部石墨烯層與所述基底之間,所述第一線佈線沿著所述下部石墨烯層延伸。
  3. 如請求項2所述的半導體裝置,其中所述第一線佈線包含摻雜半導體材料。
  4. 如請求項3所述的半導體裝置,更包括: 金屬矽化物線佈線,位於所述第一線佈線與所述下部石墨烯層之間。
  5. 如請求項2所述的半導體裝置,其中所述第一線佈線包含導電材料,所述導電材料包含金屬。
  6. 如請求項5所述的半導體裝置,更包括: 第二線佈線,位於所述第一線佈線與所述基底之間且沿著所述第一線佈線延伸, 其中所述第二線佈線包含摻雜半導體材料。
  7. 如請求項1所述的半導體裝置,其中所述多個位元線結構中的至少一者更包含沿著所述釕線佈線的側壁延伸的側壁石墨烯層。
  8. 如請求項7所述的半導體裝置,其中所述側壁石墨烯層的厚度大於或等於所述下部石墨烯層的厚度。
  9. 一種半導體裝置,包括: 基底,包含元件隔離層,所述元件隔離層界定主動區; 多個字元線,在第一方向上橫穿所述主動區;以及 多個位元線結構,在所述基底上在不同於所述第一方向的第二方向上延伸且連接至所述主動區, 其中所述多個位元線結構中的每一者包含: 釕線佈線,包含底表面及與所述底表面相對的頂表面, 上部石墨烯層,與所述釕線佈線的所述頂表面接觸且沿著所述釕線佈線的所述頂表面延伸,以及 佈線封蓋層,位於所述上部石墨烯層上且沿著所述上部石墨烯層延伸。
  10. 如請求項9所述的半導體裝置,更包括: 第一線佈線,位於所述釕線佈線與所述基底之間且沿著所述釕線佈線延伸, 其中所述第一線佈線包含摻雜半導體材料。
  11. 如請求項10所述的半導體裝置,更包括: 金屬矽化物線佈線,位於所述第一線佈線與所述釕線佈線之間。
  12. 如請求項9所述的半導體裝置,更包括: 第一線佈線,位於所述釕線佈線與所述基底之間,所述第一線佈線沿著所述釕線佈線延伸, 其中所述第一線佈線包含導電材料,所述導電材料包含金屬。
  13. 如請求項12所述的半導體裝置,更包括: 第二線佈線,位於所述第一線佈線與所述基底之間且沿著所述第一線佈線延伸, 其中所述第二線佈線包含摻雜半導體材料。
  14. 如請求項9所述的半導體裝置,其中所述多個位元線結構中的至少一者更包含沿著所述釕線佈線的側壁延伸的側壁石墨烯層。
  15. 如請求項14所述的半導體裝置,其中所述側壁石墨烯層的厚度小於或等於所述上部石墨烯層的厚度。
  16. 一種半導體裝置,包括: 基底,包含元件隔離層,所述元件隔離層界定主動區; 多個字元線,在第一方向上橫穿所述主動區;以及 多個位元線結構,位於所述基底上且連接至所述主動區,所述多個位元線結構在不同於所述第一方向的第二方向上延伸, 其中所述多個位元線結構中的每一者包含: 釕線佈線,包含底表面及與所述底表面相對的頂表面, 下部石墨烯層,接觸所述釕線佈線的所述底表面且沿著所述釕線佈線的所述底表面延伸, 上部石墨烯層,與所述釕線佈線的所述頂表面接觸且沿著所述釕線佈線的所述頂表面延伸,以及 佈線封蓋層,位於所述上部石墨烯層上且沿著所述上部石墨烯層延伸。
  17. 如請求項16所述的半導體裝置,更包括: 第一線佈線,位於所述下部石墨烯層與所述基底之間且沿著所述下部石墨烯層延伸, 其中所述第一線佈線包含摻雜半導體材料。
  18. 如請求項17所述的半導體裝置,更包括: 金屬矽化物線佈線,位於所述第一線佈線與所述釕線佈線之間。
  19. 如請求項16所述的半導體裝置,更包括: 第一線佈線,位於所述下部石墨烯層與所述基底之間且沿著所述下部石墨烯層延伸, 其中所述第一線佈線包含導電材料,所述導電材料包含金屬。
  20. 如請求項16所述的半導體裝置,其中所述多個位元線結構中的至少一者更包含沿著所述釕線佈線的側壁延伸的側壁石墨烯層。
TW110130870A 2020-09-11 2021-08-20 半導體裝置 TWI809481B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200116954A KR20220034498A (ko) 2020-09-11 2020-09-11 반도체 장치
KR10-2020-0116954 2020-09-11

Publications (2)

Publication Number Publication Date
TW202215643A true TW202215643A (zh) 2022-04-16
TWI809481B TWI809481B (zh) 2023-07-21

Family

ID=80351700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110130870A TWI809481B (zh) 2020-09-11 2021-08-20 半導體裝置

Country Status (5)

Country Link
US (1) US11854979B2 (zh)
KR (1) KR20220034498A (zh)
CN (1) CN114171519A (zh)
DE (1) DE102021115695A1 (zh)
TW (1) TWI809481B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825912B (zh) * 2022-08-10 2023-12-11 華邦電子股份有限公司 埋入式閘極結構及其形成方法及具有埋入式閘極結構的動態隨機存取記憶體結構

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543734B (zh) 2010-12-08 2015-06-24 中国科学院微电子研究所 带有存储功能的mos器件及其形成方法
US8716863B2 (en) 2011-07-13 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for high performance interconnect
US9324634B2 (en) 2011-11-08 2016-04-26 International Business Machines Corporation Semiconductor interconnect structure having a graphene-based barrier metal layer
KR101979752B1 (ko) * 2012-05-03 2019-05-17 삼성전자주식회사 반도체 소자 및 그 제조 방법
US9472450B2 (en) 2012-05-10 2016-10-18 Samsung Electronics Co., Ltd. Graphene cap for copper interconnect structures
US20140145332A1 (en) 2012-11-26 2014-05-29 Globalfoundries Inc. Methods of forming graphene liners and/or cap layers on copper-based conductive structures
US9202743B2 (en) 2012-12-17 2015-12-01 International Business Machines Corporation Graphene and metal interconnects
US9006095B2 (en) 2013-02-19 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
JP5826783B2 (ja) 2013-03-25 2015-12-02 株式会社東芝 半導体装置
KR102059863B1 (ko) * 2013-08-30 2019-12-30 삼성전자주식회사 반도체 소자 및 그 제조 방법
KR102175040B1 (ko) * 2013-12-20 2020-11-05 삼성전자주식회사 반도체 소자 및 그 제조 방법
US10611868B2 (en) * 2015-11-25 2020-04-07 Toray Industries, Inc. Ferroelectric memory element, method for producing same, memory cell using ferroelectric memory element, and radio communication device using ferroelectric memory element
US10269706B2 (en) 2016-07-26 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
KR102489949B1 (ko) 2016-12-13 2023-01-17 삼성전자주식회사 반도체 장치 및 그 제조 방법
US10164018B1 (en) 2017-05-30 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor interconnect structure having graphene-capped metal interconnects
US10741417B2 (en) * 2017-11-30 2020-08-11 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming interconnect structure
EP3748021A4 (en) 2018-01-31 2021-10-20 JX Nippon Mining & Metals Corporation PROCESSING METHODS FOR WASTE FROM COMPONENTS OF ELECTRONIC / ELECTRICAL DEVICES
KR102606772B1 (ko) * 2018-09-28 2023-11-28 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR102396978B1 (ko) * 2018-11-16 2022-05-11 삼성전자주식회사 반도체 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825912B (zh) * 2022-08-10 2023-12-11 華邦電子股份有限公司 埋入式閘極結構及其形成方法及具有埋入式閘極結構的動態隨機存取記憶體結構

Also Published As

Publication number Publication date
DE102021115695A1 (de) 2022-03-17
TWI809481B (zh) 2023-07-21
KR20220034498A (ko) 2022-03-18
CN114171519A (zh) 2022-03-11
US20220084952A1 (en) 2022-03-17
US11854979B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
US20220216239A1 (en) Semiconductor memory device
TWI788106B (zh) 半導體裝置
US20220223732A1 (en) Semiconductor memory device and method for fabricating the same
US20220139927A1 (en) Semiconductor memory devices and methods for fabricating the same
CN112750833A (zh) 半导体装置
TWI809481B (zh) 半導體裝置
US20220189966A1 (en) Semiconductor memory device and method for fabricating the same
TWI836976B (zh) 半導體記憶體裝置
US20240107751A1 (en) Semiconductor memory device
US20230035899A1 (en) Semiconductor memory device and method of fabricating the same
US20230402500A1 (en) Capacitor structure, semiconductor memory device including the structure, and method for manufacturing the structure
US20230284439A1 (en) Semiconductor memory device and method for fabricating the same
US20240049440A1 (en) Semiconductor device
US11843039B2 (en) Semiconductor device
US20230112600A1 (en) Semiconductor devices
US20240164084A1 (en) Semiconductor device
EP4307856A1 (en) Semiconductor memory devices
KR20230056990A (ko) 반도체 장치
TW202410392A (zh) 半導體記憶體裝置
KR20230014794A (ko) 반도체 메모리 장치 제조 방법
KR20240025974A (ko) 반도체 메모리 장치 및 이의 제조 방법
TW202416812A (zh) 半導體記憶體裝置
TW202341435A (zh) 半導體記憶體裝置
KR20240050242A (ko) 반도체 메모리 장치 및 이의 제조 방법
TW202230807A (zh) 半導體裝置