TW202025546A - 二次電池及其製造方法 - Google Patents

二次電池及其製造方法 Download PDF

Info

Publication number
TW202025546A
TW202025546A TW108141246A TW108141246A TW202025546A TW 202025546 A TW202025546 A TW 202025546A TW 108141246 A TW108141246 A TW 108141246A TW 108141246 A TW108141246 A TW 108141246A TW 202025546 A TW202025546 A TW 202025546A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
secondary battery
oxide semiconductor
oxide
Prior art date
Application number
TW108141246A
Other languages
English (en)
Other versions
TWI714346B (zh
Inventor
齋藤友和
工藤拓夫
Original Assignee
日本麥克隆尼股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本麥克隆尼股份有限公司 filed Critical 日本麥克隆尼股份有限公司
Publication of TW202025546A publication Critical patent/TW202025546A/zh
Application granted granted Critical
Publication of TWI714346B publication Critical patent/TWI714346B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明提供一種用於提升二次電池之性能的技術。本實施型態的二次電池(100)包括第一電極(21)、第二電極(22)、配置於第一電極(21)上且含有第一n型氧化物半導體材料的第一層(11)、配置於第一層(11)上且含有第二n型氧化物半導體材料與第一絕緣材料的第二層(12)、配置於第二層(12)上且含有鉭氧化物的第三層(13)、以及配置於第三層(13)上且含有第二絕緣材料的第四層(14)。

Description

二次電池及其製造方法
本發明是有關於一種用於提升二次電池之性能的技術。
專利文獻1揭露有一種蓄電元件,其在第一電極與第二電極之間具備蓄電層,該蓄電層含有絕緣材料與n型半導體粒子的混合物。並且,於蓄電層與第二電極之間配置有p型半導體層。再者,於p型半導體層與蓄電層之間配置有漏電抑制層。漏電抑制層由選自二氧化矽、氧化鋁及氧化鎂的至少一種所構成。
專利文獻2揭露有一種蓄電元件,其在第一電極與第二電極之間具備蓄電層,該蓄電層含有絕緣材料與n型半導體粒子的混合物。並且,於蓄電層與第二電極之間配置有p型半導體層。再者,於第一電極與蓄電層之間配置有電阻率為1000 μΩ・cm以下的擴散抑制層。擴散抑制層由氮化物、碳化物、硼化物所形成。
[先前技術文獻] [專利文獻] 專利文獻1:日本專利特開2016-82125號公報 專利文獻2:日本專利特開2016-91931號公報
[發明所欲解決的課題] 於此種二次電池中,期望進一步提升性能。
本發明的目的在於提供一種用於提升二次電池之性能的技術。
[用於解決課題的手段] 本實施型態的一態樣的二次電池包括:第一電極;第二電極;第一層,配置於所述第一電極與所述第二電極之間,且含有第一n型氧化物半導體材料;第二層,配置於所述第一層上,且含有第二n型氧化物半導體材料與第一絕緣材料;第三層,配置於所述第二層上,且含有鉭氧化物;以及第四層,配置於所述第三層上,且含有第二絕緣材料。
於所述二次電池中,所述第三層為含有鉭氧化物的非晶層,亦可為含有複數個鉭氧化物奈米粒子的奈米粒子層。
於所述二次電池中,所述第三層的厚度可為50 nm以上、800 nm以下。
所述二次電池可在所述第四層與所述第二電極之間形成含有氧化鎳或氫氧化鎳的層。
於所述二次電池中,所述第四層可為將作為所述第二絕緣材料的SiOx 作為主成分的層,所述第四層中可添加金屬氧化物。
於所述二次電池中,所述金屬氧化物可為SnOx
於所述二次電池中,所述第一絕緣材料可為SiOx ,所述第二n型氧化物半導體材料可為TiO2
於所述二次電池中,所述第一n型氧化物半導體材料可為TiO2 。 本實施型態的二次電池的製造方法具備:於第一電極上,形成含有第一n型氧化物半導體材料的第一層的步驟;於所述第一層上,形成含有第二n型氧化物半導體材料與第一絕緣材料的第二層的步驟;於所述第二層上,形成含有鉭氧化物的第三層的步驟;於所述第三層上,形成含有第二絕緣材料的第四層的步驟;以及於所述第四層上,形成第二電極的步驟。
上述二次電池的製造方法中,於形成所述第三層的步驟中,可藉由濺鍍成膜、蒸鍍或離子鍍,形成含有鉭氧化物的非晶層、或者含有複數個鉭氧化物奈米粒子的奈米粒子層。
[發明的效果] 根據本發明,可提供一種用於提升二次電池性能的技術。
以下針對本發明的實施型態的一例,參照圖式來進行說明。以下的說明表示本發明的較佳實施型態,本發明的技術範圍並未限定在以下的實施型態。
實施型態1 (二次電池的積層構造) 以下針對本實施型態的二次電池的基本結構,使用圖1來進行說明。圖1為概略表示二次電池100之積層結構的剖面圖。
圖1中,二次電池100具有依序積層有第一電極21、第一層11、第二層12、第三層13、第四層14、第五層15、及第二電極22的積層構造。
[第一電極21] 第一電極21為二次電極100的負極。第一電極21係作為基材發揮作用的導電性片材或導電性基板。作為第一電極21,例如可使用不鏽鋼(SUS)片材或鋁片材等金屬箔片材。此外,可準備由絕緣體構成的基材,在基材上形成第一電極21。於絕緣性基材上成膜第一電極21的情況下,作為第一電極21的材料,可使用鎢(W)、鉻(Cr)或鈦(Ti)等金屬材料。作為第一電極21的材料,可使用含有鋁(Al)、銀(Ag)等的合金膜。在基材上形成第一電極21的情況下,可與形成後述第二電極22同樣的方式來形成。
[第一層11] 於第一電極21上配置有第一層11。第一層11配置在第一電極21的第二電極22側。第一層11以與第一電極21接觸的方式形成。第一層11的膜厚例如為約50 nm~200 nm左右。
第一層11含有n型氧化物半導體材料(第一n型氧化物半導體材料)。第一層11為以預定的厚度形成的n型氧化物半導體層。作為第一層11,例如可使用二氧化鈦(TiO2 )、氧化錫(SnO2 )或氧化鋅(ZnO)等。例如,第一層11為藉由濺鍍或蒸鍍等,而成膜在第一電極21上的n型氧化物半導體層。作為第一層11的材料,以使用二氧化鈦(TiO2 )為佳。
[第二層12] 於第一層11上,配置有作為負極活性物質層而發揮作用的第二層12。第二層12配置在第一層11的第二電極22側。第二層12以與第一層11接觸的方式形成。第二層12的厚度例如為200 nm~1000 nm。
第二層12含有絕緣材料(第一絕緣材料)。作為第一絕緣材料,可使用矽酮樹脂。例如,作為第一絕緣材料,較佳為使用具有矽氧化物等的矽氧烷鍵所構成的主骨架的矽化合物(矽酮)。因此,第二層12含有氧化矽(SiOx )作為第一絕緣材料。
另外,第二層12除了絕緣材料(第一絕緣材料)以外,還含有n型氧化物半導體材料(第二n型氧化物半導體材料)。亦即,第二層12為藉由混合有第一絕緣材料與第二n型氧化物半導體材料的混合物所形成。例如,作為第二n型氧化物半導體材料,可使用微粒子的n型氧化物半導體。
例如,第二層12將第二n型氧化物半導體材料設為二氧化鈦,由氧化矽與二氧化鈦所形成。此外,作為第二層12能夠使用的n型氧化物半導體材料,較佳為氧化錫(SnO2 )、氧化鋅(ZnO)、氧化鎂(MgO)。亦可使用組合有二氧化鈦、氧化錫、氧化鋅及氧化鎂的兩種、三種或全部的材料。
第二層12所含有的第二n型氧化物半導體材料與第一層11所含有的第一n型氧化物半導體材料可相同,亦可不同。例如,在第一層11所含有的第一n型氧化物半導體材料為氧化鈦的情況下,第二層12的第二n型氧化物半導體材料可為氧化鈦,亦可為氧化鈦以外的n型氧化物半導體材料。
[第三層13] 於第二層12上,配置有作為固體電解質而發揮作用的第三層13。第三層13配置在第二層12的第二電極22側。第三層13以與第二層12接觸的方式形成。第三層13的厚度以50 nm以上、800 nm以下為佳。
第三層13作為用於調整H 及電子(e )移動的緩衝層而發揮作用。第三層13為含有鉭氧化物的層。例如,第三層13可藉由預定厚度的鉭氧化物膜(TaOx 膜)形成。具體而言,第三層13為藉由濺鍍等而成膜在第二層12上的TaOx 層。另外,第三層13較佳為含有鉭氧化物的非晶層(非晶質層)。或者,第三層13較佳為含有複數個鉭氧化物奈米粒子的奈米粒子層。
[第四層14] 於第三層13上,配置有作為正極活性物質層、或固體電解質層而發揮作用的第四層14。第四層14配置在第三層13的第二電極22側。第四層14以與第三層13接觸的方式形成。第四層14的厚度為100 nm~150 nm。另外,第四層14能夠以50 nm~250 nm的範圍的厚度形成。更加理想的是,第四層14能夠以150 nm~200 nm的範圍的厚度形成。
第四層14作為用於調整H 及電子(e )的移動的緩衝層而發揮作用。第四層14為含有絕緣材料(第二絕緣材料)的層。第四層14含有氧化矽(SiOx )作為第二絕緣材料。具體而言,第四層14為將作為第二絕緣材料的氧化矽(SiOx )設為主成分的層。
第四層14可僅由第二絕緣材料所構成。或者,於第四層14中,亦可在第二絕緣材料中添加導電率調整材料。藉由在第二絕緣材料中添加導電率調整材料,可進一步地調整H 及e 的遷移率。亦即,第四層14可為混合有導電率調整材料與絕緣材料的混合物層。
導電率調整材料可具備n型氧化物半導體材料(第三n型氧化物半導體材料)、或金屬的氧化物。例如,第四層14可具備選自由Ti、Sn、Zn、Nb或Mg之氧化物所組成的群組中至少一種作為導電率調整材料。藉由以Sn、Zn、Ti、Nb或Mg的氧化物作為導電率調整材料,將可增厚第四層14、且可形成為耐高電壓。
具體而言,作為第四層14所含的第三n型氧化物半導體材料,可使用氧化錫(SnOx )。在此情況下,第四層14含有混合有氧化矽與氧化錫的混合物。於第四層14中,在矽氧化物、矽氮化物或矽酮油中添加有第三n型氧化物半導體材料。n型氧化物半導體分散在作為第二絕緣材料的二氧化矽中。
第四層14中的第三n型氧化物半導體材料,可含有一種以上選自氧化錫(SnOx )、氧化鋅(ZnO)、氧化鈦(TiOx )及氧化鈮(NbOx )的氧化物。
第二層12所含有的第二n型氧化物半導體材料與第四層14所含有的第三n型氧化物半導體材料可為相同材料,亦可為不同材料。例如,在第四層14中的第三n型氧化物半導體材料為氧化錫的情況下,第二層12的第二n型氧化物半導體材料可為氧化錫,亦可為氧化錫以外的n型氧化物半導體材料。
[第五層15] 在第四層14上配置有第五層15。第五層15配置在第四層14的第二電極22側。第五層15以與第四層14接觸的方式形成。第五層15的厚度為100 nm以上。另外,第五層15能夠以100 nm~400 nm的範圍的厚度形成。
第五層15形成在第四層14上。第五層15含有p型氧化物半導體材料。第五層15例如為氧化鎳(NiO)層。藉由將Ni或NiO作為靶材的濺鍍法,在第四層14上形成第五層15。
[第二電極22] 在第五層15上配置有第二電極22。第二電極22以與第五層15接觸的方式形成。第二電極22只要為由導電膜形成即可。另外,作為第二電極22的材料,可使用鉻(Cr)或銅(Cu)等的金屬材料。作為第二電極22的材料,亦可使用含有鋁(Al)、銀(Ag)等的合金膜。作為其形成方法,可列舉濺鍍、離子鍍、電子束蒸鍍、真空蒸鍍、化學蒸鍍等的氣相成膜法。另外,金屬電極可藉由電鍍法、無電式電鍍法(electroless plating)等形成。作為鍍覆所使用的金屬,通常可使用銅、銅合金、鎳、銀、金、鋅或錫等。例如,第二電極22為厚度300 nm的Al膜。
如此一來,在第二層12與第四層14之間配置有含有鉭氧化物的第三層13。藉由此種結構,可提升二次電池100的性能。關於此點,使用由實際的樣本所測定的測定資料,並在以下進行說明。
圖2為表示2個樣本A、B的自放電特性的圖表。樣本B為具有第三層13的實施例。樣本A為不具有第三層13的比較例。亦即,於樣本A中,在第二層12上直接形成有第四層14。圖2表示測定從充滿電經過1星期後的自放電特性的測定結果。亦即,圖2表示將充電後當下設為100%,且將放置1星期後殘存的電容設為殘存率(%)。
樣本B的殘存率高於樣本A。因此,藉由具有第三層13的本實施型態,可維持較高的殘存率。認為導致此結果的原因,是因為在第三層13(固體電解質)與第二層12(負極活性物質)的界面、以及在第三層13(固體電解質)與第四層14(正極活性物質)的界面的電阻上升,能夠抑制電子洩漏。因此,根據本實施型態,能夠抑制充電後的放置所導致的能量密度的急遽下降。藉由本實施型態的結構,例如可實現放置6小時後的殘存率約80%以上。進而,可實現經過24小時後的殘存率約80%以上,且經過168小時後的殘存率約68%。
圖3表示第三層13的表面SEM(Scanning Electron Microscope)照片。圖4表示在露出第三層13之狀態下的X射線繞射圖形(光譜)。在圖4中,橫軸為繞射角度2θ(入射X射線方向與繞射X射線方向所形成的角度),縱軸為繞射強度(a.u.)。在本實施形態中,使用波長1.5418 Å的CuKα射線、並藉由掠角入射X光繞射法(grazing incidence X-ray diffraction)法來進行X射線繞射測定。此外,在圖4中表示在濺鍍成膜時,將氧氣(O2 )流量變化為0 sccm、4 sccm及10 sccm而成膜的3個樣本的資料。圖3、圖4為將厚度400 nm的TaOx 膜設為第三層13而形成時的測定結果。
從圖3的SEM照片可知,第三層13中未形成0.1 μm以上的尺寸的粒子。另外,圖4並未表示有繞射波峰。因此,可知TaOx 膜成為非晶狀態、或者堆積有複數個鉭氧化物奈米粒子的狀態。藉由形成未成為結晶構造的TaOx 膜作為第三層13,可抑制自放電。能夠實現高性能的二次電池。
(製造方法) 接著,針對本實施型態的二次電池100的製造方法,使用圖5進行說明。圖5所示的流程圖,為表示二次電池100的製造方法。
首先,在第一電極21上形成第一層11(S11)。第一層11如上所述含有第一n型氧化物半導體材料。例如,第一層11可藉由將Ti或TiO設為靶材的濺鍍法,形成TiO2 膜作為第一層11。第一層11可設為厚度50 nm~200 nm的TiO2 膜。另外,第一電極21例如為鎢電極等。
接著,在第一層11上形成第二層12(S12)。第二層12可使用塗布熱分解法來形成。首先,準備在氧化鈦、氧化錫或氧化鋅的前驅物,與矽酮油的混合物中混合有溶劑的塗布液。此處,針對第二層12將氧化矽設為第一絕緣材料,且將氧化鈦設為第二n型氧化物半導體材料的例子進行說明。在此情況下,可使用作為氧化鈦的前驅物的脂肪酸鈦。將脂肪酸鈦、矽酮油與溶劑一起攪拌,準備塗布液。
藉由旋轉塗布法、狹縫塗布法等,將塗布液塗布在第一層11上。具體而言,藉由旋轉塗布裝置,以旋轉數500 rpm~3000 rpm,將塗布液進行塗布。
接著,對塗布膜進行乾燥、烘烤及UV照射,可藉此在第一層11上形成第二層12。例如,塗布後,在熱板上使其乾燥。熱板上的乾燥溫度為30℃~200℃左右,乾燥時間為5分~30分左右。乾燥後,使用烘烤爐在大氣中進行烘烤。烘烤溫度例如為300℃~600℃左右,烘烤時間為10分~60分左右。
藉此,脂肪族酸鹽分解而形成被矽酮的絕緣膜覆蓋的二氧化鈦的微粒子層。具體而言,該微粒子層為被覆有矽酮的二氧化鈦的金屬鹽埋在矽酮層中的構造。藉由低壓水銀燈,對烘烤後的塗布膜照射UV光。UV照射時間為10分~60分。
此外,在第二n型氧化物半導體為氧化鈦的情況下,作為前驅物的另一例,例如可使用硬脂酸鈦。氧化鈦、氧化錫及氧化鋅為由作為金屬氧化物的前驅物的脂肪族酸鹽分解所形成。關於氧化鈦、氧化錫及氧化鋅等,可不使用前驅物,而使用氧化物半導體的微細粒子。藉由將氧化鈦或氧化鋅的奈米粒子與矽酮油混合,生成混合液。進而,藉由在混合液中混合溶劑,生成塗布液。
在第二層12上,形成第三層13(S13)。第三層13如上所述含有鉭氧化物。例如,第三層13可藉由將Ta或Ta2 O5 作為靶材的濺鍍法所形成。或者,可使用蒸鍍、或離子鍍等成膜方法來代替濺鍍成膜。藉由這些成膜方法,可形成TaOx 膜來作為第三層13。於濺鍍成膜中,可僅使用氬(Ar)氣,亦可在氬氣中添加供給氧(O2 )氣。第三層13可為厚度50 nm以上、800 nm以下的TaOx 膜。此處,作為第三層13,較佳為形成非晶質的TaOx 膜或堆積有複數個鉭氧化物奈米粒子的TaOx 膜。
在第三層13上形成第四層14(S14)。第四層14可藉由與第二層12相同的手法形成。具體而言,將脂肪酸錫、矽酮油與溶劑一起攪拌,準備化學藥液。使用旋轉塗布裝置,將該化學藥液塗布在第三層13上。旋轉數例如為約500 rpm~3000 rpm。塗布後,在熱板上使其乾燥。熱板上的乾燥溫度例如為約30℃~200℃左右,乾燥時間例如為約5分~30分左右。
進而,進行乾燥後烘烤。於乾燥後烘烤中,使用烘烤爐,在大氣中進行烘烤。烘烤溫度例如為約300℃~600℃左右,烘烤時間例如為約10分~60分左右。烘烤後,實施利用低壓水銀燈的UV照射。UV照射時間例如為約10分~100分左右。UV照射後的第四層14的膜厚例如為約100 nm~300 nm左右。
關於氧化錫,可不使用前驅物,而使用氧化物半導體的微細粒子。藉由將氧化錫的奈米粒子與矽酮油混合,生成混合液。進而,藉由在混合液中混合溶劑,生成塗布液。
針對第四層14的形成步驟的另一個例子進行說明。此處,作為第四層14,使用僅由第二絕緣材料構成的層。亦即,以下針對形成並未含有第三n型氧化物半導體材料的第四層14的方法進行說明。
將矽酮油與溶劑一起攪拌,準備化學藥液。使用旋轉塗布裝置,將化學藥液塗布在第三層13上。此處,使用旋轉塗布裝置。旋轉塗布裝置的旋轉數例如為500 rpm~3000 rpm左右。塗布後,在熱板上使其乾燥。熱板上的乾燥溫度例如為50℃~200℃左右,乾燥時間例如為5分~30分左右。
進而,進行乾燥後烘烤。於乾燥後烘烤中,使用烘烤爐,在大氣中進行烘烤。烘烤溫度例如為約300℃~600℃左右,烘烤時間例如為約10分~60分左右。烘烤後,實施利用低壓水銀燈的UV照射。UV照射時間例如為約10分~60分左右。UV照射後的第四層14的膜厚例如為約10 nm~100 nm左右。
接著,在第四層14上形成第五層15(S15)。第五層15可藉由將Ni或NiO作為靶材的濺鍍法形成。
於第五層15上形成第二電極22(S16)。作為第二電極22的形成方法,可列舉濺鍍、離子鍍、電子束蒸鍍、真空蒸鍍、化學蒸鍍等的氣相成膜法。此外,可使用遮罩而部分地成膜第二電極22。另外,第二電極22可藉由電鍍法、無電式電鍍法等形成。作為鍍覆所使用的金屬,通常可使用銅、銅合金、鎳、銀、金、鋅或錫等。例如,第二電極22為厚度300 nm的Al膜。
藉由上述製造方法,可高生產性地製造高性能的二次電池100。
實施型態2 關於實施型態2的二次電池100A的結構,使用圖6進行說明。圖6為表示二次電池100A之結構的剖面圖。於本實施型態中,設有第六層16來代替第五層15。二次電池100A具有依序積層有第一電極21、第一層11、第二層12、第三層13、第四層14、第六層16及第二電極22的積層構造。關於第六層16以外的結構,由於與實施型態1相同,因此適當地省略說明。
第六層16含有氫氧化鎳(Ni(OH)2 )。具體而言,以預定的厚度成膜的氫氧化鎳層為第六層16。第六層16的厚度以100 nm以上、400 nm以下較佳。
第六層16可使用化學水浴沉積(Chemical Bath Deposition,CBD)法、浸塗法或霧化化學氣相沉積(Mist Chemical Vapor Deposition, Mist-CVD)法。於化學水浴沉積法或浸塗法的成膜中,使用含有鎳離子的溶液。具體而言,藉由使鹼性水溶液與含有鎳離子的水溶液反應,而在第四層14的表面堆積氫氧化鎳層。
如此一來,藉由化學水浴沉積法或浸塗法等,在第四層14上直接形成氫氧化鎳膜。故,由於能夠以充分的厚度形成第六層16,因此能夠實現蓄電容量較大的二次電池。亦即,於從氧化鎳電性變化成氫氧化鎳的結構中,由於膜厚較薄,因此難以獲得充分的蓄電容量。
此外,二次電池可具備第五層15與第六層(氫氧化鎳層)16兩者。在此情況下,可在第五層15上形成第六層16,亦可在第六層16上形成第五層15。進而,在第二電極22與第四層(SiOx +SnOx )14之間設有兩個NiO層,在兩個NiO層之間,亦可設置氫氧化鎳層。另外,亦可追加上述第一層11~第六層16以外的層。
以上已針對本發明的實施型態的一例進行說明,然而,本發明包含不損害其目的與優點的適當變形,且不受上述實施型態的限定。
本申請以2018年11月13日提出申請的日本專利申請號之特願2018-212875為基礎來主張優先權,並將其揭露的全部併入本說明書中。
11:第一層(n型氧化物半導體層) 12:第二層(SiOx+TiOx) 13:第三層(TaOx) 14:第四層(SiOx+SnOx) 15:第五層(氧化鎳層) 16:第六層(氫氧化鎳層) 21:第一電極 22:第二電極 100、100A:二次電池 A、B:樣本 S11~S16:步驟
圖1所示的概略圖,為概略表示實施型態1之二次電池的積層結構。 圖2所示的圖表,為表示在實施型態1的二次電池中,經過1星期後的能量密度的殘存率。 圖3所示,為表示鉭氧化物膜的表面SEM(Scanning Electron Microscope,掃描式電子顯微鏡)照片。 圖4所示,為表示表面形成有鉭氧化物膜之樣本的X射線繞射圖。 圖5所示的流程圖,為表示實施型態1的二次電池的製造方法。 圖6所示的概略圖,為概略表示實施型態2之二次電池的積層結構。
11:第一層(n型氧化物半導體層)
12:第二層(SiOx+TiOx)
13:第三層(TaOx)
14:第四層(SiOx+SnOx)
15:第五層(氧化鎳層)
21:第一電極
22:第二電極
100:二次電池

Claims (10)

  1. 一種二次電池,具備: 第一電極; 第二電極; 第一層,配置於所述第一電極與所述第二電極之間,且含有第一n型氧化物半導體材料; 第二層,配置於所述第一層上,且含有第二n型氧化物半導體材料與第一絕緣材料; 第三層,配置於所述第二層上,且含有鉭氧化物;以及 第四層,配置於所述第三層上,且含有第二絕緣材料。
  2. 如請求項1所記載的二次電池,其中, 所述第三層為含有鉭氧化物的非晶層、或者含有複數個鉭氧化物奈米粒子的奈米粒子層。
  3. 如請求項1或2所記載的二次電池,其中, 所述第三層的厚度為50 nm以上、800 nm以下。
  4. 如請求項1或2所記載的二次電池,其中, 於所述第四層與所述第二電極之間形成有含有氧化鎳或氫氧化鎳的層。
  5. 如請求項1或2所記載的二次電池,其中, 所述第四層為將作為所述第二絕緣材料的SiOx 設為主成分的層, 所述第四層中添加有金屬氧化物。
  6. 如請求項5所記載的二次電池,其中, 所述金屬氧化物為SnOx
  7. 如請求項1或2所記載的二次電池,其中, 所述第一絕緣材料為SiOx , 所述第二n型氧化物半導體材料為TiO2
  8. 如請求項1或2所記載的二次電池,其中, 所述第一n型氧化物半導體材料為TiO2
  9. 一種二次電池的製造方法,具備: 於第一電極上,形成含有第一n型氧化物半導體材料的第一層的步驟; 於所述第一層上,形成含有第二n型氧化物半導體材料與第一絕緣材料的第二層的步驟; 於所述第二層上,形成含有鉭氧化物的第三層的步驟; 於所述第三層上,形成含有第二絕緣材料的第四層的步驟;以及 於所述第四層上,形成第二電極的步驟。
  10. 如請求項9所記載的二次電池的製造方法,其中, 於形成所述第三層的步驟中,藉由濺鍍成膜、蒸鍍或離子鍍,形成含有鉭氧化物的非晶層、或者含有複數個鉭氧化物奈米粒子的奈米粒子層。
TW108141246A 2018-11-13 2019-11-13 二次電池及其製造方法 TWI714346B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212875 2018-11-13
JP2018212875A JP7138020B2 (ja) 2018-11-13 2018-11-13 二次電池、及び製造方法

Publications (2)

Publication Number Publication Date
TW202025546A true TW202025546A (zh) 2020-07-01
TWI714346B TWI714346B (zh) 2020-12-21

Family

ID=70731393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141246A TWI714346B (zh) 2018-11-13 2019-11-13 二次電池及其製造方法

Country Status (8)

Country Link
US (1) US20210399350A1 (zh)
EP (1) EP3882996B1 (zh)
JP (1) JP7138020B2 (zh)
KR (1) KR102483904B1 (zh)
CN (1) CN113016087A (zh)
CA (1) CA3119305C (zh)
TW (1) TWI714346B (zh)
WO (1) WO2020100722A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011043448A1 (ja) * 2009-10-09 2013-03-04 日本電気株式会社 半導体装置及びその製造方法
KR101083798B1 (ko) * 2010-01-19 2011-11-18 한국과학기술연구원 금속산화물 나노입자를 이용한 적층형 고분자 태양전지 및 그 제조방법
JP2015082445A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016091931A (ja) 2014-11-10 2016-05-23 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016127166A (ja) * 2015-01-05 2016-07-11 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
JP2017059516A (ja) * 2015-02-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
JP2017059455A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
JP2017182969A (ja) * 2016-03-29 2017-10-05 イムラ・ジャパン株式会社 二次電池及びその製造方法
JP6872388B2 (ja) * 2016-05-19 2021-05-19 株式会社日本マイクロニクス 二次電池の製造方法
JP6813982B2 (ja) * 2016-08-01 2021-01-13 株式会社日本マイクロニクス 二次電池
JP6854100B2 (ja) * 2016-08-31 2021-04-07 株式会社日本マイクロニクス 二次電池
JP6961370B2 (ja) * 2017-03-15 2021-11-05 株式会社日本マイクロニクス 蓄電デバイス

Also Published As

Publication number Publication date
CN113016087A (zh) 2021-06-22
US20210399350A1 (en) 2021-12-23
JP2020080368A (ja) 2020-05-28
KR20210090216A (ko) 2021-07-19
KR102483904B1 (ko) 2022-12-30
CA3119305A1 (en) 2020-05-22
EP3882996B1 (en) 2024-03-27
TWI714346B (zh) 2020-12-21
JP7138020B2 (ja) 2022-09-15
WO2020100722A1 (ja) 2020-05-22
EP3882996A4 (en) 2022-09-21
EP3882996A1 (en) 2021-09-22
CA3119305C (en) 2023-10-10

Similar Documents

Publication Publication Date Title
CA3032257C (en) Secondary battery
TWI714346B (zh) 二次電池及其製造方法
US20220123358A1 (en) Secondary battery
WO2019181314A1 (ja) 二次電池、及びその製造方法
WO2019230216A1 (ja) 二次電池、及びその製造方法
TWI710157B (zh) 蓄電裝置