TW202015697A - 用於肌肉萎縮症之外顯子跳躍寡聚物共軛物 - Google Patents

用於肌肉萎縮症之外顯子跳躍寡聚物共軛物 Download PDF

Info

Publication number
TW202015697A
TW202015697A TW108118324A TW108118324A TW202015697A TW 202015697 A TW202015697 A TW 202015697A TW 108118324 A TW108118324 A TW 108118324A TW 108118324 A TW108118324 A TW 108118324A TW 202015697 A TW202015697 A TW 202015697A
Authority
TW
Taiwan
Prior art keywords
antisense oligomer
antisense
exon
oligomer
administered
Prior art date
Application number
TW108118324A
Other languages
English (en)
Inventor
理查 K 貝斯特威克
甘納 J 韓森
馬可 A 帕西尼
佛德瑞克 喬瑟夫 斯尼爾
Original Assignee
美商薩羅塔治療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商薩羅塔治療公司 filed Critical 美商薩羅塔治療公司
Publication of TW202015697A publication Critical patent/TW202015697A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • A61K47/6455Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4707Muscular dystrophy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Abstract

本發明係闡述與人類肌肉萎縮蛋白基因中之經選定靶標位置互補以誘導外顯子52跳躍之反義寡聚物及反義寡聚物共軛物。

Description

用於肌肉萎縮症之外顯子跳躍寡聚物共軛物
本發明係有關適於在人類肌肉萎縮蛋白基因中之外顯子52跳躍之新穎反義寡聚物共軛物及其醫藥組合物。本發明亦提供使用該等新穎反義寡聚物及反義寡聚物共軛物誘導外顯子52跳躍之方法、在具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體中產生肌肉萎縮蛋白之方法及治療具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體之方法。
反義技術正在不斷發展,其使用一系列化學物質在多種不同層面(轉錄、剪接、穩定性、轉譯)影響基因表現。大部分研究集中於使用反義化合物來校正或抵償多種適應症中之異常或與疾病相關之基因。反義分子能夠特異性地抑制基因表現且因此,許多與作為基因表現之調節劑的寡聚物相關之研究努力集中於抑制目標基因表現或順式作用元件之功能。反義寡聚物通常係針對RNA,在一些病毒RNA目標之狀況下,係針對有義股(例如mRNA)或負股。為達成特異性基因向下調控之所需作用,寡聚物一般促進目標mRNA衰變,阻斷mRNA轉譯或阻斷順式作用RNA元件之功能,從而有效阻止目標蛋白質重新合成或病毒RNA複製。
然而,當目的為向上調控天然蛋白質產生或抵償誘導轉譯提前終止之突變(諸如無意義或框架轉移突變)時,該等技術不適用。在此等狀況下,缺陷型基因轉錄物將不會經受目標降解或空間抑制,因此反義寡聚物化學物質將不會促進目標mRNA衰變或阻斷轉譯。
在多種遺傳病中,可經由剪接過程期間之經靶向外顯子跳躍方法來調節突變對最終基因表現之效應。剪接過程係由複雜的多組分機構引導,該機構使前驅mRNA中之相鄰外顯子-內含子接合處緊密靠近且在內含子末端進行磷酸二酯鍵之裂解及其隨後在欲剪接在一起之外顯子之間的再形成。此複雜且高度精密之過程係由前驅mRNA中為相對較短之半保守RNA區段之序列基序調介,該等區段與隨後參與剪接反應之多種核剪接因子結合。藉由改變剪接機構讀取或識別參與前驅mRNA加工之基序之方式,可產生差異剪接之mRNA分子。現已意識到,大多數人類基因在正常基因表現期間選擇式剪接,但尚未鑑別出所涉及機制。Bennett等人(美國專利第6,210,892號)描述使用不誘導核糖核酸酶H介導之目標RNA裂解的反義寡核苷酸類似物來反義調節野生型細胞mRNA加工。此可用於產生缺少特異性外顯子之替代性剪接mRNA(參見如Sazani, Kole等人於2007所說明用於產生缺少編碼跨膜結構域之外顯子之可溶性TNF超家族受體)。
在正常功能蛋白由於其中的突變而提前終止之狀況下,已證明經由反義技術恢復一些功能蛋白產生之方式有可能經由在剪接過程期間介入來實現,且若可特異性地使與致病突變相關之外顯子自一些基因中缺失,則有時會產生縮短的蛋白質產物,其具有與天然蛋白質相似之生物特性或具有足以改善由與外顯子相關之突變所引起之疾病的生物活性(參見例如Sierakowska, Sambade等人, 1996; Wilton, Lloyd等人, 1999;van Deutekom, Bremmer-Bout等人, 2001;Lu, Mann等人, 2003;Aartsma-Rus, Janson等人, 2004)。Kole等人(美國專利第5,627,274號、第5,916,808號、第5,976,879號及第5,665,593號)揭示使用不促進目標前驅mRNA衰變的經修飾反義寡聚物類似物來對抗異常剪接之方法。Bennett等人(美國專利第6,210,892號)描述亦使用不誘導核糖核酸酶H介導之目標RNA裂解的反義寡聚物類似物來反義調節野生型細胞mRNA加工。
目標外顯子跳躍之方法可能尤其適用於長基因,其中存在多個外顯子及內含子,其中外顯子之基因組成存在冗餘或其中蛋白質能夠在不存在一或多個特定外顯子之情況下起作用。重新引導基因加工以治療與由各種基因中之突變所引起之截短有關之遺傳性疾病的努力集中於使用反義寡聚物,該等反義寡聚物:(1)完全或部分與參與剪接過程之元件重疊;或(2)與前驅mRNA在足夠靠近元件之位置處結合以破壞通常介導在彼元件處發生之特定剪接反應的剪接因子之結合及功能。
杜顯氏肌肉萎縮症(Duchenne muscular dystrophy,DMD)係由蛋白質肌縮蛋白之表現缺陷所導致。編碼該蛋白質之基因含有79個外顯子,其展開大於2百萬個DNA核苷酸。任何改變外顯子之閱讀框架或引入終止密碼子或特徵在於移除掉整個框架外顯子或一或多個外顯子重複的外顯子突變具有中斷功能性肌縮蛋白產生,從而引起DMD之潛能。
已發現肌肉萎縮症之較輕度形式貝克爾肌肉萎縮症(Becker muscular dystrophy,BMD)在突變(通常一或多個外顯子缺失)沿整個肌縮蛋白轉錄物產生正確閱讀框架,從而使得mRNA轉譯為蛋白質未提前終止之情況下發生。若在加工突變型肌縮蛋白前驅mRNA中,上游與下游外顯子之接合維持該基因之正確閱讀框架,則結果為編碼具有短內部缺失從而保留一些活性之蛋白質的mRNA,引起貝克爾表型。
多年來已知道不改變肌縮蛋白之閱讀框架之外顯子缺失會引起BMD表型,引起框架轉移之外顯子缺失將引起DMD(Monaco, Bertelson等人, 1988)。一般而言,改變閱讀框架且從而中斷適當蛋白質轉譯之肌縮蛋白突變(包括點突變及外顯子缺失)會引起DMD。亦應注意一些BMD及DMD患者具有覆蓋多重外顯子之外顯子缺失。
已有報導用反義寡核糖核苷酸在活體外及活體內皆可調節突變型肌肉萎縮蛋白前驅mRNA的剪接(參見如Matsuo, Masumura等人, 1991;Takeshima, Nishio等人, 1995;Pramono, Takeshima等人, 1996;Dunckley, Eperon等人, 1997;Dunckley, Manoharan等人, 1998;Wilton, Lloyd等人, 1999;Mann, Honeyman等人, 2002;Errington, Mann等人, 2003)。
反義寡聚物已經特殊設計以靶向前驅mRNA之特定區域(通常外顯子)以誘導DMD基因突變之跳躍,藉此使該等框架外突變恢復為框架內以使得能夠產生內部縮短但仍具功能之肌肉萎縮蛋白。已知該等反義寡聚物完全靶向外顯子內(所謂的外顯子內部序列)或自外顯子交叉至內含子一部分中之剪接供體或剪接受體接合處。
針對DMD之這類反義寡聚物的發現及研發已經是先前研究之領域。這些研發包含以下各者:(1) 西澳大學及薩羅塔治療公司(本申請案之受讓人): WO 2006/000057; WO 2010/048586; WO 2011/057350; WO 2014/100714; WO 2014/153240; WO 2014/153220;(2) 萊登大學醫院(Academisch Ziekenhuis Leiden)/Prosensa科技公司(現為BioMarin製藥公司): WO 02/24906; WO 2004/083432; WO 2004/083446; WO 2006/112705; WO 2007/133105; WO 2009/139630; WO 2009/054725; WO 2010/050801; WO 2010/050802; WO 2010/123369; WO 2013/112053; WO 2014/007620;(3) 卡羅萊納醫療中心(Carolinas Medical Center): WO 2012/109296;(4) 哈洛威學院(Royal Holloway):主張美國專利第61/096,073號及第61/164,978號之權益且包含其之專利及申請案; 諸如US 8,084,601及US 2017-0204413 (4) JCR製藥公司及Matsuo: US 6,653,466; 主張JP 2000-125448之權益且包含其之專利及申請案,諸如US 6,653,467;主張JP 2000-256547之權益且包括其之專利及申請案,諸如US 6,727,355; WO 2004/048570;(5) Nippon Shinyaku: WO 2012/029986; WO 2013/100190; WO 2015/137409; WO 2015/194520;以及(6) 肌學協會研究院(Association Institut de Myologie)/皮埃爾與瑪麗·居里大學(Universite Pierre et Marie Curie)/伯恩大學(Universität Bern)/法國國家科學研究中心(Centre national de la Recherche Scientifique)/Synthena公司: WO 2010/115993; WO 2013/053928。
針對DMD之與細胞穿透肽共軛之反義寡聚物的發現及研發亦已為一個研究領域。(參見PCT公開第WO 2010/048586號; Wu, B.等人,The American Journal of Pathology , 第181 (2)冊: 392-400, 2012; Wu, R.等人,Nucleic Acids Research, 第35 (15)冊: 5182-5191, 2007; Mulders, S.等人,19th International Congress of the World Muscle Society , 壁報論文, Berlin, 2014十月; Bestas, B.等人,The Journal of Clinical Investigation, doi: 10.1172/JCI76175, 2014; Jearawiriyapaisarn, N.等人,Molecular Therapy, 第16(9)冊: 1624-1629, 2008; Jearawiriyapaisarn, N.等人,Cardiovascular Research , 第85冊: 444-453, 2010; Moulton, H.M.等人,Biochemical Society Transactions, 第35 (4)冊: 826-828, 2007; Yin, H.等人,Molecular Therapy, 第19 (7)冊: 1295-1303, 2011; Abes, R.等人,J. Pept. Sci., 第14冊: 455-460, 2008; Lebleu, B.等人,Advanced Drug Delivery Reviews , 第60冊: 517-529, 2008; McClorey, G.等人,Gene Therapy , 第13冊: 1373-1381, 2006 ; Alter, J.等人,Nature Medicine , 第12 (2)冊: 175-177, 2006; 及Youngblood, D.等人,American Chemical Society, Bioconjugate Chem., 2007, 18 (1), 50–60頁)。
例如,細胞穿透肽(CPP)為富含精胺酸之肽轉運體部分,其可有效增強(例如)與CPP共軛之反義寡聚物穿透至細胞內。
儘管有這些努力,但仍需要有靶向外顯子52之經改良反義寡聚物及可用於產生肌肉萎縮蛋白與治療DMD之治療方法的相應醫藥組合物。
本文所提供之反義寡聚物共軛物包括與CPP共軛之反義寡聚物部分。在一態樣中,本發明提供反義寡聚物共軛物,其包括: 長度為25個亞單位之反義寡聚物,其能夠結合所選靶以誘導人類肌肉萎縮蛋白基因之外顯子跳躍,其中反義寡聚物包含與肌肉萎縮蛋白前驅mRNA之外顯子52靶區域(稱為黏合位置)互補之鹼基之序列;及 細胞穿透肽(CPP),其藉由連接體部分與反義寡聚物共軛。
在一些實施例中,黏合位置為H52A(-01+24)。
在一些實施例中,反義寡聚物之鹼基連接至嗎啉基環結構,其中嗎啉基環結構係藉由連結一個環結構之嗎啉基氮與相鄰環結構之5’環外碳之含磷亞單位間鍵聯來連結。在某些實施例中,細胞穿透肽為六精胺酸單元(「R6 」)且連接體部分係甘胺酸。在一些實施例中,反義寡聚物包含稱為SEQ ID NO: 1之鹼基之序列。
在另一態樣中,本發明係提供長度為25個亞單位之反義寡聚物,其能夠結合所選靶以誘導人類肌肉萎縮蛋白基因之外顯子跳躍,其中反義寡聚物包含與肌肉萎縮蛋白前驅mRNA之外顯子52靶區域(稱為黏合位置)互補之鹼基之序列。
在一些實施例中,黏合位置為H52A(-01+24)。
在一些實施例中,反義寡聚物之鹼基連接至嗎啉基環結構,其中嗎啉基環結構係藉由連結一個環結構之嗎啉基氮與相鄰環結構之5’環外碳之含磷亞單位間鍵聯來連結。在一些實施例中,反義寡聚物包含稱為SEQ ID NO: 1之鹼基之序列。
在多個態樣中,本發明係提供具有式(I)之反義寡聚物共軛物:
Figure 02_image003
(I) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列;且 T為選自以下之部分:
Figure 02_image005
;
Figure 02_image007
; 及
Figure 02_image009
; R1 為C1 -C6 烷基; 其中該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子52黏合位置互補。
在另一態樣中,本發明係提供式(V)之反義寡聚物共軛物:
Figure 02_image011
(V) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列; T為選自以下之部分
Figure 02_image013
;
Figure 02_image015
; 及
Figure 02_image017
; R1 為C1 -C6 烷基;且 R2 係選自H或乙醯基,其中該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子52黏合位置互補。
在另一態樣中,本發明係提供式(IVA)之反義寡聚物共軛物:
Figure 02_image019
在另一態樣中,本發明提供醫藥組合物,其包括本發明之反義寡聚物或反義寡聚物共軛物及醫藥學上可接受之載劑。在一些實施例中,醫藥學上可接受之載劑係包括磷酸鹽緩衝液之鹽水溶液。
在另一態樣中,本發明提供為有需要之個體治療杜顯氏肌肉萎縮症(DMD)之方法,其中該個體具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變,該方法包含向個體投與本發明之反義寡聚物或反義寡聚物共軛物。本發明亦係關於本發明之反義寡聚物或反義寡聚物共軛物之用途,其用於製造用來為有需要之個體治療杜顯氏肌肉萎縮症(DMD)的藥劑,其中該個體具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變。
在另一態樣中,本發明提供恢復mRNA讀碼框以誘導具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體產生肌肉萎縮蛋白之方法,該方法包含向個體投與本發明之反義寡聚物或反義寡聚物共軛物。在另一態樣中,本發明提供在具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體的mRNA加工期間自肌肉萎縮蛋白前驅mRNA排除外顯子52之方法,該方法包含向個體投與本發明之反義寡聚物或反義寡聚物共軛物。在另一態樣中,本發明提供結合具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體的肌肉萎縮蛋白前驅mRNA中之外顯子52之方法,該方法包含向個體投與本發明之反義寡聚物或反義寡聚物共軛物。
在另一態樣中,本發明提供本文本發明之反義寡聚物或反義寡聚物共軛物,其用於療法中。在某些實施例中,本發明提供本發明之反義寡聚物或反義寡聚物共軛物,其用於治療杜顯氏肌肉萎縮症。在某些實施例中,本發明提供本發明之反義寡聚物或反義寡聚物共軛物,其用於治療用於療法中之藥劑。在某些實施例中,本發明提供本發明之反義寡聚物或反義寡聚物共軛物,其用於製造用來治療杜顯氏肌肉萎縮症之藥劑。
在另一態樣中,本發明亦提供用於為有需要之個體治療杜顯氏肌肉萎縮症(DMD)之套組,其中該個體具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變,該等套組包含至少封裝於適宜容器中之本發明之反義寡聚物或反義寡聚物共軛物及其使用說明書。
當結合各圖閱讀本發明之以下詳細說明時,將更全面地理解該等及其他目標及特徵。
[相關申請案]
本申請案主張於2018年5月30日提出申請之美國專利申請案第15/993,287號、於2018年5月30日提出申請之美國專利申請案第15/993,267號、及於2018年5月29日提出申請之美國臨時專利申請案第62/677,484號之優先權。以上所提及之申請案之全部教示係以全文引用方式併入本文中。 [經由EFS-WEB以電子方式提交之序列表的引用]
以電子方式與此同時提交之序列表(名稱:8163.52.WO00_Sequence_Listing.txt;大小: 3千位元組;建立日期:2019年5月8日)的內容係以全文引用方式併入本文中。
本發明之實施例大體關於經改良之反義寡聚物及反義寡聚物共軛物,以及其使用方法,其經特定設計以在人類肌縮蛋白基因中誘導外顯子跳躍。肌縮蛋白在肌肉功能中發揮重要作用,且各種肌肉相關疾病特徵在於此基因之突變形式。因此,在某些實施例中,本文所述之經改良反義寡聚物及反義寡聚物共軛物在人類肌縮蛋白基因之突變形式中誘導外顯子跳躍,該等突變形式諸如在杜顯氏肌肉萎縮症(DMD)及貝克爾肌肉萎縮症(BMD)中所發現之突變型肌縮蛋白基因。
歸因於由突變引起之異常mRNA剪接事件,此等突變型人類肌縮蛋白基因表現缺陷型肌縮蛋白或根本不表現可量測之肌縮蛋白,此病狀導致各種形式之肌肉萎縮症。為治療此病狀,本發明之反義寡聚物及反義寡聚物共軛物係與突變型人類肌縮蛋白基因之經預加工mRNA之選定區域雜交,在彼以其他方式異常剪接之肌縮蛋白mRNA中誘導外顯子跳躍及差異剪接,且從而使肌細胞產生編碼功能性肌縮蛋白之mRNA轉錄物。在某些實施例中,所產生之肌縮蛋白不必為「野生型」肌縮蛋白形式,而為截短型但具功能性之肌縮蛋白形式。
藉由增加肌細胞中功能性肌縮蛋白之含量,此等及相關實施例係有用於預防及治療肌肉萎縮症,尤其彼等特徵在於歸因於異常mRNA剪接而表現缺陷型肌縮蛋白之肌肉萎縮症形式(諸如DMD及BMD)。本文所述之特定反義寡聚物及反義寡聚物共軛物進一步提供優於其他寡聚物的改良之肌縮蛋白-外顯子特異性靶向,且從而提供優於治療相關肌肉萎縮症形式之替代方法的顯著且實際的優勢。
因此,本發明係有關於反義寡聚物共軛物,其包括: 長度為25個亞單位之反義寡聚物,其能夠結合所選靶以誘導人類肌肉萎縮蛋白基因之外顯子跳躍,其中反義寡聚物包含與肌肉萎縮蛋白前驅mRNA之外顯子52靶區域(稱為黏合位置)互補之鹼基之序列;及 細胞穿透肽(CPP),其藉由連接體部分與反義寡聚物共軛。
本發明亦有關於長度為25個亞單位之反義寡聚物,其能夠結合所選靶以誘導人類肌肉萎縮蛋白基因之外顯子跳躍,其中反義寡聚物包含與肌肉萎縮蛋白前驅mRNA之外顯子52靶區域(稱為黏合位置)互補之鹼基之序列。
在本發明反義寡聚物及反義寡聚物共軛物的一些實施例中,黏合位置為H52A(-01+24)。
在一些實施例中,反義寡聚物之鹼基連接至嗎啉基環結構,其中嗎啉基環結構係藉由連結一個環結構之嗎啉基氮與相鄰環結構之5’環外碳之含磷亞單位間鍵聯來連結。在某些實施例中,細胞穿透肽係R6 且連接體部分係甘胺酸。在一些實施例中,反義寡聚物包含稱為SEQ ID NO: 1之鹼基之序列,其中每一胸腺嘧啶鹼基(T)視情況為尿嘧啶鹼基(U)。
除非另外定義,否則本文所使用之所有技術及科學術語具有與一般熟習本發明所屬技術者通常所瞭解相同之含義。儘管在本發明之實施或測試中,可使用與本文所述相似或等效的任何方法及材料,但描述較佳方法及材料。出於本發明之目的,下文定義以下術語。I. 定義
「約」意謂與參考數量、含量、值、數目、頻率、百分比、尺寸、大小、量、重量或長度相差多達30%、25%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%之數量、含量、值、數目、頻率、百分比、尺寸、大小、量、重量或長度。
除非另外規定,否則如本文所用之術語「烷基」係指飽和直鏈或具支鏈烴。在某些實施例中,烷基係一級、二級或三級烴。在某些實施例中,烷基包括1至10個碳原子,即C1 至C10 烷基。在某些實施例中,烷基包括1至6個碳原子,即C1 至C6 烷基。在某些實施例中,烷基選自由以下組成之群:甲基、CF3 、CCl3 、CFCl2 、CF2 Cl、乙基、CH2 CF3 、CF2 CF3 、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基、異戊基、新戊基、己基、異己基、3-甲基戊基、2,2-二甲基丁基及2,3-二甲基丁基。該術語包括經取代及未經取代之烷基,包括鹵化烷基。在某些實施例中,烷基係氟化烷基。可取代烷基之部分之非限制性實例選自由以下組成之群:鹵素(氟、氯、溴或碘)、羥基、胺基、烷基胺基、芳基胺基、烷氧基、芳基氧基、硝基、氰基、磺酸、硫酸酯、膦酸、磷酸酯或膦酸酯,視需要未經保護或經保護,如熟習此項技術者已知,例如如Greene等人,Protective Groups in Organic Synthesis, John Wiley and Sons, 第二版, 1991中所教示,其係以引用方式併入本文中。
如本文對於個體或患者所用之「適於外顯子52跳躍」意欲包括具有肌肉萎縮蛋白基因之一或多個突變之個體及患者,該肌肉萎縮蛋白基因在缺少肌肉萎縮蛋白前驅mRNA之外顯子52跳躍時使得讀碼框在框架外,藉此破壞前驅mRNA之轉譯,從而導致個體或患者無法產生功能性或半功能性肌肉萎縮蛋白。適於外顯子52跳躍之肌肉萎縮蛋白基因突變之實例包含(例如)外顯子2至51、外顯子8至51、外顯子20至51、外顯子22至51、外顯子51、外顯子53、外顯子53至55、外顯子53至57、外顯子53至59、外顯子53至60、外顯子53至67、外顯子53至69、外顯子53至75及外顯子53至78的缺失。確定患者是否具有適於外顯子跳躍之肌肉萎縮蛋白基因突變為熟習此項技術者所熟知(例如,參見Aartsma-Rus等人(2009) Hum Mutat. 30:293-299;Gurvich等人,Hum Mutat. 2009; 30(4) 633-640;及Fletcher等人(2010) Molecular Therapy 18(6) 1218-1223)。
如本文所用之術語「寡聚物」係指藉由亞單位間鍵聯連接之亞單位之序列。在某些情況下,術語「寡聚物」用於指「反義寡聚物」。對於「反義寡聚物」,每一亞單位係由以下各項組成:(i)核糖糖或其衍生物;及(ii)與其結合之核鹼基,使得鹼基配對部分之順序藉由華生-克里克(Watson-Crick)鹼基配對與核酸(通常為RNA)中之目標序列互補以在目標序列中形成核酸:寡聚物異雙螺旋體,其條件為亞單位、亞單位間鍵聯或二者皆不為天然的。在某些實施例中,反義寡聚物係PMO。在其他實施例中,反義寡聚物係硫代磷酸2’-O-甲酯。在其他實施例中,本發明之反義寡聚物係肽核酸(PNA)、鎖核酸(LNA)或橋接核酸(BNA),諸如2'-O,4'-C-伸乙基-橋接核酸(ENA)。其他例示性實施例闡述於本文中。
術語「互補」及「互補性」係指按照華生-克里克鹼基配對規則彼此相關之二或多種寡聚物(即各包括有一核苷酸序列)。例如,核鹼基序列「T-G-A (5’à3’)」與核鹼基序列「A-C-T (3’à 5’)」互補。互補可為「部分的」,其中根據鹼基配對規則,一給定核鹼基序列之並非所有核鹼基皆與另一核鹼基序列匹配。例如,在一些實施例中,一給定核鹼基序列與另一核鹼基序列之間之互補性可為約70%、約75%、約80%、約85%、約90%或約95%。或者,在一給定核鹼基序列與另一核鹼基序列之間可存在「完全」或「完美」(100%)互補性以延續該例子。核鹼基序列之間的互補程度對該等序列之間的雜交效率與強度有顯著影響。
術語「有效量」及「治療有效量」於本文中係可交換使用,並指治療化合物(諸如反義寡聚物)以單一劑量或以一系列劑量之一部分投與哺乳動物個體之量,且其有效產生所要治療作用。對於反義寡聚物,此作用通常藉由抑制所選定目標序列之轉譯或天然剪接加工,或產生在臨床上有意義之量之肌肉萎縮蛋白(統計學顯著性)來達成。
在一些實施例中,有效量為至少10 mg/kg或至少20 mg/kg之包括反義寡聚物之組合物達一段時間以治療個體。在一些實施例中,有效量為至少20 mg/kg之包括反義寡聚物之組合物以使個體中肌肉萎縮蛋白陽性纖維之數目增加至正常值之至少20%。在某些實施例中,有效量為10 mg/kg或至少20 mg/kg之包括反義寡聚物之組合物以穩定、維持或改良例如在6 MWT中患者相對於健康人之步行距離之20%欠缺。在不同實施例中,有效量為至少10 mg/kg至約30 mg/kg、至少20 mg/kg至約30 mg/kg、約25 mg/kg至約30 mg/kg或約30 mg/kg至約50 mg/kg。在一些實施例中,有效量為約10 mg/kg、約20 mg/kg、約30 mg/kg或約50 mg/kg。在另一態樣中,有效量為至少約10 mg/kg、約20 mg/kg、約25 mg/kg、約30 mg/kg或約30 mg/kg至約50 mg/kg,持續至少24週、至少36週或至少48週,以藉此使個體中肌肉萎縮蛋白陽性纖維之數目增加至正常值之至少20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%,且穩定或改良例如在6 MWT中患者相對於健康人之步行距離之20%欠缺。在一些實施例中,治療使肌肉萎縮蛋白陽性纖維之數目增加至患者正常值之20%-60%或30%-50%。
「增強」或「增加」或「刺激」一般係指相較於在無反義寡聚物、無反義寡聚物共軛物或對照化合物引起之反應,一或多種反義寡聚物或反義寡聚物共軛物或上述任一醫藥組合物在細胞或個體中產生或引起較大的生理反應(亦即下游效應)之能力。較大的生理反應可包含功能性肌縮蛋白形式表現增加,或肌肉組織中之肌縮蛋白相關生物活性增加,以及其他由對此項技術之瞭解及本文中之描述而明顯的反應。亦可量測增加之肌肉功能,包含肌肉功能增加或改善約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%。亦可量測表現功能性肌縮蛋白之肌肉纖維的百分比,包含約1%、2%、5%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%之肌肉纖維的肌縮蛋白表現增加。例如,已顯示若25%-30%之纖維表現肌縮蛋白,則會出現約40%肌肉功能改善(參見例如DelloRusso等人,Proc Natl Acad Sci USA 99: 12979-12984, 2002)。「增加」或「增強」量通常為「統計顯著」量,且可包含1.1、1.2、2、3、4、5、6、7、8、9、10、15、20、30、40、50或更多倍(例如500、1000倍,包含其間且大於1之所有整數及小數點,例如1.5、1.6、1.7、1.8等)於在無藥劑(不存在反義寡聚物或反義寡聚物共軛物)情況下或由對照化合物產生之量的增加。
如本文中所用,術語「功能」及「功能性」及其類似者係指生物、酶或治療功能。
「功能性」肌縮蛋白一般係指通常與某些罹患DMD或BMD之個體體內存在之改變或「缺陷型」肌縮蛋白形式相比,具有足以降低另外肌肉萎縮症特有之肌肉組織進行性降解之生物活性的肌縮蛋白。在某些實施例中,如根據此項技術中之常規技術所量測,功能性肌縮蛋白可具有野生型肌縮蛋白活體外或活體內生物活性之約10%、20%、30%、40%、50%、60%、70%、80%、90%或100%(包括其間所有整數)。作為一實例,可根據肌管尺寸、肌原纖維組織(或結構紊亂)、收縮活性及乙醯膽鹼受體之自發聚集來量測活體外肌肉培養物中之肌縮蛋白相關活性(參見例如Brown等人,Journal of Cell Science. 112:209-216, 1999)。動物模型亦為研究疾病發病機制之有價值資源且提供測試肌縮蛋白相關活性之手段。2種最廣泛使用之DMD研究動物模型為mdx小鼠及金毛獵犬肌肉萎縮症(GRMD)犬,其兩者皆呈肌縮蛋白陰性(參見例如Collins及Morgan, Int J Exp Pathol 84: 165-172, 2003)。可使用此等及其他動物模型來量測各種肌縮蛋白之功能活性。包括截短型肌縮蛋白形式,諸如在投與本發明之某些外顯子跳躍反義寡聚物或反義寡聚物共軛物所產生之彼等形式。
術語「失配(mismatch或mismatches)」係指根據鹼基配對規則寡聚物核鹼基序列中之一或多個核鹼基(無論連續抑或分開)不與目標前驅mRNA匹配。雖然通常需要理想互補,但一些實施例可相對於目標前驅mRNA包括一或多個,但較佳6、5、4、3、2或1個錯配。包含寡聚物中任何位置上之變異。在某些實施例中,本發明之反義寡聚物及反義寡聚物共軛物包含靠近內部之末端變化之核鹼基序列之變化,且若存在,則通常在5'及/或3'末端之約6、5、4、3、2或1個核苷酸以內。
術語「嗎啉基」、「嗎啉基寡聚物」及「PMO」係指以下一般結構之磷二醯胺嗎啉基寡聚物:
Figure 02_image021
且如Summerton, J.等人,Antisense & Nucleic Acid Drug Development , 7: 187-195 (1997)之圖2中所述。如本文所述之嗎啉基包括前述一般結構之所有立體異構物及互變異構物。嗎啉基寡聚物之合成、結構及結合特徵係詳述於美國專利第5,698,685號、第5,217,866號、第5,142,047號、第5,034,506號、第5,166,315號、第5,521,063號、第5,506,337號、第8,076,476號及第8,299,206號中,該等文獻全部係以引用的方式併入本文中。
在某些實施例中,嗎啉基在寡聚物之5’或3’末端與「尾」部分共軛以增加其穩定性及/或溶解度。例示性的尾部分包含:
Figure 02_image023
;
Figure 02_image024
; 及
Figure 02_image026
在上述例示性尾部分中,「TEG」或「EG3」係指以下的尾部分:
Figure 02_image027
在上述例示性尾部分中,「GT」係指以下尾部分:
Figure 02_image028
如本文所用之術語「-G-R6 」及「-G-R6 -Ac」可互換使用且係指與本發明之反義寡聚物共軛之肽部分。在不同實施例中,「G」表示藉由醯胺鍵與「R6 」共軛之甘胺酸殘基,且每一「R」表示藉由醯胺鍵結合在一起之精胺酸殘基,使得「R6 」意指藉由醯胺鍵結合在一起之六(6)個精胺酸殘基。精胺酸殘基可具有任一立體組態,例如精胺酸殘基可為L-精胺酸殘基、D-精胺酸殘基或D-精胺酸殘基及L-精胺酸殘基之混合物。在某些實施例中,「-G-R6 」或「-G-R6 -Ac」係與本發明之PMO反義寡聚物之3’最大嗎啉基亞單位之嗎啉環氮共軛。在一些實施例中,「-G-R6 」或「-G-R6 -Ac」係本發明之反義寡聚物之3’末端共軛且具有下式:
Figure 02_image029
,或
Figure 02_image031
術語「核鹼基」(Nu)、「鹼基配對部分」或「鹼基」可互換使用以係指在天然(naturally occurring)或「天然(native)」DNA或RNA中發現之嘌呤或嘧啶鹼基(例如尿嘧啶、胸腺嘧啶、腺嘌呤、胞嘧啶及鳥嘌呤)以及該等天然嘌呤及嘧啶之類似物。該等類似物可賦予寡聚物經改良性質,諸如結合親和力。例示性類似物包括次黃嘌呤(肌苷之基本組分);2,6-二胺基嘌呤;5-甲基胞嘧啶;C5-丙炔基修飾之嘧啶;10-(9-(胺基乙氧基)吩噁嗪基) (G-鉗)及諸如此類。
鹼基配對部分之其他實例包含(但不限於)其各別胺基經醯基保護基團保護之尿嘧啶、胸腺嘧啶、腺嘌呤、胞嘧啶、鳥嘌呤及次黃嘌呤(肌苷)、2-氟尿嘧啶、2-氟胞嘧啶、5-溴尿嘧啶、5-碘尿嘧啶、2,6-二胺基嘌呤、氮雜胞嘧啶、嘧啶類似物(諸如假異胞嘧啶及假尿嘧啶)及其他經修飾核鹼基(諸如8-取代嘌呤、黃嘌呤或次黃嘌呤,後兩者為天然降解產物)。亦涵蓋以下文獻中所揭示之經修飾核鹼基:Chiu及Rana, RNA, 2003, 9, 1034-1048;Limbach等人,Nucleic Acids Research, 1994, 22, 2183-2196;及Revankar及Rao, Comprehensive Natural Products Chemistry, 第7卷, 313;該等文獻之內容係以引用方式併入本文中。
鹼基配對部分之其他實例包含(但不限於)其中已添加一或多個苯環之大小擴大之核鹼基。涵蓋可用於本文所述反義寡聚物及反義寡聚物共軛物中之以下文獻中所述之核酸鹼基替代:Glen Research目錄(www.glenresearch.com);Krueger AT等人,Acc. Chem. Res., 2007, 40, 141-150;Kool, ET, Acc. Chem. Res., 2002, 35, 936-943;Benner S.A.等人,Nat. Rev. Genet., 2005, 6, 553-543;Romesberg, F.E.等人,Curr. Opin. Chem. Biol., 2003, 7, 723-733;及Hirao, I., Curr. Opin. Chem. Biol., 2006, 10, 622-627;該等文獻之內容係以引用方式併入本文中。大小擴大之核鹼基之實例包括以下所顯示之彼等以及其互變異組態式。
Figure 108118324-A0304-0001
如本文所用之「非經腸投藥」及「非經腸投與」一詞意謂除腸內及局部投藥以外,通常藉由注射進行之投藥模式,且包含(但不限於)靜脈內、肌肉內、動脈內、鞘內、囊內、眶內、心內、皮內、腹膜內、經氣管、皮下、表皮下、關節內、囊下、蛛網膜下、脊柱內及胸骨內注射及輸注。
為清楚起見,本發明之結構(包括例如式(IV))自5’至3’係連續的且為便於以緊湊形式描繪整個結構,已納入多個說明性斷點,標記為「斷點A」、「斷點B」及「斷點C」。如熟習此項技術者應理解,例如,「斷點A」之每一指示顯示該結構之圖解說明在該等點係連續的。熟習此項技術者應理解,對於上述結構中之「斷點B」及「斷點C」之每一情況亦如此。然而,說明性斷點皆不欲指示且熟習此項技術者亦不應將其理解為意指上述結構之實際中斷。
如本文所用,用於結構式內之一組括弧指示括弧之間之結構特徵係重複的。在一些實施例中,所用括弧可為「[」及「]」,且在某些實施例中,用於指示重複結構特徵之括弧可為「(」及「)」。在一些實施例中,括弧之間之結構特徵之重複迭代數係括弧外所指示之數字,諸如2、3、4、5、6、7等。在不同實施例中,括弧之間之結構特徵之重複迭代數係由括弧外所指示之變量(諸如「Z」)指示。
如本文所用,對結構式內之手性碳或磷原子繪示之直鍵或彎曲鍵指示,手性碳或磷之立體化學並未定義且意欲包含手性中心及/或其混合物之所有形式。該等說明之實例係描繪於下。
Figure 02_image053
Figure 02_image055
Figure 02_image057
詞語「醫藥學上可接受」意指物質或組合物必須在化學上及/或毒理學上與包含調配物之其他成分及/或用其治療之哺乳動物相容。
如本文所用之「醫藥學上可接受之載劑」一詞意指無毒的惰性固體、半固體或液體填充劑、稀釋劑、囊封材料或任一類型之調配物助劑。根據調配者的判斷,可用作醫藥學上可接受之載劑的一些物質實例有:糖,諸如乳糖、葡萄糖及蔗糖;澱粉,諸如玉米澱粉及馬鈴薯澱粉;纖維素及其衍生物,諸如羧甲基纖維素鈉、乙基纖維素及乙酸纖維素;粉末狀黃著膠;麥芽;明膠;滑石粉;賦形劑,諸如可可脂及栓劑蠟;油,諸如花生油、棉籽油、紅花油、芝麻油、橄欖油、玉米油及大豆油;二醇,諸如丙二醇;多元醇,諸如甘油、山梨糖醇、甘露醇及聚乙二醇;酯,諸如油酸乙酯及月桂酸乙酯;瓊脂;緩衝劑,諸如氫氧化鎂及氫氧化鋁;褐藻酸;無熱原質水;等張食鹽水;林格氏溶液;乙醇;磷酸鹽緩衝溶液;無毒可相容潤滑劑,諸如月桂基硫酸鈉及硬脂酸鎂;著色劑;脫模劑;塗佈劑;甜味劑;調味劑;芳香劑;防腐劑;及抗氧化劑。
關於肌肉萎縮蛋白合成或產生之術語「恢復」通常係指在用本文所述之反義寡聚物或反義寡聚物共軛物治療後在肌肉萎縮症患者中產生肌肉萎縮蛋白,包括肌肉萎縮蛋白之截短形式。在一些實施例中,治療可使患者中之新穎肌肉萎縮蛋白產生增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%(包括其間之所有整數)。在一些實施例中,治療使肌肉萎縮蛋白陽性纖維之數目增加個體正常值之至少約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或約95%至100%。在其他實施例中,治療使肌肉萎縮蛋白陽性纖維之數目增加至個體正常值之約20%至約60%或約30%至約50%。治療後患者中肌肉萎縮蛋白陽性纖維之百分數可藉由肌肉生檢使用已知技術來測定。例如,肌肉生檢可取自患者之適宜肌肉,諸如肱二頭肌。
可在治療前及/或治療後或整個療程之時間點進行陽性肌肉萎縮蛋白纖維之百分比之分析。在一些實施例中,治療後生檢係取自治療前生檢對側之肌肉。可使用肌肉萎縮蛋白之任一適宜分析來進行治療前及治療後肌肉萎縮蛋白表現分析。在一些實施例中,使用為肌肉萎縮蛋白之標記物之抗體(諸如單株或多株抗體)對肌肉生檢之組織切片進行免疫組織化學檢測。例如,可使用MANDYS106抗體,其係肌肉萎縮蛋白之高度敏感之標記物。可使用任一適宜二級抗體。
在一些實施例中,藉由用陽性纖維之數目除以所計數總纖維來計算肌肉萎縮蛋白陽性纖維%。正常肌肉樣本具有100%肌肉萎縮蛋白陽性纖維。因此,肌肉萎縮蛋白陽性纖維%可表示為正常值之百分比。為控制治療前肌肉中痕量肌肉萎縮蛋白以及相關纖維之存在,可在計數治療後肌肉中之肌肉萎縮蛋白陽性纖維時,使用患者之治療前肌肉之切片設定基線。此可用作計數該患者之治療後肌肉之切片中之肌肉萎縮蛋白陽性纖維的臨限值。在其他實施例中,亦可使用Bioquant影像分析軟體(Bioquant Image Analysis Corporation, Nashville, TN)將經抗體染色之組織切片用於肌肉萎縮蛋白量化。總肌肉萎縮蛋白螢光信號強度可報告為正常值之百分比。另外,可使用單株或多株抗肌肉萎縮蛋白抗體之西方墨點分析來測定肌肉萎縮蛋白陽性纖維之百分比。例如,可使用來自Leica Biosystems之抗肌肉萎縮蛋白抗體NCL-Dys1。肌肉萎縮蛋白陽性纖維之百分比亦可藉由測定肌聚糖複合物(β,γ)之組分及/或神經元NOS之表現來分析。
在一些實施例中,用本發明之反義寡聚物或反義寡聚物共軛物治療會減緩或減輕DMD患者之在不治療的情況下預期將出現之進行性呼吸肌功能障礙及/或衰竭。在一些實施例中,用本發明之反義寡聚物或反義寡聚物共軛物治療可減少或消除對在不治療的情況下預期將出現之換氣輔助裝置之需要。在一些實施例中,用於追蹤病程之呼吸功能之量測以及潛在治療介入之評估包括最大吸氣壓(MIP)、最大呼氣壓(MEP)及用力肺活量(FVC)。量測個人壓力值之MIP及MEP分別可在吸氣及呼氣期間產生,且係呼吸肌強度之敏感性量度。MIP係橫膈膜肌無力之量度。
在一些實施例中,MEP可在其他肺功能測試(包括MIP及FVC)變化之前下降。在某些實施例中,MEP可為呼吸功能障礙之早期指示劑。在某些實施例中,FVC可用於量測在最大吸氣後之用力呼氣期間排出之總空氣體積。在DMD患者中,FVC與身體生長同時增加直至十幾歲。然而,隨著生長減緩或被疾病演進阻礙及肌無力演進,肺活量進入下行期且在10歲至12歲後以每年約8%至8.5%之平均速率下降。在某些實施例中,經預測MIP%(針對體重調整之MIP)、經預測MEP%(針對年齡調整之MEP)及經預測FVC%(針對年齡及身高調整之FVC)係支持性分析。
如本文所用之術語「個體」及「患者」包括展現可用本發明之反義寡聚物或反義寡聚物共軛物治療之症狀或處於展現該症狀風險之任何動物,諸如具有或處於患DMD或BMD或與該等病況相關之任一症狀(例如肌肉纖維喪失)之風險的個體(或患者)。適宜個體(或患者)包括實驗室動物(諸如小鼠、大鼠、兔或天竺鼠)、農場動物及家畜或寵物(諸如貓或狗)。包括非人類靈長類動物及較佳地人類患者(或個體)。亦包括在具有適於外顯子51跳躍之肌肉萎縮蛋白基因突變之個體(或患者)中產生肌肉萎縮蛋白之方法。
如本文所用之詞語「全身性投藥」、「全身性投與」、「周邊性投藥」及「周邊性投與」意指以除直接投與至中樞神經系統中以外之方式投與化合物、藥物或其他物質,從而使其進入患者全身且因此進行代謝及其他類似過程,例如皮下投藥。
詞語「靶向序列」係指與目標前驅mRNA中之核苷酸序列互補之寡聚物核鹼基序列。在本發明之一些實施例中,目標前驅mRNA中之核苷酸序列係肌肉萎縮蛋白前驅mRNA中之外顯子52黏合位置,稱為H52A(-01+24)。
個體(例如哺乳動物,諸如人類)或細胞之「治療」係任一類型之用於試圖改變個體或細胞之天然進程的任何類型之介入。治療包含(但不限於)投與一寡聚物或其醫藥組合物且可以預防形式或在病理事件開始或與病原體接觸後進行。治療包括對與肌縮蛋白相關之疾病或病狀之症狀或病變(如在某些形式之肌肉萎縮症中)的任何所需作用,且可包括例如所治療疾病或病狀之一或多個可量測標誌之最小改變或改善。亦包括「預防性」治療,其可關於降低所治療疾病或病狀之進展速率,延遲彼疾病或病狀之發作或降低其發作之嚴重度。「治療」或「預防」不一定表明完全根除、治癒或預防疾病或病狀或其相關症狀。
在一些實施例中,用本發明之反義寡聚物或反義寡聚物共軛物治療增加新的肌肉萎縮蛋白產生,延遲疾病演進,減緩或減少移動性喪失,減輕肌肉發炎,減輕肌肉損傷,改良肌肉功能,減少肺功能喪失及/或增強肌肉再生,在不治療的情況下預期將出現上述各症狀。在一些實施例中,治療維持、延遲或減緩疾病演進。在一些實施例中,治療維持移動性或減少移動性喪失。在一些實施例中,治療維持肺功能或減少肺功能喪失。在一些實施例中,治療維持或增加患者之穩定步行距離,如藉由例如6分鐘步行測試(6MWT)所量測。在一些實施例中,治療維持或縮短10米步行/跑步之時間(即10米步行/跑步測試)。在一些實施例中,治療維持或縮短仰臥站立之時間(即仰臥時間測試)。在一些實施例中,治療維持或縮短爬四級標準樓梯之時間(即四樓爬行測試)。在一些實施例中,治療維持或減輕患者之肌肉發炎,如藉由例如MRI(例如腿部肌肉之MRI)所量測。在一些實施例中,MRI量測T2及/或脂肪分數以鑑別肌肉變性。MRI可鑑別出由發炎、水腫、肌肉損傷及脂肪浸潤引起之肌肉結構及組成之變化。
在一些實施例中,用本發明之反義寡聚物或反義寡聚物共軛物治療增加新穎肌肉萎縮蛋白產生且減緩或減少在不治療的情況下預期將出現之移動性喪失。例如,治療可穩定、維持、改良或增加個體之步行能力(例如穩定移動)。在一些實施例中,治療維持或增加患者之穩定步行距離,如藉由例如McDonald等人(Muscle Nerve, 2010; 42:966-74,其以引用方式併入本文中)所述之6分鐘步行測試(6MWT)所量測。6分鐘步行距離(6MWD)之變化可表示為絕對值、百分比變化或經預測%值之變化。在一些實施例中,治療維持或改良在6MWT中個體相對於健康人之穩定步行距離之20%欠缺。相對於健康人之典型行為,在6MWT中DMD患者之行為可藉由計算經預測%值來確定。例如,男性之經預測% 6MWD可使用以下等式來計算:196.72 + (39.81 ×年齡) - (1.36 ×年齡2 ) + (132.28 ×身高(米))。對於女性,經預測% 6MWD可使用以下等式來計算:188.61 + (51.50 ×年齡) - (1.86 ×年齡2 ) + (86.10 ×身高(米)) (Henricson等人,PLoS Curr., 2012, 第2版,其以引用方式併入本文中)。在一些實施例中,用反義寡聚物治療使患者自基線之穩定步行距離增加至3米、5米、6米、7米、8米、9米、10米、15米、20米、25米、30米或50米以上(包括其間之所有整數)。
DMD患者之肌肉功能之喪失可逆正常兒童期生長及發育之背景而發生。實際上,患有DMD之幼兒可顯示在約1年之病程內在6MWT期間步行之距離增加,儘管進行性肌力不足。在一些實施例中,比較DMD患者之6MWD與正常發育之對照個體以及年齡及性別匹配之個體之現有標準數據。在一些實施例中,正常生長及發育可使用擬合至標準數據之基於年齡及身高之等式來計算。此一等式可用於將6MWD轉化成DMD個體之經預測百分數(經預測%)值。在某些實施例中,經預測% 6MWD數據之分析代表一種計算正常生長及發育之方法,且可顯示年幼(例如小於或等於7歲)時功能之增加表示穩定而非改良DMD患者之能力(Henricson等人,PLoS Curr., 2012, 第2版,其以引用方式併入本文中)。
反義分子命名系統已被提出且公開,以區分不同的反義分子(參見Mann等人(2002) J Gen Med 4, 644-654)。此命名在測試若干皆針對相同靶區域但稍有不同之反義分子時變得尤其相關,如下所顯示: H#A/D(x:y) 。
第一個字母表示物種(例如H:人類,M:鼠類,C:犬)。「#」表示靶肌肉萎縮蛋白外顯子編號。「A/D」分別指示外顯子之開頭及末端之受體或供體剪接位點。(x y)表示黏合坐標,其中「-」或「+」分別指示內含子或外顯子序列。例如,A(-6+18)將指示在靶外顯子之前的內含子之最末6個鹼基及靶外顯子之前18個鹼基。最近剪接位點將為該受體,因此該等坐標之前將具有「A」。闡述供體剪接位點之黏合坐標可為D(+2-18),其中最末2個外顯子鹼基及前18個內含子鹼基對應於反義分子之黏合位置。整個外顯子黏合坐標將由A(+65+85)表示,其係自該外顯子起始第65個與第85個核苷酸之間之位點。II. 反義寡聚物 A. 經設計以誘導外顯子 52 跳躍之反義寡聚物及反義寡聚物共軛物
在某些實施例中,本發明之反義寡聚物及反義寡聚物共軛物係與肌肉萎縮蛋白基因之外顯子52靶區域互補且誘導外顯子52跳躍。具體而言,本發明係關於反義寡聚物共軛物,其與肌肉萎縮蛋白前驅mRNA之外顯子52靶區域(稱為黏合位置)互補。在一些實施例中,黏合位置為H52A(-01+24)。
本發明之反義寡聚物及反義寡聚物共軛物係靶向肌肉萎縮蛋白前驅mRNA且誘導外顯子52之跳躍,因此其自經剪接成熟mRNA轉錄本排除或跳躍。藉由使外顯子52跳躍,將破壞的讀碼框恢復至框架內突變。儘管DMD包含多種遺傳亞型,但本發明之反義寡聚物及反義寡聚物共軛物經特殊設計以使肌肉萎縮蛋白前驅mRNA之外顯子52跳躍。適於使外顯子52跳躍之DMD突變包含DMD患者之亞群(8%)。
誘導外顯子52跳躍之反義寡聚物或反義寡聚物共軛物之核鹼基序列經設計以與肌肉萎縮蛋白前驅mRNA之外顯子52內之特異性目標序列互補。在一些實施例中,反義寡聚物或反義寡聚物共軛物之反義寡聚物係PMO,其中PMO之每一嗎啉基環連接至核鹼基,包括例如在DNA中發現之核鹼基(腺嘌呤、胞嘧啶、鳥嘌呤及胸腺嘧啶)。B. 寡聚物化學特徵
本發明之反義寡聚物及反義寡聚物共軛物可採用多種反義寡聚物化學。寡聚物化學之實例包括(但不限於)嗎啉基寡聚物、硫代磷酸酯修飾之寡聚物、2’ O-甲基修飾之寡聚物、肽核酸(PNA)、鎖核酸(LNA)、硫代磷酸酯寡聚物、2’ O-MOE修飾之寡聚物、2’-氟修飾之寡聚物、2'O,4'C-伸乙基橋接核酸(ENA)、三環-DNA、三環-DNA硫代磷酸酯亞單位、2'-O-[2-(N-甲基胺甲醯基)乙基]修飾之寡聚物,包括前述任一者之組合。硫代磷酸酯及2’-O-Me修飾化學品可組合產生2’O-Me-硫代磷酸酯主鏈。例如,參見PCT公開案第WO/2013/112053號及第WO/2009/008725號,其係以全文引用方式併入本文中。本發明寡聚物化學之例示性實施例進一步闡述於下文中。1. 肽核酸 (PNA)
肽核酸(PNA)係DNA之類似物,其中主鏈之結構與去氧核糖主鏈同形,由嘧啶或嘌呤鹼基所附接之N-(2-胺基乙基)甘胺酸單元組成組成。含有天然嘧啶及嘌呤鹼基之PNA遵從華特生-克裡克鹼基配對規則與互補寡聚物雜交,且模擬DNA之鹼基對識別(Egholm, Buchardt等人,1993)。PNA之主鏈係藉由肽鍵而非磷酸二酯鍵形成,此使其充分適於反義應用(參見下列結構)。主鏈係不帶電荷的,從而產生展現大於正常熱穩定性之PNA/DNA或PNA/RNA雙鏈體。PNA並不由核酸酶或蛋白酶識別。PNA之非限制性實例係描繪於下。
Figure 02_image059
儘管天然結構存在根本結構變化,但PNA能夠以螺旋形式序列特異性結合至DNA或RNA。PNA之特徵包括與互補DNA或RNA之高結合親和力、由單鹼基失配引起之去穩定效應、核酸酶及蛋白酶抗性、獨立於鹽濃度與DNA或RNA雜交及與同嘌呤DNA形成三鏈體。PANAGENE™已研發出其專有Bts PNA單體(Bts:苯并噻唑-2-磺醯基)及專有寡聚化製程。使用Bts PNA單體之PNA寡聚化係由去保護、偶合及加帽之重複循環構成。PNA可使用業內已知之任一技術以合成方式產生。例如,參見美國專利第6,969,766號;第7,211,668號;第7,022,851號;第7,125,994號;第7,145,006號;及第7,179,896號。關於PNA之製備亦參見美國專利第5,539,082號;第5,714,331號;及第5,719,262號。PNA化合物之其他教示可參見Nielsen等人,Science, 254:1497-1500, 1991。前述每一者係以全文引用方式併入本文中。2. 鎖核酸 (LNA)
反義寡聚物及反義寡聚物共軛物亦可含有「鎖核酸」亞單位(LNA)。「LNA」係稱為橋接核酸(BNA)之一類修飾之成員。BNA之特徵在於將核糖環之組態鎖定於C30-內式(北方(northern))糖褶中之共價鍵聯。對於LNA,橋係由2’-O與4’-C位置之間之亞甲基構成。LNA增強主鏈預組織及鹼基堆疊以增加雜交及熱穩定性。
LNA之結構可參見例如Wengel等人,Chemical Communications (1998) 455;Koshkin等人,Tetrahedron (1998) 54:3607;Jesper Wengel, Accounts of Chem. Research (1999) 32:301;Obika等人,Tetrahedron Letters (1997) 38:8735;Obika等人,Tetrahedron Letters (1998) 39:5401;及Obika等人,Bioorganic Medicinal Chemistry (2008) 16:9230,其係以全文引用方式併入本文中。LNA之非限制性實例係描繪於下。
Figure 02_image061
本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個LNA;在一些情形下,該反義寡聚物及反義寡聚物共軛物可完全由LNA構成。用於合成個別LNA核苷亞單位及將其納入寡聚物中之方法闡述於例如美國專利第7,572,582號;第7,569,575號;第7,084,125號;第7,060,809號;第7,053,207號;第7,034,133號;第6,794,499號;及第6,670,461號中;其每一者係以全文引用方式併入本文中。典型亞單位間連接體包括磷酸二酯及硫代磷酸酯部分;或者,可採用非含磷連接體。其他實施例包括含LNA之反義寡聚物或反義寡聚物共軛物,其中每一LNA亞單位由DNA亞單位分開。某些反義寡聚物或反義寡聚物共軛物係由交替LNA及DNA亞單位構成,其中亞單位間連接體為硫代磷酸酯。
2'O,4'C -伸乙基橋接核酸(ENA)係BNA類之另一成員。非限制性實例係描繪於下。
Figure 02_image063
ENA寡聚物及其製備闡述於Obika等人,Tetrahedron Lett (1997) 38 (50): 8735中,其於此以全文引用方式併入本文中。本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個ENA亞單位。3. 解鎖核酸 (UNA)
反義寡聚物及反義寡聚物共軛物亦可含有解鎖核酸(UNA)亞單位。UNA及UNA寡聚物係RNA之類似物,其中亞單位之C2′-C3'鍵已裂解。而LNA係組態受限的(相對於DNA及RNA),UNA係極具撓性的。UNA揭示於例如WO 2016/070166中。UNA之非限制性實例係描繪於下。
Figure 02_image065
典型亞單位間連接體包括磷酸二酯及硫代磷酸酯部分;或者,可採用非含磷連接體。4. 硫代磷酸酯
「硫代磷酸酯」(或S-寡核苷酸)係正常DNA之變體,其中非橋接氧經硫替代。硫代磷酸酯之非限制性實例係描繪於下。
Figure 02_image067
核苷酸間鍵之硫化降低內及外核酸酶之作用,該等核酸酶包括5’至3’及3’至5’ DNA POL 1外核酸酶、核酸酶S1及P1、RNase、血清核酸酶及蛇毒磷酸二酯酶。硫代磷酸酯係藉由兩條主要途徑製得:藉由元素硫於二硫化碳中之溶液對氫膦酸酯之作用,或藉由用二硫化四乙基秋蘭姆(TETD)或3H-1, 2-苯并二硫雜環戊烯-3-酮1, 1-二氧化物(BDTD)硫化亞磷酸三酯之方法(例如,參見Iyer等人,J. Org. Chem. 55, 4693-4699, 1990,其於此係以全文引用方式併入本文中)。後一方法避免了元素硫在大多數有機溶劑中不溶解及二硫化碳毒性之問題。TETD及BDTD方法亦產生較高純度之硫代磷酸酯。5. 三環 -DNA 及三環 - 硫代磷酸酯亞單位
三環-DNA (tc-DNA)係一類受限DNA類似物,其中每一核苷酸藉由引入環丙烷環經修飾以限制主鏈之組態撓性且最佳化扭轉角γ之主鏈幾何學。含同鹼性腺嘌呤及胸腺嘧啶之tc-DNA與互補RNA形成異常穩定之A-T鹼基對。三環-DNA及其合成闡述於國際專利申請公開案第WO 2010/115993號中,其係以全文引用方式併入本文中。本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個三環-DNA亞單位;在一些情形下,反義寡聚物及反義寡聚物共軛物可完全由三環-DNA亞單位構成。
三環-硫代磷酸酯亞單位係具有硫代磷酸酯亞單位間鍵聯之三環-DNA亞單位。三環-硫代磷酸酯亞單位及其合成闡述於國際專利申請公開案第WO 2013/053928號中,其係以全文引用方式併入本文中。本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個三環-DNA亞單位;在一些情形下,反義寡聚物及反義寡聚物共軛物可完全由三環-DNA亞單位構成。三環-DNA/三環-硫代磷酸酯亞單位之非限制性實例係描繪於下。
Figure 02_image069
6. 2’ O- 甲基、 2’ O-MOE 2’-F 寡聚物
「2’-O-Me寡聚物」分子在核糖分子之2’-OH殘基處攜載甲基。2’-O-Me-RNA顯示與DNA相同(或相似)之行為,但經保護免於核酸酶降解。2’-O-Me-RNA亦可與硫代磷酸酯寡聚物(PTO)組合以進一步穩定。2’O-Me寡聚物(磷酸二酯或硫代磷酸酯)可根據業內之常規技術合成(例如,參見Yoo等人,Nucleic Acids Res. 32:2008-16, 2004,其係以全文引用方式併入本文中)。2’ O-Me寡聚物之非限制性實例係描繪於下。
Figure 02_image071
2’ O-Me
2’ O-甲氧基乙基寡聚物(2’-O MOE)在核糖分子之2’-OH殘基處攜載甲氧基乙基且論述於Martin等人,Helv. Chim. Acta, 78, 486-504, 1995中,其係以全文引用方式併入本文中。2’O MOE亞單位之非限制性實例係描繪於下。
Figure 02_image073
2’-氟(2’-F)寡聚物在2’位置具有氟基替代2’OH。2’-F寡聚物之非限制性實例係描繪於下。
Figure 02_image075
2’-F 2’-氟寡聚物係進一步描述於WO 2004/043977中,其係以全文引用方式併入本文中。
2’O-甲基、2’ O-MOE及2’-F寡聚物亦可包含一或多個硫代磷酸酯(PS)鍵聯,如下所繪示。
Figure 02_image077
Figure 02_image079
Figure 02_image081
2’O-甲基PS        2’O-MOE PS                           2’-F PS
另外,2’O-甲基、2’ O-MOE及2’-F寡聚物可在整個寡聚物中、例如於下所描繪之2’O-甲基PS寡聚物屈沙培森(drisapersen)中包含PS亞單位間鍵聯。
Figure 02_image083
或者,2’ O-甲基、2’ O-MOE及/或2’-F寡聚物可在寡聚物之末端包含PS鍵聯,如下所繪示。
Figure 02_image085
其中: R為CH2 CH2 OCH3 (甲氧基乙基或MOE);且 x、y及z分別表示含於所指定5'-翼區、中心間隙區及3'-翼區中每一者內之核苷酸數。
本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個2’ O-甲基、2’ O-MOE及2’-F亞單位且可利用本文所述之任一亞單位間鍵聯。在一些情況下,本發明之反義寡聚物或反義寡聚物共軛物可完全由2’O-甲基、2’ O-MOE或2’-F亞單位構成。本發明之反義寡聚物或反義寡聚物共軛物之一個實施例完全由2’O-甲基亞單位構成。7. 2'-O-[2-(N- 甲基胺甲醯基 ) 乙基 ] 寡聚物 (MCE)
MCE係可用於本發明反義寡聚物及反義寡聚物共軛物之2’O修飾之核糖核苷之另一實例。在此處,2’OH衍生化成2-(N-甲基胺甲醯基)乙基部分以增加核酸酶抗性。MCE寡聚物之非限制性實例係描繪於下。
Figure 02_image087
MCE MCE及其合成闡述於Yamada等人,J. Org. Chem. (2011) 76(9):3042-53中,其係以全文引用方式併入本文中。本發明之反義寡聚物及反義寡聚物共軛物可納入一或多個MCE亞單位。9.  2’-O-NMA 寡聚物
Figure 02_image089
9. 立體特異性寡聚物
立體特異性寡聚物係其中每一含磷鍵聯之立體化學係藉由合成方法固定、使得產生實質上立體純之寡聚物的彼等。立體特異性寡聚物之非限制性實例係描繪於下。
Figure 02_image091
在上述實例中,寡聚物之每一磷具有相同的立體組態。其他實例包括上文所述之寡聚物。例如,基於LNA、ENA、三環-DNA、MCE、2’ O-甲基、2’ O-MOE、2’-F及嗎啉基之寡聚物可用立體特異性含磷核苷間鍵聯(諸如(例如)硫代磷酸酯、磷酸二酯、胺基磷酸酯、磷二醯胺或其他含磷核苷間鍵聯)製備。立體特異性寡聚物、用於製備該等寡聚物之製備方法、手性控制合成、手性設計及手性助劑詳述於例如WO2017192664、WO2017192679、WO2017062862、WO2017015575、WO2017015555、WO2015107425、WO2015108048、WO2015108046、WO2015108047、WO2012039448、WO2010064146、WO2011034072、WO2014010250、WO2014012081、WO20130127858及WO2011005761中,其每一者係以全文引用方式併入本文中。
立體特異性寡聚物可具有呈R PS P 組態之含磷核苷間鍵聯。其中鍵聯之立體組態受控之手性含磷鍵聯稱為「立體純」,而其中鍵聯之立體組態不受控之手性含磷鍵聯稱為「立體無規」。在某些實施例中,本發明之寡聚物包含複數個立體純及立體無規鍵聯,使得所得寡聚物在寡聚物之預定位置具有立體純亞單位。立體純亞單位之位置之實例提供於國際專利申請公開案第WO 2017/062862 A2號中之圖7A及7B中。在實施例中,寡聚物中之所有手性含磷鍵聯為立體無規。在實施例中,寡聚物中之所有手性含磷鍵聯為立體純。
在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中之所有n個手性含磷鍵聯為立體無規。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中之所有n個手性含磷鍵聯為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少10% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少20% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少30% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少40% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少50% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少60% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少70% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少80% (至最接近整數)為立體純。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物中n個含磷鍵聯之至少90% (至最接近整數)為立體純。
在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少2個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少3個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少4個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少5個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少6個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少7個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少8個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少9個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少10個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少11個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少12個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少13個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少14個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少15個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少16個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少17個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少18個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少19個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。在具有n個手性含磷鍵聯(其中n係1或更大之整數)之寡聚物之實施例中,寡聚物含有至少20個具有相同立體定向(即S PR P )之鄰接立體純含磷鍵聯。10. 嗎啉基寡聚物
本發明之例示性實施例係關於以下一般結構之磷二醯胺嗎啉基寡聚物:
Figure 02_image021
且如Summerton, J.等人,Antisense & Nucleic Acid Drug Development , 7: 187-195 (1997)之圖2中所述。如本文所述之嗎啉基意欲涵蓋前述一般結構之所有立體異構物及互變異構物。嗎啉基寡聚物之合成、結構及結合特徵係詳述於美國專利第5,698,685號、第5,217,866號、第5,142,047號、第5,034,506號、第5,166,315號、第5,521,063號、第5,506,337號、第8,076,476號及第8,299,206號中,該等文獻全部係以引用的方式併入本文中。
在某些實施例中,嗎啉基在寡聚物之5’或3’末端與「尾」部分共軛以增加其穩定性及/或溶解度。例示性的尾部分包含:
Figure 02_image093
;
Figure 02_image095
; 及
Figure 02_image097
在不同實施例中,本發明之反義寡聚物共軛物具有式(I):
Figure 02_image099
(I) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列; T為選自以下之部分:
Figure 02_image013
;
Figure 02_image015
;及
Figure 02_image017
; R1 為C1 -C6 烷基; 其中靶向序列與肌肉萎縮蛋白前驅mRNA中之外顯子52黏合位置(稱為H52A(-01+24))互補。
在不同實施例中,T為
Figure 02_image101
在不同實施例中,R1 為甲基、CF3 、CCl3 、CFCl2 、CF2 Cl、乙基、CH2 CF3 、CF2 CF3 、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基、異戊基、新戊基、己基、異己基、3-甲基戊基、2,2-二甲基丁基或2,3-二甲基丁基。
在一些實施例中,式(I)之反義寡聚物共軛物係其HCl (鹽酸)鹽。在某些實施例中,HCl鹽為.6HCl鹽。
在一些實施例中,各Nu獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
在一些實施例中,該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’),其中每一胸腺嘧啶(T)視情況為尿嘧啶(U)。
在不同實施例中,T為
Figure 02_image102
,且靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’),其中每一胸腺嘧啶(T)視情況為尿嘧啶(U)。
在不同實施例中,T為
Figure 02_image103
,且靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’)。
在一些實施例中,包含(例如)式(I)的一些實施例,本發明之反義寡聚物共軛物具有式(II):
Figure 02_image104
(II) 或其醫藥學上可接受的鹽,其中: 各Nu為一起形成靶向序列之核鹼基,該靶向序列與肌肉萎縮蛋白前驅mRNA中之外顯子52黏合位置(稱為H52A(-01+24))互補。
在一些實施例中,各Nu獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
在不同實施例中,各Nu自1至25及5’至3’為(SEQ ID NO: 1):
Figure 108118324-A0304-0002
其中A為
Figure 02_image106
,C為
Figure 02_image108
,G為
Figure 02_image110
,且X為
Figure 02_image112
Figure 02_image114
。於某些實施例中,各X獨立地為
Figure 02_image116
在一些實施例中,式(II)之反義寡聚物共軛物為其HCl (鹽酸)鹽。在某些實施例中,HCl鹽為.6HCl鹽。
在一些實施例(包含(例如)式(II)之一些實施例)中,本發明之反義寡聚物共軛物具有式(IIA):
Figure 02_image117
(IIA) 其中各Nu為一起形成靶向序列之核鹼基,該靶向序列係與肌肉萎縮蛋白前驅mRNA中之外顯子52黏合位置(稱為H52A(-01+24))互補。
在一些實施例中,各Nu係獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
在不同實施例中,各Nu自1至25及5’至3’為(SEQ ID NO: 1):
Figure 108118324-A0304-0003
其中A為
Figure 02_image119
,C為
Figure 02_image120
,G為
Figure 02_image121
,且X為
Figure 02_image122
Figure 02_image123
。於某些實施例中,每一X為
Figure 02_image124
在一些實施例(包含(例如)式(II)及式(IIA)之反義寡聚物共軛物之實施例)中,該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’),其中各胸腺嘧啶(T)視情況為尿嘧啶(U)。在不同實施例中,包含(例如)式(II)及式(IIA)之反義寡聚物共軛物之實施例,該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’)。
在一些實施例(包含(例如)式(I)之反義寡聚物共軛物之實施例)中,本發明之反義寡聚物共軛物具有式(III):
Figure 02_image125
或其醫藥學上可接受的鹽。
在一些實施例中,式(III)之反義寡聚物共軛物為其HCl (鹽酸)鹽。在某些實施例中,HCl鹽為.6HCl鹽。
在一些實施例(包括(例如)式(III)之反義寡聚物共軛物之實施例)中,本發明之反義寡聚物共軛物具有式(IIIA):
Figure 02_image127
在本發明之一些實施例(包含式(I)之反義寡聚物共軛物之一些實施例及式(III)之反義寡聚物共軛物之實施例)中,反義寡聚物共軛物具有式(IV):
Figure 02_image129
或其醫藥學上可接受的鹽。
在一些實施例中,式(IV)之反義寡聚物共軛物係其HCl (鹽酸)鹽。在某些實施例中,HCl鹽係.6HCl鹽。
在一些實施例(包含(例如)式(IV)之反義寡聚物共軛物之實施例)中,本發明之反義寡聚物共軛物具有式(IVA):
Figure 02_image131
在不同實施例中,本發明之反義寡聚物具有式(V):
Figure 02_image011
(V) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列; T為選自以下之部分:
Figure 02_image013
Figure 02_image015
;及
Figure 02_image017
; R1 為C1 -C6 烷基;且 R2 係選自H或乙醯基, 其中該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子52黏合位置互補。
在不同實施例中,T為
Figure 02_image101
在不同實施例中,R1 為甲基、CF3 、CCl3 、CFCl2 、CF2 Cl、乙基、CH2 CF3 、CF2 CF3 、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基、異戊基、新戊基、己基、異己基、3-甲基戊基、2,2-二甲基丁基或2,3-二甲基丁基。
在一些實施例中,每一Nu獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
在一些實施例中,該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’),其中各胸腺嘧啶(T)視情況為尿嘧啶(U)。
在不同實施例中,T為
Figure 02_image102
,且該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’),其中各胸腺嘧啶(T)視情況為尿嘧啶(U)。
在不同實施例中,T為
Figure 02_image103
,且該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’)。
在一些實施例中,包含(例如)式(IV)的一些實施例,本發明之反義寡聚物具有式(V):
Figure 02_image134
(VI) 或其醫藥學上可接受的鹽,其中: R係選自H或乙醯基;且 各Nu為核鹼基,其一起形成一靶向序列,且該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子53黏合位置互補。
在一些實施例中,R為H。在不同實施例中,R為乙醯基。
在一些實施例中,各Nu獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
在不同實施例中,各Nu自1至25及5’至3’為(SEQ ID NO: 1):
Figure 108118324-A0304-0004
其中A為
Figure 02_image106
,C為
Figure 02_image108
,G為
Figure 02_image110
,且X為
Figure 02_image112
Figure 02_image114
。在某些實施例中,各X獨立地為
Figure 02_image116
在不同實施例中,R為H且各Nu自1至25及5’至3’為(SEQ ID NO: 1):
Figure 108118324-A0304-0005
其中A為
Figure 02_image106
,C為
Figure 02_image108
,G為
Figure 02_image110
,且X為
Figure 02_image112
Figure 02_image114
。在某些實施例中,各X獨立地為
Figure 02_image116
在本發明之一些實施例中,包含具有式(V)之反義寡聚物的一些實施例及具有式(VI)之反義寡聚物的一些實施例,該反義寡聚物具有式(VII):
Figure 02_image139
或其醫藥學上可接受的鹽。
在另一態樣中,本發明提供具有式(VIIA)之反義寡聚物共軛物:
Figure 02_image141
或其醫藥學上可接受的鹽。10. 核鹼基修飾及取代
在某些實施例中,本發明之反義寡聚物及反義寡聚物共軛物係由RNA核鹼基及DNA核鹼基(業內通常簡稱為「鹼基」)構成。RNA鹼基通常稱為腺嘌呤(A)、尿嘧啶(U)、胞嘧啶(C)及鳥嘌呤(G)。DNA鹼基通常稱為腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)及鳥嘌呤(G)。在不同實施例中,本發明之反義寡聚物及反義寡聚物共軛物係由胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)構成。
在一些實施例中,本發明之反義寡聚物或反義寡聚物共軛物包括一核鹼基序列且該等核鹼基一起形成靶向序列,其中該靶向序列與肌肉萎縮蛋白前驅mRNA中之外顯子52黏合位置(稱為H52A(-01+24))互補。在不同實施例中,該核鹼基序列包括SEQ ID NO: 1。在一些實施例中,該核鹼基序列係由SEQ ID NO: 1組成。在不同實施例中,該核鹼基序列係包括在SEQ ID NO: 1序列中有1至5個核鹼基缺失、取代、插入及/或添加之序列。在不同實施例中,該核鹼基序列係由在SEQ ID NO: 1序列中有1至5個核鹼基缺失、取代、插入及/或添加之序列所組成。在不同實施例中,該靶向序列具有與黏合範圍中之至少一連串三或更多個相同連續核鹼基互補的區域,其中與該靶向序列區域相比該黏合位置包括至少一額外的核鹼基,且該至少一額外的核鹼基在該靶向序列區域中沒有互補的核鹼基,且其中與該至少一連串三或更多個相同連續核鹼基之靶向區域係於該靶向序列內,其實例係可見於美國專利申請第62/573,985號之中,該專利申請案係以全文引用方式併入本文中。
在某些實施例中,寡聚物中之一或多個RNA鹼基或DNA鹼基可經除RNA鹼基或DNA鹼基外之鹼基修飾或經取代。含有經修飾或經取代鹼基之寡聚物包括其中一或多個最常在核酸中發現之嘌呤或嘧啶鹼基經較不常見或非天然鹼基替代之寡聚物。
嘌呤鹼基包含稠合至咪唑環之嘧啶環,如藉由以下通式所述。
Figure 02_image143
嘌呤 腺嘌呤及鳥嘌呤係兩個最常在核酸中發現之嘌呤核鹼基。其他天然嘌呤包含(但不限於) N6 -甲基腺嘌呤、N2 -甲基鳥嘌呤、次黃嘌呤及7-甲基鳥嘌呤。
嘧啶鹼基包含如藉由以下通式所述之6員嘧啶環。
Figure 02_image145
嘧啶 胞嘧啶、尿嘧啶及胸腺嘧啶係最常在核酸中發現之嘧啶鹼基。其他天然嘧啶包含(但不限於) 5-甲基胞嘧啶、5-羥基甲基胞嘧啶、假尿嘧啶及4-硫尿嘧啶。在一個實施例中,本文所述之寡聚物含有胸腺嘧啶鹼基替代尿嘧啶。
其他適宜鹼基包含(但不限於):2,6-二胺基嘌呤、乳清酸、2-胍丁胺基胞苷、立西啶(lysidine)、2-硫嘧啶(例如2-硫尿嘧啶、2-硫胸腺嘧啶)、G-鉗及其衍生物、5-取代嘧啶(例如5-鹵代尿嘧啶、5-丙炔基尿嘧啶、5-丙炔基胞嘧啶、5-胺基甲基尿嘧啶、5-羥基甲基尿嘧啶、5-胺基甲基胞嘧啶、5-羥基甲基胞嘧啶、Super T)、7-去氮鳥嘌呤、7-去氮腺嘌呤、7-氮雜-2,6-二胺基嘌呤、8-氮雜-7-去氮鳥嘌呤、8-氮雜-7-去氮腺嘌呤、8-氮雜-7-去氮-2,6-二胺基嘌呤、Super G、Super A及N4-乙基胞嘧啶或其衍生物;N2 -環戊基鳥嘌呤(cPent-G)、N2 -環戊基-2-胺基嘌呤(cPent-AP)及N2 -丙基-2-胺基嘌呤(Pr-AP)、假尿嘧啶或其衍生物;及變性或萬能鹼基(如2,6-二氟甲苯)或無鹼基(如無鹼基位點)(例如1-去氧核糖、1,2-二去氧核糖、1-去氧-2-O-甲基核糖;或其中環氧基已經氮替代之吡咯啶衍生物(氮雜核糖))。Super A、Super G及Super T之衍生物之實例可參見美國專利第6,683,173號 (Epoch Biosciences),其係以全文引用方式併入本文中。顯示cPent-G、cPent-AP及Pr-AP在納入siRNA中時降低免疫刺激效應(Peacock H.等人,J. Am. Chem. Soc. 2011, 133, 9200)。假尿嘧啶係尿嘧啶之具有C-醣苷而非規則N-醣苷(如在尿苷中)之天然異構化形式。含假尿苷之合成mRNA與含尿苷之mPvNA相比可具有經改良之安全性概況(WO 2009127230,其係以全文引用方式併入本文中)。
某些核鹼基尤其可用於增加本發明反義寡聚物及反義寡聚物共軛物之結合親和力。該等核鹼基包括5-取代嘧啶、6-氮雜嘧啶及N-2、N-6及O-6取代嘌呤,包括2-胺基丙基腺嘌呤、5-丙炔基尿嘧啶及5-丙炔基胞嘧啶。已顯示5-甲基胞嘧啶取代使核酸雙鏈體穩定性增加0.6°C至1.2°C且係目前較佳之鹼基取代,甚至更尤其在與2'-O-甲氧基乙基糖修飾組合時。其他例示性經修飾核鹼基包括其中核鹼基之至少一個氫原子經氟替代之彼等。11. 反義寡聚物及反義寡聚物共軛物之醫藥學上可接受的鹽
本文所述反義寡聚物及反義寡聚物共軛物之某些實施例可含有鹼性官能基(諸如胺基或烷基胺基)且因此能夠與醫藥學上可接受之酸形成醫藥學上可接受的鹽。術語「醫藥學上可接受的鹽」在此方面係指本發明反義寡聚物及反義寡聚物共軛物之相對無毒、無機及有機酸加成鹽。此等鹽可在投藥媒劑或劑型製造過程中現場製備,或藉由使本發明之經純化反義寡聚物及反義寡聚物共軛物以其游離鹼形式與適合有機酸或無機酸單獨反應,並在後續純化期間分離由此形成之鹽來製備。代表性鹽包括氫溴酸鹽、鹽酸鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、硝酸鹽、乙酸鹽、戊酸鹽、油酸鹽、棕櫚酸鹽、硬脂酸鹽、月桂酸鹽、苯甲酸鹽、乳酸鹽、磷酸鹽、甲苯磺酸鹽、檸檬酸鹽、順丁烯二酸鹽、反丁烯二酸鹽、丁二酸鹽、酒石酸鹽、萘二甲酸鹽、甲磺酸鹽、葡萄糖酸鹽、乳糖酸鹽及月桂基磺酸鹽及其類似物。(參見例如Berge等人,(1977)「Pharmaceutical Salts」, J. Pharm. Sci. 66:1-19)。
本發明反義寡聚物及反義寡聚物共軛物之醫藥學上可接受的鹽包括該等反義寡聚物及反義寡聚物共軛物與例如無毒有機酸或無機酸之習知無毒鹽或四級銨鹽。例如,該等習知無毒鹽包括彼等得自以下無機酸之鹽:諸如鹽酸、氫溴酸、硫酸、胺基磺酸、磷酸、硝酸及其類似酸;及自以下有機酸製備之鹽:諸如乙酸、丙酸、丁二酸、乙醇酸、硬脂酸、乳酸、蘋果酸、酒石酸、檸檬酸、抗壞血酸、棕櫚酸、順丁烯二酸、羥基順丁烯二酸、苯乙酸、麩胺酸、苯甲酸、水楊酸、對胺基苯磺酸、2-乙醯氧基苯甲酸、反丁烯二酸、甲苯磺酸、甲烷磺酸、乙烷二磺酸、草酸、羥乙基磺酸及其類似酸。
在某些實施例中,本發明之反義寡聚物及反義寡聚物共軛物可含有一或多個酸性官能基且因此能夠與醫藥學上可接受之鹼形成醫藥學上可接受的鹽。術語「醫藥學上可接受的鹽」在此等情況下係指本發明反義寡聚物及反義寡聚物共軛物之相對無毒、無機及有機鹼加成鹽。此等鹽可同樣在投藥媒劑或劑型製造過程中現場製備,或藉由使經純化反義寡聚物及反義寡聚物共軛物以其游離酸形式與適合鹼(諸如醫藥學上可接受之金屬陽離子的氫氧化物、碳酸鹽或碳酸氫鹽)、與氨或與醫藥學上可接受之有機一級、二級或三級胺單獨反應來製備。代表性鹼金屬或鹼土金屬鹽包括鋰鹽、鈉鹽、鉀鹽、鈣鹽、鎂鹽及鋁鹽及其類似物。適用於形成鹼加成鹽之代表性有機胺包括乙胺、二乙胺、乙二胺、乙醇胺、二乙醇胺、哌嗪及其類似物(參見例如Berge等人,同上)。III. 調配物及投與模式
在某些實施例中,本發明提供適用於治療性傳遞如本文所述之反義寡聚物及反義寡聚物共軛物的調配物或醫藥組合物。因此,在某些實施例中,本發明提供醫藥學上可接受之組合物,其包括與一或多種醫藥學上可接受之載劑(添加劑)及/或稀釋劑一起調配的治療有效量之本文所述之一或多種反義寡聚物或一或多種反義寡聚物共軛物。雖然有可能單獨投與本發明之反義寡聚物或/及反義寡聚物共軛物,但較佳以醫藥調配物(組合物)形式投與反義寡聚物或反義寡聚物共軛物。在一實施例中,該調配物之反義寡聚物或反義寡聚物共軛物係分別依據式(III)或式(VII)。
可適用於本發明反義寡聚物或反義寡聚物共軛物之用於傳遞核酸分子之方法係描述於(例如)Akhtar等人,1992, Trends Cell Bio., 2:139;Delivery Strategies for Antisense Oligonucleotide Therapeutics, Akhtar編,CRC Press;及Sullivan等人,PCT WO 94/02595中。可使用此等及其他實驗方案來傳遞實際上任何核酸分子,包含本發明之反義寡聚物及反義寡聚物共軛物。
本發明之醫藥組合物可經特定調配供以固體或液體形式投與,包括彼等適於以下之固體或液體形式:(1)經口投藥,例如灌服劑(水性或非水性溶液或懸浮液)、錠劑(目標在於經頰、舌下及全身性吸收之錠劑)、大丸劑、散劑、顆粒劑、供施用於舌之糊劑;(2)非經腸投藥,例如藉由皮下、肌肉內、靜脈內或硬膜外注射,例如呈無菌溶液或懸浮液或持續釋放調配物形式;(3)局部施用,例如呈施用於皮膚之乳膏、軟膏或控制釋放貼片或噴霧形式;(4)陰道內或直腸內投藥,例如呈子宮托、乳膏或泡沫劑形式;(5)舌下投藥;(6)眼部投藥;(7)經皮投藥;或(8)經鼻投藥。
可用作醫藥學上可接受之載劑之物質的一些實例包含(但不限於):(1)糖,諸如乳糖、葡萄糖及蔗糖;(2)澱粉,諸如玉米澱粉及馬鈴薯澱粉;(3)纖維素及其衍生物,諸如羧甲基纖維素鈉、乙基纖維素及乙酸纖維素;(4)粉末狀黃著膠;(5)麥芽;(6)明膠;(7)滑石粉;(8)賦形劑,諸如可可脂及栓劑蠟;(9)油,諸如花生油、棉籽油、紅花油、芝麻油、橄欖油、玉米油及大豆油;(10)二醇,諸如丙二醇;(11)多元醇,諸如甘油、山梨糖醇、甘露醇及聚乙二醇;(12)酯,諸如油酸乙酯及月桂酸乙酯;(13)瓊脂;(14)緩衝劑,諸如氫氧化鎂及氫氧化鋁;(15)褐藻酸;(16)無熱原質水;(17)等張食鹽水;(18)林格氏溶液(Ringer's solution);(19)乙醇;(20)pH值緩衝溶液;(21)聚酯、聚碳酸酯及/或聚酸酐;及(22)其他用於醫藥調配物中之無毒可相容物質。
適用於與本發明反義寡聚物或反義寡聚物共軛物一起調配之藥劑的其他非限制性實例包括:與PEG共軛之核酸、與磷脂共軛之核酸、含有親脂性部分之核酸、硫代磷酸酯、可增強藥物進入各種組織中之P-醣蛋白抑制劑(諸如普盧蘭尼克P85 (Pluronic P85));生物可降解聚合物,諸如用於植入後持續釋放傳遞之聚(D,L-丙交酯-共-乙交酯)微球體(Emerich, D F等人,1999, Cell Transplant, 8, 47-58),Alkermes公司,Cambridge, Mass.);及負載奈米粒子,諸如由聚氰基丙烯酸丁酯製成之奈米粒子,其可穿過血腦障壁傳遞藥物且可改變神經元攝取機制(Prog Neuropsychopharmacol Biol Psychiatry, 23, 941-949, 1999)。
本發明特徵亦在於使用包含含有聚(乙二醇)(“PEG”)脂質之經表面改質脂質體(PEG修飾之分支及未分支或其組合或長循環脂質體或隱匿脂質體)的組合物。本發明之反義寡聚物或反義寡聚物共軛物亦可包含共價連接之各種分子量的PEG分子。此等調配物提供增加藥物在目標組織中積聚之方法。此類藥物載劑抵抗單核吞噬細胞系統(MPS或RES)之調理作用及消除作用,從而對於所囊封之藥物能夠延長血液循環時間及增強組織暴露(Lasic等人,Chem. Rev. 1995, 95, 2601-2627;Ishiwata等人,Chem. Pharm. Bull. 1995, 43, 1005-1011)。該等脂質體已展示可能藉由外滲及捕獲於新生血管之目標組織中而選擇性積聚於腫瘤中(Lasic等人,Science 1995, 267, 1275-1276;Oku等人,1995, Biochim. Biophys. Acta, 1238, 86-90)。尤其與習知陽離子型脂質體(已知其積聚於MPS之組織中)相比,長循環脂質體增強DNA及RNA之藥物動力學及藥效學(Liu等人,J. Biol. Chem. 1995, 42, 24864-24870;Choi等人,國際PCT公開案第WO 96/10391號;Ansell等人,國際PCT公開案第WO 96/10390號;Holland等人,國際PCT公開案第WO 96/10392號)。與陽離子型脂質體相比,長循環脂質體亦可能基於其能夠避免積聚於代謝旺盛之MPS組織(諸如肝臟及脾臟)中而較大程度上保護藥物免遭核酸酶降解。
在另一實施例中,本發明包括如美國專利第6,692,911號、第7,163,695號及第7,070,807號中所述製備供傳遞之反義寡聚物醫藥組合物及反義寡聚物共軛物醫藥組合物。在此方面,在一實施例中,本發明以組合物提供本發明反義寡聚物或反義寡聚物共軛物,該組合物包含單獨或與PEG(例如分支或未分支PEG或兩者之混合物)組合之如美國專利第7,163,695號、第7,070,807號及第6,692,911號中所述離胺酸及組胺酸之共聚物(HK),以及PEG及靶向部分或任何上述成份以及交聯劑。在某些實施例中,本發明以組合物提供反義寡聚物或反義寡聚物共軛物,且其醫藥組合物包括經葡萄糖酸改質之聚組胺酸或葡萄糖化聚組胺酸/轉鐵蛋白-聚離胺酸。熟習此項技術者亦認識到可在組合物內以具有與His及Lys相似之特性的胺基酸來替代。
濕潤劑、乳化劑及潤滑劑(諸如月桂基硫酸鈉及硬脂酸鎂)、著色劑、脫模劑、塗佈劑、甜味劑、調味劑、芳香劑、防腐劑及抗氧化劑亦可存在於組合物中。
醫藥學上可接受之抗氧化劑之實例包括:(1)水溶性抗氧化劑,諸如抗壞血酸、半胱胺酸鹽酸鹽、硫酸氫鈉、偏亞硫酸氫鈉、亞硫酸鈉及其類似物;(2)油溶性抗氧化劑,諸如棕櫚酸抗壞血酸酯、丁基化羥基甲氧苯(BHA)、丁基化羥基甲苯(BHT)、卵磷脂、沒食子酸丙酯、α-生育酚及其類似物;及(3)金屬螯合劑,諸如檸檬酸、乙二胺四乙酸(EDTA)、山梨糖醇、酒石酸、磷酸及其類似物。
本發明之調配物包括彼等適於經口、經鼻、局部(包括經頰及舌下)、經直腸、經陰道及/或非經腸投藥之調配物。調配物宜以單位劑型提供且可藉由藥學技術中熟知之任何方法來製備。可與載劑物質組合以製備單一劑型之活性成份之量視所治療之個體及特定投藥模式而變化。可與載劑物質組合以製備單一劑型之活性成份之量一般為產生治療作用之活性成份的量。一般而言,此量在約0.1%至約99%,較佳約5%至約70%,最佳約10%至約30%之活性成份的範圍內。
在某些實施例中,本發明之調配物包含選自環糊精、纖維素、脂質體、微胞形成劑(例如膽酸)及聚合載劑(例如聚酯及聚酸酐)之賦形劑;及本發明之反義寡聚物或反義寡聚物共軛物。在一實施例中,該調配物之反義寡聚物共軛物係依據式(III)。在一實施例中,該調配物之反義寡聚物係依據式(VII)。在某些實施例中,上述調配物使本發明之反義寡聚物共軛物具有經口生物可用性。
製備此等調配物或醫藥組合物之方法包括使本發明反義寡聚物共軛物與載劑及視情況選用之一或多種配合劑結合之步驟。一般而言,藉由使本發明反義寡聚物共軛物與液體載劑或細粉狀固體載劑或兩者均勻且緊密地結合,且接著必要時使產物成形來製備調配物。
適於經口投藥之本發明調配物可呈膠囊、扁膠劑、藥丸、錠劑、口含劑(使用調味基質,通常為蔗糖及阿拉伯膠或黃著膠)、散劑、顆粒劑之形式或呈於水性或非水性液體中之溶液或懸浮液形式或呈水包油或油包水液體乳液形式,或呈酏劑或糖漿形式或呈片劑(使用惰性基質,諸如明膠及甘油或蔗糖及阿拉伯膠)形式及/或呈漱口劑形式及其類似形式,每一者均含有預定量之本發明反義寡聚物共軛物作為活性成份。亦可以大丸劑、舐劑或糊劑形式投與本發明之反義寡聚物共軛物。
在用於經口投藥之本發明固體劑型(膠囊、錠劑、藥丸、糖衣藥丸、散劑、顆粒劑、糖衣錠及其類似物)中,活性成份可與一或多種醫藥學上可接受之載劑(諸如檸檬酸鈉或磷酸二鈣)及/或以下任一者混合:(1)填充劑或增充劑,諸如澱粉、乳糖、蔗糖、葡萄糖、甘露醇及/或矽酸;(2)黏合劑,諸如羧甲基纖維素、海藻酸鹽、明膠、聚乙烯吡咯啶酮、蔗糖及/或阿拉伯膠;(3)保濕劑,諸如甘油;(4)崩解劑,諸如瓊脂、碳酸鈣、馬鈴薯或木薯澱粉、褐藻酸、某些矽酸鹽及碳酸鈉;(5)溶解延遲劑,諸如石蠟;(6)吸收加速劑,諸如四級銨化合物及界面活性劑,諸如泊洛沙姆(poloxamer)及月桂基硫酸鈉;(7)濕潤劑,諸如十六醇、單硬脂酸甘油酯及非離子型界面活性劑;(8)吸收劑,諸如高嶺土及膨潤土;(9)潤滑劑,諸如滑石粉、硬脂酸鈣、硬脂酸鎂、固體聚乙二醇、月桂基硫酸鈉、硬脂酸鋅、硬脂酸鈉、硬脂酸及其混合物;(10)著色劑;及(11)控制釋放劑,諸如交聯聚維酮或乙基纖維素。在膠囊、錠劑及藥丸之狀況下,醫藥組合物亦可包含緩衝劑。相似類型之固體醫藥組合物亦可用作使用諸如乳糖以及高分子量聚乙二醇及其類似物之賦形劑的軟殼及硬殼式明膠膠囊中之填充物。
可藉由視情況與一或多種配合劑一起壓製或模製來製備錠劑。壓製錠劑可使用黏合劑(例如明膠或羥丙基甲基纖維素)、潤滑劑、惰性稀釋劑、防腐劑、崩解劑(例如羥基乙酸澱粉鈉或交聯羧甲基纖維素鈉)、表面活性劑或分散劑來製備。模製錠劑可藉由在合適機器中模製經惰性液體稀釋劑濕潤之粉末狀化合物之混合物來製備。
本發明醫藥組合物之錠劑及其他固體劑型(諸如糖衣藥丸、膠囊、藥丸及顆粒劑)可視情況經刻痕或用包衣或外殼(諸如腸溶衣及醫藥調配技術中熟知之其他包衣)來製備。其亦可使用例如呈不同比例以提供所需釋放概況之羥丙基甲基纖維素、其他聚合物基質、脂質體及/或微球體來調配以提供其中活性成份之緩慢或控制釋放。其可經調配以用於快速釋放,例如冷凍乾燥。其可藉由例如經細菌滯留過濾器過濾或藉由以臨用前可溶解於無菌水或一些其他無菌可注射介質中之無菌固體醫藥組合物形式併入殺菌劑來殺菌。此等醫藥組合物亦可視情況含有遮光劑且可為僅在或優先在胃腸道之某一部分中視情況以延遲方式釋放活性成分之組合物。可使用之嵌埋式組合物之實例包括聚合物質及蠟。適當時,活性成份亦可與一或多種上述賦形劑一起呈微囊封形式。
用於經口投與本發明反義寡聚物共軛物的液體劑型包括醫藥學上可接受之乳液、微乳液、溶液、懸浮液、糖漿及酏劑。除活性成份之外,液體劑型還可含有此項技術中常用之惰性稀釋劑,諸如(例如)水或其他溶劑;增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、油(特別是棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚乙二醇及脫水山梨糖醇之脂肪酸酯及其混合物。
除惰性稀釋劑外,經口醫藥組合物亦可包括佐劑,諸如濕潤劑、乳化劑及懸浮劑、甜味劑、調味劑、著色劑、芳香劑及防腐劑。
除活性化合物以外,懸浮液還可含有懸浮劑,例如乙氧基化異硬脂醇、聚氧乙烯山梨糖醇及脫水山梨糖醇酯、微晶纖維素、偏氫氧化鋁、膨潤土、瓊脂及黃蓍膠及其混合物。
用於經直腸或經陰道投藥之調配物可以栓劑形式提供,該栓劑可藉由使本發明之一或多種化合物與一或多種適合無刺激性賦形劑或載劑混合來製備,該等賦形劑或載劑包含例如可可脂、聚乙二醇、栓劑蠟或水楊酸酯,且該栓劑在室溫下為固體,但在體溫下為液體且因此將在直腸或陰道腔內熔融並釋放活性化合物。
用於局部或經皮投與如本文提供之寡聚物的調配物或劑型包括散劑、噴霧、軟膏、糊劑、乳膏、洗劑、凝膠劑、溶液、貼片及吸入劑。活性寡聚物共軛物可在無菌條件下與醫藥學上可接受之載劑及與任何可能需要之防腐劑、緩衝劑或推進劑混合。軟膏、糊劑、乳膏及凝膠劑除本發明之活性化合物外還可含有賦形劑,諸如動物及植物脂肪、油、蠟、石蠟、澱粉、黃蓍膠、纖維素衍生物、聚乙二醇、聚矽氧、膨潤土、矽酸、滑石粉及氧化鋅或其混合物。
散劑及噴霧除本發明之反義寡聚物共軛物外還可含有賦形劑,諸如乳糖、滑石粉、矽酸、氫氧化鋁、矽酸鈣及聚醯胺粉末,或此等物質之混合物。噴霧另外還可含有常用推進劑,諸如氯氟烴及揮發性未經取代烴,諸如丁烷及丙烷。
經皮貼片具有向身體提供本發明反義寡聚物共軛物之控制傳遞的額外優勢。該等劑型可藉由將寡聚物溶解或分散於適當介質中來製備。亦可使用吸收增強劑來增加藥劑穿過皮膚之流量。該流量之速率可藉由提供速率控制膜或使藥劑分散於聚合物基質或凝膠中以及其他此項技術中已知之方法來控制。
適於非經腸投藥之醫藥組合物可包含本發明之一或多種寡聚物共軛物,以及一或多種醫藥學上可接受之無菌等張水性或非水性溶液、分散液、懸浮液或乳液或可在臨用前復原為無菌可注射溶液或分散液之無菌粉末,其可含有糖、醇、抗氧化劑、緩衝劑、抑細菌劑、使得調配物與預定接受者之血液等張之溶質或懸浮劑或增稠劑。可用於本發明醫藥組合物中之適合水性及非水性載劑之實例包括水、乙醇、多元醇(諸如甘油、丙二醇、聚乙二醇及其類似物)及其適合混合物、植物油(諸如橄欖油)及可注射有機酯(諸如油酸乙酯)。可例如藉由使用諸如卵磷脂之塗層物質,在分散液之狀況下藉由保持所需粒子尺寸,及藉由使用界面活性劑來保持適當流動性。在一實施例中,該醫藥組合物之反義寡聚物或反義寡聚物共軛物係分別依據式(III)或式(VII)。
此等醫藥組合物亦可含有佐劑,諸如防腐劑、濕潤劑、乳化劑及分散劑。可藉由納入各種抗細菌劑及抗真菌劑(例如對羥基苯甲酸酯、氯丁醇、酚山梨酸及其類似物)來確保防止微生物對本發明寡聚物共軛物之作用。在組合物中亦可能需要納入等張劑,諸如糖、氯化鈉及其類似物。另外,藉由納入諸如單硬脂酸鋁及明膠之延遲吸收劑可使可注射醫藥形式之吸收延長。
在一些狀況下,為延長藥物之作用,需要減緩皮下或肌肉內注射之藥物的吸收。此作用可藉由使用具有弱水溶性之結晶或非晶形物質的液體懸浮液以及其他此項技術中已知之方法來達成。藥物之吸收速率因而視其溶解速率而定,而其溶解速率轉而可視晶體尺寸及結晶形式而定。或者,藉由使藥物溶解或懸浮於油性媒劑中來達成非經腸投與之藥物形式的延遲吸收。
可注射儲槽形式可藉由在生物可降解聚合物(諸如聚乳酸交酯-聚乙交酯)中形成本發明寡聚物共軛物之微囊封基質來製備。視寡聚物與聚合物之比率及所用特定聚合物之性質而定,可控制寡聚物釋放速率。其他生物可降解聚合物之實例包括聚(原酸酯)及聚(酸酐)。儲槽式可注射調配物亦可藉由將藥物截留於與身體組織相容之脂質體或微乳液中來製備。
當向人類及動物以藥品形式投與本發明之反義寡聚物共軛物時,其可原樣給與或以含有例如0.1%至99%(更佳為10%至30%)反義寡聚物共軛物以及醫藥學上可接受之載劑的醫藥組合物形式給與。
本發明之調配物或製劑可經口、非經腸、局部或經直腸給與。其通常係以適於各投藥途徑之形式給與。例如,其係以錠劑或膠囊形式投與,藉由注射、吸入、眼部洗劑、軟膏、栓劑或輸注投與;藉由洗劑或軟膏局部投與;藉由栓劑經直腸投與。
不考慮所選投藥途徑,可以適合水合形式使用之本發明反義寡聚物共軛物及/或本發明醫藥組合物可藉由熟習此項技術者已知之習知方法調配成醫藥學上可接受之劑型。本發明醫藥組合物中活性成份之實際劑量可變化以獲得有效達成特定患者、組合物及投藥模式之所需治療反應而對該患者無不可接受毒性之量的活性成份。
所選劑量應視多種因素而定,包括所用本發明特定反義寡聚物共軛物或其酯、鹽或醯胺之活性、投藥途徑、投藥時間、所用特定寡聚物之排泄或代謝速率、吸收之速率及程度、治療持續時間、與所用特定寡聚物組合使用之其他藥物、化合物及/或物質、所治療患者之年齡、性別、體重、病狀、一般健康狀況及先前病史及醫藥技術中熟知之類似因素。
一般熟習此項技術之醫師或獸醫可易於確定及規定所需醫藥組合物之有效量。例如,醫師或獸醫可以低於達成所需治療作用所需之劑量的劑量開始醫藥組合物中所用之本發明反義寡聚物共軛物的給藥,且逐漸增加劑量直至達成所需作用。一般而言,本發明反義寡聚物共軛物之適合日劑量為作為有效產生治療作用之最低劑量的化合物量。該種有效劑量一般視本文所述之因素而定。一般而言,當用於指定作用時,用於患者之本發明反義寡聚物共軛物之經口、靜脈內、腦室內及皮下劑量應在每日每公斤體重約0.0001mg至約100mg之範圍內。
在一些實施例中,本發明之反義寡聚物共軛物係以通常約10-160 mg/kg或20-160 mg/kg之劑量投與。在一些情形下,可需要大於160 mg/kg之劑量。在一些實施例中,用於靜脈注射(i.v.)投與之劑量為約0.5 mg至160 mg/kg。在一些實施例中,反義寡聚物共軛物係以下列劑量投與:約0.5 mg/kg、1 mg/kg、2 mg/kg、3 mg/kg、4 mg/kg、5 mg/kg、6 mg/kg、7 mg/kg、8 mg/kg、9 mg/kg或10 mg/kg。在一些實施例中,反義寡聚物共軛物係以下列劑量投與:約10 mg/kg、11 mg/kg、12 mg/kg、15 mg/kg、18 mg/kg、20 mg/kg、21 mg/kg、25 mg/kg、26 mg/kg、27 mg/kg、28 mg/kg、29 mg/kg、30 mg/kg、31 mg/kg、32 mg/kg、33 mg/kg、34 mg/kg、35 mg/kg、36 mg/kg、37 mg/kg、38 mg/kg、39 mg/kg、40 mg/kg、41 mg/kg、42 mg/kg、43 mg/kg、44 mg/kg、45 mg/kg、46 mg/kg、47 mg/kg、48 mg/kg、49 mg/kg、50 mg/kg、51 mg/kg、52 mg/kg、53 mg/kg、54 mg/kg、55 mg/kg、56 mg/kg、57 mg/kg、58 mg/kg、59 mg/kg、60 mg/kg、65 mg/kg、70 mg/kg、75 mg/kg、80 mg/kg、85 mg/kg、90 mg/kg、95 mg/kg、100 mg/kg、105 mg/kg、110 mg/kg、115 mg/kg、120 mg/kg、125 mg/kg、130 mg/kg、135 mg/kg、140 mg/kg、145 mg/kg、150 mg/kg、155 mg/kg、160 mg/kg,包括其間之所有整數。在一些實施例中,寡聚物係以10 mg/kg投與。在一些實施例中,寡聚物係以20 mg/kg投與。在一些實施例中,寡聚物係以30 mg/kg投與。在一些實施例中,寡聚物係以40 mg/kg投與。在一些實施例中,寡聚物係以60 mg/kg投與。在一些實施例中,寡聚物係以80 mg/kg投與。在一些實施例中,寡聚物係以160 mg/kg投與。在一些實施例中,寡聚物係以50 mg/kg投與。
在一些實施例中,本發明之反義寡聚物係以通常約10-160 mg/kg或20-160 mg/kg之劑量投與。在一些情形下,可需要大於160 mg/kg之劑量。在一些實施例中,用於靜脈注射(i.v.)投與之劑量為約0.5 mg至160 mg/kg。在一些實施例中,反義寡聚物係以下列劑量投與:約0.5 mg/kg、1 mg/kg、2 mg/kg、3 mg/kg、4 mg/kg、5 mg/kg、6 mg/kg、7 mg/kg、8 mg/kg、9 mg/kg或10 mg/kg。在一些實施例中,反義寡聚物係以下列劑量投與:約10 mg/kg、11 mg/kg、12 mg/kg、15 mg/kg、18 mg/kg、20 mg/kg、21 mg/kg、25 mg/kg、26 mg/kg、27 mg/kg、28 mg/kg、29 mg/kg、30 mg/kg、31 mg/kg、32 mg/kg、33 mg/kg、34 mg/kg、35 mg/kg、36 mg/kg、37 mg/kg、38 mg/kg、39 mg/kg、40 mg/kg、41 mg/kg、42 mg/kg、43 mg/kg、44 mg/kg、45 mg/kg、46 mg/kg、47 mg/kg、48 mg/kg、49 mg/kg、50 mg/kg、51 mg/kg、52 mg/kg、53 mg/kg、54 mg/kg、55 mg/kg、56 mg/kg、57 mg/kg、58 mg/kg、59 mg/kg、60 mg/kg、65 mg/kg、70 mg/kg、75 mg/kg、80 mg/kg、85 mg/kg、90 mg/kg、95 mg/kg、100 mg/kg、105 mg/kg、110 mg/kg、115 mg/kg、120 mg/kg、125 mg/kg、130 mg/kg、135 mg/kg、140 mg/kg、145 mg/kg、150 mg/kg、155 mg/kg、160 mg/kg,包括其間之所有整數。在一些實施例中,該反義寡聚物係以10 mg/kg投與。在一些實施例中,該反義寡聚物係以20 mg/kg投與。在一些實施例中,該反義寡聚物係以30 mg/kg投與。在一些實施例中,該反義寡聚物係以40 mg/kg投與。在一些實施例中,該反義寡聚物係以60 mg/kg投與。在一些實施例中,該反義寡聚物係以80 mg/kg投與。在一些實施例中,該反義寡聚物係以160 mg/kg投與。在一些實施例中,該反義寡聚物係以50 mg/kg投與。
在一些實施例中,式(III)之反義寡聚物共軛物係以通常約10-160 mg/kg或20-160 mg/kg之劑量投與。在一些實施例中,用於i.v.投與之式(III)反義寡聚物共軛物之劑量為約0.5 mg至160 mg/kg。在一些實施例中,式(III)之反義寡聚物共軛物係以下列劑量投與:約0.5 mg/kg、1 mg/kg、2 mg/kg、3 mg/kg、4 mg/kg、5 mg/kg、6 mg/kg、7 mg/kg、8 mg/kg、9 mg/kg或10 mg/kg。在一些實施例中,式(III)之反義寡聚物共軛物係以下列劑量投與:約10 mg/kg、11 mg/kg、12 mg/kg、15 mg/kg、18 mg/kg、20 mg/kg、21 mg/kg、25 mg/kg、26 mg/kg、27 mg/kg、28 mg/kg、29 mg/kg、30 mg/kg、31 mg/kg、32 mg/kg、33 mg/kg、34 mg/kg、35 mg/kg、36 mg/kg、37 mg/kg、38 mg/kg、39 mg/kg、40 mg/kg、41 mg/kg、42 mg/kg、43 mg/kg、44 mg/kg、45 mg/kg、46 mg/kg、47 mg/kg、48 mg/kg、49 mg/kg、50 mg/kg、51 mg/kg、52 mg/kg、53 mg/kg、54 mg/kg、55 mg/kg、56 mg/kg、57 mg/kg、58 mg/kg、59 mg/kg、60 mg/kg、65 mg/kg、70 mg/kg、75 mg/kg、80 mg/kg、85 mg/kg、90 mg/kg、95 mg/kg、100 mg/kg、105 mg/kg、110 mg/kg、115 mg/kg、120 mg/kg、125 mg/kg、130 mg/kg、135 mg/kg、140 mg/kg、145 mg/kg、150 mg/kg、155 mg/kg、160 mg/kg,包括其間之所有整數。在一些實施例中,式(III)之反義寡聚物共軛物係以10 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以20 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以30 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以40 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以60 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以80 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以160 mg/kg投與。在一些實施例中,式(III)之反義寡聚物共軛物係以50 mg/kg投與。
在一些實施例中,式(IV)之反義寡聚物係以通常約10-160 mg/kg或20-160 mg/kg之劑量投與。在一些實施例中,用於i.v.投與之式(IV)之反義寡聚物之劑量為約0.5 mg至160 mg/kg。在一些實施例中,式(IV)之反義寡聚物係以下列劑量投與:約0.5 mg/kg、1 mg/kg、2 mg/kg、3 mg/kg、4 mg/kg、5 mg/kg、6 mg/kg、7 mg/kg、8 mg/kg、9 mg/kg或10 mg/kg。在一些實施例中,式(IV)之反義寡聚物係以下列劑量投與:約10 mg/kg、11 mg/kg、12 mg/kg、15 mg/kg、18 mg/kg、20 mg/kg、21 mg/kg、25 mg/kg、26 mg/kg、27 mg/kg、28 mg/kg、29 mg/kg、30 mg/kg、31 mg/kg、32 mg/kg、33 mg/kg、34 mg/kg、35 mg/kg、36 mg/kg、37 mg/kg、38 mg/kg、39 mg/kg、40 mg/kg、41 mg/kg、42 mg/kg、43 mg/kg、44 mg/kg、45 mg/kg、46 mg/kg、47 mg/kg、48 mg/kg、49 mg/kg、50 mg/kg、51 mg/kg、52 mg/kg、53 mg/kg、54 mg/kg、55 mg/kg、56 mg/kg、57 mg/kg、58 mg/kg、59 mg/kg、60 mg/kg、65 mg/kg、70 mg/kg、75 mg/kg、80 mg/kg、85 mg/kg、90 mg/kg、95 mg/kg、100 mg/kg、105 mg/kg、110 mg/kg、115 mg/kg、120 mg/kg、125 mg/kg、130 mg/kg、135 mg/kg、140 mg/kg、145 mg/kg、150 mg/kg、155 mg/kg、160 mg/kg,包括其間之所有整數。在一些實施例中,式(IV)之反義寡聚物係以10 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以20 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以30 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以40 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以60 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以80 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以160 mg/kg投與。在一些實施例中,式(IV)之反義寡聚物係以50 mg/kg投與。
必要時,可以2個、3個、4個、5個、6個或更多個子劑量投與有效日劑量之活性化合物,該等子劑量可在全天內以合適時間間隔,視情況以單位劑型單獨投與。在某些情況下,給藥係每日投與一次。在某些實施例中,需要時,給藥係每2、3、4、5、6、7、8、9、10、11、12、13、14天,或每1、2、3、4、5、6、7、8、9、10、11、12週,或每1、2、3、4、5、6、7、8、9、10、11、12個月投與一或多次以維持功能性肌縮蛋白之所需表現。在某些實施例中,給藥係每兩個星期一次進行一或多次投與。在一些實施例中,投藥係每兩個星期一次進行一次投與。在不同實施例中,投藥係每月進行一或多次投與。在某些實施例中,投藥係每月進行一次投與。
在不同實施例中,反義寡聚物共軛物係以10 mg/kg每週一次投與。在不同實施例中,反義寡聚物共軛物係以20 mg/kg每週一次投與。在不同實施例中,反義寡聚物共軛物係以30 mg/kg每週一次投與。在不同實施例中,反義寡聚物共軛物係以40 mg/kg每週一次投與。在一些實施例中,反義寡聚物共軛物係以60 mg/kg每週一次投與。在一些實施例中,反義寡聚物共軛物係以80 mg/kg每週一次投與。在一些實施例中,反義寡聚物共軛物係以100 mg/kg每週一次投與。在一些實施例中,反義寡聚物共軛物係以160 mg/kg每週一次投與。如本文所用之每週一次應理解為具有業內公認之每週含義。
在不同實施例中,反義寡聚物係以10 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以20 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以30 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以40 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以60 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以80 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以100 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以160 mg/kg每週一次投與。如本文所用之每週一次應理解為具有業內公認之每週含義。
在不同實施例中,反義寡聚物共軛物係以10 mg/kg每兩週一次投與。在不同實施例中,反義寡聚物共軛物係以20 mg/kg每兩週一次投與。在不同實施例中,反義寡聚物共軛物係以30 mg/kg每兩週一次投與。在不同實施例中,反義寡聚物共軛物係以40 mg/kg每兩週一次投與。在一些實施例中,反義寡聚物共軛物係以60 mg/kg每兩週一次投與。在一些實施例中,反義寡聚物共軛物係以80 mg/kg每兩週一次投與。在一些實施例中,反義寡聚物共軛物係以100 mg/kg每兩週一次投與。在一些實施例中,反義寡聚物共軛物係以160 mg/kg每兩週一次投與。如本文所用之每兩週一次應理解為具有業內公認之每兩週含義。
在不同實施例中,反義寡聚物係以10 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以20 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以30 mg/kg每週一次投與。在不同實施例中,反義寡聚物係以40 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以60 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以80 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以100 mg/kg每週一次投與。在一些實施例中,反義寡聚物係以160 mg/kg每週一次投與。如本文所用之每週一次應理解為具有業內公認之每週含義。
在不同實施例中,反義寡聚物共軛物係以10 mg/kg每三週一次投與。在不同實施例中,反義寡聚物共軛物係以20 mg/kg每三週一次投與。在不同實施例中,反義寡聚物共軛物係以30 mg/kg每三週一次投與。在不同實施例中,反義寡聚物共軛物係以40 mg/kg每三週一次投與。在一些實施例中,反義寡聚物共軛物係以60 mg/kg每三週一次投與。在一些實施例中,反義寡聚物共軛物係以80 mg/kg每三週一次投與。在一些實施例中,反義寡聚物共軛物係以100 mg/kg每三週一次投與。在一些實施例中,反義寡聚物共軛物係以160 mg/kg每三週一次投與。如本文所用之每三週一次(every third week)應理解為具有業內公認之每三個星期一次(once every three weeks)之含義。
在不同實施例中,反義寡聚物係以10 mg/kg每三週一次投與。在不同實施例中,反義寡聚物係以20 mg/kg每三週一次投與。在不同實施例中,反義寡聚物係以30 mg/kg每三週一次投與。在不同實施例中,反義寡聚物係以40 mg/kg每三週一次投與。在一些實施例中,反義寡聚物係以60 mg/kg每三週一次投與。在一些實施例中,反義寡聚物係以80 mg/kg每三週一次投與。在一些實施例中,反義寡聚物係以100 mg/kg每三週一次投與。在一些實施例中,反義寡聚物係以160 mg/kg每三週一次投與。如本文所用之每三週一次應理解為具有業內公認之每三個星期一次之含義。
在不同實施例中,反義寡聚物共軛物係以10 mg/kg每月一次投與。在不同實施例中,反義寡聚物共軛物係以20 mg/kg每月一次投與。在不同實施例中,反義寡聚物共軛物係以30 mg/kg每月一次投與。在不同實施例中,反義寡聚物共軛物係以40 mg/kg每月一次投與。在一些實施例中,反義寡聚物共軛物係以60 mg/kg每月一次投與。在一些實施例中,反義寡聚物共軛物係以80 mg/kg每月一次投與。在一些實施例中,反義寡聚物共軛物係以100 mg/kg每月一次投與。在一些實施例中,反義寡聚物共軛物係以160 mg/kg每月一次投與。如本文所用之每月一次應理解為具有業內公認之每月含義。
在不同實施例中,反義寡聚物係以10 mg/kg每月一次投與。在不同實施例中,反義寡聚物係以20 mg/kg每月一次投與。在不同實施例中,反義寡聚物係以30 mg/kg每月一次投與。在不同實施例中,反義寡聚物係以40 mg/kg每月一次投與。在一些實施例中,反義寡聚物係以60 mg/kg每月一次投與。在一些實施例中,反義寡聚物係以80 mg/kg每月一次投與。在一些實施例中,反義寡聚物係以100 mg/kg每月一次投與。在一些實施例中,反義寡聚物係以160 mg/kg每月一次投與。如本文所用之每月一次應理解為具有業內公認之每月含義。
如業內應理解,每週一次、每兩週一次、每三週一次或每月一次投與可呈如本文所論述之一或多個投與或子劑量。
如本文所述及業內已知,可藉由多種熟習此項技術者已知之方法向細胞投與本文所述之核酸分子、反義寡聚物及反義寡聚物共軛物,包含(但不限於)囊封於脂質體中,藉由離子導入療法或藉由併入其他媒劑(諸如水凝膠、環糊精、生物可降解奈米膠囊及生物黏附性微球體)中。在某些實施例中,可使用微乳化技術來改良親脂性(水不溶性)醫藥劑之生物可用性。實例包含Trimetrine (Dordunoo, S. K.等人,Drug Development and Industrial Pharmacy, 17(12), 1685-1713, 1991)及REV 5901 (Sheen, P. C.等人,J Pharm Sci 80(7), 712-714, 1991)。在其他益處中,微乳化藉由優先引導淋巴系統而非循環系統吸收,從而繞過肝臟且防止化合物在肝膽循環中遭到破壞來提供增強之生物可用性。
在本發明之一態樣中,調配物含有由如本文提供之寡聚物及至少一種兩親媒性載劑形成之微胞,其中該等微胞具有小於約100 nm之平均直徑。更佳實施例提供平均直徑小於約50 nm之微胞且甚至更佳實施例提供平均直徑小於約30 nm或甚至小於約20 nm之微胞。
雖然涵蓋所有適合兩親媒性載劑,但當前較佳之載劑一般為具有普遍公認安全(GRAS)狀態且可溶解本發明反義寡聚物共軛物且在稍後階段當溶液與複雜水相(諸如人類胃腸道中存在之水相)接觸時將其微乳化的載劑。通常,滿足此等要求之兩親媒性成份具有2-20之HLB(親水性與親脂性平衡)值且具結構含有C-6至C-20範圍內之直鏈脂族基團。實例為聚乙二醇化脂肪酸甘油酯及聚乙二醇。
兩親媒性載劑之實例包括飽和及單不飽和聚乙二醇化脂肪酸甘油酯,諸如自完全或部分氫化之各種植物油獲得之聚乙二醇化脂肪酸甘油酯。該等油宜由三脂肪酸甘油酯、二脂肪酸甘油酯及單脂肪酸甘油酯及相應脂肪酸之二聚(乙二醇)酯及單聚(乙二醇)酯組成,且尤其較佳脂肪酸組合物包括癸酸(4%-10%)、癸酸(3%-9%)、月桂酸(40%-50%)、肉豆蔻酸(14%-24%)、棕櫚酸(4%-14%)及硬脂酸(5%-15%)。另一類適用兩親媒性載劑包括經飽和或單不飽和脂肪酸部分酯化之脫水山梨糖醇及/或山梨糖醇(SPAN系列)或相應乙氧基化類似物(TWEEN系列)。
市售兩親媒性載劑可尤其適用,包括節路斯爾(Gelucire)系列、拉布菲爾(Labrafil)、拉布斯爾(Labrasol)或勞拉二醇(Lauroglycol)(皆由Gattefosse Corporation,Saint Priest,France製造及配銷)、PEG-單油酸酯、PEG-二油酸酯、PEG-單月桂酸酯及PEG-二月桂酸脂、卵磷脂、聚山梨醇酯80等(由美國及全世界多個公司生產及配銷)。
在某些實施例中,可藉由使用脂質體、奈米膠囊、微粒子、微球體、脂質粒子、微脂粒及其類似物來進行傳遞以將本發明醫藥組合物引入適合宿主細胞中。詳言之,本發明之醫藥組合物可經調配供囊封於脂質粒子、脂質體、微脂粒、奈米球體、奈米粒子及其類似物中來傳遞。可使用已知及習知技術來進行該等傳遞媒劑之調配及使用。
適用於本發明中之親水性聚合物為易於溶於水,可與微脂粒形成脂質共價連接,且活體內可耐受而無毒性作用(亦即生物相容性)之親水性聚合物。適合聚合物包括聚乙二醇(PEG)、聚乳酸(亦稱作聚丙交酯)、聚乙醇酸(亦稱作聚乙交酯)、聚乳酸-聚乙醇酸共聚物及聚乙烯醇。在某些實施例中,聚合物具有約100道爾頓或120道爾頓直至約5,000道爾頓或10,000道爾頓,或約300道爾頓至約5,000道爾頓之重量平均分子量。在其他實施例中,聚合物為具有約100道爾頓至約5,000道爾頓之重量平均分子量,或具有約300道爾頓至約5,000道爾頓之重量平均分子量的聚(乙二醇)。在某些實施例中,聚合物為約750道爾頓之重量平均分子量的聚(乙二醇),例如PEG(750)。聚合物亦可由其中之單體數目來定義,本發明之較佳實施例使用具有至少約3個單體之聚合物,這類PEG聚合物由3個約132道爾頓之分子量的單體組成。
其他可能適用於本發明中之親水性聚合物包括聚乙烯吡咯啶酮、聚甲基噁唑啉、聚乙基噁唑啉、聚羥丙基甲基丙烯醯胺、聚甲基丙烯醯胺、聚二甲基丙烯醯胺及衍生纖維素(諸如羥甲基纖維素或羥乙基纖維素)。
在某些實施例中,本發明之調配物包含選自由以下組成之群的生物相容性聚合物:聚醯胺、聚碳酸酯、聚烯烴、丙烯酸酯及甲基丙烯酸酯之聚合物、聚乙烯聚合物、聚乙交酯、聚矽氧烷、聚胺基甲酸酯及其共聚物、纖維素、聚丙烯、聚乙烯、聚苯乙烯、乳酸與乙醇酸之聚合物、聚酸酐、聚(原酸)酯、聚(丁酸)、聚(戊酸)、聚(丙交酯-共-己內酯)、多醣、蛋白質、聚玻糖醛酸、聚氰基丙烯酸酯及其摻合物、混合物或共聚物。
環糊精為環狀寡醣,其由6、7或8個葡萄糖單元組成(分別由希臘字母α、β或γ指定)。葡萄糖單元係由α-1,4-糖苷鍵連接。作為糖單元之椅式構形的結果,所有二級羥基(位於C-2、C-3)皆位於環之一側,而位於C-6之所有一級羥基皆位於另一側。因此,外部面為親水性的,使得環糊精可溶於水。相反,環糊精之內腔為疏水性的,因為其襯有原子C-3及C-5之氫及類醚氧。此等基質允許與多種相對疏水性化合物錯合,包括例如類固醇化合物(諸如17α-雌二醇)(參見例如van Uden等人,Plant Cell Tiss. Org. Cult. 38:1-3-113(1994))。錯合藉由凡得瓦力交互作用及藉由氫鍵形成來進行。關於環糊精化學之一般評述,參見Wenz, Agnew. Chem. Int.編, Engl., 33:803-822 (1994)。
環糊精衍生物之物理化學特性強烈取決於取代之類型及程度。例如,其在水中之溶解性處於不可溶(例如三乙醯基-β-環糊精)至147%可溶(w/v)(G-2-β-環糊精)之範圍內。另外,其可溶於多種有機溶劑中。環糊精之特性使得能夠藉由增加或降低其溶解性來控制各種調配物組份之溶解性。
已描述多種環糊精及其製備方法。例如,Parmeter (I)等人(美國專利第3,453,259號)及Gramera等人(美國專利第3,459,731號)描述電中性環糊精。其他衍生物包括具有陽離子特性之環糊精[Parmeter (II),美國專利第3,453,257號]、不可溶性交聯環糊精(Solms,美國專利第3,420,788號)及具有陰離子特性之環糊精[Parmeter (III),美國專利第3,426,011號]。在具有陰離子特性之環糊精衍生物中,羧酸、亞磷酸、亞膦酸、膦酸、磷酸、硫代膦酸、硫代亞磺酸及磺酸附於母環糊精上[參見Parmeter (III),同上]。此外,磺基烷基醚環糊精衍生物已由Stella等人(美國專利第5,134,127號)描述。
脂質體由至少一個封閉水性內部隔室之脂質雙層膜組成。脂質體可由膜類型及尺寸表徵。單層小微脂粒(SUV)具有單層膜且通常直徑在0.02 μm與0.05 μm之間的範圍內;單層大微脂粒(LUV)通常大於0.05 μm。寡層大微脂粒及多層微脂粒具有多層、通常同心之膜層且通常大於0.1 μm。具有若干非同心膜之脂質體(亦即在較大微脂粒中含有若干較小微脂粒)稱作多囊微脂粒。
本發明之一態樣係關於包含容納本發明反義寡聚物或反義寡聚物共軛物之脂質體的調配物,其中脂質體膜經調配以提供載運能力增加之脂質體。或者或另外,本發明反義寡聚物或反義寡聚物共軛物可容納於脂質體之脂質體雙層中或吸附至脂質體之脂質體雙層上。本發明反義寡聚物或反義寡聚物共軛物可與脂質界面活性劑一起聚集並承載於脂質體內部空間中,在此等狀況下,脂質體膜可經調配以抵抗活性劑-界面活性劑聚集體之破壞性作用。
根據本發明之一實施例,脂質體之脂質雙層含有經聚(乙二醇) (PEG)衍生化之脂質,使得PEG鏈自脂質雙層之內表面延伸至由脂質體囊封之內部空間中,及自脂質雙層之外部延伸至周圍環境中。
本發明脂質體中所容納之活性劑係呈溶解形式。界面活性劑與活性劑之聚集體(諸如含有相關活性劑之乳液或微胞)可截留於本發明脂質體之內部空間中。界面活性劑用於分散及溶解活性劑,且可選自任何適合脂族、環脂族或芳族界面活性劑,包含(但不限於)具有不同鏈長度(例如自約C14至約C20)之生物相容性溶血磷脂醯膽鹼(LPG)。經聚合物衍生化之脂質(諸如PEG-脂質)亦可用於形成微胞,因為其起作用抑制微胞/膜融合,且因為向界面活性劑分子添加聚合物會降低界面活性劑之CMO且有助於形成微胞。較佳為具有處於微莫耳濃度範圍內之CMC的界面活性劑;可使用較高CMC界面活性劑來製備本發明脂質體中所截留之微胞。
本發明之脂質體可藉由此項技術中已知之多種技術中之任一者來製備。參見例如美國專利第4,235,871號;PCT申請案公開第WO 96/14057號;New RRC, Liposomes: A practical approach, IRL Press, Oxford (1990),第33-104頁;及Lasic DD, Liposomes from physics to applications, Elsevier Science Publishers BV, Amsterdam, 1993。例如,本發明脂質體可藉由使經親水性聚合物衍生化之脂質擴散於預先形成之脂質體中,諸如藉由將預先形成之脂質體暴露於由脂質接枝聚合物構成之微胞(脂質濃度相當於脂質體中所需之衍生化脂質的最終莫耳百分數)來製備。含有親水性聚合物之脂質體亦可藉由如此項技術中已知之均質化、脂質-場水合作用或擠壓技術來形成。
在另一例示性調配程序中,首先藉由音波處理使活性劑分散於易於溶解疏水性分子之溶血磷脂醯膽鹼或其他低CMC界面活性劑(包括聚合物接枝脂質)中。接著使用活性劑之所得微胞懸浮液來使含有適合莫耳百分數之聚合物接枝脂質或膽固醇的乾燥脂質樣品再水合。接著使用如此項技術中已知之擠壓技術使脂質及活性劑懸浮液形成脂質體,且藉由標準管柱分離使所得脂質體與未囊封溶液分離。
在本發明之一態樣中,脂質體經製備具有處於選定尺寸範圍內之實質上均一之尺寸。一種有效定尺寸方法包括擠壓脂質體之水性懸浮液穿過一系列具有選定均一微孔尺寸之聚碳酸酯膜,該膜之微孔尺寸大致與藉由擠壓穿過彼膜產生之最大脂質體尺寸相對應。參見例如美國專利第4,737,323號(1988年4月12日)。在某些實施例中,可使用諸如DharmaFECT®及Lipofectamine®之試劑來將聚核苷酸或蛋白質引入細胞中。
本發明調配物之釋放特徵視囊封材料、所囊封藥物之濃度及釋放調節劑之存在而定。例如,釋放可操控為依賴於pH,例如使用僅在低pH(如在胃中)或較高pH(如在腸中)釋放之pH敏感性包衣。可使用腸溶衣來阻止釋放在通過胃之前發生。可使用囊封於不同材料中之多個氰胺包衣或混合物來獲得在胃中初始釋放,繼而隨後在腸中釋放。亦可藉由納入鹽或成孔劑來操控釋放,該等鹽或成孔劑可藉由膠囊擴散來增加水吸收或藥物釋放。亦可使用調節藥物溶解性之賦形劑來控制釋放速率。亦可併入增強基質降解或自基質釋放之試劑。彼等可添加至藥物中,以分散相(亦即呈微粒狀)添加,或可共同溶解於聚合物相中,視化合物而定。在大部分狀況下,量應介於0.1%與30% (w/w聚合物)之間。降解增強劑之類型包括無機鹽,諸如硫酸銨及氯化銨;有機酸,諸如檸檬酸、苯甲酸及抗壞血酸;無機鹼,諸如碳酸鈉、碳酸鉀、碳酸鈣、碳酸鋅及氫氧化鋅;及有機鹼,諸如硫酸魚精蛋白、精胺、膽鹼、乙醇胺、二乙醇胺及三乙醇胺;及界面活性劑,諸如Tween®及Pluronic®。將微結構加入基質之成孔劑(亦即水溶性化合物,諸如無機鹽及糖)係以微粒添加。範圍通常介於1%與30% (w/w聚合物)之間。
亦可藉由改變粒子在消化道中之滯留時間來操控攝取。此可例如藉由黏膜黏附性聚合物塗覆粒子或選用作囊封材料來達成。實例包括大部分具有游離羧基之聚合物,諸如聚葡萄胺糖、纖維素,尤其聚丙烯酸酯(如本文中所用,聚丙烯酸酯係指包括丙烯酸酯基及經修飾之丙烯酸酯基(諸如氰基丙烯酸酯基及甲基丙烯酸酯基)的聚合物)。
反義寡聚物或反義寡聚物共軛物可經調配以容納於外科或醫療裝置或植入物中,或適於藉由外科或醫療裝置或植入物釋放。在某些態樣中,植入物可用寡聚物塗覆或用反義寡聚物共軛物以其他方式處理。例如,可使用水凝膠或其他聚合物(諸如生物相容性及/或生物可降解聚合物)來塗覆具有本發明醫藥組合物之植入物(即該組合物可藉由使用水凝膠或其他聚合物而適於與醫療裝置一起使用)。用於塗覆具有藥劑之醫療裝置的聚合物及共聚物在此項技術中為熟知的。植入物之實例包含(但不限於)血管支架、藥物溶離支架、縫合線、修補物、血管導管、透析導管、血管移植物、人工心臟瓣膜、心臟起搏器、可植入複律器除顫器、IV針頭、骨定位及形成裝置(諸如銷、螺釘、板及其他裝置)及用於創傷癒合之人工組織基質。
除本文提供之方法以外,自其他藥品類推,根據本發明使用之反義寡聚物或反義寡聚物共軛物可經調配供以任何用於人類或獸醫學中之適當方式投與。反義寡聚物及反義寡聚物共軛物及其相應調配物在治療肌肉萎縮症中可單獨或與其他治療策略組合投與,該等治療策略諸如肌母細胞移植、幹細胞治療、投與胺基醣苷抗生素、蛋白酶體抑制劑及向上調控治療(例如上調肌營養相關蛋白(utrophin),肌縮蛋白之體染色體旁系同源物)。
在一些實施例中,其他治療劑可在投與本發明之反義寡聚物共軛物之前、與其同時或在其之後投與。例如,反義寡聚物共軛物可與類固醇及/或抗生素組合投與。在某些實施例中,將反義寡聚物共軛物投與正在進行背景類固醇療法(例如間歇性或慢性/持續性背景類固醇療法)之患者。例如,在一些實施例中,患者在投與反義寡聚物之前已經皮質類固醇治療且繼續接受類固醇療法。在一些實施例中,類固醇係糖皮質激素或普賴松(prednisone)。
所述投與途徑預期僅作為指導,此乃因熟習此項技術者將能夠容易地確定用於任一具體動物及病況之最佳投與途徑及任一劑量。已嘗試多種在活體外及活體內將功能性新遺傳材料引入細胞中之方法(Friedmann (1989) Science, 244:1275-1280)。該等方法包括將欲表現之基因整合至經修飾反轉錄病毒中(Friedmann (1989),同上;Rosenberg (1991) Cancer Research 51(18), 增刊: 5074S-5079S);整合至非反轉錄病毒載體(例如腺相關病毒載體)中(Rosenfeld等人(1992) Cell, 68:143-155;Rosenfeld等人(1991) Science, 252:431-434);或經由脂質體遞送連接至異源啟動子-增強子元件之轉基因(Friedmann (1989),同上;Brigham等人(1989) Am. J. Med. Sci., 298:278-281;Nabel等人(1990) Science, 249:1285-1288;Hazinski等人(1991) Am. J. Resp. Cell Molec. Biol., 4:206-209;及Wang及Huang (1987) Proc. Natl. Acad. Sci. (USA), 84:7851-7855);偶合至基於陽離子之配體特異性運輸系統(Wu及Wu (1988) J. Biol. Chem., 263:14621-14624)或使用裸DNA表現載體(Nabel等人(1990),同上;Wolff等人(1990) Science, 247:1465-1468)。將轉基因直接注射至組織中僅產生局部表現(Rosenfeld (1992),同上;Rosenfeld等人(1991),同上;Brigham等人(1989),同上;Nabel (1990),同上;及Hazinski等人(1991),同上)。Brigham等人的團隊(Am. J. Med. Sci. (1989) 298:278-281及Clinical Research (1991) 39 (摘要))已報導在靜脈內或氣管內投與DNA脂質體複合物後僅小鼠肺之活體內轉染。人類基因療法程序之綜述論文之實例為Anderson, Science (1992) 256:808-813。
在另一實施例中,本發明之醫藥組合物可另外包含碳水化合物,如Han等人,Nat. Comms. 7, 10981 (2016)中所提供,其全文皆以引用方式併入本文中。在一些實施例中,本發明之醫藥組合物可包含5%之己糖碳水化合物。例如,本發明之醫藥組合物可包含5%葡萄糖、5%果糖或5%甘露糖。在某些實施例中,本發明之醫藥組合物可包含2.5%葡萄糖及2.5%果糖。在一些實施例中,本發明之醫藥組合物可包含選自以下之碳水化合物:以5體積%之量存在之阿拉伯糖、以5體積%之量存在之葡萄糖、以5體積%之量存在之山梨醇、以5體積%之量存在之半乳糖、以5體積%之量存在之果糖、以5體積%之量存在之木糖醇、以5體積%之量存在之甘露糖、各自以2.5體積%之量存在之葡萄糖及果糖之組合及以5.7體積%之量存在之葡萄糖、以2.86體積%之量存在之果糖及以1.4體積%之量存在之木糖醇的組合。IV. 使用方法 使用外顯子跳躍恢復肌肉萎縮蛋白讀碼框
用於治療由肌肉萎縮蛋白基因之框架外突變引起之DMD之潛在治療方法係由框架內突變引起之肌肉萎縮蛋白病變之輕度形式(稱為BMD)來表明。將框架外突變轉化成框架內突變之能力將假設保留mRNA讀碼框且產生內部縮短但仍具功能性之肌肉萎縮蛋白。本發明之反義寡聚物及反義寡聚物共軛物經設計以實現此目的。
PMO與經靶向前驅mRNA序列雜交干擾前驅mRNA剪接複合物之形成且使成熟mRNA缺失外顯子52。本發明反義寡聚物及反義寡聚物共軛物之結構及組態容許與互補序列之序列特異性鹼基配對。藉由類似機制,依替利森(例如其係經設計以使肌肉萎縮蛋白前驅mRNA之外顯子51跳躍之PMO)容許與含於肌肉萎縮蛋白前驅mRNA之外顯子51中之互補序列之序列特異性鹼基配對。
含有所有79個外顯子之正常肌肉萎縮蛋白mRNA將產生正常肌肉萎縮蛋白。圖1中之圖表係描繪肌肉萎縮蛋白前驅mRNA及成熟mRNA之自外顯子47至外顯子52之小部分。每一外顯子之形狀係描繪密碼子在外顯子之間剪接之方式;應注意,一個密碼子係由三個核苷酸組成。矩形外顯子起始且終止於完整密碼子。箭頭狀外顯子起始於完整密碼子但終止於僅含密碼子之1號核苷酸之剪接密碼子。此密碼子之2號及3號核苷酸含於將起始於人字形之後續外顯子中。
肌肉萎縮蛋白mRNA丟失肌肉萎縮蛋白基因之整個外顯子通常導致DMD。圖2中之圖表圖解說明一種類型之已知導致DMD之遺傳突變(外顯子50缺失)。由於外顯子49終止於完整密碼子中且外顯子51起始於密碼子之第二個核苷酸,故外顯子49後之讀碼框發生移位,從而產生框架外mRNA讀碼框並納入突變下游不正確的胺基酸。隨後缺少功能性C末端肌萎縮蛋白聚醣結合結構域可產生不穩定肌肉萎縮蛋白。
依替利森使外顯子51跳躍以恢復mRNA讀碼框。由於外顯子49終止於完整密碼子且外顯子52起始於密碼子之第一個核苷酸,故外顯子51之缺失即恢復讀碼框,從而產生含有完整肌萎縮蛋白聚醣結合位點之內部縮短的肌肉萎縮蛋白,類似於「框架內」BMD突變(圖3)。
非臨床研究支持使用外顯子跳躍以恢復肌肉萎縮蛋白mRNA開放讀碼框來改善DMD表型之可行性。DMD之肌肉萎縮動物模型中之多項研究已顯示,藉由外顯子跳躍恢復肌肉萎縮蛋白可以可靠地改善肌肉強度及功能(Sharp 2011;Yokota 2009;Wu 2008;Wu 2011;Barton-Davis 1999;Goyenvalle 2004;Gregorevic 2006;Yue 2006;Welch 2007;Kawano 2008;Reay 2008;van Putten 2012)。此之極有說服力之實例來自在外顯子跳躍(使用PMO)療法後比較同一組織中之肌肉萎縮蛋白含量與肌肉功能之研究。在肌肉萎縮mdx小鼠中,經小鼠特異性PMO治療之脛骨前肌(TA)在應激誘導之收縮後維持其最大力量能力的約75%,而未經治療之對側TA肌肉僅維持其最大力量能力的約25% (p<0.05) (Sharp 2011)。在另一研究中,使3隻2-5月齡之肌肉萎縮CXMD 狗每週一次持續5至7週或每隔一週持續22週接受使用特異性針對其遺傳突變之PMO之外顯子跳躍療法。在外顯子跳躍療法後,所有3隻狗展示肌肉萎縮蛋白在骨骼肌中之廣泛的全身表現以及相對於基線維持或改善的移動性(15 m跑步測試)。相比之下,未經治療之年齡匹配之CXMD狗在整個研究進程中顯示顯著減少之移動性(Yokota 2009)。
在mdx小鼠及表現整個人類DMD轉錄本之人類化DMD (hDMD)小鼠模型二者中顯示,PMO在等莫耳濃度下具有大於硫代磷酸酯之外顯子跳躍活性(Heemskirk 2009)。在正常人類骨骼肌細胞或具有適於外顯子51跳躍之不同突變之DMD患者之肌肉細胞中,使用反轉錄聚合酶鏈式反應(RT-PCR)及西方墨點(WB)之活體外實驗鑑別依替利森(PMO)為外顯子51跳躍之強效誘導物。已在hDMD小鼠模型中,在活體內證實依替利森誘導之外顯子51跳躍(Arechavala-Gomeza 2007)。
用於分析與人類肌肉萎縮蛋白前驅mRNA之外顯子52之靶區域互補且誘導外顯子52跳躍之反義寡聚物或反義寡聚物共軛物之效應的臨床結果包括肌肉萎縮蛋白陽性纖維% (PDPF)、6分鐘步行測試(6MWT)、移動性喪失(LOA)、北極星移動評估(NSAA)、肺功能測試(PFT)、在無外部支持下站起之能力(自仰臥位置)、重新產生肌肉萎縮蛋白及其他功能性量度。
在一些實施例中,本發明提供在具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體中產生肌肉萎縮蛋白之方法,該方法包含向個體投與反義寡聚物共軛物或其醫藥學上可接受的鹽,如本文所述。在一些實施例中,本發明提供在具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之個體中產生肌肉萎縮蛋白之方法,該方法包含向個體投與反義寡聚物或其醫藥學上可接受的鹽,如本文所述。在某些實施例中,本發明提供恢復mRNA讀碼框以誘導具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變之杜顯氏肌肉萎縮症(DMD)個體中產生肌肉萎縮蛋白的方法。可藉由反轉錄聚合酶鏈式反應(RT-PCR)、西方墨點分析或免疫組織化學(IHC)量測蛋白質之產生。
在一些實施例中,本發明提供為有需要之個體治療DMD之方法,其中個體具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變,該方法包含向個體投與反義寡聚物共軛物或其醫藥學上可接受的鹽,如本文所述。在一些實施例中,本發明提供為有需要之個體治療DMD之方法,其中個體具有適於外顯子52跳躍之肌肉萎縮蛋白基因突變,該方法包含向個體投與反義寡聚物或其醫藥學上可接受的鹽,如本文所述。在不同實施例中,個體之治療係藉由量測疾病演進之延緩。在一些實施例中,個體之治療係藉由量測個體移動性之維持或個體移動性之喪失程度減輕。在一些實施例中,係採用6分鐘步行測試(6MWT)量測移動性。在某些實施例中,係採用北極星移動評估(NSAA)量測移動性。
在不同實施例中,本發明提供維持DMD個體之肺功能或減少其肺功能喪失之方法,其中個體具有適於外顯子52跳躍之DMD基因突變,該方法包含向個體投與反義寡聚物共軛物或其醫藥學上可接受的鹽,如本文所述。在不同實施例中,本發明提供維持DMD個體之肺功能或減少其肺功能喪失之方法,其中個體具有適於外顯子52跳躍之DMD基因突變,該方法包含向個體投與反義寡聚物或其醫藥學上可接受的鹽,如本文所述。在一些實施例中,肺功能係以最大呼氣壓(MEP)量測。在某些實施例中,肺功能係以最大吸氣壓(MIP)量測。在一些實施例中,肺功能係以用力肺活量(FVC)量測。
在另一實施例中,本發明之醫藥組合物在本發明方法中可與碳水化合物共投與,於同一調配物中或係單獨調配物,如Han等人,Nat. Comms. 7, 10981 (2016)中所提供,其全文皆以引用方式併入本文中。在一些實施例中,本發明之醫藥組合物可與5%之己糖碳水化合物共投與。例如,本發明之醫藥組合物可與5%葡萄糖、5%果糖或5%甘露糖共投與。在某些實施例中,本發明之醫藥組合物可與2.5%葡萄糖及2.5%果糖共投與。在一些實施例中,本發明之醫藥組合物可與選自以下之碳水化合物共投與:以5體積%之量存在之阿拉伯糖、以5體積%之量存在之葡萄糖、以5體積%之量存在之山梨醇、以5體積%之量存在之半乳糖、以5體積%之量存在之果糖、以5體積%之量存在之木糖醇、以5體積%之量存在之甘露糖、各自以2.5體積%之量存在之葡萄糖及果糖之組合以及以5.7體積%之量存在之葡萄糖、以2.86體積%之量存在之果糖及以1.4體積%之量存在之木糖醇的組合。
在不同實施例中,本發明之反義寡聚物或反義寡聚物共軛物係與治療有效量之非類固醇抗發炎化合物共投與。在一些實施例中,非類固醇抗發炎化合物係NF-kB抑制劑。例如,在一些實施例中,NF-kB抑制劑可為CAT-1004或其醫藥學上可接受的鹽。在不同實施例中,NF-kB抑制劑可為柳酸鹽及DHA之共軛物。在一些實施例中,NF-kB抑制劑係CAT-1041或其醫藥學上可接受的鹽。在某些實施例中,NF-kB抑制劑係柳酸鹽及EPA之共軛物。在不同實施例中,NF-kB抑制劑為
Figure 02_image147
,或其醫藥學上可接受的鹽。
在一些實施例中,非類固醇抗發炎化合物係TGF-b抑制劑。例如,在某些實施例中,TGF-b抑制劑為HT-100。
在某些實施例中,闡述如本文所述之反義寡聚物及反義寡聚物共軛物,其用於療法中。在某些實施例中,闡述如本文所述之反義寡聚物及反義寡聚物共軛物,其用於治療杜顯氏肌肉萎縮症。在某些實施例中,闡述如本文所述之反義寡聚物及反義寡聚物共軛物,其用於製造用於療法中之藥劑。在某些實施例中,闡述如本文所述之反義寡聚物及反義寡聚物共軛物,其用於製造用來治療杜顯氏肌肉萎縮症之藥劑。V. 套組
本發明亦提供用於治療遺傳病患者之套組,該套組包含至少反義分子(例如,包括有SEQ ID NO: 1中所示鹼基序列之反義寡聚物,或包括有SEQ ID NO: 1中所示鹼基序列之反義寡聚物之反義寡聚物共軛物),與其使用說明書一起封裝於適宜容器中。套組亦可含有輔助試劑,諸如緩衝劑、穩定劑等。熟習此項技術者應瞭解,上述方法之應用具有鑑別適用於治療許多其他疾病之反義分子之廣泛應用。在一實施例中,套組包含式(III)之反義寡聚物共軛物或式(IV)之反義寡聚物。實例
儘管出於清楚瞭解之目的,已藉助於說明及實例在一定程度上詳細地描述上述本發明,但對於一般熟習此項技術者,根據本發明之教示顯而易見的是可對本發明進行某些改動及修改而不偏離隨附申請專利範圍之精神或範疇。僅以說明方式而非以限制方式提供以下實例。熟習此項技術者應易於識別出多種可改變或修改以得到基本上類似結果之非關鍵性參數。材料及方法 細胞及組織培養物處理條件
使用分化的人類肌細胞(ZenBio, Inc.)來量測外顯子跳躍。具體而言,使肌母細胞(ZenBio, Inc., SKB-F)在37℃及5% CO2 下在生長培養基(SKB-M; ZenBio, Inc.)中生長至80%-90%鋪滿。藉由將生長培養基更換為分化培養基(SKM-D; ZenBio, Inc.)起始分化。為分析外顯子52跳躍,將1x104 個分化細胞平鋪於24孔板中且將1 mL含有不同濃度之PMO或PPMO之分化培養基(SKM-D; ZenBio, Inc.)添加至每一孔中並培育96小時。西方墨點分析
對於西方墨點分析,用均質化緩衝液(4% SDS、4 M尿素、125 mM tris-HCl (pH 6.8))以直徑約5 mm之9至18 × 20 μm組織切片於133 μL緩衝液中之比率均質化組織。收集相應溶解物且根據製造商之說明書(BioRad目錄500-0122)使用RC DC蛋白質分析套組進行蛋白質定量。使用均質化緩衝液以1:10稀釋組織提取物樣本以降至BSA標準曲線之範圍內。使用25 µl蛋白質溶解物、7 µl NuPAGE LDS樣本緩衝液(Life Technologies目錄NP0008, Carlsbad, California, USA)及3 µl NuPAGE還原劑(10x) (Life Technologies目錄NP0004)製備樣本,使得35 µl樣本將含有期望量之蛋白質。在95℃下將蛋白質樣本加熱5分鐘後,將樣本離心,取上清液依每泳道最多50 μg總蛋白質之載量加載至NuPAGE Novex 10孔1 mm微型3%-8%聚丙烯醯胺tris-乙酸鹽凝膠(Life Technologies目錄EA0375)上。使凝膠在150伏特下在室溫下運行直至染料前沿已運行出凝膠。在室溫及30伏特下經75分鐘使用NuPAGE轉移緩衝液(Life Technologies NP006-1)、10%甲醇及0.1% NuPAGE抗氧化劑(Life Technologies NP0005)將所得蛋白質凝膠轉移至PVDF膜(Life Technologies目錄LC2007)。
蛋白質轉移後,將PVDF膜浸沒於TTBS緩衝液(1X TBS (Amresco目錄J640-4L)、0.1% (v/v) tween-20)中。將膜轉移至封阻緩衝液(5% (w/v)乾燥脫脂奶粉(Lab Scientific目錄M0841)於TTBS中)且在4℃下在溫和搖動下浸漬過夜。封阻後,將膜在室溫下在使用封阻緩衝液以1:20稀釋之DYS1 (Leica目錄NCL-DYS1)中培育60分鐘,或在室溫下在用封阻緩衝液以1:100,000稀釋之抗α-輔肌動蛋白抗體(Sigma-Aldrich目錄NA931V)中培育20分鐘,然後洗滌6次(每次用TTBS洗滌5分鐘)。使用封阻緩衝液以1:40,000稀釋已結合辣根過氧化物酶(GE Healthcare目錄NA931V)之抗小鼠IgG,且添加至膜並保持45分鐘(DYS1)或15分鐘(α-輔肌動蛋白),然後再洗滌6次。使用ECL Prime西方檢測套組(GE Healthcare目錄RPN2232),使膜暴露於凝膠且相應地顯影。使用ImageQuant TL Plus軟體(8.1版)掃描且分析顯影膜並使用Graphpad軟體進行線性迴歸分析。
每一西方墨點凝膠包括使用自正常組織(小鼠四頭肌、橫膈膜或心臟)提取之稀釋至例如64%、16%、4%、1%及0.25%(例如,參見圖5A及5B)且摻入DMD組織(例如mdx小鼠四頭肌、橫膈膜或心臟,或NHP四頭肌、橫膈膜或平滑肌(胃腸))提取物中之總蛋白質製備之4點或5點肌肉萎縮蛋白標準曲線。如上文所述處理標準曲線樣本。藉由比較肌肉萎縮蛋白條帶強度與凝膠標準曲線確定肌肉萎縮蛋白含量,以野生型肌肉萎縮蛋白含量之% (WT%)表示。RT-PCR 分析
對於RT-PCR分析,使用Illustra GE spin套組根據製造商之實驗方案自細胞分離RNA。藉由RT-PCR使用結合外顯子50之正向引子SEQ ID NO: 5 (5’‑ CTCTGAGTGGAAGGCGGTAA-3’)及結合外顯子53之反向引子SEQ ID NO: 6 (5’- ACCTGCTCAGCTTCTTCCTT-3’)來量測外顯子52跳躍。藉由RT-PCR使用正向引子-SEQ ID NO: 7 (5’-CACATCTTTGATGGTGTGAGG-3’)及反向引子SEQ ID NO: 8 (5’- CAACTTCAGCCATCCATTTCTG -3’)來量測小鼠外顯子23跳躍。
在使RNA經受RT-PCR後,使用利用凝膠毛細管電泳之測徑器分析樣本。使用以下等式計算外顯子跳躍%:(跳躍條帶之曲線下面積)/(跳躍及未跳躍條帶之曲線下面積之和) x 100。免疫組織化學:肌肉萎縮蛋白染色:
使用小鼠四頭肌之10微米冷凍組織切片藉由10%山羊血清+ PBS中之1% BSA中之肌肉萎縮蛋白一級抗體(以1:250稀釋,兔子抗體,Abcam,目錄號ab15277)及10%山羊血清+ 1% BSA中之二級抗體Alexa-Fluoro 488山羊抗兔子(以1:1000稀釋)來檢測肌肉萎縮蛋白。嗎啉基亞單位之製備
Figure 02_image149
參考方案1,其中B表示鹼基配對部分,可自相應核糖核苷(1 )製備嗎啉基亞單位,如所顯示。可藉由與適宜保護基團前體(例如三苯甲基氯)反應視情況保護嗎啉基亞單位(2 )。3’保護基團通常在固態寡聚物合成期間移除,如下文更詳細闡述。可適當保護鹼基配對部分用於固相寡聚物合成。適宜保護基團包括腺嘌呤及胞嘧啶之苯甲醯基、鳥嘌呤之苯基乙醯基及次黃嘌呤(I)之特戊醯基氧基甲基。特戊醯基氧基甲基可引入次黃嘌呤雜環鹼基之N1位置上。儘管可採用未經保護之次黃嘌呤亞單位,但活化反應之產率在該鹼基被保護時甚為優異。其他適宜保護基團包括美國專利第8,076,476號中所揭示之彼等,該專利之全文皆以引用方式併入本文中。
使3 與活化磷化合物4 反應產生具有期望鍵聯部分之嗎啉基亞單位5
結構4 之化合物可使用熟習此項技術者已知之任一數量之方法製備。然後進行與嗎啉基部分之偶合,如上文所概述。
結構5 之化合物可於固相寡聚物合成中用來製備包含亞單位間鍵聯之寡聚物。該等方法為業內所熟知。簡言之,結構5 之化合物可在5’末端經修飾以含有與固體支撐物之連接體。支撐後,立即移除5 之保護基團(例如3’末端之三苯甲基))且使游離胺與第二結構5 化合物之活化磷部分反應。重複此序列直至獲得期望長度之寡聚物。若期望3’修飾,則可移除或保留末端3’端之保護基團。寡聚物可使用任一數量之方法自固體支撐物移除,或用鹼實例性處理以裂解與固體支撐物之鍵聯。
本發明之一般及特定嗎啉基寡聚物中之嗎啉基寡聚物之製備更詳細闡述於實例中。嗎啉基寡聚物之製備 根據方案2使用以下實驗方案進行本發明化合物之製備:
Figure 02_image151
三苯甲基六氫吡嗪胺基甲酸苯基酯35 之製備:向化合物11 於二氯甲烷(6 mL/g11 )中之冷卻懸浮液中添加碳酸鉀(3.2當量)於水(4 mL/g碳酸鉀)中之溶液。向此兩相混合物中緩慢添加氯甲酸苯基酯(1.03當量)於二氯甲烷(2 g/g氯甲酸苯基酯)中之溶液。將反應混合物升溫至20ºC。在反應完成(1-2小時)後,分離各層。用水洗滌有機層,並經無水碳酸鉀乾燥。藉由自乙腈結晶分離產物35
胺基甲酸酯醇36 之製備:將氫化鈉(1.2當量)懸浮於1-甲基-2-吡咯啶酮(32 mL/g氫化鈉)中。向此懸浮液中添加三乙二醇(10.0當量)及化合物35 (1.0當量)。將所得漿液加熱至95ºC。在反應完成(1-2小時)後,將混合物冷卻至20ºC。向此混合物中添加30%二氯甲烷/甲基第三丁基醚(v:v)及水。相繼用NaOH水溶液、琥珀酸水溶液及飽和氯化鈉水溶液洗滌含產物之有機層。藉由自二氯甲烷/甲基第三丁基醚/庚烷結晶分離產物36。
尾酸37 之製備:向化合物36 於四氫呋喃(7 mL/g36 )中之溶液中添加琥珀酸酐(2.0當量)及DMAP (0.5當量)。將混合物加熱至50ºC。在反應完成(5小時)後,將混合物冷卻至20ºC且用NaHCO3 水溶液調節至pH 8.5。添加甲基第三丁基醚,且將產物萃取至水層中。添加二氯甲烷,且用檸檬酸水溶液將混合物調節至pH 3。用pH=3檸檬酸鹽緩衝液及飽和氯化鈉水溶液之混合物洗滌含產物之有機層。37 之此二氯甲烷溶液未經分離即用於化合物38 之製備中。
38 之製備:向化合物37 之溶液中添加N-羥基-5-降莰烯-2,3-二甲酸亞胺(HONB) (1.02當量)、4-二甲基胺基吡啶(DMAP) (0.34當量)及然後1-(3-二甲基胺基丙基)-N'-乙基碳二亞胺鹽酸鹽(EDC) (1.1當量)。將混合物加熱至55ºC。在反應完成(4-5小時)後,將混合物冷卻至20ºC且相繼用1:1 0.2 M檸檬酸/鹽水及鹽水洗滌。使二氯甲烷溶液經歷溶劑交換至丙酮且然後交換至N,N-二甲基甲醯胺,並藉由自丙酮/N,N-二甲基甲醯胺沈澱至飽和氯化鈉水溶液中分離產物。將粗產物於水中再製成漿液若干次以移除殘餘N,N-二甲基甲醯胺及鹽。 PMO合成方法A:使用二硫化物錨
在二甲基咪唑啶酮(DMI)中藉由用於在固相合成期間納入亞單位之程序將活化「尾」引入錨負載樹脂中。
Figure 02_image153
方案3:用於合成嗎啉基寡聚物之固體支撐物之製備
此程序係在具有粗孔隙(40-60 µm)玻璃釉料、頂置式攪拌器及3向鐵氟龍活塞之矽化夾套肽容器(ChemGlass, NJ, USA)中進行以容許N2向上鼓泡通過釉料或真空萃取。
以下程序中之樹脂處理/洗滌步驟係由兩個基本操作組成:樹脂流化或攪拌床反應器及溶劑/溶液萃取。對於樹脂流化,使活塞定位以容許N2向上流過釉料且將指定樹脂處理/洗滌添加至反應器中並容許滲透且完全潤濕樹脂。然後開始混合且將樹脂漿液混合指定時間。對於溶劑/溶液萃取,終止混合及N2流並開啟真空幫浦且然後使活塞定位以容許將樹脂處理/洗滌抽空至廢棄物。除非另外註明,否則所有樹脂處理/洗滌體積為15 mL/g樹脂。
向矽化夾套肽容器中之胺基甲基聚苯乙烯樹脂(100-200目;基於氮取代約1.0 mmol/g載量;75 g, 1當量,Polymer Labs, UK,部件編號1464-X799)中添加1-甲基-2-吡咯啶酮(NMP; 20 ml/g樹脂)且藉由混合1至2小時使樹脂膨脹。在抽空膨脹溶劑後,用二氯甲烷(2 × 1-2分鐘)、25%異丙醇/二氯甲烷中之5%二異丙基乙胺(2 × 3-4分鐘)及二氯甲烷(2 × 1-2分鐘)洗滌樹脂。在抽空最後洗滌液後,用二硫化物錨34 於1-甲基-2-吡咯啶酮中之溶液(0.17 M; 15 mL/g樹脂,約2.5當量)處理樹脂且將樹脂/試劑混合物在45°C下加熱60小時。反應完成時,停止加熱且抽空錨溶液並用1-甲基-2-吡咯啶酮(4 × 3-4分鐘)及二氯甲烷(6 × 1-2分鐘)洗滌樹脂。用10% (v/v)二碳酸二乙酯於二氯甲烷中之溶液(16 mL/g; 2 × 5-6分鐘)處理樹脂且然後用二氯甲烷(6 × 1-2分鐘)洗滌。在N2流下將樹脂39 乾燥1至3小時且然後在真空下乾燥至恆定重量(± 2%)。產率:原始樹脂重量之110%-150%。
胺基甲基聚苯乙烯-二硫化物樹脂之負載之測定:樹脂之負載(潛在有效反應性位點數)係藉由三苯基甲基(三苯甲基)數/克樹脂之光譜測定分析來測定。
將已知重量之乾燥樹脂(25 ± 3 mg)轉移至25 ml矽化容量瓶且添加約5 mL之於二氯甲烷中之2% (v/v)三氟乙酸。藉由溫和渦漩混合內容物且然後靜置30 min。用額外於二氯甲烷中之2% (v/v)三氟乙酸使體積達到25 mL且充分混合內容物。使用正壓式移液管,將含三苯甲基之溶液之等份(500 μL)轉移至10 mL容量瓶且用甲磺酸使體積達到10 mL。
藉由431.7 nm下之UV吸光度量測最終溶液中之三苯甲基陽離子含量且使用適當體積、稀釋度、消光係數(ε: 41 μmol-1cm-1)及樹脂重量計算樹脂負載,以三苯甲基/克樹脂(μmol/g)表示。以三重複進行分析且計算平均負載。
此實例中之樹脂負載程序將提供負載為約500 μmol/g之樹脂。若在室溫下進行24小時二硫化物錨納入步驟則獲得300-400 μmol/g之負載。
尾負載:使用與製備胺基甲基聚苯乙烯-二硫化物樹脂相同之設定及體積,可將尾引入固體支撐物中。首先在酸性條件下對錨負載樹脂去保護且在偶合之前中和所得材料。對於偶合步驟,使用38 (0.2 M)於含有4-乙基嗎啉之DMI (NEM, 0.4 M)中之溶液替代二硫化物錨溶液。在45℃下保持2小時後,將樹脂39 用25%異丙醇/二氯甲烷中之5%二異丙基乙胺洗滌兩次且用DCM洗滌一次。向樹脂中添加苯甲酸酐(0.4 M)及NEM (0.4 M)之溶液。25分鐘後,將反應器夾套冷卻至室溫,且將樹脂用25%異丙醇/二氯甲烷中之5%二異丙基乙胺洗滌兩次並用DCM洗滌八次。將樹脂40 過濾且在高真空下乾燥。樹脂40 之負載定義為用於尾負載中之原始胺基甲基聚苯乙烯-二硫化物樹脂39 之負載。
固相合成:在Gilson AMS-422自動化肽合成器上之2 mL Gilson聚丙烯反應管柱(部件編號3980270)中製備嗎啉基寡聚物。將具有水流動通道之鋁塊在管柱位於合成器上時置於管柱周圍。或者,AMS-422將添加試劑/洗滌溶液,保持指定時間且使用真空抽空管柱。
對於長度在高達約25亞單位範圍內之寡聚物,負載接近500 μmol/g樹脂之胺基甲基聚苯乙烯-二硫化物樹脂較佳。對於更大寡聚物,負載為300-400 μmol/g樹脂之胺基甲基聚苯乙烯-二硫化物樹脂較佳。若期望具有5’-尾之分子,則利用相同負載指導方針選擇已負載有尾之樹脂。
製備以下試劑溶液: 去三苯甲基化溶液:10%氰乙酸(w/v)於4:1二氯甲烷/乙腈中; 中和溶液:5%二異丙基乙胺於3:1二氯甲烷/異丙醇中;及 偶合溶液:0.18 M(或對於已生長長於20個亞單位之寡聚物使用0.24 M)期望鹼基及鍵聯類型之活化嗎啉基亞單位及0.4 M N乙基嗎啉於1,3-二甲基咪唑啶酮中。
使用二氯甲烷(DCM)作為分離不同試劑溶液洗滌液之傳統洗滌液。
在合成器上,使用設定為42℃之鋁塊,向含有30 mg胺基甲基聚苯乙烯-二硫化物樹脂(或尾樹脂)之每一管柱中添加2 mL 1-甲基-2-吡咯啶酮且容許在室溫下靜置30分鐘。用2 mL二氯甲烷洗滌兩次後,採用以下合成循環:步驟 體積 遞送 保持時間 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 去三苯甲基化  1.5 mL      歧管         15秒 DCM             1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 DCM              1.5 mL      歧管         30秒 偶合         350-500uL      注射器      40分鐘 DCM              1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 中和               1.5 mL      歧管         30秒 DCM              1.5 mL      歧管         30秒 DCM              1.5 mL      歧管         30秒 DCM              1.5 mL      歧管         30秒
將個別寡聚物之序列程式化至合成器中,以使得每一管柱以適當序列接收適當偶合溶液(A、C、G、T、I)。當管柱中之寡聚物已完成納入其最後亞單位時,自鋁塊移除管柱且用含有0.89 M 4-乙基嗎啉之包含4-甲氧基三苯基甲基氯之偶合溶液(0.32 M於DMI中)人工進行最後循環。
自樹脂裂解及移除鹼基及主鏈保護基團:在甲氧基三苯甲基化後,用2 mL 1-甲基-2-吡咯啶酮將樹脂洗滌8次。添加1 mL由1-甲基-2-吡咯啶酮中之0.1 M 1,4-二硫蘇糖醇(DTT)及0.73 M三乙胺組成之裂解溶液,蓋住管柱,且使其在室溫下靜置30分鐘。此後將溶液排至12 mL惠頓瓶(Wheaton vial)中。用300 µL裂解溶液將極度皺縮之樹脂洗滌兩次。向溶液中添加4.0 mL濃氨水(儲存在-20°C下),緊緊蓋住瓶口(用鐵氟龍內襯之螺旋蓋),且將混合物渦旋以混合溶液。將瓶置於45°C烘箱中達16小時至24小時以實現鹼基及主鏈保護基團之裂解。
粗產物純化:自烘箱移除成瓶胺解溶液且將其冷卻至室溫。用20 mL 0.28%氨水稀釋溶液且使其通過含有Macroprep HQ樹脂(BioRad)之2.5×10 cm管柱。使用鹽梯度(A:0.28%氨及B:1 M氯化鈉於0.28%氨中;0-100% B,60分鐘)溶析含有甲氧基三苯甲基之峰。彙集合併之部分且端視期望產物進一步處理。
嗎啉基寡聚物之去甲氧基三苯甲基化:用1 M H3 PO4 處理自Macroprep純化彙集之部分以使pH降低至2.5。初始混合後,使樣本在室溫下靜置4分鐘,此時用2.8%氨/水將其中和至pH 10至pH 11。藉由固相萃取(SPE)純化產物。
SPE管柱封裝及條件化:將Amberchrome CG-300M (Rohm及Haas; Philadelphia, PA) (3 mL)封裝至20 mL燒結管柱(BioRad Econo-Pac層析管柱(732-1011))中且用3 mL以下各項沖洗樹脂:0.28% NH4 OH / 80%乙腈;0.5 M NaOH / 20%乙醇;水;50 mM H3 PO4 / 80%乙腈;水;0.5 NaOH / 20%乙醇;水;0.28% NH4 OH。
SPE純化:將來自去甲氧基三苯甲基化之溶液加載至管柱上且用3-6 mL 0.28%氨水將樹脂沖洗三次。將惠頓瓶(12 mL)置於管柱下且藉由用2 mL於0.28%氨水中之45%乙腈洗滌兩次溶析產物。
產物分離:將溶液冷凍於乾冰上且將瓶置於冷凍乾燥機中以產生鬆散白色粉末。將樣本溶解於水中,使用針筒經由0.22微米過濾器(Pall Life Sciences, Acrodisc 25 mm針筒過濾器,具有0.2微米HT Tuffryn膜)過濾,且在UV分光光度計上量測光學密度(OD)以確定所存在寡聚物之OD單位,並分配樣本以供分析。然後將溶液放回惠頓瓶中以凍乾。
藉由MALDI分析嗎啉基寡聚物:使用MALDI-TOF質譜來測定純化物中各部分之組成以及提供寡聚物之屬性(分子量)之證據。在用3,5-二甲氧基-4-羥基肉桂酸(芥子酸)、3,4,5-三羥基苯乙酮(THAP)或α-氰基-4-羥基肉桂酸(HCCA)之溶液作為基質稀釋後運行樣本。 PMO合成方法B:使用NCP2錨 NCP2錨合成: 1. 4-氟-3-硝基苯甲酸甲酯(1 )之製備
Figure 02_image155
向100 L燒瓶中裝填12.7 kg 4-氟-3-硝基苯甲酸,添加40 kg甲醇及2.82 kg濃硫酸。將混合物於回流(65°C)下攪拌36小時。將反應混合物冷卻至0°C。在38°C下形成晶體。將混合物在0°C下保持4小時,然後在氮氣下過濾。洗滌100 L燒瓶且用10 kg已冷卻至0°C之甲醇洗滌濾餅。在漏斗上將固體濾餅乾燥1小時,轉移至托盤,且在真空烘箱中在室溫下乾燥至13.695 kg 4-氟-3-硝基苯甲酸甲酯之恆定重量(100%產率;HPLC 99%)。 2.  3-硝基-4-(2-側氧基丙基)苯甲酸之製備 A. (Z)-4-(3-羥基-1-甲氧基-1-側氧基丁-2-烯-2-基)-3-硝基苯甲酸甲酯(2 )
Figure 02_image157
向100 L燒瓶中裝填3.98 kg來自先前步驟之4-氟-3-硝基苯甲酸甲酯(1 )、9.8 kg DMF、2.81 kg乙醯乙酸甲酯。將混合物攪拌且冷卻至0°C。經約4小時向此添加3.66 kg DBU,同時將溫度維持在5°C或以下。將混合物再攪拌1小時。向反應燒瓶中添加8.15 kg檸檬酸於37.5 kg純化水中之溶液,同時將反應溫度維持在15°C或以下。添加後,將反應混合物再攪拌30分鐘,然後在氮氣下過濾。使濕濾餅與14.8 kg純化水一起返回至100 L燒瓶。將漿液攪拌10分鐘,然後過濾。使濕濾餅再返回至100 L燒瓶,用14.8 kg純化水經10分鐘製成漿液,且過濾至粗(Z)-4-(3-羥基-1-甲氧基-1-側氧基丁-2-烯-2-基)-3-硝基苯甲酸甲酯。 B. 3-硝基-4-(2-側氧基丙基)苯甲酸
Figure 02_image159
在氮氣下將粗(Z)-4-(3-羥基-1-甲氧基-1-側氧基丁-2-烯-2-基)-3-硝基苯甲酸甲酯裝填至100 L反應燒瓶。向此添加14.2 kg 1,4-二噁烷並攪拌。經2小時向混合物中添加16.655 kg濃HCl及13.33 kg純化水(6 M HCl)之溶液,同時將反應混合物之溫度維持在15°C以下。當完成添加時,在回流(80°C)下將反應混合物加熱24小時,冷卻至室溫,且在氮氣下過濾。用14.8 kg純化水研磨固體濾餅,過濾,用14.8 kg純化水再研磨,且過濾。使用39.9 kg DCM使固體返回至100 L燒瓶且在攪拌下回流1小時。添加1.5 kg純化水以溶解剩餘固體。將底部有機層分流至預熱72 L燒瓶,然後返回至清潔的乾燥100 L燒瓶。將溶液冷卻至0°C,保持1小時,然後過濾。各自用9.8 kg DCM及5 kg庚烷之溶液將固體濾餅洗滌兩次,然後在漏斗上乾燥。將固體轉移至托盤且乾燥至1.855 kg 3-硝基-4-(2-側氧基丙基)苯甲酸之恆定重量。化合物1之總產率42%HPLC 99.45%。 3.  N-三苯甲基六氫吡嗪琥珀酸酯(NTP)之製備
Figure 02_image161
在氮氣下向72 L夾套燒瓶中裝填1.805 kg三苯基甲基氯及8.3 kg甲苯(TPC溶液)。攪拌混合物直至固體溶解。在氮氣下向100 L夾套反應燒瓶中添加5.61 kg六氫吡嗪、19.9 kg甲苯及3.72 kg甲醇。將混合物攪拌且冷卻至0°C。經4小時向此逐份緩慢添加TPC溶液,同時將反應溫度維持在10°C或以下。在10°C下將混合物攪拌1.5小時,然後升溫至14°C。將32.6 kg純化水裝填至72 L燒瓶,然後轉移至100 L燒瓶,同時將內部批料溫度維持在20°C +/- 5°C下。使各層分流且分離並儲存底部水層。各自用32 kg純化水將有機層萃取三次,且分離水層並與所儲存水溶液合併。
將剩餘有機層冷卻至18°C且將847 g琥珀酸於10.87 kg純化水中之溶液逐份緩慢添加至有機層中。在20°C +/- 5°C下將混合物攪拌1.75小時。將混合物過濾,且用2 kg TBME及2 kg丙酮洗滌固體,然後在漏斗上乾燥。各自用5.7 kg丙酮將濾餅研磨兩次且過濾並在研磨之間用1 kg丙酮洗滌。在漏斗上乾燥固體,然後轉移至托盤且在真空烘箱中在室溫下乾燥至2.32 kg NTP之恆定重量。產率80%。 4.  (4-(2-羥基丙基)-3-硝基苯基)(4-三苯甲基六氫吡嗪-1-基)甲酮之製備 A. 1-(2-硝基-4(4-三苯甲基六氫吡嗪-1-羰基)苯基)丙-2-酮之製備
Figure 02_image163
在氮氣下向100 L夾套燒瓶中裝填2 kg 3-硝基-4-(2-側氧基丙基)苯甲酸(3 )、18.3 kg DCM及1.845 kg N-(3-二甲基胺基丙基)-N′-乙基碳二亞胺鹽酸鹽(EDC.HCl)。攪拌溶液直至形成均質混合物。在室溫下經30分鐘添加3.048 kg NTP且攪拌8小時。將5.44 kg純化水添加至反應混合物中且攪拌30分鐘。分離各層且排出並儲存含有產物之底部有機層。用5.65 kg DCM將水層萃取兩次。用1.08 kg氯化鈉於4.08 kg純化水中之溶液洗滌合併之有機層。經1.068 kg硫酸鈉乾燥有機層且過濾。用1.3 kg DCM洗滌硫酸鈉。用252 g矽膠將合併之有機層製成漿液且經由含有252 g矽膠床之過濾漏斗過濾。用2 kg DCM洗滌矽膠床。在rotovap上蒸發合併之有機層。將4.8 kg THF添加至殘餘物中且然後在rotovap上蒸發直至達到2.5體積之於THF中之粗1-(2-硝基-4(4-三苯甲基六氫吡嗪-1-羰基)苯基)丙-2-酮。 B. (4-(2-羥基丙基)-3-硝基苯基)(4-三苯甲基六氫吡嗪-1-基)甲酮(5 )之製備
Figure 02_image165
在氮氣下向100 L夾套燒瓶中裝填3600 g來自先前步驟之4 及9800 g THF。將攪拌溶液冷卻至≤ 5℃。用11525 g乙醇稀釋溶液且在≤ 5℃下經約2小時添加194 g硼氫化鈉。在≤ 5℃下將反應混合物再攪拌2小時。藉由緩慢添加約1.1 kg氯化銨於約3 kg水中之溶液淬滅反應以維持≤ 10℃之溫度。將反應混合物再攪拌30分鐘,過濾以移除無機物,並再裝填至100 L夾套燒瓶且用23 kg DCM萃取。分離有機層且各自用4.7 kg DCM將水溶液萃取兩次。用約800 g氯化鈉於約3 kg水中之溶液洗滌合併之有機層,然後經2.7 kg硫酸鈉乾燥。過濾懸浮液並用2 kg DCM洗滌濾餅。將合併之濾液濃縮至2.0體積,用約360 g乙酸乙酯稀釋,並蒸發。在氮氣下將粗產物加載至封裝有DCM之4 kg二氧化矽之矽膠管柱上且用7.2 kg DCM中之2.3 kg乙酸乙酯溶析。蒸發合併之部分且將殘餘物吸收於11.7 kg甲苯中。過濾甲苯溶液且各自用2 kg甲苯將濾餅洗滌兩次。將濾餅乾燥至2.275 kg化合物5(來自化合物3之46%產率)之恆定重量,HPLC 96.99%。 5.  (1-(2-硝基-4-(4-三苯基甲基六氫吡嗪-1羰基)苯基)丙-2-基)碳酸2,5-二側氧基吡咯啶-1-基酯(NCP2 )之製備
Figure 02_image167
在氮氣下向100 L夾套燒瓶中裝填4.3 kg化合物5(重量係基於殘餘甲苯藉由H1 NMR調節;下文之所有試劑經相應換算)及12.7 kg吡啶。向此裝填3.160 kg DSC (藉由H1 NMR為78.91重量%),同時將內部溫度維持在≤ 35℃。在環境下使反應混合物老化約22小時,然後過濾。用200 g吡啶洗滌濾餅。在各自包含二分之一濾液體積之兩批中,將濾液緩慢裝填至100 L含有約11 kg檸檬酸於約50 kg水中之溶液之夾套燒瓶中且攪拌30分鐘以容許固體沈澱。用過濾漏斗收集固體,洗滌兩次,每次洗滌用4.3 kg水且在真空下在過濾漏斗上乾燥。
將合併之固體裝填至100 L夾套燒瓶且溶解於28 kg DCM中並用900 g碳酸鉀於4.3 kg水中之溶液洗滌。1小時後,分離各層且移除水層。用10 kg水洗滌有機層,分離,並經3.5 kg硫酸鈉乾燥。將DCM過濾,蒸發,且在真空下乾燥至6.16 kgNCP2 (114%產率)。 NCP2錨負載樹脂合成
向具有鐵氟龍活塞之75 L固相合成反應器裝填約52 L NMP及2300 g胺基甲基聚苯乙烯樹脂。攪拌NMP中之樹脂以膨脹約2小時,然後排出。將樹脂洗滌兩次,每次洗滌用約4 L DCM,然後洗滌兩次,每次洗滌用39 L中和溶液,然後洗滌兩次,每次洗滌用39 L DCM。將NCP2錨溶液緩慢添加至攪拌樹脂溶液中,在室溫下攪拌24小時,並排出。將樹脂洗滌四次,每次洗滌用39 L NMP,且洗滌六次,每次洗滌用39 L DCM。用二分之一DEDC加帽溶液將樹脂處理且攪拌30分鐘,排出,並用第2次二分之一的DEDC加帽溶液處理且攪拌30分鐘並排出。將樹脂洗滌六次,每次洗滌用39 L DCM,然後在烘箱中乾燥至3573.71 g錨負載樹脂之恆定重量。 使用NCP2錨製備嗎啉基寡聚物 古路地森(Golodirsen ) (PMO-G; SEQ ID NO: 9) (一種PMO)粗原料藥之50 L固相合成的代表性實例 1. 材料 2 起始材料
Figure 108118324-A0304-0006
起始材料之化學結構: A. 活化EG3尾
Figure 02_image169
B. 活化C亞單位(關於製備參見美國專利第8,067,571號)
Figure 02_image171
C. 活化A亞單位(關於製備參見美國專利第8,067,571號)
Figure 02_image173
D. 活化DPG亞單位(關於製備參見WO 2009/064471)
Figure 02_image175
E. 活化T亞單位(關於製備參見WO 2013/082551)
Figure 02_image177
F. 錨負載樹脂
Figure 02_image179
其中R1 為支撐介質。 3 用於古路地森粗原料藥之固相寡聚物合成之溶液的說明
Figure 108118324-A0304-0007
2. 古路地森粗原料藥之合成 A. 樹脂膨脹
將750 g錨負載樹脂及10.5 L NMP裝填至50 L矽化反應器且攪拌3小時。排出NMP且將錨負載樹脂各自用5.5 L DCM洗滌兩次且各自用5.5 L 30% TFE/DCM洗滌兩次。 B. 循環0:EG3尾偶合
各自用5.5 L 30% TFE/DCM將錨負載樹脂洗滌三次且排出,用5.5 L CYFTA溶液洗滌15分鐘且排出,且再用5.5 L CYTFA溶液洗滌15分鐘但不排出,向其裝填122 mL 1:1 NEM/DCM並將懸浮液攪拌2分鐘且排出。將樹脂用5.5 L中和溶液洗滌5分鐘共兩次達且排出,然後各自用5.5 L DCM洗滌兩次且排出。將706.2 g活化EG3尾(MW 765.85)及234 mL NEM於3 L DMI中之溶液裝填至樹脂且在室溫下攪拌3小時並排出。各自用5.5 L中和溶液將樹脂洗滌兩次,每次洗滌5分鐘,且用5.5 L DCM洗滌一次並排出。裝填374.8 g苯甲酸酐及195 mL NEM於2680 mL NMP中之溶液且攪拌15分鐘並排出。將樹脂與5.5 L中和溶液一起攪拌5分鐘,然後用5.5 L DCM洗滌一次並各自用5.5 L 30% TFE/DCM洗滌兩次。將樹脂懸浮於5.5 L 30% TFE/DCM中且保持14小時。 C. 亞單位偶合循環1-30
i. 偶合前處理 在每一偶合循環之前如圖18中所述,將樹脂:1) 用30% TFE/DCM洗滌;2) a) 用CYTFA溶液處理15分鐘且排出,及b) 用CYTFA溶液處理15分鐘,向其添加1:1 NEM/DCM,攪拌,且排出;3) 與中和溶液一起攪拌三次;及4) 用DCM洗滌兩次。參見圖18。
ii. 偶合後處理 在排出每一亞單位溶液後如圖18中所述,將樹脂:1) 用DCM洗滌;及2) 用30% TFE/DCM洗滌兩次。若將樹脂在下一偶合循環之前保持一定時間段,則不排出TFE/DCM洗滌液且使樹脂保留在該TFE/DCM洗滌溶液中。參見圖18。
iii. 活化亞單位偶合循環 偶合循環係如圖18中所述進行。
iv. 最終IPA洗滌 在進行最終偶合步驟後,如圖18中所述,各自用19.5 L IPA將樹脂洗滌8次,且在室溫下在真空下乾燥約63.5小時至4857.9 g之乾重。 C.  裂解
將上述樹脂結合之古路地森粗原料藥分成兩批,如下處理每一批。將1619.3 g批次之樹脂:1) 與10L NMP一起攪拌2hr,然後排出NMP;2) 各自用10 L 30% TFE/DCM洗滌三次;3) 用10 L CYTFA溶液處理15分鐘;及4) 用10 L CYTFA溶液處理15分鐘,然後向其添加130 ml 1:1 NEM/DCM且攪拌2分鐘並排出。各自用10 L中和溶液將樹脂處理三次,用10 L DCM洗滌六次,且各自用10 L NMP洗滌八次。用1530.4 g DTT及2980 DBU於6.96 L NMP中之裂解溶液將樹脂處理2小時以分開依替利森粗原料藥與樹脂。將裂解溶液排出且保留在單獨容器中。用4.97 L與裂解溶液合併之NMP洗滌反應器及樹脂。 D.  去保護
將合併之裂解溶液及NMP洗滌液轉移至壓力容器,向其添加39.8 L已在冰箱中冷卻至-10℃至-25℃溫度之NH4 OH (NH3 •H2 O)。將壓力容器密封且加熱至45℃並保持16小時,然後冷卻至25℃。用純化水以3:1稀釋此含有古路地森粗原料藥之去保護溶液且用2 M磷酸將pH調節至3.0,然後用NH4 OH調節至pH 8.03。HPLC: C18 77.552 %及 SCX-10 73.768 %。古路地森 (PMO-G)粗原料藥之純化
將來自上文部分D之含有古路地森粗原料藥之去保護溶液加載至ToyoPearl Super-Q 650S陰離子交換樹脂管柱(Tosoh Bioscience)上且用0-35% B之梯度經17管柱體積(緩衝液A:10 mM氫氧化鈉;緩衝液B:1 M氯化鈉於10 mM氫氧化鈉中)溶析並使可接受純度之部分(C18及SCX HPLC)彙集至經純化藥品溶液。HPLC:93.571% (C18) 88.270% (SCX)。
將經純化原料藥溶液脫鹽且凍乾成1450.72 g經純化古路地森原料藥。產率54.56 %;HPLC:93.531% (C18) 88.354% (SCX)。 5. 縮寫字
Figure 108118324-A0304-0008
CPP 共軛的代表性實例
Figure 02_image181
分析程序:使用芥子酸(SA)基質在Bruker AutoflexTM Speed上記錄基質輔助雷射脫附離子化時間飛行質譜(MALDI-TOF-MS)。在配備有3000二極體陣列檢測器及ProPacTM SCX-20管柱(250 × 4 mm)之Thermo Dionex UltiMate 3000系統上使用1.0 mL/min之流速(pH = 2;30℃管柱溫度)進行SCX-HPLC。移動相為A (25%乙腈於含有24 mM H3 PO4 之水中)及B(25%乙腈於含有1 M KCl及24 mM H3 PO4 之水中)。採用以下梯度溶析:0 min, 35%B ;2 min, 35%B ;22 min, 80%B ;25 min, 80%B ;25.1 min, 35%B ;30 min, 35%B
向PMO4658 (1.82 g, 0.177 mmol,藉由凍乾兩天新鮮乾燥; SEQ ID NO: 10)、Ac-L-Arg-L-Arg-L-Arg-L-Arg-L-Arg-L-Arg-Gly-OH六(三氟乙酸酯) (614.7 mg, 0.354 mmol)及1-[雙(二甲基胺基)亞甲基]-1H -1,2,3-三唑并[4,5-b ]吡啶鎓3-氧化物六氟磷酸鹽(HATU, 134.4 mg, 0.354 mmol)之混合物中添加二甲亞碸(DMSO, 20 mL)。在室溫下將混合物攪拌3分鐘,然後添加N,N -二異丙基乙胺(DIPEA, 68.5 mg, 0.530 mmol)。5分鐘後,渾濁混合物變成澄清溶液。藉由SCX-HPLC監測反應。2小時後,添加20 mL 10%氫氧化銨溶液(2.8% NH3 )。在室溫下將混合物再攪拌2小時。藉由添加400 mL水終止反應。將三氟乙醇(2.0 mL)添加至溶液中。
將溶液分成兩部分且藉由WCX管柱(10 g樹脂/管柱)純化每一部分。首先用水中之20%乙腈(v/v)洗滌每一WCX管柱以移除PMO4658起始材料。當MALDI-TOF質譜分析顯示不存在PMO4658信號時停止洗滌(225 mL/管柱)。然後用水(100 mL/管柱)洗滌每一管柱。藉由2.0 M胍HCl (140 mL/管柱)溶析所要產物PPMO4658。將PPMO4658之經純化溶液彙集在一起且然後分成兩部分並藉由SPE管柱(10 g樹脂/管柱)對每一部分脫鹽。
首先用1.0 M NaCl水溶液(100 mL/管柱)洗滌SPE管柱以產生PPMO46581之六鹽酸鹽。然後用水(200 mL/管柱)洗滌每一SPE管柱。藉由水中之50%乙腈(v/v, 150 mL/管柱)溶析最終脫鹽的PPMO-G。藉由在減壓下抽空移除乙腈。將所得水溶液凍乾以獲得所要共軛物PPMO4658六鹽酸鹽(1.93 g, 94.5%產率)。實例 1 PMO#1
使用上文所述用於PMO-G之PMO合成方法B實驗方案,合成PMO#1:
Figure 02_image183
PMO#1 其中各Nu自1至25及5’至3’為:
Figure 108118324-A0304-0009
其中A為
Figure 02_image185
,C為
Figure 02_image186
,G為
Figure 02_image187
,且T為
Figure 02_image188
。 HPLC: 93.33%。實例 2: PPMO#1
使用上文所述用於製備PPMO4658之實驗方案,自PMO#1合成PPMO#1:
Figure 02_image189
PPMO#1 其中各Nu自1至25及5’至3’為:
Figure 108118324-A0304-0010
其中A為
Figure 02_image191
,C為
Figure 02_image192
,G為
Figure 02_image193
,且T為
Figure 02_image194
。 HPLC: 89.45%。實例 3 :活體外外顯子 52 跳躍 ( 肌細胞 )
評價在健康人類肌母細胞中如下表中所述靶向人類肌肉萎縮蛋白(DMD )外顯子52之兩種化合物PMO#1及PPMO#1 (二者皆含有相同序列)之DMD 外顯子52跳躍。用於人類 DMD 外顯子 52 PMO#1 PPMO#1 序列。
Figure 108118324-A0304-0011
具體而言,將健康人類肌母細胞(5-6代,SKB-F-SL,購自Zen-Bio公司)在用不同濃度(即40 µm、20 µm、10 µm、5 µm、2.5 µm及1.25 µm)之PMO#1或PPMO#1處理達到約40%鋪滿時平鋪於SKM-M培養基(Zen-Bio公司)中。培育96小時後,用PBS洗滌肌母細胞且藉由Illustra GE RNAspin 96套組(目錄號25-055-75, GE Healthcare Bio-Sciences)中之RA1溶解緩衝液溶解。根據製造商之建議分離總RNA,只是使用40 µL無RNase水來溶析RNA。
為測定藉由兩種化合物之外顯子52跳躍,進行兩步終點RT-PCR。具體而言,首先藉由SuperScript IV第一鏈合成套組(目錄號18091200, Invitrogen)使用無規六聚體根據製造商之說明書將11微升總RNA反轉錄成cDNA。藉由將9 µL cDNA添加至Platinum Taq DNA聚合酶PCR Supermix高保真度(目錄號12532024, Invitrogen)中使用靶向人類DMD 外顯子50之正向引子(正向引子(SEQ ID NO: 5):CTCTGAGTGGAAGGCGGTAA;以及靶向外顯子53之反向引子(SEQ ID NO: 6):ACCTGCTCAGCTTCTTCCTT,來進行PCR。使用BioRad CFX96即時溫度循環器使用表2中所顯示之程式進行PCR擴增。使用DNA高靈敏度試劑套組(CLS760672, Perkin Elmer)藉由將32 µL PCR產物加載至LabChip GX系統中來評價跳躍或非跳躍PCR產物之表現。DMD 外顯子52跳躍之百分比計算為外顯子52跳躍條帶(364 bp)之莫耳濃度(nmol/l)與跳躍(364 bp)及未跳躍(482 bp)條帶之總莫耳濃度相比之百分比。
使用雙尾未配對司徒頓t-測試(Student’s t-test,同方差)來評價在每一劑量下2組之平均值是否在統計學上彼此不同。P 值 < 0.05視為在統計學上顯著。用於擴增具有或不具外顯子 52 跳躍之 DMD 擴增子之溫度循環器程式。
Figure 108118324-A0304-0012
結果係呈現於下表及 4 中。在 4 中,誤差槓代表平均值± SD,該等誤差槓上方之「[數字]x 」表示藉由在各濃度下PPMO#1與PMO#1相比之相對倍數變化,並以外顯子跳躍之百分比表示,而「*」係指出PMO#1與PPMO#1之間有顯著差異,p值< 0.05。人類肌母細胞中藉由 PMO#1 PPMO#1 DMD 外顯子 52 跳躍之百分比。
Figure 108118324-A0304-0013
令人驚訝的是,上表及 4 中的數據顯示出,當用PPMO#1處理細胞且與PMO#1相比時,在所有濃度下的肌母細胞中有顯著較高的外顯子52跳躍,且其程度出乎意料。此顯著改善很可能在活體內的比較測試中進一步證實,諸如實例5的非人類靈長類動物(NHP)研究,其中用PPMO#1或PMO#1治療NHP並量測不同相關肌肉組織中的外顯子52跳躍(細節參見實例5)。實例 4 MDX 小鼠研究
mdx小鼠係含有肌肉萎縮蛋白基因之外顯子23突變之杜顯氏肌肉萎縮症(DMD)之公認且經充分表徵之動物模型。已知M23D反義序列(SEQ ID NO: 2)誘導功能性肌肉萎縮蛋白表現之外顯子23跳躍及恢復。將下表40 mg/kg劑量之PPMO4225或PMO4225或鹽水單次注射至6-7週齡MDX小鼠之尾靜脈中。
Figure 108118324-A0304-0014
PMO4225及PPMO4225各自係藉由上文所述之PMO方法A及CPP結合方法製備。
在單次劑量注射後7天、30天、60天及90天殺死經治療小鼠(n=6隻/組)。處理橫膈膜、心臟及右四頭肌用於西方墨點分析以量測肌肉萎縮蛋白之產生及用於RT-PCR分析以量測外顯子跳躍之百分比,且處理左四頭肌用於免疫組織化學及H/E染色,如上文所述。
藉由西方墨點量化肌肉萎縮蛋白恢復,且藉由RT-PCR量測外顯子23跳躍之百分比,各自如上文所述。
RT-PCR及西方墨點法結果顯示於圖5A-10B及下表中。令人驚訝的是,PPMO4225誘導與PMO4225相比顯著較高且持續的肌肉萎縮蛋白恢復及外顯子23跳躍程度,且最高程度出現在注射後30天。甚至更令人驚訝的是,PPMO4225增加心臟中之肌肉萎縮蛋白含量而PMO4225不會;使用PMO4225在心臟中在所有時間點未觀察到肌肉萎縮蛋白及外顯子跳躍。
Figure 108118324-A0304-0015
Figure 108118324-A0304-0016
免疫組織化學結果顯示於圖11中。在此處,PPMO4225恢復整個四頭肌之肌肉萎縮蛋白,而4225產生「斑塊樣」表現模式。使用PPMO4225治療之肌肉萎縮蛋白之不均勻分佈指示可達成骨骼肌之廣泛靶向。PPMO4225具有與PMO4225相比顯著改良之活體內遞送。實例 5 NHP 中之外顯子 52 跳躍
為進一步證實PPMO反義寡聚物之外顯子跳躍之效能,使用非人類靈長類動物。具體而言,根據下表中之投藥時間表向具有完整肌肉組織之食蟹猴靜脈內注射PPMO#1、PMO#1(來自實例3)或鹽水:食蟹猴投藥時間表
Figure 02_image195
在整個研究中觀察動物,包括臨床觀察(例如評估皮膚及毛皮、呼吸效應)及體重量測。至少在測試開始之前以及第一劑量及末次劑量後24小時(若適用)獲取血液及尿液樣本。
在每一排定的驗屍或安樂死臨死時,收集橫膈膜、十二指腸、食管及主動脈之平滑肌、四頭肌、三角肌、二頭肌及心臟之切片且快速冷凍。使用RT-PCR測定外顯子52跳躍%,如上文所述。實例 6 MDX 小鼠劑量反應研究
將上文所述之PPMO4225或PMO4225以40 mg/kg、80 mg/kg或120 mg/kg之劑量單次注射至6-7週齡MDX小鼠之尾靜脈中(n=6隻/組)。
在注射後30天殺死經治療小鼠。處理橫膈膜、四頭肌及心臟用於西方墨點分析以基於具有以下修改之上述西方墨點實驗方案(用於例如實例4中)量測肌肉萎縮蛋白之產生:
Figure 108118324-A0304-0017
肌肉萎縮蛋白恢復(以野生型%表示)呈現於下表及圖12-15中。
Figure 108118324-A0304-0018
令人驚訝的是,數據顯示單次劑量之PPMO4225以劑量依存性方式使mdx小鼠中之肌肉萎縮蛋白含量增加至顯著且實質上大於PMO4225之程度。實例 7 MDX 小鼠橫膈膜及心臟之 IHC 研究
將劑量為80 mg/kg之PPMO4225或鹽水單次注射至6-7週齡MDX小鼠之尾靜脈中,且向6-7週齡之野生型小鼠單次注射鹽水。在單次劑量注射後30天時殺死經治療之mdx小鼠、鹽水mdx小鼠及野生型小鼠(n=4隻/組)。免疫組織化學結果顯示於圖19中。在此處,結果顯示組織中肌肉萎縮蛋白之不均勻增加與經PPMO4225治療之mdx小鼠之DMD之發病率及死亡率相關。
本說明書中引用之所有公開案及專利申請案係以引用之方式併入本文中,如同特定且個別指示每一個別公開案或專利申請案以引用之方式併入一般。參考文獻 Aartsma-Rus, A., A. A. Janson, 等人(2004). "Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense." Am J Hum Genet74 (1): 83-92. Abes, R., 等人(2008). "Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides." J Pept. Sci.14: 455-460. Alter, J., 等人(2006). "Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology." Nat. Med.12 (2): 175-177. Bestas, B., 等人(2014). "Splice-correcting ligonucleotides restore BTK function in X-linked agammaglobulinemia model." J. Clin. Invest. Cirak, S., V. Arechavala-Gomeza, 等人(2011). "Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study." Lancet378 (9791): 595-605. Dunckley, M. G., I. C. Eperon, 等人(1997). "Modulation of splicing in the DMD gene by antisense oligoribonucleotides." Nucleosides & Nucleotides16 (7-9): 1665-1668. Dunckley, M. G., M. Manoharan, 等人(1998). "Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides." Hum Mol Genet7 (7): 1083-90. Errington, S. J., C. J. Mann, 等人(2003). "Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene." J Gene Med5 (6): 518-27. Goemans, N. M., M. Tulinius, 等人(2011). "Systemic Administration of PRO051 in Duchenne's Muscular Dystrophy." N Engl J Med. Jearawiriyapaisarn, N., H. M. Moulton, 等人(2008). "Sustained Dystrophin Expression Induced by Peptide-conjugated Morpholino Oligomers in the Muscles of mdx Mice." Mol Ther. Jearawiriyapaisarn, N., 等人(2010). "Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers." Cardiovascular Research85 : 444-453. Kinali, M., V. Arechavala-Gomeza, 等人(2009). "Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study." Lancet Neurol8 (10): 918-28. Leblue, B., 等人(2008). "Cell penetrating peptide conjugates of steric block oligonucleotides." Adv. Drug Deliv. Rev.60: 517-529. Lu, Q. L., C. J. Mann, 等人(2003). "Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse." Nat Med9 (8): 1009-14. Mann, C. J., K. Honeyman, 等人(2002). "Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy." J Gene Med4 (6): 644-54. Marshall, N. B., S. K. Oda, 等人(2007). "Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing." Journal of Immunological Methods325 (1-2): 114-126. Matsuo, M., T. Masumura, 等人(1991). "Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe." J Clin Invest87 (6): 2127-31. McClory, G., 等人(2006). "Antisense oligonucleotide-induced exon skipping restored dystrophin expression in vitro in a canine model of DMD." Gene Therapy13: 1373-1381. Monaco, A. P., C. J. Bertelson, 等人(1988). "An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus." Genomics2 (1): 90-5. Moulton, H.M., (2007). "Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replicationin vivo ." Biochem. Society Trans35 (4): 826-828. Pramono, Z. A., Y. Takeshima, 等人(1996). "Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence." Biochem Biophys Res Commun226 (2): 445-9. Sazani, P., R. Kole, 等人(2007). Splice switching oligomers for the TNF superfamily receptors and their use in treatment of disease. PCT WO2007058894, University of North Carolina Sierakowska, H., M. J. Sambade, 等人(1996). "Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides." Proc Natl Acad Sci U S A93 (23): 12840-4. Summerton, J.及D. Weller (1997). "Morpholino antisense oligomers: design, preparation, and properties." Antisense Nucleic Acid Drug Dev7 (3): 187-95. Takeshima, Y., H. Nishio, 等人(1995). "Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe." J Clin Invest95 (2): 515-20. van Deutekom, J. C., M. Bremmer-Bout, 等人(2001). "Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells." Hum Mol Genet10 (15): 1547-54. van Deutekom, J. C., A. A. Janson, 等人(2007). "Local dystrophin restoration with antisense oligonucleotide PRO051." N Engl J Med357 (26): 2677-86. Wilton, S. D., A. M. Fall, 等人(2007). "Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript." Mol Ther15 (7): 1288-96. Wilton, S. D., F. Lloyd, 等人(1999). "Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides." Neuromuscul Disord9 (5): 330-8. Wu, B., H. M. Moulton, 等人(2008). "Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer." Proc Natl Acad Sci U S A105 (39): 14814-9. Wu, B., 等人(2012). "Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino." The Am. J. Pathol.181 (2): 392-400. Wu, P., 等人(2007) "Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity." Nucleic Acids Research35 (15): 5182-5191. Yin, H., H. M. Moulton, 等人(2008). "Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function." Hum Mol Genet17 (24): 3909-18. Yin, H., 等人(2011). "Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice." Mol. Ther19 (7): 1295-1303. Youngblood, D., 等人(2006). "Stability of cell-penetrating peptide- morpholino oligomer conjugates in human serum and in cells." Am. Chem. Soc.序列清單
Figure 108118324-A0304-0019
1 係描繪正常肌肉萎縮蛋白前驅mRNA及成熟mRNA之部分。
2 係描繪異常肌肉萎縮蛋白前驅mRNA(DMD之實例)及所得無功能不穩定肌肉萎縮蛋白之部分。
3 係描繪依替利森經設計以使外顯子51跳躍,恢復前驅mRNA之「框架內」閱讀。
4 提供在健康人類肌母細胞中藉由不同濃度之PMO#1及PPMO#1處理後96小時外顯子52跳躍之百分比的條形圖,如藉由RT-PCR所量測。誤差槓代表平均值± SD。
5A-5D 提供量測用PMO (PMO4225)或PPMO (PPMO4225)治療不同時間點[7天(5A)、30天(5B)、60天(5C)及90天(5D)]之mdx小鼠之四頭肌中之肌肉萎縮蛋白的西方墨點分析之代表性影像。
6A 提供線圖,其描繪在mdx小鼠之四頭肌中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定。
6B 提供線圖,其描繪在mdx小鼠之四頭肌中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之外顯子23跳躍之百分比,如藉由RT-PCR所測定。
7A-7D 提供量測用PMO (PMO4225)或PPMO (PPMO4225)治療不同時間點[7天(7A)、30天(7B)、60天(7C)及90天(7D)]之mdx小鼠之橫膈膜中之肌肉萎縮蛋白的西方墨點分析之代表性影像。
8A 提供線圖,其描繪在mdx小鼠之橫膈膜中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定。
8B 提供線圖,其描繪在mdx小鼠之橫膈膜中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之外顯子23跳躍之百分比,如藉由RT-PCR所測定。
9A-9D 提供量測用PMO (PMO4225)或PPMO (PPMO4225)治療不同時間點[7天(9A)、30天(9B)、60天(9C)及90天(9D)]之mdx小鼠之心臟中之肌肉萎縮蛋白的西方墨點分析之代表性影像。
10A 提供線圖,其描繪在mdx小鼠之心臟中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定。
10B 提供線圖,其描繪在mdx小鼠之心臟中在注射後90天內由PMO (PMO4225)或PPMO (PPMO4225)誘導之外顯子23跳躍之百分比,如藉由RT-PCR所測定。
11 提供免疫組織化學分析,其顯示在mdx小鼠左四頭肌中由PMO (PMO4225)或PPMO (PPMO4225)誘導之肌肉萎縮蛋白。
12A-B 提供量測用下列不同劑量之PMO (PMO4225)或PPMO (PPMO4225)治療之mdx小鼠之心臟中之肌肉萎縮蛋白的西方墨點分析之代表性影像:40 mg/kg、80 mg/kg及120 mg/kg。
13 提供條形圖,其描繪在以下列不同劑量注射後30天在mdx小鼠之心臟中由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定:40 mg/kg、80 mg/kg及120 mg/kg。
14A-B 提供量測用下列不同劑量之PMO (PMO4225)或PPMO (PPMO4225)治療之mdx小鼠之橫膈膜中之肌肉萎縮蛋白的西方墨點分析之代表性影像:40 mg/kg、80 mg/kg及120 mg/kg。
15 提供條形圖,其描繪在以下列不同劑量注射後30天在mdx小鼠之橫膈膜中由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定:40 mg/kg、80 mg/kg及120 mg/kg。
16A-B 提供量測用下列不同劑量之PMO (PMO4225)或PPMO (PPMO4225)治療之mdx小鼠之四頭肌中之肌肉萎縮蛋白的西方墨點分析之代表性影像:40 mg/kg、80 mg/kg及120 mg/kg。
17 提供條形圖,其描繪在以下列不同劑量注射後30天在mdx小鼠之四頭肌中由PMO (PMO4225)或PPMO (PPMO4225)誘導之野生型肌肉萎縮蛋白之百分比,如藉由西方墨點分析所測定:40 mg/kg、80 mg/kg及120 mg/kg。
18 係顯示藉由PMO合成方法B進行之偶合循環。
19 提供免疫組織化學分析,其顯示與mdx小鼠及野生型小鼠中之鹽水相比,在mdx小鼠橫膈膜及心臟中由PPMO (PPMO4225)誘導之肌肉萎縮蛋白及層黏蛋白。
20 提供在健康人類肌管中藉由不同濃度之PMO#1及PPMO#1處理後96小時外顯子52跳躍之百分比的條形圖,如藉由RT-PCR所量測。誤差槓代表平均值± SD。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 108118324-A0101-11-0002-1

Claims (17)

  1. 一種式(I)之反義寡聚物共軛物:
    Figure 03_image001
    (I) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列;且 T為選自以下之部分:
    Figure 03_image198
    Figure 03_image200
    ;及
    Figure 03_image202
    ; R1 為C1 -C6 烷基; 其中該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子52黏合位置互補。
  2. 如請求項1之反義寡聚物共軛物,其中各Nu係獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5‑甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
  3. 如請求項1之反義寡聚物共軛物,其中T為
    Figure 03_image204
    ,且該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’)。
  4. 一種式(V)之反義寡聚物:
    Figure 03_image011
    (V) 或其醫藥學上可接受的鹽,其中: 各Nu為核鹼基,其一起形成一靶向序列;且 T為選自以下之部分:
    Figure 03_image198
    Figure 03_image200
    ;及
    Figure 03_image202
    ; R1 為C1 -C6 烷基;且 R2 係選自H或乙醯基, 其中該靶向序列係與名為H52A(-01+24)之肌肉萎縮蛋白前驅mRNA中的外顯子52黏合位置互補。
  5. 如請求項4之反義寡聚物,其中各Nu係獨立地選自胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5‑甲基胞嘧啶(5mC)、尿嘧啶(U)及次黃嘌呤(I)。
  6. 如請求項4之反義寡聚物,其中T為
    Figure 03_image204
    ,且該靶向序列為SEQ ID NO: 1 (5’‑CTGTTCCAAATCCTGCATTGTTGCC-3’)。
  7. 一種式(IV)之反義寡聚物共軛物:
    Figure 03_image207
    (IV) 或其醫藥學上可接受的鹽。
  8. 如請求項7之反義寡聚物共軛物,其中該反義寡聚物具有式(IVA):
    Figure 03_image209
    (IVA)。
  9. 一種式(VIIA)之反義寡聚物:
    Figure 03_image211
    (VIIA) 或其醫藥學上可接受的鹽。
  10. 一種醫藥組合物,其包括如請求項1至3、7或8中任一項之反義寡聚物共軛物或其醫藥學上可接受的鹽,以及醫藥學上可接受的載劑。
  11. 一種如請求項1至3、7或8中任一項之反義寡聚物共軛物或其醫藥學上可接受的鹽之用途,其係用於製備在有需要之個體中治療杜顯氏肌肉萎縮症(DMD)之藥物,其中該個體具有適於外顯子52之肌肉萎縮蛋白基因突變。
  12. 如請求項11之用途,其中該治療包括每周、每兩周、每三周或每月向該個體投與該反義寡聚物共軛物。
  13. 如請求項11或12之用途,其中該治療包括以約30 mg/kg、約40 mg/kg、約60 mg/kg、約80 mg/kg或約160 mg/kg之劑量向該個體投與該反義寡聚物共軛物。
  14. 一種如請求項10之醫藥組合物之用途,其係用於製備在有需要之個體中治療杜顯氏肌肉萎縮症(DMD)之藥物,其中該個體具有適於外顯子52之肌肉萎縮蛋白基因突變。
  15. 一種醫藥組合物,包括如請求項4至6或9中任一項之反義寡聚物或其醫藥學上可接受的鹽,以及醫藥學上可接受的載劑。
  16. 一種如請求項4至6或9中任一項之反義寡聚物或其醫藥學上可接受的鹽之用途,其係用於製備在有需要之個體中治療杜顯氏肌肉萎縮症(DMD)之藥物,其中該個體具有適於外顯子52之肌肉萎縮蛋白基因突變。
  17. 一種如請求項15之醫藥組合物之用途,其係用於製備在有需要之個體中治療杜顯氏肌肉萎縮症(DMD)之藥物,其中該個體具有適於外顯子52之肌肉萎縮蛋白基因突變。
TW108118324A 2018-05-29 2019-05-28 用於肌肉萎縮症之外顯子跳躍寡聚物共軛物 TW202015697A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862677484P 2018-05-29 2018-05-29
US62/677,484 2018-05-29
US15/993,287 US10765760B2 (en) 2018-05-29 2018-05-30 Exon skipping oligomer conjugates for muscular dystrophy
US15/993,267 US10758629B2 (en) 2018-05-29 2018-05-30 Exon skipping oligomer conjugates for muscular dystrophy
US15/993,287 2018-05-30
US15/993,267 2018-05-30

Publications (1)

Publication Number Publication Date
TW202015697A true TW202015697A (zh) 2020-05-01

Family

ID=68694919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118324A TW202015697A (zh) 2018-05-29 2019-05-28 用於肌肉萎縮症之外顯子跳躍寡聚物共軛物

Country Status (16)

Country Link
US (6) US10765760B2 (zh)
EP (1) EP3801544A4 (zh)
JP (1) JP7370344B2 (zh)
KR (1) KR20210016396A (zh)
AR (1) AR117587A1 (zh)
AU (1) AU2019276995A1 (zh)
BR (1) BR112020024349A2 (zh)
CA (1) CA3101228A1 (zh)
CL (1) CL2020003030A1 (zh)
EA (1) EA202092772A1 (zh)
IL (1) IL278966A (zh)
MA (1) MA52801A (zh)
MX (1) MX2020012645A (zh)
SG (1) SG11202010018UA (zh)
TW (1) TW202015697A (zh)
WO (1) WO2019231824A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
JP2023515974A (ja) * 2020-02-28 2023-04-17 アイオーニス ファーマシューティカルズ, インコーポレーテッド Scn1a発現を調節するための化合物及び方法
EP4314016A1 (en) 2021-03-31 2024-02-07 Entrada Therapeutics, Inc. Cyclic cell penetrating peptides
AU2022271873A1 (en) 2021-05-10 2024-01-04 Entrada Therapeutics, Inc. Compositions and methods for intracellular therapeutics
WO2023205451A1 (en) 2022-04-22 2023-10-26 Entrada Therapeutics, Inc. Cyclic peptides for delivering therapeutics

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH445129A (fr) 1964-04-29 1967-10-15 Nestle Sa Procédé pour la préparation de composés d'inclusion à poids moléculaire élevé
US3459731A (en) 1966-12-16 1969-08-05 Corn Products Co Cyclodextrin polyethers and their production
US3426011A (en) 1967-02-13 1969-02-04 Corn Products Co Cyclodextrins with anionic properties
US3453257A (en) 1967-02-13 1969-07-01 Corn Products Co Cyclodextrin with cationic properties
US3453259A (en) 1967-03-22 1969-07-01 Corn Products Co Cyclodextrin polyol ethers and their oxidation products
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US5217866A (en) 1985-03-15 1993-06-08 Anti-Gene Development Group Polynucleotide assay reagent and method
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5521063A (en) 1985-03-15 1996-05-28 Antivirals Inc. Polynucleotide reagent containing chiral subunits and methods of use
EP0215942B1 (en) 1985-03-15 1995-07-12 Antivirals Inc. Polynucleotide assay reagent and method
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
KR0166088B1 (ko) 1990-01-23 1999-01-15 . 수용해도가 증가된 시클로덱스트린 유도체 및 이의 용도
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
EP0786522A2 (en) 1992-07-17 1997-07-30 Ribozyme Pharmaceuticals, Inc. Enzymatic RNA molecules for treatment of stenotic conditions
EP0698092B1 (en) 1993-05-11 2007-07-25 The University Of North Carolina At Chapel Hill Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5753613A (en) 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
IL115849A0 (en) 1994-11-03 1996-01-31 Merz & Co Gmbh & Co Tangential filtration preparation of liposomal drugs and liposome product thereof
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US7572582B2 (en) 1997-09-12 2009-08-11 Exiqon A/S Oligonucleotide analogues
WO1999042091A2 (en) 1998-02-19 1999-08-26 Massachusetts Institute Of Technology Use of polycations as endosomolytic agents
US6683173B2 (en) 1998-04-03 2004-01-27 Epoch Biosciences, Inc. Tm leveling methods
US6210892B1 (en) 1998-10-07 2001-04-03 Isis Pharmaceuticals, Inc. Alteration of cellular behavior by antisense modulation of mRNA processing
JP2000125448A (ja) 1998-10-14 2000-04-28 Yazaki Corp 電気接続箱
JP2000256547A (ja) 1999-03-10 2000-09-19 Sumitomo Dow Ltd 耐熱性プラスチックカード用樹脂組成物
US7084125B2 (en) 1999-03-18 2006-08-01 Exiqon A/S Xylo-LNA analogues
KR100782896B1 (ko) 1999-05-04 2007-12-06 엑시콘 에이/에스 L-리보-lna 유사체
JP2000325085A (ja) 1999-05-21 2000-11-28 Masafumi Matsuo デュシェンヌ型筋ジストロフィー治療剤
WO2001047496A1 (en) 1999-12-29 2001-07-05 Mixson A James Histidine copolymer and methods for using same
US7070807B2 (en) 1999-12-29 2006-07-04 Mixson A James Branched histidine copolymers and methods for using same
US6653467B1 (en) 2000-04-26 2003-11-25 Jcr Pharmaceutical Co., Ltd. Medicament for treatment of Duchenne muscular dystrophy
US6727355B2 (en) 2000-08-25 2004-04-27 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
EP1191097A1 (en) 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
EP1446412B1 (en) 2001-09-04 2012-03-07 Exiqon A/S Novel lna compositions and uses thereof
KR100464261B1 (ko) 2002-01-24 2005-01-03 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
KR20030084444A (ko) 2002-04-26 2003-11-01 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
US7569575B2 (en) 2002-05-08 2009-08-04 Santaris Pharma A/S Synthesis of locked nucleic acid derivatives
WO2004043977A2 (en) 2002-11-05 2004-05-27 Isis Pharmaceuticals, Inc. 2’-fluoro substituted oligomeric compounds and compositions for use in gene modulations
CA2507125C (en) 2002-11-25 2014-04-22 Masafumi Matsuo Ena nucleic acid pharmaceuticals capable of modifying splicing of mrna precursors
CA2524255C (en) 2003-03-21 2014-02-11 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
US7211668B2 (en) 2003-07-28 2007-05-01 Panagene, Inc. PNA monomer and precursor
EP4272748A3 (en) 2004-06-28 2024-03-27 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
AU2006237727B2 (en) 2005-04-22 2012-06-28 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mRNA by interfering with the binding of SR proteins and by interfering with secondary RNA structure.
KR101789603B1 (ko) 2005-11-10 2017-11-21 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 Tnf 수퍼패밀리 수용체에 대한 스플라이스 스위칭올리고머 및 염증성 질환 치료용 약제학적 조성물
WO2007133105A1 (en) 2006-05-17 2007-11-22 Svetlana Anatolevna Sokolova Transport means
JP5575486B2 (ja) 2007-01-18 2014-08-20 ユニヴァーシティ オブ ミズーリー−コロンビア 筋鞘にnNOSを回復させる合成ミニ/ミクロジストロフィン遺伝子
JP2010533170A (ja) 2007-07-12 2010-10-21 プロセンサ テクノロジーズ ビー.ブイ. 化合物を種々の選択された臓器、組織又は腫瘍細胞に標的化するための分子
EP2203173B1 (en) 2007-10-26 2015-12-23 Academisch Ziekenhuis Leiden Means and methods for counteracting muscle disorders
US8076476B2 (en) 2007-11-15 2011-12-13 Avi Biopharma, Inc. Synthesis of morpholino oligomers using doubly protected guanine morpholino subunits
WO2009064471A1 (en) 2007-11-15 2009-05-22 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
US8299206B2 (en) 2007-11-15 2012-10-30 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
US8084601B2 (en) 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
JP5864257B2 (ja) 2008-10-24 2016-02-17 サレプタ セラピューティクス, インコーポレイテッド Dmdのための複数のエキソンスキッピング組成物
ES2532634T5 (es) 2008-10-27 2018-04-30 Biomarin Technologies B.V. Procedimientos y medios para el salto eficiente del exón 45 en el pre-ARNm de la distrofia muscular de Duchenne
KR101881596B1 (ko) 2008-12-02 2018-07-24 웨이브 라이프 사이언시스 재팬 인코포레이티드 인 원자 변형된 핵산의 합성 방법
JP2012523225A (ja) 2009-04-10 2012-10-04 アソシアシオン・アンスティテュ・ドゥ・ミオロジー 疾患の処置のためのトリシクロ−dnaアンチセンスオリゴヌクレオチド、組成物及び方法
US20120046342A1 (en) 2009-04-24 2012-02-23 Prosensa Technologies B.V. Oligonucleotide comprising an inosine for treating dmd
SG177564A1 (en) 2009-07-06 2012-02-28 Ontorii Inc Novel nucleic acid prodrugs and methods of use thereof
US8470987B2 (en) 2009-09-16 2013-06-25 Chiralgen, Ltd. Protective group for synthesis of RNA and derivative
CN105838714B (zh) * 2009-11-12 2020-07-17 西澳大利亚大学 反义分子和治疗疾病的方法
TWI541024B (zh) 2010-09-01 2016-07-11 日本新藥股份有限公司 反義核酸
WO2012039448A1 (ja) 2010-09-24 2012-03-29 株式会社キラルジェン 不斉補助基
JP2014507143A (ja) 2011-02-08 2014-03-27 ザ シャーロット−メクレンバーグ ホスピタル オーソリティ ドゥーイング/ビジネス/アズ キャロライナズ ヘルスケア システム アンチセンスオリゴヌクレオチド
US9161948B2 (en) * 2011-05-05 2015-10-20 Sarepta Therapeutics, Inc. Peptide oligonucleotide conjugates
DK2581448T3 (en) 2011-10-13 2015-04-27 Ass Inst De Myologie Tricyclo-DNA phosphorothioate
KR102271212B1 (ko) 2011-11-18 2021-07-01 사렙타 쎄러퓨틱스, 인코퍼레이티드 기능적으로-변형된 올리고뉴클레오티드 및 이의 서브유니트
CA2861247C (en) 2011-12-28 2021-11-16 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
CN104203289B (zh) 2012-01-27 2020-11-03 比奥马林技术公司 用于治疗杜兴型肌营养不良症和贝克型肌营养不良症的具有改善特性的rna调节性寡核苷酸
DE102012101676A1 (de) 2012-02-29 2013-08-29 Klaus-Dieter Rösler Verfahren und Vorrichtung zum Bearbeiten von Formularen mit einer Datenverarbeitungsanlage
AU2013285698A1 (en) 2012-07-03 2015-02-19 Biomarin Technologies B.V. Oligonucleotide for the treatment of muscular dystrophy patients
KR102213609B1 (ko) 2012-07-13 2021-02-08 웨이브 라이프 사이언시스 리미티드 키랄 제어
EP2872485B1 (en) 2012-07-13 2020-12-16 Wave Life Sciences Ltd. Asymmetric auxiliary group
KR20200143739A (ko) 2012-12-20 2020-12-24 사렙타 쎄러퓨틱스 인코퍼레이티드 근위축증을 치료하기 위한 개선된 엑손 스키핑 조성물
EA035882B1 (ru) 2013-03-14 2020-08-27 Сарепта Терапьютикс, Инк. Антисмысловые олигонуклеотиды, обеспечивающие пропуск экзонов, для лечения мышечной дистрофии
DK2970964T3 (en) 2013-03-14 2019-04-01 Sarepta Therapeutics Inc EXON SKIPPING COMPOSITIONS FOR TREATMENT OF MUSCLE DYROPHY
BR112015022998A2 (pt) 2013-03-15 2017-11-14 Sarepta Therapeutics Inc composições melhoradas para o tratamento de distrofia muscular
WO2015108047A1 (ja) 2014-01-15 2015-07-23 株式会社新日本科学 免疫誘導活性を有するキラル核酸アジュバンド及び免疫誘導活性剤
JPWO2015108046A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 抗アレルギー作用を有するキラル核酸アジュバンド及び抗アレルギー剤
JPWO2015108048A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 抗腫瘍作用を有するキラル核酸アジュバンド及び抗腫瘍剤
AU2015207773B2 (en) 2014-01-16 2021-06-17 Wave Life Sciences Ltd. Chiral design
RU2730681C2 (ru) 2014-03-12 2020-08-24 Ниппон Синяку Ко., Лтд. Антисмысловые нуклеиновые кислоты
EP3143141B1 (en) * 2014-05-16 2019-10-02 Oregon State University Antisense antibacterial compounds and methods
WO2015179742A1 (en) * 2014-05-23 2015-11-26 Genzyme Corporation Multiple oligonucleotide moieties on peptide carrier
US9840706B2 (en) 2014-06-17 2017-12-12 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
WO2016070166A2 (en) 2014-11-02 2016-05-06 Arcturus Therapeutics, Inc. Messenger una molecules and uses thereof
MA43072A (fr) 2015-07-22 2018-05-30 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
EP3332008A4 (en) 2015-09-23 2019-01-16 Université Laval CHANGE OF THE DYSTROPHINE GENE AND USES THEREOF
CR20180233A (es) 2015-10-09 2018-05-25 Wave Life Sciences Ltd Composiciones oligonucleotídicas y sus métodos
JP2018530560A (ja) * 2015-10-09 2018-10-18 サレプタ セラピューティクス, インコーポレイテッド デュシェンヌ型筋ジストロフィーおよび関連障害の処置のための組成物および方法
MA45290A (fr) 2016-05-04 2019-03-13 Wave Life Sciences Ltd Procédés et compositions d'agents biologiquement actifs
MA45270A (fr) 2016-05-04 2017-11-09 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
JP2019525742A (ja) * 2016-06-30 2019-09-12 サレプタ セラピューティクス, インコーポレイテッド 筋ジストロフィーに対するエクソンスキッピングオリゴマー
AU2017382773A1 (en) 2016-12-19 2019-08-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11402658B2 (en) 2019-07-30 2022-08-02 General Scientific Corp. / Surgitel Removable, adjustable wire arms for nose pads

Also Published As

Publication number Publication date
WO2019231824A1 (en) 2019-12-05
US10758629B2 (en) 2020-09-01
CN112384222A (zh) 2021-02-19
EA202092772A1 (ru) 2021-07-20
US11338041B2 (en) 2022-05-24
US20190365918A1 (en) 2019-12-05
SG11202010018UA (en) 2020-12-30
MA52801A (fr) 2021-04-14
KR20210016396A (ko) 2021-02-15
EP3801544A4 (en) 2022-11-30
US20230110479A1 (en) 2023-04-13
US20190365919A1 (en) 2019-12-05
MX2020012645A (es) 2021-01-29
JP2021526017A (ja) 2021-09-30
US20240042049A1 (en) 2024-02-08
US11491238B2 (en) 2022-11-08
CA3101228A1 (en) 2019-12-05
US10765760B2 (en) 2020-09-08
EP3801544A1 (en) 2021-04-14
CL2020003030A1 (es) 2021-05-24
US20210138079A1 (en) 2021-05-13
AU2019276995A1 (en) 2021-01-28
BR112020024349A2 (pt) 2021-02-23
WO2019231824A8 (en) 2021-01-21
AR117587A1 (es) 2021-08-18
US20210138078A1 (en) 2021-05-13
JP7370344B2 (ja) 2023-10-27
IL278966A (en) 2021-01-31

Similar Documents

Publication Publication Date Title
TWI794197B (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物結合物
TWI760402B (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物結合物
TWI780095B (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物結合物
KR20200057029A (ko) 근육 이상증에 대한 엑손 스킵핑 올리고머 결합체
TW202015697A (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物共軛物
TW201811807A (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物
CN113412330A (zh) 用于肌营养不良的外显子跳跃寡聚物缀合物
CN112384222B (zh) 用于肌营养不良的外显子跳跃寡聚物缀合物
TW202020153A (zh) 用於肌肉萎縮症之外顯子跳躍寡聚物
JP2024009344A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマーおよびオリゴマーコンジュゲート
EP4219717A2 (en) Exon skipping oligomers for muscular dystrophy
JP2021526807A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマーおよびオリゴマーコンジュゲート
EA044076B1 (ru) Конъюгаты олигомеров для пропуска экзона при мышечной дистрофии