TW201925764A - 用於偵測玻璃片上之表面缺陷的方法及設備 - Google Patents

用於偵測玻璃片上之表面缺陷的方法及設備 Download PDF

Info

Publication number
TW201925764A
TW201925764A TW107140151A TW107140151A TW201925764A TW 201925764 A TW201925764 A TW 201925764A TW 107140151 A TW107140151 A TW 107140151A TW 107140151 A TW107140151 A TW 107140151A TW 201925764 A TW201925764 A TW 201925764A
Authority
TW
Taiwan
Prior art keywords
light
glass sheet
scattered
defect
aligned
Prior art date
Application number
TW107140151A
Other languages
English (en)
Other versions
TWI790311B (zh
Inventor
傑佛瑞艾倫 樓氏
柯瑞羅伯特 烏斯坦尼克
張家祥
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201925764A publication Critical patent/TW201925764A/zh
Application granted granted Critical
Publication of TWI790311B publication Critical patent/TWI790311B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8967Discriminating defects on opposite sides or at different depths of sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Landscapes

  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本案揭露用於偵測在一材料片之表面上的缺陷的方法,該方法包括對準一光束並藉一光束分離器橫斷該經對準光束的步驟。該光束分離器導引經橫斷的該經對準光束的一第一部分以照亮該片的一第一表面,其中照亮該第一表面的光的一第一部分被反射而該照亮光的一第二部分由一缺陷所散射。該經反射光及該經散射光被一第一透鏡元件接收,該第一透鏡元件將該經反射光及該經散射光導引至一反向孔徑。該經反射光被該反向孔徑擋住而該經散射光被該反向孔徑透射。該反向孔徑所透射的該經散射光被一第二透鏡元件導引至一成像裝置。

Description

用於偵測玻璃片上之表面缺陷的方法及設備
本揭示案有關用於光學檢測的方法及設備,尤其有關用於偵測一材料片(諸如玻璃片)上之表面缺陷的方法及設備。
透明材料片(例如玻璃、寶石、或礦物(像是藍寶石))或聚合物片,被使用在各式各樣不同裝置應用中,包括做為像是LCD(液晶顯示器)面板之顯示面板及/或做為用於此類面板之保護罩。此種顯示裝置及包含其之面板被製作成越來越薄且輕,因此需要材料片也越來越薄且輕。
用於顯示面板或罩的常見透明片是利用玻璃片製作的。原始或開始的玻璃基板能利用一機械程序(例如研磨及拋光)或化學程序(例如蝕刻及拋光)被薄化,以達到最後玻璃片的所欲厚度(例如從大約0.1 mm至大約0.7 mm)。在薄化程序期間,可能形成表面缺陷。例如,在化學薄化期間,凹陷(凹痕)形式及/或凸出(凸起)形式(也分別稱為「凹點」或「凸點」)的缺陷能經形成在玻璃表面中或玻璃表面上。該些缺陷的常見橫向程度範圍能從大約10微米(mm)到數厘米(mm),而其常見垂直尺寸(即相對於表面平均值的深度或高度)能大至四分之一微米。此種缺陷在光學顯示裝置中輕易可見,因此薄化玻璃基板應該經偵測出表面缺陷使得能移除該缺陷,或者將有故障的基板破壞。
目前,利用人工的方法來偵測材料片找出缺陷。不幸地,人工的檢測為勞力密集的、不一致的、且費時的。例如,檢測一個大的、製造規模(production-sized)的片可能花上許多小時。要決定缺陷的定向也有困難。換言之,偵測設備不一定具有均向性(isotropic)的檢測能力。
需要的是能夠在對缺陷之定向沒有敏感性之下偵測在大尺寸材料片(像是玻璃片)中之缺陷(例如刻痕)的偵測設備。
按照本揭示案,揭露了一種偵測玻璃片之一表面上的缺陷的方法,該方法包含對準自一光源發出的一光束,及藉一光束分離器橫斷經對準的該光束的步驟。該光束分離器將經橫斷的該經對準光束的一第一部分朝向該玻璃片的一第一表面導引,使得經橫斷的該經對準光束的該經導引部分照亮該玻璃片的該第一表面。照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射。該方法進一步包含藉一第一透鏡元件接收該經反射光及該經散射光之步驟,該第一透鏡元件將該經反射光及該經散射光導引至一反向孔徑,其中該經反射光被該反向孔徑擋住而該經散射光被該反向孔徑透射。該方法可仍進一步包含藉一第二透鏡元件將該反向孔徑所透射的該經散射光導引至一成像裝置並偵測該經散射光之步驟。
該光源可為一雷射、一發光二極體、或一白光源。該光源可包含或發射一或更多個可見波長。
該方法可進一步包含:其中該經反射光由包含該反向孔徑的一不透明盤阻擋,而該經散射光由圍繞該不透明盤的一透明區域透射。
在一些實施例中,橫斷該光束分離器的該經對準的光的一第二部分後續地入射在一光束收集器上。
在一些實施例中,該玻璃片從一第一位置被移動到一第二位置,經橫斷的該經對準光束的經導引的部分在該第一位置處不照亮該玻璃片的該表面,經橫斷的該經對準光束的經導引的部分在該第二位置處照亮該玻璃片的該第一表面,該方法進一步包含下列步驟:在該玻璃片從該第一位置被移動到該第二位置同時監測該玻璃片;當該玻璃片在該第一位置中時,監測由該光源發出的該光,若該光源的一輸出功率與一預定輸出功率不同則調整該光源的該輸出功率;及當該玻璃片在該第二位置中時,停用對由該光源發出的該光的監測。
該第一與第二透鏡元件能包含一透鏡組合件,而在一些實施例中,該方法進一步包含將該透鏡組合件的一焦點位移至該玻璃片的一第二表面,該第二表面相對於該第一主要表面,或者將該透鏡組合件的一焦點位移至該第一主要表面與該第二主要表面中間的一位置之步驟。
在又另一實施例中,說明了一種偵測一玻璃片之一表面上的缺陷的方法,該方法包含下列步驟:在一輸送方向中輸送一玻璃片,複數個缺陷偵測模組橫跨該玻璃片的一橫向維度排列成一第一陣列,各缺陷偵測模組:對準自一光源發出的一光束;藉一光束分離器橫斷經對準的該光束,該光束分離器將經橫斷的該經對準光束的一第一部分朝向該移動中玻璃片的一第一表面導引,使得經橫斷的該經對準光束的該經導引部分照亮該玻璃片的該第一表面,其中照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射;藉一第一透鏡元件接收該經反射光及該經散射光,該第一透鏡元件將該經反射光及該經散射光導引至一反向孔徑,其中該經反射光被該反向孔徑擋住而該經散射光被該反向孔徑透射;及藉一第二透鏡元件將該反向孔徑所透射的該經散射光導引至一成像裝置並偵測該經散射光。
該第一缺陷偵測模組陣列可為(例如)一線性陣列。
在一些實施例中,該輸送方向正交於線性的該第一缺陷偵測模組陣列的方向。
在一些實施例中,該複數個缺陷偵測模組能包含相對於該第一缺陷偵測模組陣列的一第二缺陷偵測模組陣列。
在一些實施例中,該玻璃片在該輸送方向中從一第一位置被輸送到一第二位置,對於各缺陷偵測模組經橫斷的該經對準光束的該經導引部分在該第一位置處不照亮該玻璃片的該表面,經橫斷的該經對準光束的該經導引部分在該第二位置處照亮該玻璃片的該第一表面,該方法進一步包含下列步驟:在該玻璃片從該第一位置被移動到該第二位置同時監測該玻璃片;當該玻璃片在該第一位置中時,對於各缺陷偵測模組監測由該光源發出的該光,若該光源的一輸出功率與一預定輸出功率不同則調整該光源的該輸出功率;及當該玻璃片在該第二位置中時,對於各缺陷偵測模組停用對由該光源發出的該光的監測。
對於各缺陷偵測模組該第一與第二透鏡元件能包含一透鏡組合件,其中該方法進一步包含位移該透鏡組合件的一焦點,例如在該玻璃片的一厚度內位移該焦點之步驟。
在又另一實施例中,揭露一種用於偵測一材料片上之表面缺陷的設備,該設備包含:一光源;一光束分離器,該光束分離器經配置以將經橫斷的該經對準光束的一第一部分朝向該玻璃片的一第一表面導引,使得經橫斷的該經對準光束的該經導引部分照亮該玻璃片的該第一表面,其中照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射;一透鏡組合件,該透鏡組合件包含一第一透鏡元件及一第二透鏡元件;一反向孔徑,該反向孔徑經定位在該第一與第二透鏡元件之間,該反向孔徑經配置以阻擋背景光並透射該經散射光;及一成像裝置,該成像裝置經配置以偵測被透射的該經散射光。
本文中揭露之實施例的額外特徵及優點將在以下的詳細說明中闡述,且部分將為本領域之技術人員從說明中或藉實現本文中(包括以下的詳細說明、申請專利範圍、還有隨附的圖式)所述實施例可輕易得知。
將理解以上的概略說明及以下的詳細說明兩者都描述了各種實施例且意圖提供概觀或框架,以供了解本案所請標的的性質及特性。隨附的圖式經包括以提供對各種實施例的進一步了解,且該些圖式經併入而構成本說明書之一部分。該些圖式描繪了本文中描述各種實施例,並與說明書一起負責解釋本案所請標的之原理及操作。
現將詳細參照本揭示案之實施例,實施例的範例經圖示在隨附圖式中。只要在可能的時候,在整份圖式中將使用相同的參考元件符號來指稱相同或類似的部件。然而,本揭示案可在許多不同形式中實現,且不應被解讀為受限於本文所闡述的該些實施例。
本文中能將範圍表達成從「大約」一特定值開始,及/或到「大約」另一特定值。當表達出此一範圍時,另一實施例包括從該一特定值到另一特定值。類似地,當藉由前置詞「大約」將數值表達成趨近值時,將理解該特定值形成另一實施例。將進一步理解到該些範圍之各者的端點在相對於另一端點而言、及獨立於另一端點而言,兩者都是顯著的。
本文中所使用的方向性用語-例如上、下、右、左、前、後、頂部、底部-僅相對於所繪圖式所做,並不意圖隱含絕對方位。
除非有相反地明確指明,完全沒有意圖將本文闡述之任何方法解讀為必須以特定順序進行其步驟,也並非不需藉由任何設備、特定的方位。據此,當一方法請求項其實沒有記載其步驟所遵循的順序時、或是任何設備請求項其實沒有記載其個別組件之順序或方位時、或者在申請專利範圍或說明書中沒有相反地特定說明其步驟將受限於一特定順序時、或是一設備之組件的特定順序或排列未被記載時,完全沒有意圖在任何態樣推斷出一順序或方位。此適用於任何可能的非明確解讀基礎,包括:針對步驟之安排、操作流程、組件順序、或組件之排列的邏輯問題;從文法結構或標點符號推導出的簡單語意;以及說明書中所述實施例之個數或類型。
如本文中所使用的,單數形式「一」、「一個」及「該」包括複數參照,除非前後文清楚地相反指明。因此,例如,對「一」組件的參照包括具有兩個或更多個此種組件的態樣,除非前後文清楚地相反指明。
用詞「例示性」、「範例」、或其不同形式經使用在本文中來表示作為一範例、實例、或例證。本文中作為「例示性」的或作為「範例」說明的任何態樣或設計不一定將被解讀為比起其他態樣或設計為較佳的或有優勢的。此外,範例之提供完全是為了清楚及理解之用意,並非意圖以任何方式限制或侷限所揭示的標的或本揭示案之相關部分。將了解,可呈現出無數種具不同範疇的額外或替代實施例,但該些額外或替代實施例為簡潔之目的已被省略。
現今用於偵測一材料片(例如像是玻璃片之透明材料)中之表面缺陷的方法包含當該玻璃片在一輸送方向中被輸送時透射通過該玻璃片之一經對準光,並將該玻璃片成像(例如由該經對準光照明的部分)到一感測器上。在本揭示案之實施例可適用於不透明或半透明材料的同時, 已顯示此種實施例對透明材料特別有效,因為表面缺陷的成像能從玻璃片之兩主要表面獲得,不須將分別的設備定位於鄰接相對之主要表面。然而,已發現某些缺陷(像是刻痕)相對於用來照亮該缺陷之光的方向及角度的方位能影響該缺陷的可偵測度。例如,刻痕典型是延長的缺陷而因此能展現可辨別出的方向。此種延長的缺陷可能與照明方向對準、正交於照明方向、或於其間的一中間角度處(也了解到特定缺陷不一定整個是線性的)。若照明相對於入射表面具有低(掠射)角度且缺陷方向對準照明方向,則能展現此種缺陷的成像。
第1圖圖示例示性玻璃片10,該玻璃片包含第一主要表面12及相對第一表面12的第二主要表面14,第一與第二主要表面12、14界定了其間的厚度T。在一些實施例中, 玻璃片10可為透明玻璃片,例如對照明光為透明的。如本文中所使用的,透明應被解讀為表示材料的透射率等於或大於照明之波長(例如中心波長)處的90%。第一表面12與第二表面14平行(或實質上平行),而厚度T能為(例如)等於或小於大約2 mm,例如等於或小於大約1.5 mm、等於或小於大約1 mm、等於或小於大約0.7 mm、等於或小於大約0.5 mm、等於或小於大約0.3 mm、或等於或小於大約0.1 mm。然而,在進一步實施例中,厚度T能大於2 mm,因為表面缺陷(特別是在面向偵測設備之表面上的缺陷)的方向一般不被材料片之厚度影響。按照本實施例,第一表面12經顯示包含正交於入射光18延伸的刻痕16,該入射光18以相對於第一表面12的低入射角度起始自該玻璃片的一側。玻璃片10在輸送方向20中輸送,該輸送方向也正交於刻痕16。入射光14後續地在大略正交於刻痕16之方向的一方向中被刻痕16散射。換言之,若入射光被認為位在正交於玻璃片表面且正交於該刻痕的一平面中,則來自該刻痕的經散射光20大概位在相同平面中而經散射光22能被偵測器24所收集。此當然是簡單化,因為經散射光通常不是或不必然是平面的,但此對論述而言夠有啟發性。
第2圖圖示例示性玻璃片10,該玻璃片經排列使得刻痕16平行於入射光18且平行於輸送方向20延伸。入射光18(再次從相對於第一表面12的低角度照亮該刻痕)後續地被該刻痕在沿著刻痕方向的一方向中散射。在此實例中,經散射光22的可偵測度依刻痕方向及入射角度而異。若入射角度是相對於玻璃片10之表面的小角度(例如20度內),則散射角度絕大部分也將是小角度。此實例中的經散射光可能不被偵測器24接收,或者夠微弱而不能輕易偵測。據此,第1及2圖圖示低角度照明加上缺陷之方向性如何能造成有問題的缺陷偵測。
另一方面,第3及4圖描繪一情況,其中入射光18經導向正交於(或實質上正交於)玻璃片10的第一表面12(入射光18在圖中經顯示大致重合於偵測器24的一軸),而刻痕的可偵測度不依刻痕的方位而異(為了簡化,入射光18被刻痕16所為的散射在第3及4圖中經顯示在單一、正交的平面中)。因此,第3圖圖示在輸送方向20中移動的玻璃片10,該輸送方向20正交於刻痕16,而經散射光20在正交於刻痕16的一平面中延伸。第4圖描繪在輸送方向20中移動的玻璃片10,該輸送方向20平行於刻痕16,而經散射光20在平行於刻痕16的一平面中延伸。在兩情況中,經散射光20能被包括一偵測軸的偵測器24接收,該偵測軸正交於該玻璃片的(一或多個)主要表面。
考量以上所述,第5圖圖示例示性偵測設備100,該設備經配置以利用第3及4圖的原理提供對材料片上之表面缺陷的均向性缺陷偵測。為了例示之用途而非限制,將要偵測之缺陷所在的材料片將被描述成一透明玻璃片,像是適合用於顯示裝置之製造的視覺上透明的玻璃片。據此,缺陷可包括(但不限於)凸點、凹點(像是從模造操作產生的凹點)、表面殘留物、刻痕、石頭(例如用以產生玻璃片的未熔化原始材料)、黏著玻璃碎片、黏著到玻璃片表面的纖維或其他粒子、表面夾雜物、及污點。如本文中所使用的,均向性缺陷偵測指的是不依賴缺陷之排列方位(尤其是在玻璃片表面中的排列方位)所做的表面缺陷偵測。設備100包含包括光源102的偵測模組101、準直器104、光束分離器108、透鏡組合件110、及反向孔徑116,準直器104經排列以對準由光源102發射的光106,光束分離器108經定位以橫斷經對準光106,該透鏡組合件110包含第一、前透鏡元件112及第二、後透鏡元件114,該反向孔徑116經定位在第一與第二透鏡元件112、114之間。透鏡組合件110可(例如)包含一遠心鏡頭。
偵測模組101可進一步包括成像裝置118,該成像裝置包含成像感測器120。在一些實施例中,成像感測器120可連接至一控制器及可選擇地一計算系統、可選擇地一監視器(顯示裝置)、及可選擇地一錄製裝置,依照將要如何檢視及/或儲存成像感測器120所獲取之影像以供未來檢視及/或分析而異。
偵測設備100可仍進一步包含輸送設備122,該輸送設備經配置以在輸送方向20中輸送該玻璃片經過偵測模組101。輸送設備122可包括(例如)一或更多個無盡的履帶124,該些履帶124經排列以在輸送方向 20中傳輸玻璃片10。輸送設備122可包括空隙126經定位以使得第一表面12(來自光源102的光,例如由光束分離器108反射的光,入射至第一表面)不受妨礙(例如,經調整大小及定位以容納-不阻礙-透鏡110的視域)。例如,輸送設備122可包含至少兩個無盡的履帶,該些履帶經排列成環形,環形的端點間具有空隙。其他實施例中,輸送設備122 可包含空氣軸承(air bearings),例如經端到端定位且其間具有空隙的多個空氣軸承,其中玻璃片10從一第一空氣軸承在該空氣軸承上、在空隙上、且繼續被輸送到下一空氣軸承。在玻璃片10被圖示為在一水平方向上輸送的同時,本文中揭露之設備及方法可經配置成其他排列方位。例如,玻璃片10可經定位在一垂直排列方位中,或在偏離垂直排列方位中(例如在5度至20度且被空氣軸承支援的一角度)。本領域之通常知識者能輕易設想出其他玻璃片排列方位及輸送方法,而本文中所述實施例不特定被隨附圖式中例示配置方式所限。
仍參看第5圖,光源102所發出的光106被準直器104對準而經對準光128入射在光束分離器108上。光束分離器108將入射的經對準光128分離成兩個光束:一個光束(由光線130表示)透射穿過光束分離器108,而第二光束(由光線132表示)被反射向下,朝向玻璃片10之第一表面12並正交於(或實質上正交於)玻璃片10之第一表面12。如本文中所使用的,實質上正交意圖表示在垂直於參考表面或方向(例如第一表面12)的20度之內,像是10度之內、5度之內、或1度之內。被透射通過光束分離器108的光130能被第一光束收集器134捕捉(例如吸收)。例如,第一光束收集器134可包括一組件,該組件包含具有暗色(例如黑色)材料的一表面,其經配置以吸收入射到光束收集器上的光。能(例如)藉由以光吸收材料漆上或以其他方式塗佈該組件表面來讓該組件吸收光,該光吸收材料的範例能包括霧面黑色漆、碳層、陽極氧化層或任何其他適合的吸收層或材料。在實施例中,能使第一光束收集器134的吸收組件相對於經透射光130之光束方向136成角度,以防止從光束收集器134反射的任何光往光源102導向或被光束分離器108反射到往偵測裝置118的方向。在實施例中,該吸收組件能為一經塗佈板,不過在進一步實施例中,該吸收組件能包含許多經塗佈板,該些經塗佈板經排列為相對彼此成角度。
入射在玻璃片10之第一表面12上的第二光束132的第一部分從第一表面12反射,透射穿過光束分離器108,並由透鏡組合件110當作背景光138所收集,而入射在一缺陷(例如刻痕16)上的第二光束132的第二部分被該缺陷散射在概略朝向透鏡組合件110的一方向中,且因此被透鏡組合件110當作經散射光140所捕捉。光束分離器108所反射的光132的又另一(第三)部分142可被透射穿過玻璃片10且能被第二光束收集器144吸收。例如,像第一光束收集器134,第二光束收集器144可包含一組件,該組件包含具有暗色(例如黑色)材料的一表面,其經配置以吸收入射在材料上的光。能(例如)藉由以光吸收材料漆上或以其他方式塗佈該組件表面來讓該組件吸收光,該光吸收材料的範例能包括霧面黑色漆、碳層、陽極氧化層或任何其他適合的吸收層或材料。在實施例中,能讓該吸收組件相對於經透射穿過玻璃片10之該經對準光的該部分的光束方向146(正交於主要表面12、14)成角度,以防止從第二光束收集器144反射的光往成像裝置118或光源102導向。在實施例中,該吸收組件能為一簡單的經塗佈板,不過在進一步實施例中,該吸收組件能包含許多經塗佈板,該些經塗佈板經排列成相對於彼此成角度。
仍參看第5圖,背景光138被前透鏡元件112聚焦到反向孔徑116之不透明中心盤148上,該反向孔徑116位於第一透鏡元件112的後焦平面150處,在該處背景光138被吸收。由缺陷16散射的光140經透射穿過圍繞反向孔徑116之不透明中心盤148的透明區域152,且被第二透鏡元件114聚焦到成像裝置118的成像感測器120上。
光源102能包含一雷射,或在其他實施例中光源102能包含一發光二極體(LED)。該雷射或LED能發出任何可被成像裝置118所偵測的適合波長(或波長群組)。例如,在實施例中,該雷射或LED能發出在可見光波長(例如在從大約400奈米(nm)到大約700 nm的範圍中)的光。在一些實施例中, 光源102 能包含白光源,例如白熾燈泡。
光束分離器108能為任何適合的光束分離器。例如,在一些實施例中,光束分離器108能為一半鍍銀反射鏡,例如薄膜反射鏡。可使用其他光束分離器設計,依入射光的波長、意圖偵測之缺陷類型、等等而定,而此類設計為本領域之技術人員熟知。
成像裝置118可能是照相機,或其他適合的成像裝置,例如線掃描照相機,其中成像感測器120能為正交於(或實質上正交於)輸送方向20對準的一線感測器。
在一些實施例中,反向孔徑116包含由導線或其他薄型材料支撐的不透明中心盤148,該不透明中心盤自外部材料154延伸,該外部材料154連同不透明中心盤148界定了圍繞不透明中心盤148的環形透明區域152。然而,此種支撐部件可干擾均向性偵測。據此,在較佳實施例中,反向孔徑116包含一透明板(像是玻璃板),其包含設置在其上的一遮罩材料,該遮罩材料包含一內遮罩(即不透明中心盤148)及外遮罩154,該外遮罩界定了透明區域152的外周圍(藉此在外遮罩154與不透明中心盤148之間界定了環形透明區域152),其中沒有不透明的支撐或連接元件延伸在外遮罩材料與內遮罩材料之間。反向孔徑116能接著被永久地安裝在透鏡110內,或者透鏡110能藉一接口或其他開口建構,允許反向孔徑116的插入及/或移除(或者任何其他所欲孔徑或濾光器的插入及/或移除)。
為了穩定化光源功率輸出,可定位一個光二極體(未圖示)來監測來自光源(例如來自雷射光二極體)的雷射光。能偵測來自光源的輸出,而一適當信號被通過數據線161傳遞給控制器160,藉以建立一控制迴圈,該控制迴圈經配置以監測及調整光源輸出功率。例如,若一雷射光源的輸出功率漂移偏離一預先決定功率設定點,則控制器160能通過數據線162調整該雷射(例如光二極體)的功率調制,使得該雷射的輸出功率回到該預先決定功率設定點。
按照本文中所述實施例,若沒有正被檢測的玻璃片(例如,沒有玻璃片10在空隙126內或鄰接空隙126),則控制器160能經程式化來控制該雷射。然而,當正檢測一玻璃片時,經反射光(例如在朝向光源102的方向中從光束分離器108反射的光)可進入該雷射並在該雷射內部散射。如此讓光二極體輸出功率顯得比其實際上要大。因此,控制器160將試著降低雷射功率。據此,真正的雷射輸出功率可能太低而無法用於檢測。
為了克服前述問題,能定位一玻璃片接近度感測器163以偵測進來的玻璃片。由於玻璃片輸送速度將是已知,能利用控制器160內的計時電路,其中只要當玻璃片在偵測設備前方時控制器160就停用反饋控制。因此,當沒有玻璃被檢測時(例如玻璃片不在空隙126上方,例如阻礙空隙126)就啟用雷射的反饋控制。替代地,能進行對玻璃片於空隙處的存在或不存在的直接偵測,此不需要速度及位置的計算。可藉其他光源(例如LED光源)來運用前述的光源功率控制。
藉前述說明內容的益處應顯而易見,該些偵測設備組件的排列能被改變,例如用以獲得更精巧的實施。顯示在第6圖中的是另一例示性偵測設備200,其經配置以提供均向性缺陷偵測。偵測設備200包含包括光源204的偵測模組202、經排列以對準由光源102所發出之光208的準直器206、光束分離器210、透鏡組合件212、及反向孔徑218,該透鏡組合件212包含第一、前透鏡元件214及第二、後透鏡元件216,該反向孔徑218經定位在第一與第二透鏡元件214、216之間。透鏡組合件212可(例如)包含一遠心鏡頭。偵測模組202可進一步包括成像裝置220,該成像裝置包含一成像感測器222。前述組件中任一或更多個能經安裝在框架224上以建立及/或維持所選組件之間的空間關係。
偵測設備200可選擇地包括場光闌226,其經排列以阻擋由光源204所發出之光的邊遠區域。偵測設備200可也進一步包括聚焦裝置228,其經配置以相對於光束分離器210(及玻璃片10)移動透鏡212,藉以在第一主要表面12與第二表面14之間移動透鏡組合件的焦點。因此,透鏡212的焦點能從第一主要表面12被移動至第二主要表面14,或到通過該玻璃片之第一與第二主要表面之間的厚度T的任意點。聚焦裝置228能包含(例如)一直線導軌或平台組合件,其允許透鏡212相對於光束分離器210及玻璃片10的移動。換言之,透鏡212的移動改變了透鏡組合件與玻璃片之間的光徑長度。因此,在一些實施例中,透鏡組合件212可經由聚焦裝置228安裝至框架224,而可藉由調整聚焦裝置228的位置來調整透鏡組合件212的位置。在一些實施例中,可藉由一螺絲組合件來手動地調整聚焦裝置228,不過在進一步實施例中,聚焦裝置可包括經由馬達(例如接合聚焦裝置228的步進馬達)的調整。在一些實施例中,能經由遠端控制、或甚至自動地達到聚焦。本領域之技術人員能輕易地排列適當組件來達成遠端的或自動的聚焦控制。能明顯地觀察到能藉本文中所述其他實施例來使用聚焦裝置228。
本實施例之操作類似於前一實施例的操作。光源204經排列使得所發出光208被正交於(或實質上正交於)玻璃片10之第一主要表面12導向。換言之,沿第一光軸224發出光208,該第一光軸224在朝向並正交於第一主要表面12的方向中,而透鏡212的第二光軸226經排列為平行於第一主要表面12(且正交於第一光軸224)。所發出光208被準直器206對準而經對準光228入射在光束分離器210上。光束分離器210將入射的經對準光228分離成兩個光束,一個光束(由光線232表示)朝玻璃片10的第一表面12透射穿過光束分離器210,而第二光束(由光線234表示)在正交於經透射光束230的方向中從光束分離器210反射,朝向第一光束收集器236。光束分離器210所反射的光234可由第一光束收集器236捕捉(例如吸收)。例如,第一光束收集器236可包含一吸收組件,其經配置以吸收入射在吸收組件上的光。能(例如)藉由以光吸收材料漆上或以其他方式塗佈該吸收組件的表面來讓該吸收組件吸收光,該光吸收材料的範例能包括霧面黑色漆、碳層、或任何其他適合的吸收材料。在實施例中,能使該吸收組件相對於經反射光束234的傳播方向成角度,以防止從光束收集器反射的光被朝光源204的方向往回導向。
入射在玻璃片10之第一表面12上的第一光束232的一部分從玻璃片10的第一表面14往回朝光束分離器210反射,接著從光束分離器210在朝向透鏡組合件212的方向中反射並由透鏡組合件212作為背景光所收集,而入射在第一主要表面12(及/或第二主要表面14)上之一缺陷上的第一光束232的第二部分被該缺陷散射在概略朝向透鏡組合件212的一方向中(在從光束分離器210反射之後)且被透鏡組合件212作為散射光捕捉(為了簡化,從第一表面12反射的光及經散射光兩者都以單一光線238表示)。然而,從玻璃片10之第一表面12反射的光的表現與經散射光的表現,以及經反射及經散射光與反向孔徑218的互動相同於針對偵測模組101與反向孔徑116的說明。
穿過光束分離器210透射並入射在第一表面12上的光232仍有另一(第三)部分240可穿過玻璃片10透射並能由第二光束收集器242捕捉(例如吸收)。例如,像第一光束收集器236,第二光束收集器242可包含一吸收組件,該吸收組件經配置以吸收入射在吸收組件上的光。能(例如)藉由以吸收材料漆上或以其他方式塗佈該吸收組件來讓該材料片吸收光,該吸收材料的範例能包括霧面黑色漆、碳層、或任何其他適合的吸收材料。在實施例中,能讓該吸收組件相對於經透射穿過玻璃片10之入射光束240成角度,以防止從第二光束收集器242反射的光以朝成像裝置220或光源204的方向往回反射。在實施例中,該吸收組件能為藉一光吸收材料塗佈的板,不過在進一步實施例中,該吸收組件能包含許多經塗佈板,該些經塗佈板經排列成相對於彼此成角度。
仍參看第6圖,背景光由前透鏡元件214聚焦到位於第一透鏡元件214之後焦平面處的反向孔徑218的不透明中心盤244上,在該處背景光被吸收。缺陷(例如刻痕)16所散射的光通過圍繞反向孔徑218之不透明中心盤244的透明區域246透射,且由第二透鏡元件216聚焦到成像裝置220的成像感測器222上。
得益於以上說明,應顯見在一些實例中上述組件的排列方式可將受試玻璃片的一小部分成像,尤其若該玻璃片沿輸送方向20被輸送。據此,在實施例中,偵測設備200(或100)可包含複數個偵測模組202(或101),該些模組經排列在玻璃片10對面並鄰接玻璃片10的一陣列中。在一些實施例中,該複數個偵測模組可經排列成相對關係,如第7圖中所示。確實,在實施例中,可採用多個偵測模組列,而在一些實施例中,採用相對的偵測模組列,如第8圖中顯示。在一些實施例中,相對的偵測模組202(或101)列可經位移使得一個列之透鏡組合件的光軸延伸在相對列之相對透鏡組合件之間(見第9圖)。換言之,透鏡組合件經定位在相對之偵測模組列的兩透鏡組合件之間的相對空隙對面。在其他實施例中,相對透鏡組合件的光軸可能重合。
第10圖包括一系列如本揭示案之偵測設備所見的不同缺陷的影像。該些影像顯示了利用本揭示案之實施例能偵測到廣泛多樣的表面缺陷。
本領域之技術人員將顯而易見,對本揭示案之實施例能進行各種修改及變化,而無悖離本揭示案的精神及範疇。因此只要此類修改及變化落在隨附申請專利範圍及其均等者的範疇內,則本揭示案意圖涵蓋該些修改及變化。
T‧‧‧厚度
10‧‧‧玻璃片
12‧‧‧第一主要表面
14‧‧‧第二主要表面
16‧‧‧刻痕
18‧‧‧入射光
20‧‧‧輸送方向
22‧‧‧經散射光
24‧‧‧偵測器
100‧‧‧偵測設備
101‧‧‧偵測模組
102‧‧‧光源
104‧‧‧準直器
106‧‧‧光
108‧‧‧光束分離器
110‧‧‧透鏡組合件
112‧‧‧第一(前)透鏡元件
114‧‧‧第二(後)透鏡元件
116‧‧‧反向孔徑
118‧‧‧成像裝置
120‧‧‧成像感測器
122‧‧‧輸送設備
124‧‧‧履帶
126‧‧‧空隙
128‧‧‧經對準光
130‧‧‧第一光束
132‧‧‧第二光束
134‧‧‧第一光束收集器
136‧‧‧光束方向
138‧‧‧背景光
140‧‧‧經散射光
142‧‧‧第三光束
144‧‧‧第二光束收集器
146‧‧‧光束方向
148‧‧‧不透明中心盤
150‧‧‧後焦平面
152‧‧‧透明區域
154‧‧‧外部材料
160‧‧‧控制器
161、162‧‧‧數據線
163‧‧‧玻璃片接近度感測器
200‧‧‧偵測設備
202‧‧‧偵測模組
204‧‧‧光源
206‧‧‧準直器
208‧‧‧光
210‧‧‧光束分離器
212‧‧‧透鏡組合件
214‧‧‧第一(前)透鏡元件
216‧‧‧第二(後)透鏡元件
218‧‧‧反向孔徑
220‧‧‧成像裝置
222‧‧‧成像感測器
224‧‧‧框架/第一光軸
226‧‧‧場光闌/第二光軸
228‧‧‧聚焦裝置/經對準光
230‧‧‧經透射光束
232‧‧‧第一光束
234‧‧‧第二光束
236‧‧‧第一光束收集器
238‧‧‧光線
240‧‧‧第三光束
242‧‧‧第二光束收集器
244‧‧‧不透明中心盤
246‧‧‧透明區域
第1及2圖是被檢測之一玻璃片的透視圖,圖示出一缺陷的可觀察度能依缺陷之排列方向及照明角度而異;
第3及4圖是被檢測之一玻璃片的透視圖,圖示出一缺陷的可觀察度在正向照明下能依缺陷之排列方向而異;
第5圖是按照本揭示案之實施例的例示性缺陷偵測設備的示意圖;
第6圖是另一例示性缺陷偵測設備的示意圖;
第7圖是又另一例示性缺陷偵測設備的示意圖;
第8圖是又另一例示性缺陷偵測設備的示意圖;
第9圖是另一例示性缺陷偵測設備的示意圖;及
第10圖是一系列利用本文所述之例示性缺陷偵測設備所成像之不同缺陷的照片。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記)
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記)

Claims (10)

  1. 一種偵測一玻璃片之一表面上的缺陷的方法,該方法包含下列步驟: 對準自一光源發出的一光束;藉一光束分離器橫斷經對準的該光束,該光束分離器將經橫斷的該經對準光束的一第一部分朝向該玻璃片的一第一表面導引,使得經橫斷的該經對準光束的該被導引部分照亮該玻璃片的該第一表面,其中照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射;藉一第一透鏡元件接收該經反射光及該經散射光,該第一透鏡元件將該經反射光及該經散射光導引至一反向孔徑,其中該經反射光被該反向孔徑擋住而該經散射光被該反向孔徑透射;及藉一第二透鏡元件將該反向孔徑所透射的該經散射光導引至一成像裝置並偵測該經散射光。
  2. 如請求項1所述之方法,其中該光源是一雷射。
  3. 如請求項1所述之方法,其中橫斷該光束分離器的該經對準的光的一第二部分後續地入射在一光束收集器上。
  4. 如請求項1所述之方法,其中該玻璃片從一第一位置被移動到一第二位置,經橫斷的該經對準光束的經導引的部分在該第一位置處不照亮該玻璃片的該表面,經橫斷的該經對準光束的經導引的部分在該第二位置處照亮該玻璃片的該第一表面,該方法進一步包含下列步驟: 在該玻璃片從該第一位置被移動到該第二位置同時監測該玻璃片;當該玻璃片在該第一位置中時,監測由該光源發出的該光,若該光源的一輸出功率與一預定輸出功率不同則調整該光源的該輸出功率;及當該玻璃片在該第二位置中時,停用對由該光源發出的該光的監測。
  5. 如請求項1所述之方法,其中該第一及第二透鏡元件包含一透鏡組合件,該方法進一步包含將該透鏡組合件的一焦點位移至該玻璃片的一第二表面之步驟,該第二表面相對於該第一主要表面。
  6. 如請求項1所述之方法,其中該第一及第二透鏡元件包含一透鏡組合件,該方法進一步包含將該透鏡組合件的一焦點位移至該第一主要表面與相對於該第一主要表面的一第二表面中間的一位置之步驟。
  7. 一種偵測一玻璃片之一表面上的缺陷的方法,該方法包含下列步驟: 鄰接於複數個缺陷偵測模組在一輸送方向中輸送一玻璃片,該複數個缺陷偵測模組橫跨該玻璃片的一橫向維度排列成一第一陣列,各缺陷偵測模組:對準自一光源發出的一光束;藉一光束分離器橫斷經對準的該光束,該光束分離器將經橫斷的該經對準光束的一第一部分朝向該移動中玻璃片的一第一表面導引,使得經橫斷的該經對準光束的該經導引部分照亮該玻璃片的該第一表面,其中照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射;藉一第一透鏡元件接收該經反射光及該經散射光,該第一透鏡元件將該經反射光及該經散射光導引至一反向孔徑,其中該經反射光被該反向孔徑擋住而該經散射光被該反向孔徑透射;及藉一第二透鏡元件將該反向孔徑所透射的該經散射光導引至一成像裝置並偵測該經散射光。
  8. 如請求項7所述之方法,其中該玻璃片在該輸送方向中從一第一位置被輸送到一第二位置,對於各缺陷偵測模組經橫斷的該經對準光束的該經導引部分在該第一位置處不照亮該玻璃片的該表面,經橫斷的該經對準光束的該經導引部分在該第二位置處照亮該玻璃片的該第一表面,該方法進一步包含下列步驟: 在該玻璃片從該第一位置被移動到該第二位置同時監測該玻璃片;當該玻璃片在該第一位置中時,對於各缺陷偵測模組監測由該光源發出的該光,若該光源的一輸出功率與一預定輸出功率不同則調整該光源的該輸出功率;及當該玻璃片在該第二位置中時,對於各缺陷偵測模組停用對由該光源發出的該光的監測。
  9. 一種用於偵測一材料片上的表面缺陷的設備,包含: 一光源; 一對準器,該對準器經排列以對準來自該光源的光; 一光束分離器,該光束分離器經配置以將該經對準的光的一第一部分朝向並垂直於該玻璃片的一第一表面導引,使得該經對準的光的該經導引部分照亮該玻璃片的該第一表面,其中照亮該玻璃片之該第一表面的光的一第一部分由該第一表面反射,而照亮該玻璃片之該第一表面的光的一第二部分由一缺陷所散射; 一透鏡組合件,該透鏡組合件包含一第一透鏡元件及一第二透鏡元件,該透鏡組合件經排列以接收來自該經對準光之該經導引部分自該玻璃片之該第一表面所反射的光以及自該玻璃片之該第一表面上的一缺陷所散射的光; 一反向孔徑,該反向孔徑經定位在該第一與第二透鏡元件之間;及 一成像裝置,該成像裝置經定位以接收由該缺陷所散射並由該反向孔徑通過的光。
  10. 如請求項9所述之設備,其中該反向孔徑經配置以擋住自該第一表面反射的光。
TW107140151A 2017-11-15 2018-11-13 用於偵測玻璃片上之表面缺陷的方法及設備 TWI790311B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762586367P 2017-11-15 2017-11-15
US62/586,367 2017-11-15

Publications (2)

Publication Number Publication Date
TW201925764A true TW201925764A (zh) 2019-07-01
TWI790311B TWI790311B (zh) 2023-01-21

Family

ID=66539101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140151A TWI790311B (zh) 2017-11-15 2018-11-13 用於偵測玻璃片上之表面缺陷的方法及設備

Country Status (6)

Country Link
US (1) US11249032B2 (zh)
JP (1) JP7208233B2 (zh)
KR (1) KR102633672B1 (zh)
CN (1) CN212207144U (zh)
TW (1) TWI790311B (zh)
WO (1) WO2019099285A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189803A (zh) * 2019-12-30 2020-05-22 彩虹显示器件股份有限公司 一种检测平板玻璃板工作面微粒子的方法
KR20220166494A (ko) * 2021-06-10 2022-12-19 주식회사 에프에스티 극자외선 리소그라피용 펠리클 막의 결함 제거방법
CN118089605B (zh) * 2024-04-26 2024-06-21 北京奥博泰科技有限公司 一种平面玻璃面形检测方法及系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954337A (en) * 1974-10-04 1976-05-04 Rca Corporation Method and apparatus for determining the average size of apertures in an apertured member
JPH0795037B2 (ja) * 1987-01-14 1995-10-11 日本板硝子株式会社 光学式欠陥検出装置
JPH05322694A (ja) * 1992-05-22 1993-12-07 Olympus Optical Co Ltd レンズ検査装置
US5493123A (en) * 1994-04-28 1996-02-20 Particle Measuring Systems, Inc. Surface defect inspection system and method
JPH10115592A (ja) * 1996-10-14 1998-05-06 Konica Corp 欠陥検査方法及び欠陥検査装置並びに工程管理システム
US5945685A (en) * 1997-11-19 1999-08-31 International Business Machines Corporation Glass substrate inspection tool having a telecentric lens assembly
US6122056A (en) * 1998-04-07 2000-09-19 International Business Machines Corporation Direct phase shift measurement between interference patterns using aerial image measurement tool
JP3287345B2 (ja) 1998-09-14 2002-06-04 日本電気株式会社 パーティクルモニタ装置、パーティクルモニタ方法、及び、記録媒体
JP2003149166A (ja) 2001-11-15 2003-05-21 Fuji Heavy Ind Ltd 汚れ自動検知方法、および自動清掃方法、並びに自動清掃装置
JP2006029881A (ja) * 2004-07-14 2006-02-02 Hitachi High-Technologies Corp パターン欠陥検査方法および装置
CA2580551A1 (en) * 2004-09-17 2006-03-23 De.Vice Scientific Incorporated Optical inspection of flat media using direct image technology
US20060092276A1 (en) 2004-10-28 2006-05-04 Ariglio James A Inspection system and method for identifying surface and body defects in a glass sheet
DE102005035552A1 (de) * 2005-07-29 2007-02-01 Carl Zeiss Sms Gmbh Vorrichtung zur Erzeugung einer strukturierten Dunkelfeldbeleuchtung für mikroskopische Anordnungen
US7345754B1 (en) * 2005-09-16 2008-03-18 Kla-Tencor Technologies Corp. Fourier filters and wafer inspection systems
US7289200B1 (en) 2005-10-04 2007-10-30 Itt Manufacturing Enterprises, Inc. Confocal reflectommeter/ellipsometer to inspect low-temperature fusion seals
JP4723362B2 (ja) * 2005-11-29 2011-07-13 株式会社日立ハイテクノロジーズ 光学式検査装置及びその方法
WO2008083497A1 (en) * 2007-01-12 2008-07-17 Synergx Technologies Inc. Bright field and dark field channels, used for automotive glass inspection systems
US7714996B2 (en) * 2007-01-23 2010-05-11 3i Systems Corporation Automatic inspection system for flat panel substrate
US7738090B1 (en) * 2007-05-29 2010-06-15 Kla-Tencor Corporation Fourier filters, systems for fabricating fourier filters, and systems and methods for inspecting a specimen using fourier filters
JP2011257257A (ja) 2010-06-09 2011-12-22 Panasonic Corp 検査装置、検査方法およびこれらを用いた画像表示用パネルの製造方法
CN104081192B (zh) 2011-04-21 2017-02-22 艾悌亚信息技术(上海)有限公司 一种对玻璃多层面摄像的摄像装置及其方法
US8736831B2 (en) 2012-05-15 2014-05-27 Kla-Tencor Corp. Substrate inspection
US9182351B2 (en) * 2013-11-26 2015-11-10 Nanometrics Incorporated Optical metrology system for spectral imaging of a sample
CN103913468B (zh) 2014-03-31 2016-05-04 湖南大学 生产线上大尺寸lcd玻璃基板的多视觉缺陷检测设备及方法
JP5818948B2 (ja) 2014-06-24 2015-11-18 株式会社プレックス 布片検査装置
US9709510B2 (en) * 2014-06-26 2017-07-18 Kla-Tencor Corp. Determining a configuration for an optical element positioned in a collection aperture during wafer inspection
KR102003781B1 (ko) 2014-09-16 2019-07-25 한화정밀기계 주식회사 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 장치
KR101695563B1 (ko) 2015-08-26 2017-01-11 이성대 복층유리용 스크레치 및 이물질 검출시스템
CN105548212B (zh) 2016-02-03 2018-12-25 杭州晶耐科光电技术有限公司 一种触摸屏玻璃表面瑕疵在线自动化检测系统及方法
WO2018048843A1 (en) 2016-09-08 2018-03-15 Corning Incorporated Optical inspection systems and methods for detecting surface defects in a transparent sheet

Also Published As

Publication number Publication date
TWI790311B (zh) 2023-01-21
WO2019099285A1 (en) 2019-05-23
US11249032B2 (en) 2022-02-15
US20200333258A1 (en) 2020-10-22
JP7208233B2 (ja) 2023-01-18
CN212207144U (zh) 2020-12-22
KR102633672B1 (ko) 2024-02-05
JP2021503079A (ja) 2021-02-04
KR20200074228A (ko) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2010024082A1 (ja) 欠陥検査システムおよび欠陥検査方法
EP2482058B1 (en) Apparatus for detecting particles in flat glass and detecting method using same
KR101120226B1 (ko) 표면 검사 장치
JPH06235624A (ja) 透明シートの検査方法とその装置
JP2008298780A (ja) 透明基板のための検査手法
CN110073203B (zh) 检查透明基材上的缺陷的方法和设备
TW201925764A (zh) 用於偵測玻璃片上之表面缺陷的方法及設備
KR20090113886A (ko) 자동화 검사를 위해 필름을 조명하는 방법 및 장치
JP2010169453A (ja) 異物検査装置及び検査方法
US6184977B1 (en) Inspection method and inspection device
JP2007279047A (ja) 光学検査システム
KR20190077490A (ko) 투명 기판 상의 결함 검사 방법 및 장치, 및 입사광 조사 방법
US10006872B2 (en) Optical inspection system
JP2015219085A (ja) 基板検査装置
JP6903449B2 (ja) 欠陥検査装置、および欠陥検査方法
JP4855193B2 (ja) 薄板検査装置
JP4576006B2 (ja) 外観検査用投光装置
JP3095856B2 (ja) 外観検査用投光装置
JP2008096233A (ja) 光学部材検査装置
TWI817991B (zh) 光學系統,照明模組及自動光學檢測系統
JP2005241692A (ja) 光学装置、撮像装置及び検査装置
CN110261387B (zh) 光学系统、照明模块及自动光学检验系统
JP2000333047A (ja) 光学的撮像装置および光学的撮像方法
JPH10185828A (ja) 透明平面体表面の欠陥検査方法及びその装置
JP4808162B2 (ja) 基板検査装置及び基板検査方法