TW201906864A - 製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途 - Google Patents

製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途 Download PDF

Info

Publication number
TW201906864A
TW201906864A TW107119828A TW107119828A TW201906864A TW 201906864 A TW201906864 A TW 201906864A TW 107119828 A TW107119828 A TW 107119828A TW 107119828 A TW107119828 A TW 107119828A TW 201906864 A TW201906864 A TW 201906864A
Authority
TW
Taiwan
Prior art keywords
seq
amino acid
acid sequence
immunoglobulin
domain
Prior art date
Application number
TW107119828A
Other languages
English (en)
Other versions
TWI826377B (zh
Inventor
麥克 歐托 巴德洛夫
蒂娜 布區
克莉絲蒂安 葛瑞夫
丹尼爾 海特曼
湯瑪斯 喬斯達克
漢斯-彼得 克諾夫
羅夫 寇依勒
濟瑞 科維瑞克
史蒂芬 約翰 奧立維
迪哈弗庫瑪 佩托
瑪克米里恩 沃瑟茲拉爵
Original Assignee
瑞士商諾華公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商諾華公司 filed Critical 瑞士商諾華公司
Publication of TW201906864A publication Critical patent/TW201906864A/zh
Application granted granted Critical
Publication of TWI826377B publication Critical patent/TWI826377B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/245IL-1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

本發明係關於二價雙特異性單株抗體(bbmAb)或其變異體,及藉由在哺乳動物細胞株中共表現兩種不同單株抗體之經修飾Fc突變衍生物來製備該等抗體之方法。

Description

製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途
本發明係關於二價雙特異性單株抗體(bbmAb)或其變異體,及藉由在哺乳動物細胞株中共表現兩種不同單株抗體之所謂的杵臼修飾FC突變衍生物來製備該等抗體之方法。
雙特異性抗體,亦即結合至兩種獨特抗原決定基之抗體,為此項技術中所熟知。生成雙特異性抗體之一種方法係例如由Merchant等人, Nat. Biotechnol., 16:677-681 (1998)描述之所謂的杵臼(KiH)方法,其中第一重鏈IgG藉由引入點突變如Y349C、T366S、L368A、Y407V經修飾以呈現臼狀結構;且其中第二重鏈IgG藉由引入點突變S354C、T366W經修飾以呈現杵狀結構(Merchant等人, Nat. Biotechnol., 16:677-681 (1998), 第678頁, 表1)。兩種不同IgG結構隨後相互作用以形成由兩個不同輕鏈及兩個不同重鏈組成之二價雙特異性抗體(bbmAb),亦即雜四聚蛋白質。
當在相同宿主細胞株中表現兩種KiH修飾mAb時,所要bbmAb統計上構成所表現蛋白質之僅25%,但75%係所謂的產物相關雜質(Klein, Ch.等人, 2012)。
克服此問題之一些方法為此項技術中所已知,諸如藉由應用進一步序列修飾以加強正確H-L結合來促進正確bbmAb形成(關於概述,參見Klein, Ch.等人, 2012;Kontermann, R.及Brinkmann, U., 2015)。然而,該等額外修飾可能會增加抗藥物抗體之風險。
生成bbmAb之另一方法揭示於WO12023053A2或WO04009618A2中,利用共有重鏈或輕鏈與不同可變鏈組合。然而,保持任一重鏈恆定顯著降低可篩選出結合物的抗體庫之多樣性。
生成bbmAb之又一方法揭示於US9212230中,且需要對攜有不同修飾之mAb進行個別表現及純化。所得mAb最後在活體外改組以形成既定bbmAb。該活體外改組係需要仔細驗證及分析評估之複雜額外方法步驟,且可能會顯著增加成本。
因此,生成bbmAb之現有方法可能限制可用以篩選結合物的抗體庫之多樣性,或可能無法以足以實現對於臨床開發及商業化可行的規模之製備之具成本效益的方式提供充足總產率、純度及產物品質。另外,對蛋白質鏈之任何修飾固有地增加誘導抗藥物抗體之風險。因此,僅需要最低蛋白質工程化之方法可為臨床上有利的。
需要提供一種改良的製備二價雙特異性抗體之方法。特定言之,需要一種製備二價雙特異性單株抗體(bbmAb)之方法,其為繼續進行臨床開發及商業製備確保合理成本下的充足總產率、純度及產物品質。
本發明尤其提供一種生成bbmAb之方法,其具有以下優勢中之一或多者:其使得能夠使用大抗體庫鑑別結合物,因為不需要共有輕鏈或重鏈;除驅動H-鏈二聚之突變之外,其不需要任何廣泛蛋白質工程化,且因此限制抗藥物抗體之風險;其具成本效益,因為表現在共同細胞株中進行,因此bbmAb可在一個細胞培養過程中生產而不需要特異性活體外改組;且其生產適用於人類使用之高品質材料,因為可高效移除產物相關雜質。
本發明可用於鑑別輕鏈並不對對應物之重鏈展示強混雜結合的κ及λ型之抗體。此使得該等抗體適用於本發明之方法。該方法之一優點可為,可取消選擇兩個輕鏈均交換原始重鏈結合搭配物、從而產生H1L2-H2L1型之產物相關雜質的抗體組合。此係有利的,因為該等產物相關雜質不易使用目前先進技術純化方法耗盡。
如下文將展示,本發明之實施例使得能夠藉由使用CHO共表現以適用於生物製品之臨床開發及商業化的產率及品質製備bbmAb。
在本發明之第一態樣中,提供一種適用於在共同宿主細胞中共表現之雙特異性抗體,其中該抗體包含a)第一部分,其係具有以下之免疫球蛋白:特異性結合至第一標靶之λ野生型之可變輕鏈(VL1)及野生型之可變重鏈(VH1);及具有雜二聚修飾之第一恆定重鏈(CH1),及b)第二部分,其係具有以下之免疫球蛋白:特異性結合至不同於第一標靶之第二標靶之κ野生型之可變輕鏈(L2)及野生型之可變重鏈(H2);及具有雜二聚修飾之第二恆定重鏈(CH2),該第二恆定重鏈之雜二聚修飾與該第一恆定重鏈之雜二聚修飾互補,其中當該第一部分及該第二部分在共同宿主細胞中共表現時,形成雙特異性抗體。
在第一態樣之另一實施例中,在藉由自該正確匹配之雙特異性抗體移除錯配片段來純化該雙特異性抗體之後,該適用於共表現於共同宿主細胞中之雙特異性抗體產生至少60% (質量)、70% (質量)、80% (質量)、85% (質量)純,諸如至少90% (質量)純、95% (質量)、96% (質量)、97% (質量)、98% (質量)或99% (質量)純之雙特異性抗體。
該雙特異性抗體之該第一及第二恆定重鏈可為人類IgA、IgD、IgE、IgG或IgM,較佳IgD、IgE或IgG。在一較佳實施例中,該第一及第二恆定重鏈係人類IgG1、IgG2、IgG3或IgG4,最佳IgG1。在一個實施例中,該第一可變輕鏈具有λ型,且該第二可變輕鏈具有κ型。
在一尤其較佳實施例中,該第一可變輕鏈具有λ 1型,且該第二可變輕鏈具有κ 6型。
該第一及第二恆定重鏈可為IgG1,其中該第一恆定重鏈具有生成杵結構之點突變,且該第二恆定重鏈具有生成臼結構之點突變,或該第一恆定重鏈具有生成臼結構之點突變,且該第二恆定重鏈具有生成杵結構之點突變。視情況,該第一及第二恆定重鏈可另外具有產生二硫橋鍵之突變。
在一個實施例中,該雙特異性抗體包含第一免疫球蛋白VH1結構域、第一免疫球蛋白VL1結構域、第二免疫球蛋白VH2結構域及第二免疫球蛋白VL2結構域,其中該第一免疫球蛋白VH1結構域包含(例如在序列中):高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78;或高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:79,該CDR2具有胺基酸序列SEQ ID NO:80,且該CDR3具有胺基酸序列SEQ ID NO:81;且該第一免疫球蛋白VL1結構域包含(例如在序列中):高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94;或高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:95,該CDR2具有胺基酸序列SEQ ID NO:96,且該CDR3具有胺基酸序列SEQ ID NO:97;該第二免疫球蛋白VH2結構域包含(例如在序列中):高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46;或高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:47,該CDR2具有胺基酸序列SEQ ID NO:48,且該CDR3具有胺基酸序列SEQ ID NO:49;且該第二免疫球蛋白VL2結構域包含(例如在序列中):高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62;或高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:63,該CDR2具有胺基酸序列SEQ ID NO:64,且該CDR3具有胺基酸序列SEQ ID NO:65。
在一個實施例中,該雙特異性抗體包含第一免疫球蛋白VH1結構域、第一免疫球蛋白VL1結構域、第二免疫球蛋白VH2結構域及第二免疫球蛋白VL2結構域,其中:該第一免疫球蛋白VH1結構域包含胺基酸序列SEQ ID NO: 85,該第一免疫球蛋白VL1結構域包含胺基酸序列SEQ ID NO: 101,該第二免疫球蛋白VH2結構域包含胺基酸序列SEQ ID NO: 53,該第二免疫球蛋白VL2結構域包含胺基酸序列SEQ ID NO: 69。
在一個實施例中,該雙特異性抗體包含第一免疫球蛋白重鏈、第一免疫球蛋白輕鏈、第二免疫球蛋白重鏈及第二免疫球蛋白輕鏈,其中:該第一免疫球蛋白重鏈包含胺基酸序列SEQ ID NO: 87,該第一免疫球蛋白輕鏈包含胺基酸序列SEQ ID NO: 103,該第二免疫球蛋白重鏈包含胺基酸序列SEQ ID NO: 55,該第二免疫球蛋白輕鏈包含胺基酸序列SEQ ID NO: 71。
根據第二態樣,提供一種選擇根據第一態樣之雙特異性抗體之方法,該方法包含:選擇第一部分及第二部分之第一步驟;使該第一部分及該第二部分共表現於共同宿主細胞中,產生包含該第一部分及該第二部分之雙特異性抗體的第二步驟;藉由自該正確匹配之雙特異性抗體移除錯配片段來純化該雙特異性抗體之第三步驟。在一實施例中,該純化第三步驟產生至少60% (質量)、70% (質量)、80% (質量)、85% (質量)純,諸如至少90% (質量)純、95% (質量)、96% (質量)、97% (質量)、98% (質量)或99% (質量)純之雙特異性抗體。
根據第三態樣,提供一種藉由共表現於共同宿主細胞中來製備根據第一態樣之雙特異性抗體之方法,該方法包含:生成至少一種編碼第一部分及第二部分之載體的第一步驟;將該至少一種載體引入至該共同宿主細胞中之第二步驟;選擇特異性表現該雙特異性抗體之細胞的第三步驟;在該等細胞表現該雙特異性抗體之條件下培養該等所選細胞之第四步驟;及純化至少60% (質量)、70% (質量)、80% (質量)、85% (質量)純,諸如至少90% (質量)純、95% (質量)、96% (質量)、97% (質量)、98% (質量)或99% (質量)純之該雙特異性抗體的第五步驟。
在一實施例中,該第一步驟包含生成編碼該第一部分之第一載體及編碼該第二部分之第二載體。
根據第四態樣,一種包含至少一種載體之表現系統,該至少一種載體包含編碼根據第一態樣之雙特異性抗體之第一部分或第二部分的聚核苷酸;及可選標記。
在一實施例中,該表現系統包含編碼第一可選標記(sm I)之聚核苷酸;及編碼第二可選標記(sm II)之聚核苷酸,該第二可選標記不同於該第一可選標記(sm I)。
在一實施例中,該第一可選標記(sm I)係葉酸轉運體或編碼突變葉酸受體之聚核苷酸,其中該突變葉酸受體與野生型葉酸受體相比具有降低之葉酸結合親和力,且該第二可選標記(sm II)係DHFR。
在一實施例中,該第一可選標記(sm I)係潮黴素,且該第二可選標記(sm II)係Neo/G418。
在一實施例中,該表現系統包含兩種表現載體,其中:第一載體,其包含編碼至少第一可選標記(sm I)之聚核苷酸及至少編碼該第一部分之聚核苷酸;及第二載體,其包含編碼至少第二可選標記(sm II)之聚核苷酸及至少編碼該第二部分之聚核苷酸。
該表現系統可包含編碼重鏈之聚核苷酸下游的終止密碼子及位於該終止密碼子下游的編碼免疫球蛋白膜錨之聚核苷酸。
根據第五態樣,提供一種選擇用於根據先前態樣之方法的共同宿主細胞之方法,其包含提供複數種宿主細胞之第一步驟,該等宿主細胞包含根據先前態樣之表現系統;及在針對可選標記選擇性之條件下培養該複數種宿主細胞,進而獲得表現所關注產物之宿主細胞。
在一實施例中,該選擇性培養基係選自包含以下培養基之群:其包含限制濃度之葉酸;及/或其包含濃度為500 nM或更低之葉酸;及/或其包含濃度選自以下之葉酸:1000 nM - 100 pM;100 nM - 1 nM;15 nM - 1 nM;10 nM - 1 nM;及10 nM - 2.5 nM;及/或其包含DHFR抑制劑;及/或其包含抗葉酸劑;及/或其包含濃度為500 nM或更低之抗葉酸劑;及/或其包含濃度選自以下之MTX:500 nM - 3 nM;100 nM - 10 nM;50 nM - 10 nM;及50 nM;及/或其包含濃度為該葉酸濃度的至多20倍之抗葉酸劑;及/或其包含濃度為該葉酸濃度的10-20倍之抗葉酸劑;及/或其包含濃度為至多15 nM且等莫耳濃度為MTX的至多20倍之葉酸。
在一實施例中,該宿主細胞包含該表現系統,其中第一或第二部分之至少一部分表現為包含免疫球蛋白跨膜錨或其片段之融合多肽,其中該融合多肽呈現於該宿主細胞之表面上,該方法進一步包含以下步驟:使該複數種宿主細胞與結合該融合多肽之偵測化合物接觸;基於結合至該細胞表面的該偵測化合物之存在或量選擇至少一種宿主細胞。
在一實施例中,該偵測化合物包含第一或第二標靶或其衍生物及偵測標籤。
在一實施例中,該純化該雙特異性抗體之第五步驟包含親和層析及/或離子交換層析。
在一實施例中,該層析包含捕捉之第一步驟;高純化之第二步驟;及視情況高純化之第三步驟。
在一實施例中,該捕捉第一步驟係用選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;此項技術中熟知且可容易商購的λ輕鏈特異性親和層析,例如LambdaFabSelect™;此項技術中熟知且可容易商購的κ輕鏈特異性親和層析,例如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;此項技術中熟知且可容易商購的離子交換層析,例如Capto™ adhere或Fractogel™ EMD SO3 ;及疏水相互作用層析。
在一實施例中,該高純化第二步驟係用選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;λ輕鏈特異性親和層析,諸如LambdaFabSelect™;κ輕鏈特異性親和層析,諸如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;離子交換層析,諸如Capto™ adhere或Fractogel™ EMD SO3 ;疏水相互作用層析;及病毒不活化。
在一實施例中,該高純化第三步驟係用選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;λ輕鏈特異性親和層析,諸如LambdaFabSelect™;κ輕鏈特異性親和層析,諸如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;離子交換層析,諸如Capto™ adhere或Fractogel™ EMD SO3 ;疏水相互作用層析;及病毒不活化。
在一實施例中,該方法包含蛋白A捕捉,諸如MabSelect™ SuRe™之第一步驟;λ輕鏈親和層析,諸如LambdaFabSelect™之第二步驟;及κ輕鏈親和層析,諸如KappaSelect™之第三步驟;或蛋白A,諸如MabSelect™ SuRe™之第一步驟;κ輕鏈親和層析,諸如KappaSelect™之第二步驟;及λ輕鏈親和層析,諸如LambdaFabSelect™之第三步驟;或κ輕鏈親和層析,諸如KappaSelect™之第一步驟;及λ輕鏈親和層析,諸如LambdaFabSelect™之第二步驟;或λ輕鏈親和層析,諸如LambdaFabSelect™之第一步驟;及κ輕鏈親和層析,諸如KappaSelect™之第二步驟。
在一實施例中,該細胞株係選自由以下組成之群:CHO細胞;非生產融合瘤,諸如Sp 2/0或NS0;人類來源之細胞株,諸如HEK或PER.C6;幼倉鼠腎(BHK)衍生物;酵母或絲狀真菌;原核細菌,諸如大腸桿菌(E. coli)或螢光假單胞菌(Pseudomonas fluorescence);植物衍生物;藻類;及纖毛蟲。
根據第六態樣,提供一種醫藥組合物,其包含根據第一態樣之抗體及醫藥學上可接受之載劑。
根據第七態樣,提供根據第一態樣之抗體或根據第六態樣之醫藥組合物,其用作藥劑。
根據第八態樣,提供根據第一態樣之抗體或根據第六態樣之醫藥組合物,其用於治療炎性體相關疾病。
根據第九態樣,提供根據第一態樣之抗體或根據第六態樣之醫藥組合物,其用於治療炎性體相關疾病,其中該炎性體相關疾病係選自由以下組成之群:鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、肺肉狀瘤病、纖維化、瘧疾、血液透析依賴性慢性腎病及克羅恩氏病(Crohn's disease)。
根據第十態樣,提供一種治療炎性體相關病症之方法,其包含向罹患炎性體相關病症之個體投與有效量的根據第一態樣之抗體或根據第六態樣之醫藥組合物。
該炎性體相關病症可為鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、肺肉狀瘤病、纖維化、瘧疾、血液透析依賴性慢性腎病或克羅恩氏病。
本發明尤其基於以下未預期的發現:具有lambda (λ)型之輕鏈的某些抗體有可能與具有kappa (κ)型之輕鏈的某些抗體共表現以形成所要bbmAb。
在不希望受理論束縛的情況下,各輕鏈及/或重鏈之CDR可顯著影響何等λ型之輕鏈有可能與具有κ型之輕鏈的某些抗體共表現以成功地獲得形成之bbmab。
有可能與具有κ型之輕鏈的某些抗體共表現以形成所要bbmAb、在下文中亦稱為單特異性結合物之具有λ型之輕鏈的抗體可藉由以下方式來生成:藉由使用提供獲得κ或λ型抗體之兩種類型之抗體,諸如噬菌體呈現文庫,例如HuUCAL GOLD®或HuCAL PLATINUM® (MorphoSys)的機會之技術;或藉由使用轉殖基因小鼠,其中相關人類免疫球蛋白序列已藉由遺傳工程化引入至動物之基因組中,例如OmniAb抗體(OMT)、Kymouse™ (Kymab)、Trianni Mouse™ (Trianni)或AlivaMab Mouse (Ablexis) (參考)可生成κ或λ型抗體。生成該等單特異性結合物之方法為專家領域中所熟知,且廣泛應用以生成針對所關注相關標靶的κ或λ型單特異性結合物之多樣集。對個別單特異性結合物在相關生物參數(諸如親和力或效力)方面表徵,且亦關於例如與判斷所謂的可開發性特徵相關、領域中亦極為熟知的物理化學特徵進行篩選(例如Lorenz等人, American Pharmaceutical Review, 2014年8月)。如下文更詳細地描述,展示最好特徵之單特異性結合物最後共表現於例如CHO細胞中。藉由共表現僅測試組合,其中結合至第一標靶之κ型抗體與結合至第二標靶之λ型抗體組合,且反之亦然。詳細表徵所得共表現產物及相關產物相關雜質,旨在選擇產生最好圖譜之組合、尤其對錯誤重鏈(例如H2,重鏈2)僅展示一個輕鏈(例如L1,輕鏈1,例如λ)之低量混雜結合的組合。該方法之一優點可為,可取消選擇兩個輕鏈均交換原始重鏈結合搭配物、從而產生H1L2-H2L1型之產物相關雜質的抗體組合。此係有利的,因為該等產物相關雜質不易使用目前先進技術純化方法耗盡。如何共表現個別抗體及如何分析共表現產物之程序更詳細地概述於下文。
使用特異性抗體作為實例,主要係結合至IL-1β、具有輕鏈Vκ6之mAb2及結合至IL-18、具有輕鏈Vλ1之mAb1。
在一個較佳實施例中,使用根據Ridgway等人(1996)對兩種抗體之Fc部分的KiH修飾。亦測試其他抗體。
如以下特定實例中所示,用單一共同細胞株表現一較佳實施例bbmAb1,為繼續進行臨床開發及商業化確保生物或診斷學所需的充足總產率、純度及產物品質。
1. 定義 出於解釋本說明書之目的,將應用以下定義且只要合適,以單數形式使用之術語亦將包括複數且反之亦然。在通篇實施方式中,闡述其他定義。
術語「IL-18」係IL-18多肽、介白素-18多肽、IFN-gamma誘導因子或干擾素-γ誘導因子或INF-γ誘導因子之同義詞。除非指示另一物種,否則術語「IL-18」係指人類IL-18。IL-18為熟習此項技術者所熟知,且例如可以產品參考號B001-5獲自MBL® International Corporation。在本說明書通篇,除非規定意謂原或成熟形式,否則術語IL-18可互換地涵蓋原IL-18 (蛋白酶裂解前的成熟IL-18之前驅體)及成熟IL-18 (蛋白酶裂解後)兩者。
術語「IL-1β」或「IL-1b」係IL-1β多肽及介白素-1β多肽之同義詞。除非指示另一物種,否則術語「IL-1β」係指人類IL-1β。IL-1β為熟習此項技術者所熟知,且例如可以產品參考號10139-HNAE-5獲自Sino Biological。
術語「抗體」係指完整免疫球蛋白或其功能片段。天然存在之抗體典型地包含通常由至少兩個重(H)鏈及至少兩個輕(L)鏈構成之四聚體。各重鏈包含重鏈可變區(本文中縮寫為VH)及通常包含三個結構域(CH1、CH2及CH3)之重鏈恆定區。重鏈可具有任何同型,包括IgG (IgG1、IgG2、IgG3及IgG4亞型)、IgA (IgA1及IgA2亞型)、IgM及IgE。各輕鏈包含輕鏈可變區(本文中縮寫為VL)及輕鏈恆定區(CL)。輕鏈包括κ鏈及λ鏈。重鏈及輕鏈可變區典型地負責抗原識別,而重鏈及輕鏈恆定區可介導免疫球蛋白與宿主組織或因子之結合,該等宿主組織或因子包括免疫系統之各種細胞(例如效應細胞)及經典補體系統之第一組分(Clq)。VH及VL區可進一步細分為稱為互補決定區(CDR)之高變區,穿插稱為構架區(FR)之更保守區。各VH及VL由自胺基末端至羧基末端按以下順序配置之三個CDR及四個FR構成:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重鏈及輕鏈之可變區含有與抗原相互作用之結合結構域。
如本文所用,術語抗體之「抗原結合部分」(或僅「抗原部分」)係指保留特異性結合至IL-18或IL-1β抗原之能力的抗體之全長或一或多個片段。已展示,抗體之抗原結合功能可由全長抗體之片段來進行。術語抗體之「抗原結合部分」內涵蓋的結合片段之實例包括Fab片段,由VL、VH、CL及CH1結構域組成之單價片段;F(ab)2片段,包含兩個由二硫橋鍵在鉸鏈區鍵聯的Fab片段之二價片段;由VH及CH1結構域組成之Fd片段;由抗體之單一臂的VL及VH結構域組成之Fv片段;由VH結構域組成之dAb片段(Ward等人, (1989) Nature; 341:544-546);及分離之互補決定區(CDR)。
此外,儘管Fv片段之兩個結構域VL及VH由單獨基因編碼,但其可使用重組方法由可撓性連接子連接,該可撓性連接子使得其能夠以VL及VH區配對以形成單價分子之單一蛋白質鏈形式製得(稱為單鏈Fv (scFv);參見例如Bird等人, (1988) Science 242:423-426;及Huston等人, (1988) Proc Natl Acad Sc;. 85:5879-5883)。該等單鏈抗體亦意欲涵蓋於術語抗體之「抗原結合部分」內。此等抗體片段係使用熟習此項技術者已知之習知技術獲得,且以與完整抗體相同之方式來篩選供使用的片段。
在本說明書通篇,術語「分離的」意謂視具體情況而定,免疫球蛋白、抗體或聚核苷酸存在於不同於其在自然界中所存在於之環境的物理環境中。
在本說明書通篇,除非規定互補決定區(「CDR」)係根據另一定義而定義,否則CDR係根據Kabat定義而定義。既定CDR之精確胺基酸序列邊界可使用多種熟知方案中之任一者測定,包括由以下文獻描述之方案:Kabat等人 (1991), 「Sequences of Proteins of Immunological Interest」, 第5版 Public Health Service, National Institutes of Health, Bethesda, MD (「Kabat」編號方案);Al-Lazikani等人, (1997) JMB 273, 927-948 (「Chothia」編號方案);及ImMunoGenTics (IMGT)編號(Lefranc, M.-P., The Immunologist, 7, 132-136 (1999);Lefranc, M.-P.等人, Dev. Comp. Immunol., 27, 55-77 (2003) (「IMGT」編號方案)。舉例而言,對於經典格式,根據Kabat,重鏈可變結構域(VH)中之CDR胺基酸殘基編號為31-35 (HCDR1)、50-65 (HCDR2)及95-102 (HCDR3);且輕鏈可變結構域(VL)中之CDR胺基酸殘基編號為24-34 (LCDR1)、50-56 (LCDR2)及89-97 (LCDR3)。根據Chothia,VH中之CDR胺基酸編號為26-32 (HCDR1)、52-56 (HCDR2)及95-102 (HCDR3);且VL中之胺基酸殘基編號為26-32 (LCDR1)、50-52 (LCDR2)及91-96 (LCDR3)。藉由組合Kabat及Chothia之CDR定義,CDR由人類VH中之胺基酸殘基26-35 (HCDR1)、50-65 (HCDR2)及95-102 (HCDR3)及人類VL中之胺基酸殘基24-34 (LCDR1)、50-56 (LCDR2)及89-97 (LCDR3)組成。根據IMGT,VH中之CDR胺基酸殘基編號為約26-35 (CDR1)、51-57 (CDR2)及93-102 (CDR3),且VL中之CDR胺基酸殘基編號為約27-32 (CDR1)、50-52 (CDR2)及89-97 (CDR3) (根據「Kabat」編號)。根據IMGT,抗體之CDR區可使用程式IMGT/DomainGap Align測定。
按照慣例,重鏈中之CDR區典型地稱為H-CDR1、H-CDR2及H-CDR3,且輕鏈中之CDR區稱為L-CDR1、LCDR2及L-CDR3。其在自胺基末端至羧基末端之方向上依序編號。
如本文所用,術語「單株抗體」或「單株抗體組合物」係指單分子組合物之抗體分子之製劑。單株抗體組合物呈現針對特定抗原決定基之單一結合特異性及親和力。
如本文所用,術語「人類抗體」意欲包括具有構架區及CDR區均來源於人類來源之序列之可變區的抗體。此外,若抗體含有恆定區,則恆定區亦來源於該等人類序列,例如人類生殖系序列,或人類生殖系序列或抗體之突變形式,其含有來源於人類構架序列分析之共同構架序列,例如如Knappik等人, (2000) J Mol Biol; 296:57-86中所描述。
本發明之人類抗體可包括不由人類序列編碼之胺基酸殘基(例如藉由活體外隨機或位點特異性突變誘發或藉由活體內體細胞突變而引入之突變)。然而,如本文所用,術語「人類抗體」不意欲包括來源於另一哺乳動物物種(諸如小鼠)之生殖系的CDR序列已移植至人類構架序列上的抗體。
術語「人類單株抗體」係指具有構架區及CDR區均來源於人類序列之可變區、呈現單結合特異性之抗體。
如本文所用,術語「重組人類抗體」包括藉由重組方式製備、表現、產生或分離之所有人類抗體,諸如自人類免疫球蛋白基因之轉殖基因或轉殖染色體動物(例如小鼠)或自其製備之融合瘤分離的抗體;自經轉型以例如自轉染瘤表現人類抗體之宿主細胞分離的抗體;自重組組合人類抗體文庫分離的抗體;及藉由涉及剪接人類免疫球蛋白基因之全部或一部分之任何其他方式製備、表現、產生或分離的抗體。該等重組人類抗體具有構架區及CDR區來源於人類生殖系免疫球蛋白序列之可變區。然而,在某些實施例中,該等重組人類抗體可進行活體外突變誘發(或,當使用人類Ig序列轉殖基因之動物時,為活體內體細胞突變誘發),且由此重組抗體之VH及VL區之胺基酸序列儘管來源於且關於人類生殖系VH及VL序列,然而該等胺基酸序列係可不活體內天然存在於人類抗體生殖系抗體庫內之序列。
片語「識別抗原之抗體」及「對抗原具有特異性之抗體」在本文中可與術語「特異性結合至抗原之抗體」互換使用。
如本文所用,「特異性結合至IL-18」之結合分子意欲指以100 nM或更低、10 nM或更低、1 nM或更低之KD 結合至人類IL-18的結合分子。
如本文所用,「特異性結合至IL-1β」之結合分子意欲指以100 nM或更低、10 nM或更低、1 nM或更低之KD 結合至人類IL-1β的結合分子。
「與不為IL-18之抗原交叉反應」的結合分子意欲指以100 nM或更低、10 nM或更低、1 nM或更低之KD 結合該抗原的結合分子。「與不為IL-1β之抗原交叉反應」的結合分子意欲指以100 nM或更低、10 nM或更低、1 nM或更低之KD 結合該抗原的結合分子。
「不與特定抗原交叉反應」之結合分子意欲指在標準結合分析中針對此等蛋白質展現基本上不可偵測結合的結合分子。
如本文所用,術語「拮抗劑」意欲指在活化化合物存在下抑制信號傳導活性之結合分子。舉例而言,在IL-18之情況下,IL-18拮抗劑將為在人類細胞分析中,諸如在人類血液細胞中之IL-18依賴性干擾素-γ (IFN-γ)生產分析中,在IL-18存在下抑制信號傳導活性之結合分子。人類血液細胞中之IL-18依賴性IFN-γ生產分析的實例更詳細描述於以下實例中。
術語二價雙特異性抗體係指結合至兩種不同標靶(諸如IL-18及IL-1β)之抗體。
雙特異性抗體係「雜二聚體」,此意謂一個部分來自對第一標靶具有特異性之第一抗體,且另一部分來自對第二標靶具有特異性之第二抗體。「雜二聚修飾」係對抗體之一或兩個部分進行修飾形成雜二聚雙特異性抗體,意欲促進該形成。對抗體之兩個IgG1部分之Fc結構域進行、意欲形成雙特異性的雜二聚修飾之一實例係,具有龐大胺基酸(aa)側鏈(S354C、T366W)之「杵」引入於第一重鏈中,且具有小aa側鏈(Y349C、T366S、L368A、Y407V)之「臼」引入於第二重鏈中,以及CH3區中連接兩個重鏈之另一個二硫橋鍵(Merchant等人, Nat. Biotechnol., 16:677-681 (1998), 第678頁, 表1)。
如本文所用,「無促效活性」之抗體意欲指在基於細胞之分析中在標靶不存在及/或存在下不會顯著增加標靶依賴性信號傳導活性的結合分子,諸如在IL-18之情況下,在人類血液細胞IFN-γ生產分析中在IL-18不存在及/或存在下不會顯著增加IL-18依賴性信號傳導活性的結合分子。該等分析更詳細描述於以下實例中。
如本文所用,術語「Kassoc 」或「Ka 」意欲指特定結合分子-抗原相互作用之締合速率,而如本文所用,術語「Kdis 」或「Kd 」意欲指特定結合分子-抗原相互作用之解離速率。如本文所用,術語「KD 」意欲指解離常數,其係自Kd 與Ka 之比率(亦即Kd /Ka )獲得且以莫耳濃度(M)表示。抗體之KD 值可使用此項技術中充分確立之方法測定。測定抗體之KD 的方法係藉由使用表面電漿子共振,諸如Biacore®系統。
如本文所用,術語「親和力」係指單抗原位點處結合分子與抗原之間的相互作用之強度。
如本文所用,術語抗體之「高親和力」係指抗體對標靶抗原之KD為1 nM或更低。
如本文所用,術語「個體」包括任何人類或非人類動物。
術語「非人類動物」包括所有脊椎動物,例如哺乳動物及非哺乳動物,諸如非人類靈長類動物、綿羊、狗、貓、馬、牛、雞、兩棲動物、爬行動物等。
如本文所用,術語「最佳化核苷酸序列」意謂,核苷酸序列已使用在生產細胞或生物體中較佳之密碼子改變以編碼胺基酸序列,該生產細胞或生物體通常為真核細胞,例如巴斯德畢赤酵母(Pichia pastoris)之細胞、中國倉鼠卵巢(CHO)細胞或人類細胞。最佳化核苷酸序列經工程化以完全保持最初由亦稱為「親本」序列的起始核苷酸序列編碼之胺基酸序列。本文中最佳化序列已經工程化以具有在CHO哺乳動物細胞中較佳之密碼子;然而,本文中亦預想此等序列於其他真核細胞中之最佳化表現。
術語「一致性」係指至少兩個不同序列之間的類似性。此一致性可表示為一致性百分比且藉由標準比對算法測定,該等標準比對算法例如基礎局部比對工具(Basic Local Alignment Tool,BLAST) (Altshul等人, (1990) J MoI Biol; 215:403-410);Needleman等人, (1970) J MoI Biol; 48:444-453之算法;或Meyers等人, (1988) Comput Appl Biosci; 4:11-17之算法。一組參數可為Blosum 62計分矩陣,其中空隙罰分為12分,空隙擴展罰分為4分,且讀框轉移空隙罰分為5分。兩個胺基酸或核苷酸序列之間的一致性百分比亦可使用E. Meyers及W. Miller, (1989) CABIOS; 4(1):1-17之算法(其已併入至ALIGN程式(2.0版)中),使用PAM 120權重殘基表、12分之空隙長度罰分及4分之空隙罰分來測定。一致性百分比通常藉由比較具有類似長度之序列來計算。
術語「免疫反應」係指例如淋巴細胞、抗原呈遞細胞、吞噬細胞、粒細胞及由以上細胞或肝臟生產之可溶性大分子(包括抗體、細胞介素及補體)產生對侵入病原體、感染有病原體之細胞或組織、癌細胞或在自體免疫或病理性炎症之情況下正常人類細胞或組織之選擇性損壞、破壞或自人體消除之作用。
「信號轉導路徑」或「信號傳導活性」係指通常由蛋白質-蛋白質相互作用(諸如生長因子結合至受體)引發、導致信號自細胞之一個部分傳輸至細胞之另一部分的生物化學因果關係。一般而言,傳輸涉及一系列造成信號轉導之反應中一或多種蛋白質上的一或多種酪胺酸、絲胺酸或蘇胺酸殘基之特異性磷酸化。次末過程典型地包括細胞核事件,導致基因表現之變化。
在本說明書通篇,術語「中和」及其文法變化形式意謂,標靶之生物活性在結合蛋白質或抗體存在下完全或部分降低,視具體情況而定。
術語「核酸」或「聚核苷酸」係指脫氧核糖核酸(DNA)或核糖核酸(RNA)及其單股或雙股形式之聚合物。除非具體限制,否則該術語涵蓋含有天然核苷酸之已知類似物的核酸,該等已知類似物具有與參考核酸類似的結合特性且以與天然存在之核苷酸類似的方式代謝。除非另外指示,否則特定核酸序列亦隱含地涵蓋其經保守修飾之變異體(例如簡併密碼子取代)、對偶基因、直系同源物、SNP及互補序列以及明確指示之序列。特定言之,簡併密碼子取代可藉由生成一或多個所選(或所有)密碼子之第三位置經混合鹼基及/或脫氧肌苷殘基取代之序列來實現(Batzer等人, Nucleic Acid Res. 19:5081 (1991);Ohtsuka等人, J. Biol. Chem. 260:2605-2608 (1985);及Rossolini等人, Mol. Cell. Probes 8:91-98 (1994))。
「聚核苷酸」或「核酸」中之核苷酸可包含修飾,包括鹼基修飾,諸如溴尿苷及肌苷衍生物;核糖修飾,諸如硫代磷酸酯、二硫代磷酸酯、硒代磷酸酯、二硒代磷酸酯、苯胺硫代磷酸酯、苯胺磷酸酯及磷醯胺酸酯。
術語「載體」意謂適用於轉型或轉染宿主細胞且含有引導及/或控制(結合宿主細胞)一或多個可操作地連接於其之異源編碼區之表現的核酸序列之任何分子或實體(例如核酸、質體、噬菌體或病毒)。
術語「共表現」意謂,不同多肽一起表現於對於所有多肽共同的單一宿主細胞中。雙特異性抗體之共表現意謂,形成功能雙特異性抗體之不同部分表現於單一共同宿主細胞中。共表現可藉由以下方式來實現:將數種表現載體併於表現宿主細胞中,諸如一種表現載體用於雙特異性抗體之兩半中的每一者;或併有編碼雙特異性抗體之所有部分的一種表現載體。
術語「錯配的」意謂,既定蛋白質複合物(諸如雙特異性抗體)之不同部分並不如預期般複合結合,此意謂蛋白質複合物看起來或表現得並不如預期般。在雙特異性抗體的情形下錯配之實例展示於圖4中。
編碼結合分子、抗體或其片段之序列的「保守變異體」係指包含保守胺基酸修飾之序列。「保守胺基酸修飾」意欲指不顯著影響或改變含有胺基酸序列之抗體之結合特徵的胺基酸修飾。該等保守修飾包括胺基酸取代、添加及缺失。保守胺基酸取代係胺基酸殘基經具有類似側鏈之胺基酸殘基置換之取代。此項技術中已限定具有類似側鏈之胺基酸殘基家族。此等家族包括具有鹼性側鏈(例如離胺酸、精胺酸、組胺酸)、酸性側鏈(例如天冬胺酸、麩胺酸)、不帶電極性側鏈(例如甘胺酸、天冬醯胺、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、半胱胺酸、色胺酸)、非極性側鏈(例如丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸)、β分支鏈側鏈(例如蘇胺酸、纈胺酸、異白胺酸)及芳族側鏈(例如酪胺酸、苯丙胺酸、色胺酸、組胺酸)之胺基酸。修飾可藉由此項技術中已知的標準技術(諸如定點突變誘發及PCR介導突變誘發)引入至本發明之結合蛋白質中。保守胺基酸取代亦可涵蓋非天然存在之胺基酸殘基,其典型地藉由化學肽合成而非藉由生物系統中之合成來併入。非天然存在之胺基酸包括(但不限於)胺基酸部分之肽模擬、顛倒或倒轉形式。
術語「抗原決定基」係抗原之由免疫系統(諸如抗體或其片段)識別的部分。在本說明書內,術語「抗原決定基」可互換用於構形抗原決定基及線性抗原決定基兩者。構形抗原決定基由抗原之胺基酸序列的不連續區段構成,而線性抗原決定基由來自抗原之胺基酸的連續序列形成。
術語「治療(treat/treating/treatment)」或「預防(prevent/preventing/prevention)」包括治療性治療、預防性治療及降低個體罹患病症或其他風險因素之風險的施用。治療不需要完全治癒病症且涵蓋減少症狀或潛在風險因素。如本文所用,人類抗體或其片段包含重鏈或輕鏈可變區或全長重鏈或輕鏈,若抗體之可變區或全長鏈獲自使用人類生殖系免疫球蛋白基因之系統,則其係特定生殖系序列之「產物」或「來源於」特定生殖系序列。該等系統包括用所關注之抗原使攜有人類免疫球蛋白基因之轉殖基因小鼠免疫或用所關注之抗原篩選呈現在噬菌體上之人類免疫球蛋白基因文庫。為人類生殖系免疫球蛋白序列「之產物」或「來源於」人類生殖系免疫球蛋白序列的人類抗體或其片段可藉由將人類抗體之胺基酸序列與人類生殖系免疫球蛋白之胺基酸序列進行比較且選擇序列最接近(亦即最大一致性%)人類抗體序列之人類生殖系免疫球蛋白序列來如此鑑別。為特定人類生殖系免疫球蛋白序列「之產物」或「來源於」特定人類生殖系免疫球蛋白序列的人類抗體可含有與生殖系序列相比因例如天然存在之體細胞突變或有意引入定點突變所致的胺基酸差異。然而,所選人類抗體典型地在胺基酸序列上與由人類生殖系免疫球蛋白基因編碼之胺基酸序列至少90%一致,且含有當與其他物種之生殖系免疫球蛋白胺基酸序列(例如鼠類生殖系序列)相比時鑑別人類抗體為人類的胺基酸殘基。在某些情況下,人類抗體可在胺基酸序列上與由生殖系免疫球蛋白基因編碼之胺基酸序列至少60%、70%、80%、90%、或至少95%、或甚至至少96%、97%、98%或99%一致。典型地,來源於特定人類生殖系序列之人類抗體與由人類生殖系免疫球蛋白基因編碼之胺基酸序列相比將呈現不超過10個胺基酸差異。在某些情況下,人類抗體與由生殖系免疫球蛋白基因編碼之胺基酸序列相比可呈現不超過5個,或甚至不超過4、3、2或1個胺基酸差異。
人類抗體可藉由熟習此項技術者已知的多種方法生產。人類抗體可藉由融合瘤方法使用人類骨髓瘤或小鼠-人類雜骨髓瘤細胞株製得(Kozbor, J Immunol; (1984) 133:3001;Brodeur, Monoclonal Isolated Antibody Production Techniques and Applications, 第51-63頁, Marcel Dekker Inc, 1987)。替代性方法包括使用噬菌體文庫或轉殖基因小鼠,其兩者均利用人類可變區庫(Winter G; (1994) Annu Rev Immunol 12:433-455,Green LL, (1999) J Immunol Methods 231:11-23)。
現可獲得數種轉殖基因小鼠品系,其中其小鼠免疫球蛋白基因座已經人類免疫球蛋白基因片段置換(Tomizuka K, (2000) Proc Natl Acad Sci, 97:722-727;Fishwild DM (1996) Nature Biotechnol 14:845-851;Mendez MJ, (1997) Nature Genetics 15:146-156)。在抗原攻擊後,該等小鼠能夠生產人類抗體庫,可自其中選擇所關注之抗體。尤其值得一提的係TrimeraTM 系統(Eren R等人, (1988) Immunology 93:154-161),其中人類淋巴細胞移植至經輻照小鼠中;選擇淋巴細胞分離抗體系統(Selected Lymphocyte Isolated antibody System,SLAM,Babcook等人, Proc Natl Acad Sci (1996) 93:7843-7848),其中人類(或其他物種)淋巴細胞有效地經受大規模彙集活體外分離抗體生成程序隨後經受去卷積、限制稀釋及選擇程序;及XenomouseTM (Abgenix Inc)。替代性方法可使用MorphodomaTM 技術獲自Morphotek Inc。
噬菌體呈現技術可用以生產人類抗體及其片段(McCafferty; (1990) Nature, 348:552-553;及Griffiths AD等人 (1994) EMBO 13:3245-3260)。根據此技術,將經分離之抗體可變結構域基因同框選殖至絲狀噬菌體(諸如M13或fd)之主要或次要外殼蛋白基因中,且在噬菌體顆粒之表面上呈現(通常藉助於輔助噬菌體)為功能性經分離之抗體片段。基於經分離之抗體的功能特性選擇導致選擇編碼展現此等特性之經分離之抗體的基因。噬菌體呈現技術可用以自由取自罹患疾病或病症之個體或者未經免疫之人類供體的人類B細胞製成之庫選擇抗原特異性抗體(Marks; J Mol Bio (1991) 222:581-591)。在需要包含Fc結構域的完整人類經分離之抗體時,需要將噬菌體呈現來源之片段再選殖至包含所要恆定區且確立穩定表現細胞株之哺乳動物表現載體中。
親和力成熟技術(Marks; Biotechnol (1992) 10:779-783)可用以提供結合親和力,其中初級人類經分離之抗體的親和力藉由用天然存在之變異體依序置換H及L鏈可變區且基於改良之結合親和力選擇而改良。諸如『抗原決定基印跡』的此技術之變化形式現亦可用(WO 93/06213;Waterhouse; Nucl Acids Res (1993) 21:2265-2266)。
術語「純」當用於經純化之雙特異性抗體的情形中時係指不同雙特異性抗體組合及構築體在於所選細胞表現雙特異性抗體之條件下共表現於細胞中之後及在使用完整UPLC-MS質量篩選方法蛋白A純化之後的純度及屬性(identity)。純或純度係指對形成之雜及同二聚體bbmAb的相對定量。使用本發明之方法,可觀測到正確形成之雜二聚bbmAb1及bbmAb2基於完整質量信號強度具有超過85%之相對純度。
2. IL-18抗體 所揭示之方法中使用的尤其較佳之IL-18抗體或其抗原結合片段係人類抗體。
為了易於參考,稱為mAb1之特異性IL-18抗體基於Kabat定義及Chothia定義的高變區之胺基酸序列以及VL 及VH 結構域及全重鏈及輕鏈提供於下 1 中。 1 . mAb1的高變區(CDR)之胺基酸序列、可變結構域(VH及VL)及全鏈。mAb1的編碼VL之DNA闡述於SEQ ID NO:18中。mAb1的編碼VH之DNA闡述於SEQ ID NO:8中。
在一個實施例中,該IL-18抗體或其抗原結合片段包含至少一個免疫球蛋白重鏈可變結構域(VH ),該至少一個免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:1,該CDR2具有胺基酸序列SEQ ID NO:2,且該CDR3具有胺基酸序列SEQ ID NO:3。在一個實施例中,該IL-18抗體或其抗原結合片段包含至少一個免疫球蛋白重鏈可變結構域(VH ),該至少一個免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:4,該CDR2具有胺基酸序列SEQ ID NO:5,且該CDR3具有胺基酸序列SEQ ID NO:6。
在一個實施例中,該IL-18抗體或其抗原結合片段包含至少一個免疫球蛋白輕鏈可變結構域(VL ),該至少一個免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:11,該CDR2具有胺基酸序列SEQ ID NO:12,且該CDR3具有胺基酸序列SEQ ID NO:13。在一個實施例中,該IL-18抗體或其抗原結合片段包含至少一個免疫球蛋白輕鏈可變結構域(VL ),該至少一個免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:14,該CDR2具有胺基酸序列SEQ ID NO:15,且該CDR3具有胺基酸序列SEQ ID NO:16。
在一個實施例中,該IL-18抗體或其抗原結合片段包含至少一個免疫球蛋白VH 結構域及至少一個免疫球蛋白VL 結構域,其中:a)該免疫球蛋白VH 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:1,該CDR2具有胺基酸序列SEQ ID NO:2,且該CDR3具有胺基酸序列SEQ ID NO:3;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:4,該CDR2具有胺基酸序列SEQ ID NO:5,且該CDR3具有胺基酸序列SEQ ID NO:6;且b)該免疫球蛋白VL 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:11,該CDR2具有胺基酸序列SEQ ID NO:12,且該CDR3具有胺基酸序列SEQ ID NO:13;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:14,該CDR2具有胺基酸序列SEQ ID NO:15,且該CDR3具有胺基酸序列SEQ ID NO:16。
在一個實施例中,該IL-18抗體或其抗原結合片段包含:a)包含如SEQ ID NO:7所闡述之胺基酸序列的免疫球蛋白重鏈可變結構域(VH );b)包含如SEQ ID NO:17所闡述之胺基酸序列的免疫球蛋白輕鏈可變結構域(VL );c)包含如SEQ ID NO:7所闡述之胺基酸序列的免疫球蛋白VH 結構域,及包含如SEQ ID NO:17所闡述之胺基酸序列的免疫球蛋白VL 結構域;d)包含如SEQ ID NO:1、SEQ ID NO:2及SEQ ID NO:3所闡述之高變區的免疫球蛋白VH 結構域;e)包含如SEQ ID NO:11、SEQ ID NO:12及SEQ ID NO:13所闡述之高變區的免疫球蛋白VL 結構域;f)包含如SEQ ID NO:4、SEQ ID NO:5及SEQ ID NO:6所闡述之高變區的免疫球蛋白VH 結構域;g)包含如SEQ ID NO:14、SEQ ID NO:15及SEQ ID NO:16所闡述之高變區的免疫球蛋白VL 結構域;h)包含如SEQ ID NO:1、SEQ ID NO:2及SEQ ID NO:3所闡述之高變區的免疫球蛋白VH 結構域,及包含如SEQ ID NO:11、SEQ ID NO:12及SEQ ID NO:13所闡述之高變區的免疫球蛋白VL 結構域;i)包含如SEQ ID NO:4、SEQ ID NO:5及SEQ ID NO:6所闡述之高變區的免疫球蛋白VH 結構域,及包含如SEQ ID NO:14、SEQ ID NO:15及SEQ ID NO:16所闡述之高變區的免疫球蛋白VL 結構域;j)包含SEQ ID NO:19之輕鏈;k)包含SEQ ID NO:9之重鏈;或l)包含SEQ ID NO:19之輕鏈,及包含SEQ ID NO:9之重鏈。
在一些實施例中,該IL-18抗體或其抗原結合片段(例如mAb1)包含SEQ ID NO:7之三個CDR。在其他實施例中,該IL-18抗體或其抗原結合片段包含SEQ ID NO:17之三個CDR。在其他實施例中,該IL-18抗體或其抗原結合片段包含SEQ ID NO:7之三個CDR及SEQ ID NO:17之三個CDR。在一些實施例中,該IL-18抗體或其抗原結合片段包含SEQ ID NO:9之三個CDR。在其他實施例中,IL-18抗體或其抗原結合片段包含SEQ ID NO:19之三個CDR。在其他實施例中,該IL-18抗體或其抗原結合片段包含SEQ ID NO:9之三個CDR及SEQ ID NO:19之三個CDR。
在一個實施例中,該IL-18抗體或其抗原結合片段(例如mAb1)選自包含至少以下之人類IL-18抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:1,該CDR2具有胺基酸序列SEQ ID NO:2,且該CDR3具有胺基酸序列SEQ ID NO:3;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:11,該CDR2具有胺基酸序列SEQ ID NO:12,且該CDR3具有胺基酸序列SEQ ID NO:13。
在一個實施例中,該IL-18抗體或其抗原結合片段(例如mAb1)選自包含至少以下之人類IL-18抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:4,該CDR2具有胺基酸序列SEQ ID NO:5,且該CDR3具有胺基酸序列SEQ ID NO:6;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:14,該CDR2具有胺基酸序列SEQ ID NO:15,且該CDR3具有胺基酸序列SEQ ID NO:16。
在一個實施例中,該IL-18抗體或其抗原結合片段選自包含抗原結合位點之單鏈抗體或其抗原結合片段,該抗原結合位點包含:a)第一結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:1,該CDR2具有胺基酸序列SEQ ID NO:2,且該CDR3具有胺基酸序列SEQ ID NO:3;及b)第二結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:11,該CDR2具有胺基酸序列SEQ ID NO:12,且該CDR3具有胺基酸序列SEQ ID NO:13;及c)肽連接子,其結合至第一結構域之N末端及第二結構域之C末端或結合至第一結構域之C末端及第二結構域之N末端。
在一個實施例中,該IL-18抗體或其抗原結合片段(例如mAb1)選自包含抗原結合位點之單鏈抗體或其抗原結合片段,該抗原結合位點包含:a)第一結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:4,該CDR2具有胺基酸序列SEQ ID NO:5,且該CDR3具有胺基酸序列SEQ ID NO:6;及b)第二結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:14,該CDR2具有胺基酸序列SEQ ID NO:15,且該CDR3具有胺基酸序列SEQ ID NO:16;及c)肽連接子,其結合至第一結構域之N末端及第二結構域之C末端或結合至第一結構域之C末端及第二結構域之N末端。
所揭示之方法中使用的IL-18抗體或其抗原結合片段之VH 或VL 結構域可具有與SEQ ID NO:7及17中所闡述之VH 或VL 結構域實質上一致的VH 及/或VL 結構域。本文所揭示之人類IL-18抗體可包含與如SEQ ID NO:9所闡述者實質上一致的重鏈及/或與如SEQ ID NO:19所闡述者實質上一致的輕鏈。本文所揭示之人類IL-18抗體可包括包含SEQ ID NO:9之重鏈及包含SEQ ID NO:19之輕鏈。本文所揭示之人類IL-18抗體可包含:a)一個重鏈,其包含具有與SEQ ID NO:7中所示者實質上一致之胺基酸序列的可變結構域及人類重鏈之恆定部分;及b)一個輕鏈,其包含具有與SEQ ID NO:17中所示者實質上一致之胺基酸序列的可變結構域及人類輕鏈之恆定部分。
用於所揭示之方法、套組及方案的其他較佳之IL-18拮抗劑(例如抗體)係美國專利第9,376,489號中所闡述之彼等,該美國專利係以全文引用的方式併入本文中。
3. IL-1β抗體 所揭示之方法中使用的尤其較佳之IL-1β抗體或其抗原結合片段係人類抗體。
為了易於參考,稱為mAb2之特異性IL-1β抗體基於Kabat定義及Chothia定義的高變區之胺基酸序列以及VL 及VH 結構域及全重鏈及輕鏈提供於下 2 中。 2 . mAb2的高變區(CDR)之胺基酸序列、可變結構域(VH及VL)及全鏈。mAb2的編碼VL之DNA闡述於SEQ ID NO:38中。mAb2的編碼VH之DNA闡述於SEQ ID NO:27中。
在一個實施例中,該IL-1β抗體或其抗原結合片段包含至少一個免疫球蛋白重鏈可變結構域(VH ),該至少一個免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:21,該CDR2具有胺基酸序列SEQ ID NO:22,且該CDR3具有胺基酸序列SEQ ID NO:23。在一個實施例中,該IL-1β抗體或其抗原結合片段包含至少一個免疫球蛋白重鏈可變結構域(VH ),該至少一個免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:24,該CDR2具有胺基酸序列SEQ ID NO:25,且該CDR3具有胺基酸序列SEQ ID NO:26。
在一個實施例中,該IL-1β抗體或其抗原結合片段包含至少一個免疫球蛋白輕鏈可變結構域(VL ),該至少一個免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:31,該CDR2具有胺基酸序列SEQ ID NO:32,且該CDR3具有胺基酸序列SEQ ID NO:33。在一個實施例中,該IL-1β抗體或其抗原結合片段包含至少一個免疫球蛋白輕鏈可變結構域(VL ),該至少一個免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:34,該CDR2具有胺基酸序列SEQ ID NO:35,且該CDR3具有胺基酸序列SEQ ID NO:36。
在一個實施例中,該IL-1β抗體或其抗原結合片段包含至少一個免疫球蛋白VH 結構域及至少一個免疫球蛋白VL 結構域,其中:a)該免疫球蛋白VH 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:21,該CDR2具有胺基酸序列SEQ ID NO:22,且該CDR3具有胺基酸序列SEQ ID NO:23;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:24,該CDR2具有胺基酸序列SEQ ID NO:25,且該CDR3具有胺基酸序列SEQ ID NO:26;且b)該免疫球蛋白VL 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:31,該CDR2具有胺基酸序列SEQ ID NO:32,且該CDR3具有胺基酸序列SEQ ID NO:33;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:34,該CDR2具有胺基酸序列SEQ ID NO:35,且該CDR3具有胺基酸序列SEQ ID NO:36。
在一個實施例中,該IL-1β抗體或其抗原結合片段包含:a)包含如SEQ ID NO:27所闡述之胺基酸序列的免疫球蛋白重鏈可變結構域(VH );b)包含如SEQ ID NO:37所闡述之胺基酸序列的免疫球蛋白輕鏈可變結構域(VL );c)包含如SEQ ID NO:27所闡述之胺基酸序列的免疫球蛋白VH 結構域,及包含如SEQ ID NO:37所闡述之胺基酸序列的免疫球蛋白VL 結構域;d)包含如SEQ ID NO:21、SEQ ID NO:22及SEQ ID NO:23所闡述之高變區的免疫球蛋白VH 結構域;e)包含如SEQ ID NO:31、SEQ ID NO:32及SEQ ID NO:33所闡述之高變區的免疫球蛋白VL 結構域;f)包含如SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26所闡述之高變區的免疫球蛋白VH 結構域;g)包含如SEQ ID NO:34、SEQ ID NO:35及SEQ ID NO:36所闡述之高變區的免疫球蛋白VL 結構域;h)包含如SEQ ID NO:21、SEQ ID NO:22及SEQ ID NO:23所闡述之高變區的免疫球蛋白VH 結構域,及包含如SEQ ID NO:31、SEQ ID NO:32及SEQ ID NO:33所闡述之高變區的免疫球蛋白VL 結構域;i)包含如SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26所闡述之高變區的免疫球蛋白VH 結構域,及包含如SEQ ID NO:34、SEQ ID NO:35及SEQ ID NO:36所闡述之高變區的免疫球蛋白VL 結構域;j)包含SEQ ID NO:37之輕鏈;k)包含SEQ ID NO:29之重鏈;或l)包含SEQ ID NO:39之輕鏈,及包含SEQ ID NO:29之重鏈。
在一些實施例中,該IL-1β抗體或其抗原結合片段(例如mAb2)包含SEQ ID NO:37之三個CDR。在其他實施例中,該IL-1β抗體或其抗原結合片段包含SEQ ID NO:27之三個CDR。在其他實施例中,該IL-1β抗體或其抗原結合片段包含SEQ ID NO:37之三個CDR及SEQ ID NO:27之三個CDR。在一些實施例中,該IL-1β抗體或其抗原結合片段包含SEQ ID NO:39之三個CDR。在其他實施例中,IL-1β抗體或其抗原結合片段包含SEQ ID NO:29之三個CDR。在其他實施例中,該IL-1β抗體或其抗原結合片段包含SEQ ID NO:39之三個CDR及SEQ ID NO:29之三個CDR。
在一個實施例中,該IL-1β抗體或其抗原結合片段(例如mAb2)選自包含至少以下之人類IL-1β抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:21,該CDR2具有胺基酸序列SEQ ID NO:22,且該CDR3具有胺基酸序列SEQ ID NO:23;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:31,該CDR2具有胺基酸序列SEQ ID NO:32,且該CDR3具有胺基酸序列SEQ ID NO:33。
在一個實施例中,該IL-1β抗體或其抗原結合片段(例如mAb2)選自包含至少以下之人類IL-1β抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:24,該CDR2具有胺基酸序列SEQ ID NO:25,且該CDR3具有胺基酸序列SEQ ID NO:26;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:34,該CDR2具有胺基酸序列SEQ ID NO:35,且該CDR3具有胺基酸序列SEQ ID NO:36。
在一個實施例中,該IL-1β抗體或其抗原結合片段選自包含抗原結合位點之單鏈抗體或其抗原結合片段,該抗原結合位點包含:a)第一結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:21,該CDR2具有胺基酸序列SEQ ID NO:22,且該CDR3具有胺基酸序列SEQ ID NO:23;及b)第二結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:31,該CDR2具有胺基酸序列SEQ ID NO:32,且該CDR3具有胺基酸序列SEQ ID NO:33;及c)肽連接子,其結合至第一結構域之N末端及第二結構域之C末端或結合至第一結構域之C末端及第二結構域之N末端。
在一個實施例中,該IL-1β抗體或其抗原結合片段(例如mAb2)選自包含抗原結合位點之單鏈抗體或其抗原結合片段,該抗原結合位點包含:a)第一結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:24,該CDR2具有胺基酸序列SEQ ID NO:25,且該CDR3具有胺基酸序列SEQ ID NO:26;及b)第二結構域,其在序列中包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:34,該CDR2具有胺基酸序列SEQ ID NO:35,且該CDR3具有胺基酸序列SEQ ID NO:36;及c)肽連接子,其結合至第一結構域之N末端及第二結構域之C末端或結合至第一結構域之C末端及第二結構域之N末端。
所揭示之方法中使用的IL-1β抗體或其抗原結合片段之VH 或VL 結構域可具有與SEQ ID NO:27及37中所闡述之VH 或VL 結構域實質上一致的VH 及/或VL 結構域。本文所揭示之人類IL-1β抗體可包含與如SEQ ID NO:29所闡述者實質上一致的重鏈及/或與如SEQ ID NO:39所闡述者實質上一致的輕鏈。本文所揭示之人類IL-1β抗體可包括包含SEQ ID NO:29之重鏈及包含SEQ ID NO:39之輕鏈。本文所揭示之人類IL-1β抗體可包含:a)一個重鏈,其包含具有與SEQ ID NO:27中所示者實質上一致之胺基酸序列的可變結構域及人類重鏈之恆定部分;及b)一個輕鏈,其包含具有與SEQ ID NO:37中所示者實質上一致之胺基酸序列的可變結構域及人類輕鏈之恆定部分。
用於所揭示之方法、套組及方案的其他較佳之IL-1β拮抗劑(例如抗體)係美國專利第7,446,175號或第7,993,878號或第8,273,350號中所闡述之彼等,該等美國專利係以全文引用的方式併入本文中。
4. Fc修飾 除構架區或CDR區內所作之修飾以外,或取而代之,本發明之抗體可經工程化以包括在Fc區內之修飾,典型地以改變抗體之一或多種功能特性,諸如血清半衰期、補體結合、Fc受體結合及/或抗原依賴性細胞毒性。此外,本發明之抗體可經化學修飾(例如可將一或多個化學部分連接至抗體),或經修飾以改變其糖基化,再改變該抗體之一個多種功能特性。此等實施例之每一者進一步詳細描述於下文中。Fc區中的殘基之編號係Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案的編號。
在一個實施例中,CH1之鉸鏈區經修飾以使得鉸鏈區中的半胱胺酸殘基之數目改變,例如增加或減少。此方法進一步描述於Bodmer等人之美國專利第5,677,425號中。CH1之鉸鏈區中的半胱胺酸殘基之數目經改變以例如促進輕鏈及重鏈之組裝或提高或降低抗體之穩定性。
在另一實施例中,抗體之Fc鉸鏈區經突變以減少抗體之生物半衰期。更特定言之,將一或多個胺基酸突變引入Fc鉸鏈片段之CH2-CH3結構域界面區中,使得抗體對葡萄球菌蛋白質A (SpA)之結合相對於天然Fc鉸鏈結構域SpA結合而言減弱。此方法進一步詳細描述於Ward等人之美國專利第6,165,745號中。
在另一實施例中,抗體經修飾以增加其生物半衰期。可進行多種方法。舉例而言,可引入以下突變中之一或多者:T252L、T254S、T256F,如Ward之美國專利第6,277,375號中所描述。或者,為增加生物半衰期,抗體可在CH1或CL區內經改變以含有取自IgG之Fc區之CH2結構域的兩個環之救助受體結合抗原決定基,如Presta等人之美國專利第5,869,046號及第6,121,022號中所描述。
在其他實施例中,Fc區藉由用不同胺基酸殘基置換至少一個胺基酸殘基來改變,以改變抗體之效應功能。舉例而言,一或多個胺基酸可經不同胺基酸殘基置換,以使得抗體具有改變之針對效應子配位體的親和力、但保留親本抗體之抗原結合能力。親和力改變之效應子配位體可為例如Fc受體或補體之C1組分。此方法進一步詳細描述於Winter等人之美國專利第5,624,821號及第5,648,260號中。
在另一實施例中,選自胺基酸殘基之一或多個胺基酸可經不同胺基酸殘基置換,以使得抗體具有改變之C1q結合及/或降低或消除之補體依賴性細胞毒性(CDC)。此方法進一步詳細描述於Idusogie等人之美國專利第6,194,551號中。
在另一實施例中,一或多個胺基酸殘基經改變以藉此改變抗體固定補體之能力。此方法進一步描述於Bodmer等人之PCT公開案WO 94/29351中。
在另一實施例中,Fc區經修飾以提高抗體介導抗體依賴性細胞毒性(ADCC)之能力及/或藉由修飾一或多個胺基酸來提高抗體對Fcγ受體之親和力。此方法進一步描述於Presta之PCT公開案WO 00/42072中。此外,人類IgG1上針對FcγRl、FcγRII、FcγRIII及FcRn之結合位點已經定位且具有改良結合之變異體已有描述(參見Shields, R.L.等人, (2001) J Biol Chem 276:6591-6604)。
在某些實施例中,使用IgG1同型之Fc結構域。在一些特定實施例中,使用IgG1 Fc片段之突變變異體,例如降低或消除融合多肽介導抗體依賴性細胞毒性(ADCC)及/或結合至Fcγ受體之能力的靜止IgG1 Fc。IgG1同型靜止突變體之一實例如Hezareh等人, J. Virol (2001); 75(24):12161-8所描述,其中白胺酸殘基在胺基酸位置234及235經丙胺酸殘基置換。
在某些實施例中,Fc結構域係防止Fc結構域之位置297處糖基化的突變體。舉例而言,Fc結構域在位置297處含有天冬醯胺殘基之胺基酸取代。該胺基酸取代之實例係由甘胺酸或丙胺酸置換N297。
靜止效應功能可藉由抗體之Fc區中的突變獲得且已描述於此項技術中:LALA及N297A (Strohl, W., 2009, Curr. Opin. Biotechnol. 第20(6)卷:685-691);及D265A (Baudino等人, 2008, J. lmmunol. 181:6664-69;Strohl, W., 同前文獻);及DAPA (D265A及P329A) (Shields RL., J Biol Chem. 2001;276(9):6591-604;美國專利公開案US2015/0320880)。Examples of silent Fc lgG1 antibodies comprise the so-called LALA mutant comprising L234A and L235A mutation in the lgG1 Fc amino acid sequence. Another example of a silent lgG1 antibody comprises the D265A mutation. Another example of a silent lgG1 antibody is the so-called DAPA mutant, comprising D265A and P329A mutations to the IgG1 Fc amino acid sequence. 另一靜默lgG1抗體包含N297A突變,其產生去糖基化/非糖基化抗體。提供靜止效應功能之其他Fc突變描述於以全文引用之方式併入本文中的PCT公開案第WO2014/145806號中(例如,WO2014/145806之圖7中)。靜止IgG1抗體之來自WO2014/145806的一個實例包含E233P、L234V、L235A及S267K突變及G236缺失(G236del)。靜止IgG1抗體之來自WO2014/145806的另一實例包含E233P、L234V及L235A突變及G236缺失(G236del)。靜止IgG1抗體之來自WO2014/145806的另一實例包含S267K突變。
在另一實施例中,抗體之糖基化經修飾。舉例而言,可產生非糖基化抗體(亦即,缺乏糖基化之抗體)。糖基化可經改變以例如提高抗體對抗原之親和力。該等碳水化合物修飾可藉由例如改變抗體序列內之一或多個糖基化位點來實現。舉例而言,可進行一或多個胺基酸取代,其使得一或多個可變區構架糖基化位點消除,以進而消除位於該位點之糖基化。該非糖基化可提高抗體對抗原之親和力。該種方法進一步詳細描述於Co等人之美國專利第5,714,350號及第6,350,861號中。
另外或替代地,可產生糖基化類型改變之抗體,諸如海藻糖基殘基量減少之低海藻糖基化抗體或二分GlcNac結構增加之抗體。已證明該等改變之糖基化模式會提高抗體之ADCC能力。該等碳水化合物修飾可藉由例如在具有改變之糖基化機構之宿主細胞中表現抗體來實現。糖基化機制改變之細胞在此項技術中已有描述且可用作表現本發明之重組抗體以藉此生產糖基化改變之抗體的宿主細胞。舉例而言,Hang等人之EP 1,176,195描述一種細胞株,其中編碼海藻糖基轉移酶之FUT8基因功能性破壞,使得該種細胞株中所表現之抗體展現低海藻糖基化。因此,在一個實施例中,本發明之抗體藉由重組表現於展現低海藻糖基化模式之細胞株(例如具有編碼海藻糖基轉移酶之FUT8基因之缺陷表現的哺乳動物細胞株)中生產。Presta之PCT公開案WO 03/035835描述一種變異CHO細胞株Lecl3細胞,其使海藻糖連接至Asn(297)所連碳水化合物之能力降低,亦導致該宿主細胞中所表現之抗體發生低海藻糖基化(亦參見Shields, R.L.等人, 2002 J. Biol. Chem. 277:26733-26740)。Umana等人之PCT公開案WO 99/54342描述細胞株,其經工程化以表現糖蛋白修飾糖基轉移酶(例如β(1,4)-N乙醯基葡糖胺轉移酶III (GnTIII)),以使得經工程化之細胞株內所表現之抗體展現增加之二分GlcNac結構,從而提高抗體之ADCC活性(亦參見Umana等人,1999 Nat. Biotech. 17:176-180)。或者,本發明之抗體可於針對哺乳動物類糖基化模式工程化且能夠生產不具有海藻糖作為糖基化模式之抗體的酵母或絲狀真菌中生產(參見例如EP1297172B1)。
本發明涵蓋的對本文中抗體之另一修飾係聚乙二醇化。抗體可經聚乙二醇化以例如增加抗體之生物(例如血清)半衰期。為使抗體發生聚乙二醇化,典型地使抗體或其片段與聚乙二醇(PEG)(諸如PEG之反應性酯或醛衍生物)在其中使一或多個PEG基團連接至抗體或抗體片段的條件下反應。聚乙二醇化可藉由與反應性PEG分子(或類似之反應性水溶聚合物)之醯化反應或烷化反應來進行。如本文所用,術語「聚乙二醇」意欲涵蓋已用於衍生其他蛋白質之任一種PEG形式,諸如單(C1-C10)烷氧基-或芳氧基-聚乙二醇或聚乙二醇-順丁烯二醯亞胺。在某些實施例中,待聚乙二醇化之抗體係非糖基化抗體。使蛋白質聚乙二醇化之方法為此項技術中已知,且可應用於本發明之抗體。參見例如Nishimura等人之EP 0 154 316及Ishikawa等人之EP 0 401 384。
本發明所涵蓋的對抗體之另一修飾係本發明抗體之至少抗原結合區與血清蛋白質(諸如人血清白蛋白)或其片段的共軛物或蛋白質融合體以增加所得分子之半衰期。該方法例如描述於Ballance等人EP0322094中。
本發明所涵蓋的對抗體之另一修飾係一或多種增加雜二聚雙特異性抗體之形成的修飾。此項技術中可用的多種方法可用於增強雙特異性抗體(例如,bbmAb)之兩個重鏈結構域的二聚,如例如EP 1870459A1、美國專利第5,582,996號、美國專利第5,731,168號、美國專利第5,910,573號、美國專利第5,932,448號、美國專利第6,833,441號、美國專利第7,183,076號、美國專利申請公開案第2006204493A1號及PCT公開案第WO2009/089004A1號中所揭示,該等文獻之內容係以全文併入本文中。
使用杵臼生成雙特異性抗體揭示於例如PCT公開案第WO1996/027011號、Ridgway等人(1996)及Merchant等人(1998)中。
(1) 杵臼(KIH) 本發明之多特異性分子(例如多特異性抗體或抗體類分子)可包含一或多個恆定結構域(例如CH3結構域)之一或多個(例如複數個)突變。在一個實例中,本發明之多特異性分子包含各自包含抗體之重鏈恆定結構域(例如CH2或CH3結構域)的兩個多肽。在一實例中,多特異性分子之兩個重鏈恆定結構域(例如CH2或CH3結構域)包含允許兩個鏈之間進行雜二聚締合的一或多個突變。在一個態樣中,一或多個突變安置於多特異性(例如雙特異性)抗體或抗體類分子之兩個重鏈的CH2結構域上。在一個態樣中,一或多個突變安置於多特異性分子之至少兩個多肽的CH3結構域上。在一個態樣中,包含重鏈恆定結構域之多特異性分子之第一多肽的一或多個突變產生「杵」,且包含重鏈恆定結構域之多特異性分子之第二多肽的一或多個突變產生「臼」,以使得包含重鏈恆定結構域之多特異性分子之多肽的雜二聚引起「杵」與「臼」介接(例如相互作用,例如第一多肽之CH2結構域與第二多肽之CH2結構域相互作用,或第一多肽之CH3結構域與第二多肽之CH3結構域相互作用)。在該術語用於本文中時,「杵」係指如下的至少一個胺基酸側鏈:其自包含重鏈恆定結構域之多特異性分子之第一多肽的界面凸出,且因此可定位於與包含重鏈恆定結構域之多特異性分子之第二多肽的界面中之補償性「臼」中,以使雜多聚體穩定,且從而例如促進雜多聚體形成優於同多聚體形成。杵可存在於原始界面中或可以合成方式(例如藉由改變編碼界面之核酸)引入。用於形成杵之較佳輸入殘基通常為天然存在之胺基酸殘基且較佳選自精胺酸(R)、苯丙胺酸(F)、酪胺酸(Y)及色胺酸(W)。最佳為色胺酸及酪胺酸。在較佳實施例中,用於形成隆凸之原始殘基具有小側鏈體積,諸如丙胺酸、天冬醯胺、天冬胺酸、甘胺酸、絲胺酸、蘇胺酸或纈胺酸。
「臼」係指如下的至少一個胺基酸側鏈:其自包含重鏈恆定結構域之多特異性分子之第二多肽的界面凹入,且因此容納包含重鏈恆定結構域之多特異性分子之第一多肽的相鄰介接表面上之相應杵。臼可存在於原始界面中或可以合成方式(例如藉由改變編碼界面之核酸)引入。用於形成臼之較佳輸入殘基通常為天然存在之胺基酸殘基且較佳選自丙胺酸(A)、絲胺酸(S)、蘇胺酸(T)及纈胺酸(V)。最佳為絲胺酸、丙胺酸或蘇胺酸。在較佳實施例中,用於形成臼之原始殘基具有大側鏈體積,諸如酪胺酸、精胺酸、苯丙胺酸或色胺酸。
在一較佳實施例中,第一CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在殘基366、405或407處突變以產生「杵」或「臼」(如上文所描述),且與第一CH3結構域雜二聚之第二CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在殘基366在第一CH3結構域中突變時在殘基407處突變、在殘基405在第一CH3結構域中突變時在殘基349處突變、或在殘基407在第一CH3結構域中突變時在殘基366處突變以產生與第一CH3結構域之「杵」或「臼」互補的「臼」或「杵」。
在另一較佳實施例中,第一CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在殘基366處突變以產生「杵」或「臼」(如上文所描述),且與第一CH3結構域雜二聚之第二CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在殘基366、368及/或407處突變以產生與第一CH3結構域之「杵」或「臼」互補的「臼」或「杵」。在一個實施例中,第一CH3結構域之突變在位置366處引入酪胺酸(Y)殘基。在一實施例中,第一CH3之突變係T366Y。在一個實施例中,第一CH3結構域之突變在位置366處引入色胺酸(W)殘基。在一實施例中,第一CH3之突變係T366W。在實施例中,根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案,與在位置366處突變(例如在位置366處引入酪胺酸(Y)或色胺酸(W),例如包含突變T366Y或T366W)之第一CH3結構域雜二聚的第二CH3結構域之突變包含位置366處之突變、位置368處之突變及位置407處之突變。在實施例中,位置366處之突變引入絲胺酸(S)殘基,位置368處之突變引入丙胺酸(A),且位置407處之突變引入纈胺酸(V)。在實施例中,該等突變包含T366S、L368A及Y407V。在一個實施例中,多特異性分子之第一CH3結構域包含突變T366Y,且與第一CH3結構域雜二聚之第二CH3結構域包含突變T366S、L368A及Y407V,或反之亦然。在一個實施例中,多特異性分子之第一CH3結構域包含突變T366W,且與第一CH3結構域雜二聚之第二CH3結構域包含突變T366S、L368A及Y407V,或反之亦然。
其他空間或「偏斜(skew)」(例如杵臼)突變描述於PCT公開案第WO2014/145806號(例如WO2014/145806之圖3、圖4及圖12)、PCT公開案第WO2014/110601號及PCT公開案第WO 2016/086186號、第WO 2016/086189號、第WO 2016/086196號及第WO 2016/182751號中,該等公開案之內容以全文併入本文中。KIH變異體之一實例包括包含L368D及K370S突變之第一恆定鏈,與包含S364K及E357Q突變之第二恆定鏈配對。
適用於本發明之任何多特異性分子的其他杵臼突變對進一步描述於例如WO1996/027011及Merchant等人, Nat. Biotechnol., 16:677-681 (1998)中,該等文獻之內容係以全文引用的方式併入本文中。
在本文所描述之任何實施例中,CH3結構域可另外突變以引入一對半胱胺酸殘基。在不受理論束縛的情況下,據相信,引入一對能夠形成二硫鍵之半胱胺酸殘基會提供給雜二聚多特異性分子穩定性。在實施例中,第一CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置354處包含半胱胺酸,且與第一CH3結構域雜二聚之第二CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置349處包含半胱胺酸。在實施例中,多特異性分子之第一CH3結構域在位置354處包含半胱胺酸(例如包含突變S354C)、且在位置366處包含酪胺酸(Y)(例如包含突變T366Y),且與第一CH3結構域雜二聚之第二CH3結構域在位置349處包含半胱胺酸(例如包含突變Y349C)、在位置366處包含絲胺酸(例如包含突變T366S)、在位置368處包含丙胺酸(例如包含突變L368A)、且在位置407處包含纈胺酸(例如包含突變Y407V)。在實施例中,多特異性分子之第一CH3結構域在位置354處包含半胱胺酸(例如包含突變S354C)、且在位置366處包含色胺酸(W)(例如包含突變T366W),且與第一CH3結構域雜二聚之第二CH3結構域在位置349處包含半胱胺酸(例如包含突變Y349C)、在位置366處包含絲胺酸(例如包含突變T366S)、在位置368處包含丙胺酸(例如包含突變L368A)、且在位置407處包含纈胺酸(例如包含突變Y407V)。
(2) 替代性杵及臼:IgG雜二聚 在一個態樣中,多特異性分子之(例如半抗體之)多肽鏈的雜二聚藉由在來源於IgG1抗體類別之CH3結構域中引入一或多個突變而增加。在一實施例中,根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案,突變包含一個CH3結構域之K409R突變,與第二CH3結構域中之F405L突變配對。或者,根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案,其他突變亦可在位置366、368、370、399、405、407及409處。較佳地,包含該等突變之多肽的雜二聚在還原條件下,例如在25-37C (例如25C或37C)下10-100 mM 2-MEA (例如25、50或100 mM 2-MEA)持續1-10 (例如1.5-5,例如5)小時實現。
本文所描述之胺基酸置換係使用此項技術中所熟知的技術引入至CH3結構域中。通常,編碼重鏈之DNA係使用Mutagenesis: a Practical Approach中描述之技術遺傳工程化。寡核苷酸介導之突變誘發係製備編碼兩個雜合重鏈之DNA的取代變異體之較佳方法。此技術為此項技術中所熟知,如Adelman等人, (1983) DNA, 2:183所描述。
IgG雜二聚策略描述於例如WO2008/119353、WO2011/131746及WO2013/060867中,該等專利之內容係以全文引用的方式併入本文中。
在本文所描述之任何實施例中,CH3結構域可另外突變以引入一對半胱胺酸殘基。在不受理論束縛的情況下,據相信,引入一對能夠形成二硫鍵之半胱胺酸殘基向雜二聚多特異性分子提供穩定性。在實施例中,第一CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置354處包含半胱胺酸,且與第一CH3結構域雜二聚之第二CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置349處包含半胱胺酸。
(3) 極性橋 在一個態樣中,多特異性分子之(例如半抗體之)多肽鏈的雜二聚藉由基於「極性橋接」理論引入突變而增加,該理論係使兩個多肽鏈之結合界面處的殘基與雜二聚體組態中的具有類似(或互補)物理特性之殘基、同時與同二聚體組態中的具有不同物理特性之殘基相互作用。詳言之,此等突變經設計,以便在雜二聚體形成中,極性殘基與極性殘基相互作用,而疏水性殘基與疏水性殘基相互作用。相比之下,在同二聚體形成中,殘基經突變以便極性殘基與疏水性殘基相互作用。雜二聚體組態中之有利相互作用及同二聚體組態中之不利相互作用一起作用以使得CH3結構域更可能形成雜二聚體而非形成同二聚體。
在一例示性實施例中,以上突變在CH3結構域之殘基364、368、399、405、409及411中之一或多個位置處生成,胺基酸根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案編號。
在一個態樣中,一或多個選自由以下組成之群的突變引入至兩個CH3結構域之一中:Ser364Leu、Thr366Val、Leu368Gln、Asp399Lys、Phe405Ser、Lys409Phe及Thr411Lys。(Ser364Leu:位置364處之原始絲胺酸殘基經白胺酸置換;Thr366Val:位置366處之原始蘇胺酸殘基經纈胺酸置換;Leu368Gln:位置368處之原始白胺酸殘基經麩醯胺酸置換;Asp399Lys:位置399處之原始殘基天冬胺酸經離胺酸置換;Phe405Ser:位置405處之原始殘基苯丙胺酸經絲胺酸置換;Lys409Phe:位置409處之原始殘基離胺酸經苯丙胺酸置換;Thr411Lys:位置411處之原始蘇胺酸殘基經離胺酸置換。)。
在另一態樣中,另一CH3可引入有一或多個選自由以下組成之群的突變:Tyr407Phe、Lys409Gln及Thr411Asp (Tyr407Phe:位置407處之原始殘基酪胺酸經苯丙胺酸置換;Lys409Glu:位置409處之原始殘基離胺酸經麩胺酸置換;Thr411Asp:位置411處之原始蘇胺酸殘基經天冬胺酸置換)。
在另一態樣中,一個CH3結構域具有一或多個選自由以下組成之群的突變:Ser364Leu、Thr366Val、Leu368Gln、Asp399Lys、Phe405Ser、Lys409Phe及Thr411Lys,而另一CH3結構域具有一或多個選自由以下組成之群的突變:Tyr407Phe、Lys409Gln及Thr411Asp。
在一個例示性實施例中,一個CH3結構域的位置366處之原始蘇胺酸殘基經纈胺酸置換,而另一CH3結構域的位置407處之原始酪胺酸殘基經苯丙胺酸置換。
在另一例示性實施例中,一個CH3結構域的位置364處之原始絲胺酸殘基經白胺酸置換,而同一CH3結構域的位置368處之原始白胺酸殘基經麩醯胺酸置換。
在另一例示性實施例中,一個CH3結構域的位置405處之原始苯丙胺酸殘基經絲胺酸置換,且此CH3結構域的位置409處之原始離胺酸殘基經苯丙胺酸置換,而另一CH3結構域的位置409處之原始離胺酸殘基經麩醯胺酸置換。
在另一例示性實施例中,一個CH3結構域的位置399處之原始天冬胺酸殘基經離胺酸置換,且同一CH3結構域的位置411處之原始蘇胺酸殘基經離胺酸置換,而另一CH3結構域的位置411處之原始蘇胺酸殘基經天冬胺酸置換。
本文所描述之胺基酸置換係使用此項技術中所熟知的技術引入至CH3結構域中。通常,編碼重鏈之DNA係使用Mutagenesis: a Practical Approach中描述之技術遺傳工程化。寡核苷酸介導之突變誘發係製備編碼兩個雜合重鏈之DNA的取代變異體之較佳方法。此技術為此項技術中所熟知,如Adelman等人, (1983) DNA, 2:183所描述。
極性橋策略描述於例如WO2006/106905、WO2009/089004及K.Gunasekaran等人 (2010) The Journal of Biological Chemistry, 285:19637-19646中,該等文獻之內容係以全文引用的方式併入本文中。
其他極性橋突變描述於例如PCT公開案第WO2014/145806號(例如WO2014/145806之圖6)、PCT公開案第WO2014/110601號及PCT公開案第WO 2016/086186號、第WO 2016/086189號、第WO 2016/086196號及第WO 2016/182751號中,該等公開案之內容係以全文併入本文中。極性橋變異體之一實例包含包括N208D、Q295E、N384D、Q418E及N421D突變之恆定鏈。
在本文所描述之任何實施例中,CH3結構域可另外突變以引入一對半胱胺酸殘基。在不受理論束縛的情況下,據相信,引入一對能夠形成二硫鍵之半胱胺酸殘基向雜二聚多特異性分子提供穩定性。在實施例中,第一CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置354處包含半胱胺酸,且與第一CH3結構域雜二聚之第二CH3結構域根據Edelman等人, PNAS, 1969年5月, 63(1):78-85之EU編號方案在位置349處包含半胱胺酸。
增強雜二聚之其他策略描述於例如WO2016/105450、WO2016/086186、WO2016/086189、WO2016/086196、WO2016/141378及WO2014/145806及WO2014/110601中,該等公開案之全部內容係以全文引用的方式併入本文中。該等策略中之任一者可用於本文所描述之多特異性分子中。
在實施例中,本文所論述之修飾中的兩者或更多者組合於單一雙特異性抗體(例如bbmAb)中。
5. 實例1:生成bbmAb bbmAb1 舉例而言,在下文描述特異性bbmAb之生成,以使得熟習此項技術者能夠實踐本發明。
所得bbmAb bbmAb1係雙特異性IgG1,其具有LALA靜止突變,同時結合至兩個獨特標靶IL-1β及IL-18。抗體組合兩個獨特抗原結合臂(Fab片段),而針對IL-1β之Fab係基於mAb2且含有κ輕鏈(Vk6)。針對IL-18之Fab係基於mAb1且由λ輕鏈(Vλ1)構成。為了在表現期間驅動Fc結構域之雜二聚,具有龐大胺基酸(aa)側鏈(S354C及T366W)之「杵」引入於mAb1重鏈中,且具有小aa側鏈(Y349C、T366S、L368A、Y407V)之「臼」引入於mAb2重鏈中。
為了易於參考,bbmAb1基於Kabat定義及Chothia定義的高變區之胺基酸序列以及VL 及VH 結構域及全重鏈及輕鏈提供於下 3 中。 3 . bbmAb1的高變區(CDR)之胺基酸序列、可變結構域(VH及VL)及全鏈。編碼第一VL之DNA闡述於SEQ ID NO:102中,且編碼第二VL之DNA闡述於SEQ ID NO:70中。編碼第一VH之DNA闡述於SEQ ID NO:86中,且編碼第二VH之DNA闡述於SEQ ID NO:54中。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白重鏈可變結構域(VH1 ),該第一免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78。在一個實施例中,IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白重鏈可變結構域(VH1 ),該第一免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:79,該CDR2具有胺基酸序列SEQ ID NO:80,且該CDR3具有胺基酸序列SEQ ID NO:81。在一個實施例中,IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白重鏈可變結構域(VH1 ),該第一免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:82,該CDR2具有胺基酸序列SEQ ID NO:83,且該CDR3具有胺基酸序列SEQ ID NO:84。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白重鏈可變結構域(VH2 ),該第二免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白重鏈可變結構域(VH2 ),該第二免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:47,該CDR2具有胺基酸序列SEQ ID NO:48,且該CDR3具有胺基酸序列SEQ ID NO:49。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白重鏈可變結構域(VH2 ),該第二免疫球蛋白重鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:50,該CDR2具有胺基酸序列SEQ ID NO: 51,且該CDR3具有胺基酸序列SEQ ID NO:52。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白輕鏈可變結構域(VL1 ),該第一免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白輕鏈可變結構域(VL1 ),該第一免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:95,該CDR2具有胺基酸序列SEQ ID NO:96,且該CDR3具有胺基酸序列SEQ ID NO:97。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白輕鏈可變結構域(VL1 ),該第一免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:98,該CDR2具有胺基酸序列SEQ ID NO:99,且該CDR3具有胺基酸序列SEQ ID NO:100。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白輕鏈可變結構域(VL2 ),該第二免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白輕鏈可變結構域(VL2 ),該第二免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:63,該CDR2具有胺基酸序列SEQ ID NO:64,且該CDR3具有胺基酸序列SEQ ID NO:65。在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白輕鏈可變結構域(VL2 ),該第二免疫球蛋白輕鏈可變結構域包含高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:66,該CDR2具有胺基酸序列SEQ ID NO:67,且該CDR3具有胺基酸序列SEQ ID NO: 68。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第一免疫球蛋白VH1 結構域及第一免疫球蛋白VL1 結構域,其中:a)該第一免疫球蛋白VH1 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:79,該CDR2具有胺基酸序列SEQ ID NO:80,且該CDR3具有胺基酸序列SEQ ID NO:81;或iii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO: 82,該CDR2具有胺基酸序列SEQ ID NO:83,且該CDR3具有胺基酸序列SEQ ID NO:84;且b)該第一免疫球蛋白VL1 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:95,該CDR2具有胺基酸序列SEQ ID NO:96,且該CDR3具有胺基酸序列SEQ ID NO:97;或iii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:98,該CDR2具有胺基酸序列SEQ ID NO:99,且該CDR3具有胺基酸序列SEQ ID NO:100。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含第二免疫球蛋白VH2 結構域及第二免疫球蛋白VL2 結構域,其中:a)該第二免疫球蛋白VH2 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:47,該CDR2具有胺基酸序列SEQ ID NO:48,且該CDR3具有胺基酸序列SEQ ID NO:49;或iii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:50,該CDR2具有胺基酸序列SEQ ID NO: 51,且該CDR3具有胺基酸序列SEQ ID NO:52;且b)該第二免疫球蛋白VL2 結構域包含(例如在序列中):i)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62;或ii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:63,該CDR2具有胺基酸序列SEQ ID NO:64,且該CDR3具有胺基酸序列SEQ ID NO:65;或iii)高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:66,該CDR2具有胺基酸序列SEQ ID NO:67,且該CDR3具有胺基酸序列SEQ ID NO: 68。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含:a)包含如SEQ ID NO:85所闡述之胺基酸序列的第一免疫球蛋白重鏈可變結構域(VH1 );b)包含如SEQ ID NO:101所闡述之胺基酸序列的第一免疫球蛋白輕鏈可變結構域(VL1 );c)包含如SEQ ID NO:85所闡述之胺基酸序列的第一免疫球蛋白VH1 結構域,及包含如SEQ ID NO:101所闡述之胺基酸序列的第一免疫球蛋白VL1 結構域;d)包含如SEQ ID NO:76、SEQ ID NO:77及SEQ ID NO:78所闡述之高變區的第一免疫球蛋白VH1 結構域;e)包含如SEQ ID NO:92、SEQ ID NO:93及SEQ ID NO:94所闡述之高變區的第一免疫球蛋白VL1 結構域;f)包含如SEQ ID NO:79、SEQ ID NO:80及SEQ ID NO:81所闡述之高變區的第一免疫球蛋白VH1 結構域;g)包含如SEQ ID NO:95、SEQ ID NO:96及SEQ ID NO:97所闡述之高變區的第一免疫球蛋白VL1 結構域;h)包含如SEQ ID NO:76、SEQ ID NO:77及SEQ ID NO:78所闡述之高變區的第一免疫球蛋白VH1 結構域,及包含如SEQ ID NO:92、SEQ ID NO:93及SEQ ID NO:94所闡述之高變區的第一免疫球蛋白VL1 結構域;i)包含如SEQ ID NO:79、SEQ ID NO:80及SEQ ID NO:81所闡述之高變區的第一免疫球蛋白VH1 結構域,及包含如SEQ ID NO:95、SEQ ID NO:96及SEQ ID NO:97所闡述之高變區的第一免疫球蛋白VL1 結構域;j)包含SEQ ID NO:103之第一輕鏈;k)包含SEQ ID NO:87之第一重鏈;或l)包含SEQ ID NO:103之第一輕鏈,及包含SEQ ID NO:87之第一重鏈。
在一個實施例中,該IL-18/IL-1β雙特異性抗體包含:a)包含如SEQ ID NO:53所闡述之胺基酸序列的第二免疫球蛋白重鏈可變結構域(VH2 );b)包含如SEQ ID NO:69所闡述之胺基酸序列的第二免疫球蛋白輕鏈可變結構域(VL2 );c)包含如SEQ ID NO:53所闡述之胺基酸序列的第二免疫球蛋白VH2 結構域,及包含如SEQ ID NO:69所闡述之胺基酸序列的第二免疫球蛋白VL2 結構域;d)包含如SEQ ID NO:44、SEQ ID NO:45及SEQ ID NO:46所闡述之高變區的第二免疫球蛋白VH2 結構域;e)包含如SEQ ID NO:60、SEQ ID NO:61及SEQ ID NO:62所闡述之高變區的第二免疫球蛋白VL2 結構域;f)包含如SEQ ID NO:47、SEQ ID NO:48及SEQ ID NO:49所闡述之高變區的第二免疫球蛋白VH2 結構域;g)包含如SEQ ID NO:63、SEQ ID NO:64及SEQ ID NO:65所闡述之高變區的第二免疫球蛋白VL2 結構域;h)包含如SEQ ID NO:44、SEQ ID NO:45及SEQ ID NO:46所闡述之高變區的第二免疫球蛋白VH2 結構域,及包含如SEQ ID NO:60、SEQ ID NO:61及SEQ ID NO:62所闡述之高變區的第二免疫球蛋白VL2 結構域;i)包含如SEQ ID NO:47、SEQ ID NO:48及SEQ ID NO:49所闡述之高變區的第二免疫球蛋白VH2 結構域,及包含如SEQ ID NO:63、SEQ ID NO:64及SEQ ID NO:65所闡述之高變區的第二免疫球蛋白VL2 結構域;j)包含SEQ ID NO:81之第二輕鏈;k)包含SEQ ID NO:55之第二重鏈;或l)包含SEQ ID NO:81之第二輕鏈,及包含SEQ ID NO:55之第二重鏈。
在一些實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:53之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:69之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:53之三個CDR及SEQ ID NO:69之三個CDR。在一些實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:85之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:101之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:85之三個CDR及SEQ ID NO:101之三個CDR。
在一些實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:85之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:101之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:85之三個CDR及SEQ ID NO:101之三個CDR。在一些實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:53之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:69之三個CDR。在其他實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:53之三個CDR及SEQ ID NO:69之三個CDR。在一實施例中,該IL-18/IL-1β雙特異性抗體包含SEQ ID NO:85之三個CDR、SEQ ID NO:101之三個CDR、SEQ ID NO:53之三個CDR及SEQ ID NO:69之三個CDR。
在一個實施例中,該IL-18/IL-1β雙特異性抗體之第一部分選自包含至少以下之人類IL-18抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94。此外,該IL-18/IL-1β雙特異性抗體之第二部分選自包含至少以下之人類IL-1β抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62。
在一個實施例中,該IL-18/IL-1β雙特異性抗體之第一部分選自包含至少以下之人類IL-18抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94。此外,該IL-18/IL-1β雙特異性抗體之第二部分選自包含至少以下之人類IL-1β抗體:a)免疫球蛋白重鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類重鏈之恆定部分或其片段;該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46;及b)免疫球蛋白輕鏈或其片段,其包含在序列中包含高變區CDR1、CDR2及CDR3的可變結構域及人類輕鏈之恆定部分或其片段,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62。
所揭示之方法中使用的IL-18/IL-1β雙特異性抗體之第一VH1 或VL1 結構域可具有與SEQ ID NO:85及101中所闡述之VH 或VL 結構域實質上一致的第一VH1 及/或第一VL1 結構域。本文所揭示之IL-18/IL-1β雙特異性抗體可包含與如SEQ ID NO:87所闡述者實質上一致的第一重鏈及/或與如SEQ ID NO:103所闡述者實質上一致的第一輕鏈。本文所揭示之IL-18/IL-1β雙特異性抗體可包括包含SEQ ID NO:87之第一重鏈及包含SEQ ID NO:103之第一輕鏈。本文所揭示之IL-18/IL-1β雙特異性抗體可包含:a)第一重鏈,其包含具有與SEQ ID NO:85中所示者實質上一致之胺基酸序列的可變結構域及具有雜二聚修飾之人類重鏈的恆定部分;及b)第一輕鏈,其包含具有與SEQ ID NO:101中所示者實質上一致之胺基酸序列的可變結構域及人類輕鏈之恆定部分。人類重鏈之恆定部分可為IgG1。在一個實施例中,IgG1係不具有效應子突變之人類IgG1。在一個實施例中,人類重鏈IgG1包含靜止突變N297A、D265A或L234A及L235A之組合。在一個特定實施例中,根據SEQ ID NO:87,人類重鏈IgG1包含為L234A及L235A之組合的靜止突變。
所揭示之方法中使用的IL-18/IL-1β雙特異性抗體之第二VH2 或VL2 結構域可具有與SEQ ID NO:53及69中所闡述之VH 或VL 結構域實質上一致的第二VH2 及/或第二VL2 結構域。本文所揭示之IL-18/IL-1β雙特異性抗體可包含與如SEQ ID NO:55所闡述者實質上一致的第二重鏈及/或與如SEQ ID NO:71所闡述者實質上一致的第二輕鏈。本文所揭示之IL-18/IL-1β雙特異性抗體可包括包含SEQ ID NO:53之第二重鏈及包含SEQ ID NO:69之第二輕鏈。本文所揭示之IL-18/IL-1β雙特異性抗體可包含:a)第二重鏈,其包含具有與SEQ ID NO:53中所示者實質上一致之胺基酸序列的可變結構域及具有雜二聚修飾之人類重鏈的恆定部分,該雜二聚修飾與第一重鏈之雜二聚互補;及b)第二輕鏈,其包含具有與SEQ ID NO:69中所示者實質上一致之胺基酸序列的可變結構域及人類輕鏈之恆定部分。人類重鏈之恆定部分可為IgG1。在一個實施例中,IgG1係不具有效應子突變之人類IgG1。在一個實施例中,人類重鏈IgG1包含靜止突變N297A、D265A或L234A及L235A之組合。在一個特定實施例中,根據SEQ ID NO:55,人類重鏈IgG1包含為L234A及L235A之組合的靜止突變。
用作所揭示之方法、套組及方案中的雙特異性抗體之第一部分之其他較佳IL-18拮抗劑(例如抗體)係美國專利第9,376,489號中所闡述者,該專利係以全文引用的方式併入本文中。
用作所揭示之方法、套組及方案中的雙特異性抗體之第二部分之其他較佳IL-1β拮抗劑(例如抗體)係美國專利第7,446,175號或第7,993,878號或第8,273,350號中所闡述者,該等專利係以全文引用的方式併入本文中。
(1) 載體設計 根據以下設置生成兩種載體,載體A及載體B。載體A經設計用於抗體部分mAb1 (抗IL18 IgG1)。重鏈1之恆定區藉由兩個點突變來修飾,如SEQ ID NO:87之位置366所見的T至W及如SEQ ID NO:87之位置354所見的S至C,以便生成杵結構且實現Cys橋接。此外,重鏈1之恆定區藉由兩個點突變來修飾,如SEQ ID NO:87之位置234所見的L至A及如SEQ ID NO:87之位置235所見的L至A (所謂的LALA),以使FC效應功能部分靜止。抗體具有可變輕鏈區,其具有λ 1型,Vλ1。
載體B經設計用於抗體部分mAb2 (抗IL-1β IgG1)。重鏈2之恆定區藉由四個點突變來修飾,如SEQ ID NO:55之位置366所見的T至S、如SEQ ID NO:55之位置368所見的L至A、如SEQ ID NO:55之位置407所見的Y至V及如SEQ ID NO:55之位置349所見的Y至C,以便生成臼結構且實現另一Cys橋接。臼結構與杵結構相互作用,以促進雙特異性抗體之生成。此外,重鏈2之恆定區經兩個LALA突變修飾,如SEQ ID NO:55之位置234所見的L至A、如SEQ ID NO:55之位置235所見的L至A,以使FC效應功能靜止。抗體具有可變輕鏈區,其具有κ 6型,Vκ6。
載體A及B分別攜有DHFR及新黴素選擇標記以及FOLR及潮黴素選擇標記之組合。葉酸係嘌呤及甲硫胺酸合成所必需之維生素且需要由哺乳動物細胞自培養基溶解。存在於表現質體A上之「葉酸受體」(FolR)係對葉酸之親和力改變、促進葉酸自培養基轉運至哺乳動物細胞中的突變FolR。鑒於高親和力葉酸受體僅微弱地表現於經培養之CHO細胞中,表現重組FolR之細胞具有在低葉酸條件(50 nM)下之明顯生長優點。FolR選擇標記編碼於載體B。
除了FolR之外,「二氫葉酸還原酶」(DHFR)存在於載體A上作為選擇標記。DHFR將葉酸轉化為用於嘌呤及甲硫胺酸合成之重要前驅體。MTX係葉酸之化學類似物。其為DHFR上之游離結合位點而競爭且從而阻斷酶。過度表現外源性DHFR之細胞可應對升高之MTX濃度,給予細胞生長於補充有MTX之培養基中的明顯選擇性優點。組合FolR及DHFR選擇為熟習此項技術者所熟知,且揭示於例如以全文引用之方式併入本文中的專利文獻WO2010/097240A1中。MTX為熟習此項技術者所熟知,且揭示於例如以全文引用之方式併入本文中的專利文獻WO2010/097239A1中。表現載體為熟習此項技術者所熟知,且揭示於例如以全文引用之方式併入本文中的專利文獻WO2009/080720A1中。
兩種載體之示意性概述可見於圖1中。
(2) 宿主細胞株及轉染 親本CHO細胞株用作用於生產bbmAb1表現細胞株之宿主細胞株。宿主細胞株來源於CHO-K1細胞株,為熟習此項技術者所熟知,其方式描述於例如均以全文引用之方式併入的專利申請案WO2015092737及WO2015092735中。
來自CHO株之單一小瓶用以製備bbmAb1重組細胞株。CHO株係於化學成分確定的培養基中製備。
使細胞生長於化學成分確定的培養基中。
每一轉染添加一µg編碼bbmAb之SwaI線性化質體DNA,表現載體A與B。轉染反應係於化學成分確定的培養基中進行。
轉染係藉由電穿孔使用AMAXA Gene Pulser根據製造商說明書進行。用於轉染之親本CHO細胞處於指數生長期,細胞活力高於95%。總計,進行三個轉染,每一轉染用5×106 個細胞。
在轉染之後立即將細胞轉移至含有化學成分確定的培養基之搖瓶中。
將細胞池在36.5℃及10% CO2 下培育48小時,隨後開始選擇過程。
(3) 細胞選擇及分選 選擇程序係使用如上文所描述由個別表現載體A及B編碼之選擇標記執行。兩種蛋白質(FolR及DHFR)參與同一分子路徑;FolR將葉酸以及葉酸類似物MTX轉運至細胞中,DHFR將其轉化為用於嘌呤及甲硫胺酸合成之重要前驅體。組合其作為選擇性原則,可採取特定強選擇性方案以增濃表現兩種重組蛋白質之重組細胞。 在轉染及生長於低葉酸條件下之後48小時,藉由添加10 nM MTX至化學成分確定的培養基施加額外選擇性壓力。在開始MTX選擇之後22天,出現主要由MTX抗性細胞組成之池群體。在池回收之後,冷凍細胞且製備細胞集結粒。將化學成分確定的培養基中之標準批次設置用於測定bbmAb之濃度。
蛋白A HPLC方法用以測定攜有Fc部分之完全所有種類的產物及相關雜質,而逆相層析(RPC)用以獲得關於個別溶離份之分佈的指紋-個別峰已藉由MS方法分配。
生產bbmAb1之CHO細胞池已用於FACS選殖程序以獲得個性化純系細胞株作為起始材料用於所有進一步評估。使用FACS分析之細胞選擇描述於例如以全文引用之方式併入本文中的專利申請案US20110281751中。
表現bbmAb1之個別純系CHO細胞株係藉由螢光活化細胞分選(FACS)生成。為實現FACS分選,將細胞與FITC標記之抗IgG1 Fab一起培育30分鐘且於PBS中洗滌兩次,隨後用於FACS輔助單細胞分選,其係熟習此項技術者熟知的過程。 FACS細胞分選係用配備有自動細胞沈積單元(Automatic Cell Deposition Unit,ACDU)之FACS Aria (Becton Dickinson)使用FACS Diva軟體進行。
為了確保僅單細胞藉由FACS儀器分選,將設定調整為單細胞精度模式,使用130 μm之噴嘴以及適當流速,確保良好分選品質。
在單細胞模式中,將純度遮罩(Purity Mask)設定為最大值,因此僅分選出不含粒子或其他細胞之滴。
將相遮罩(Phase Mask)設定為最大值的一半,因此僅使集中於所分選之滴內的粒子偏轉。使滴的軌跡及計數準確度以產率為代價最佳化以增加各小滴含有不超過1種單細胞之概率。
為了驗證及記錄單株來源,且為了證實FACS選殖之後第0天的單細胞狀態,使用成像系統取96孔盤之所有孔之影像。
一式兩份目視檢查指代bbmAb1生產純系的第0天之影像,證實在由成像系統所取的各別孔之影像中可鑑別僅一種單細胞。
此強調bbmAb1生產純系之單細胞來源。
(4) 細胞擴增 在FACS選殖之後,將純系藉由機器人系統處置第一週且隨後人工處置,自96孔、24孔逐步擴增至震盪器,且最後進行為熟習此項技術者熟知的生物反應器培養,以評估效能(bbmAb表現之生產率及品質)。
在擴增/培養期間,將重組CHO細胞於補充有10 nM最終濃度之甲胺喋呤(MTX)之化學成分確定的培養基中培養。
使細胞每週繼代2-3次至新鮮培養基中,且在整個研究期間維持成對數生長期。
藉由蛋白A HPLC評估生產率,藉由逆相層析(RPC)測定初始產物品質圖譜。
所有冷凍原料均於補充有7.5% DMSO之培養基中生成。
(5) 純系穩定性 藉由不同分析方法仔細評估來自池及純系的經分離之bbmAb以判斷產物特徵及品質參數,以確保選擇最適合之生產純系。
另外,對生產純系進行生產穩定性之額外分析以確保選擇最適合的生產純系。
不同目前先進技術分析方法用以評估純系穩定性:親和液相層析、逆相層析、FACS及MS。
(6) 製備 (a) 上游加工 bbmAb材料係在搖瓶或波補料分批培養物中生產。將池或純系(諸如PSL)之冷凍儲備液融化且於化學成分確定的培養基中擴增所需時間段以獲得所需數目的細胞以接種生產培養物,典型的種子細胞密度為4.0×105 個細胞/毫升。將個別培養物培養13-14天之時間段。在培養期間,執行過程內對照以監測上清液中的bbmAb之濃度及品質圖譜。在培養過程結束時,將細胞藉由離心(例如震盪器)或深度過濾隨後無菌過濾自培養物上清液分離,隨後進行進一步DSP加工。
(b) 下游加工 基於格式設計及共表現方法,在細胞培養及細胞碎片移除之後,預期上清液中不僅有完整產物bbmAb1及常見雜質(諸如凝集物、DNA及宿主細胞蛋白質),而且有mAb1及mAb2來源之單體、同二聚體及如圖4中所示的錯配之輕/重鏈bbmAb1變異體。錯配之輕/重鏈bbmAb1變異體(圖4E至4M)疑似具有與完整bbmAb1相同之生物物理學特性,其在製備規模上無法容易移除。
方法 I MabSelect™ SuRe™ 上藉由捕捉之純化、於 LambdaFabSelect™ KappaSelect™ 上之高純化 藉由第一親和液相層析(ALC)步驟於MabSelect SuRe 上自無細胞上清液捕捉攜有Fc部分之bbmAb1及bbmAb1變異體。藉由於LambdaFabSelect 上之第一高純化移除僅含有κ輕鏈(mAb2臼,圖4C及4D)之bbmAb1變異體及HCP,且藉由於KappaSelect 上之第二高純化步驟移除僅含有λ輕鏈(mAb1杵,圖4A及4B)之bbmAb1變異體及HCP。
在整個方法期間在室溫下使用4分鐘滯留時間(RT)進行層析。在負載之前用4管柱體積(CV) 20 mM Na2 HPO4 /NaH2 PO4 (pH 7.0)使所有管柱平衡。為自產物耗盡非特異性結合雜質,諸如宿主細胞蛋白質(HCP)、培養基組分及DNA,在將無細胞bbmAb1上清液自搖瓶負載至ALC管柱上之後,將層析管柱用4 CV 250 mM精胺酸-HCl、1 M NaCl、88 mM NaOH (pH 9.0)及3 CV平衡緩衝液洗滌。分別藉由將50 mM乙酸(pH 3.0)、50 mM乙酸/HCl (pH 2.0)用於自KappaSelect 及LambdaFabSelect 溶離來使bbmAb1及潛在bbmAb1變異體自層析管柱溶離。在0.5 AU/cm或0.25 AU/cm (280 nm)下開始及結束產物峰收集。將bbmAb1溶離液之pH用0.1或1 M Tris調整至約pH 5.0,隨後在2-8℃下分別儲存用於分析評估。
方法 II LambdaFabSelect™ 上藉由捕捉之純化、於 Capto™ adhere Fractogel™ EMD SO3 上之高純化 在第二方法中,藉由親和液相層析於LambdaFabSelect 上自無細胞上清液捕捉僅含有λ輕鏈(mAb1杵單體及同二聚體,圖4A及4B)之完整bbmAb1及bbmAb1變異體。為了使可能存在之包膜病毒不活化,對ALC溶離液進行低pH處理,隨後於Capto adhere及Fractogel EMD SO3 上進行兩個層析高純化步驟以移除產物相關雜質DNA及HCP。隨後藉由奈米過濾移除可能存在之病毒,隨後使用切向流過濾進行最終濃縮及緩衝液交換步驟。
a) 於LambdaFabSelect 上之親和液相層析(ALC) 在整個方法期間在18-28℃下使用3.6-4.4分鐘滯留時間(RT)進行ALC。首先,用4-6 CV 20 mM Na2 HPO4 /NaH2 PO4 (pH 7.0)使ALC管柱平衡。隨後將來自波或生物反應器之澄清無細胞bbmAb1上清液以7-23 g/L之負載密度負載至LambdaFabSelect 管柱上。用4-6 CV 250 mM精胺酸-HCl、1 M NaCl、88 mM NaOH (pH 9.0)進行管柱洗滌,且用3-5 CV平衡緩衝液進行第二洗滌,隨後用4-6 CV 50 mM乙酸進行產物溶離。自0.5-2.0 AU/cm (280 nm)遞增及0.5-2.0 AU/cm (280 nm)遞減收集產物峰。使用3-5 CV 120 mM磷酸、167 mM乙酸(pH 1.5)清潔LambdaFabSelect™管柱,隨後用3-5 CV 20 mM Na2 HPO4 /NaH2 PO4 (pH 7.0)再平衡,且儲存於4-6 CV 20%乙醇中。
b) 病毒不活化 將ALC溶離液之pH使用0.3 M磷酸調整至pH 3.4-3.6。接著,隨後將蛋白質溶液在此低pH下培育60-90分鐘,隨後用1 M Tris將pH調整至7.3-7.7。施加100-300LMH之流速、使用Millipore B1HC Pod過濾器進行深度過濾步驟,隨後用0.45/0.2 µm Sartopore™無菌過濾器無菌過濾。
c) 於Capto™ adhere上之多峰陰離子交換層析(MAC) 在整個方法期間在18-28℃下使用4-6分鐘滯留時間以流過模式進行MAC。首先,用7-9 CV 20 mM Tris/Tris-HCl (pH 7.5)使MAC管柱平衡。隨後,將低pH處理之ALC溶離液使用175-350 g/L之負載密度負載至Capto™ adhere管柱上。進而在0.5-2.0 AU/cm (280 nm)遞增下開始產物峰收集。隨後,將MAC管柱用5-7 CV平衡緩衝液洗滌,且在0.5-2.0 AU/cm (280 nm)遞減下結束產物峰收集。隨後將Capto™ adhere管柱用6-8 CV 100 mM乙酸洗提,隨後用3-5 CV 0.5 M NaOH進行就地清潔步驟,且儲存於3-5 CV 0.1 M NaOH中。
d) 於Fractogel™ EMD SO3 上之陽離子交換層析 在18-28℃下以結合-溶離模式於Fractogel™ EMD SO3 上進行CEC。在平衡、洗提、CIP及儲存期間使用6-8分鐘之滯留時間,且在負載、洗滌及溶離期間使用8-10分鐘滯留時間。用6-8 CV 20 mM丁二酸、35.1 mM NaOH (pH 6.0)使CEC管柱平衡。隨後,將MAC滲濾液以35-70 g/L之負載密度負載至管柱上。隨後,將CEC管柱用5-7 CV平衡緩衝液洗滌。使用線性鹽梯度10至90% 20 mM丁二酸、500 mM NaCl、37.4 mM NaOH (pH 6.0)經15 CV進行溶離。在300 nm下收集bbmAb1產物峰,在0.1-0.4 AU/cm下開始遞增至20%-40%最大峰高度。將Fractogel™ EMD SO3 管柱用3-5 CV 1 M NaCl洗提,隨後用3-5 CV 0.5 M NaOH進行就地清潔步驟,且儲存於3-5 CV 0.1 M NaOH中。
e) 奈米過濾 藉由使用Planova™ 20N奈米過濾器奈米過濾及0.5/0.1 µm Millipore SHR-P預過濾器來移除可能存在之病毒。藉由施加0.7-0.9巴之差壓進行預過濾及奈米過濾。
f) 切向流過濾及調配 為了濃縮及透濾bbmAb1,在18-28℃下於Millipore™ Pellicon™ 3 RC 30 kDa膜上進行切向流過濾步驟。首先,用1000 g/m2 之最大負載密度、使用0.5至1.2巴之進料流壓力及0.3-0.6巴之跨膜壓力(TMP),將經奈米過濾之bbmAb1蛋白質溶液濃縮至60-80 g/L。隨後,在0.8至1.8巴之進料流壓力及0.4-0.9巴之TMP下用7-9透濾體積20 mM組胺酸/組胺酸-HCl (pH 6.0)使bbmAb1透濾。在1.4-3.0巴之進料流壓力及0.7至1.5巴之TMP下進行第二濃縮步驟至134±10 g/L。最後將經超濾之bbmAb1蛋白質溶液調配至100±10 g/L及0.04% (w/v) Polysorbat 20之濃度。將最終原料藥(DS)經由0.2 µm過濾器過濾,在≤-60℃下冷凍儲存。
(7) 分析表徵及純度評估 (a) 完整bbmAb及變異體之LC-MS篩選 將100 µg蛋白A純化之bbmAb樣品於96孔盤中凍乾,且在37℃下於100 µl 50 mM Tris-HCl (pH 7.5)緩衝液中藉由PNGaseF (New England Biolabs)脫糖基化18小時。藉由LC-ESI-MS於連接至Synapt G2 Q-TOF質譜儀(Waters)之H-Class UPLC (Waters)上量測樣品。在80℃管柱溫度下使用MassPREP微型脫鹽管柱2.1×5 mm (Waters)。在0.3 ml/min下施加線性梯度,移動相A:0.1%甲酸/水,移動相B:0.1% FA/乙腈:0-2 min 5% B,2-12 min 5-90% B,隨後在0.5 ml/min下進行若干洗滌步驟。MS參數:ESI +解析模式,毛細管電壓3 kV,取樣錐40 V,源溫度150℃,去溶合溫度400℃。用NaCsI校準溶液校準系統,鎖定質量係白胺酸腦啡肽。用UNIFI 1.6軟體(Waters)藉由自動MaxEnt1去卷積(質量範圍60-150 kDa,諧波抑制)處理資料。bbmAb物種及錯配之變異體的鑑別及相對定量係基於與理論預期的質量之匹配及去卷積質譜之相對質量信號強度。
(b) bbmAb1之LC-MS表徵完整脫糖基化 bbmAb :將經純化之bbmAb1抗體於20 mM Tris-HCl pH 7.5中稀釋至1 mg/ml,且在37℃下使用2 µl PNGaseF酶(New England Biolabs)脫糖基化4小時。藉由添加三氟乙酸(TFA)至2%終止消化。
還原脫糖基化 bbmAb :將bbmAb1於20 µl 0.1 M Tris-HCl pH 7.5中稀釋至5 mg/ml。添加2 µl PNGase F,且在37℃下培育4小時,隨後添加80 µl變性緩衝液(50 mM Tris-HCl pH 8.0,6 M鹽酸胍)及1 µl 1 M DTT至混合物中。在於37℃下培育1小時之後,將樣品用1 µl TFA酸化。
番木瓜蛋白酶消化 bbmAb Fab Fc . 將bbmAb1與消化緩衝液(20 mM丁二酸、35.1 mM NaOH (pH 6.0)、1 mM Cys-HCl、1 mM EDTA)混合至5 mg/ml,隨後添加番木瓜蛋白酶(Roche, Germany)至5 µg/ml之最終濃度(蛋白酶/蛋白質比率1:1000),且在37℃下在震盪下培育2小時。在培育之後,藉由添加碘乙醯胺溶液至1.2 mM最終濃度終止溶液。
IdeS 消化 bbmAb F ( ab ' ) 2 Fc . 將100 µg bbmAb1與裂解緩衝液(50 mM磷酸鈉、150 mM NaCl,pH 6.6)混合,且在37℃下用100 U IdeS蛋白酶(Fabricator, Genovis)消化 隔夜。在培育之後,藉由添加TFA至2%最終濃度終止溶液。
還原 LysC 消化 - 肽定位 . (根據Rombach-Riegraf等人 PlosOne 2014) 使用150 µl變性溶液(6 M鹽酸胍、50 mM Tris-HCl、5 mM Na2 EDTA,pH 8.0)使200 µg蛋白質變性,且藉由添加1.5 µl 1 M DTT且在37℃下培育一小時而還原。藉由添加3 µl 1 M碘乙醯胺隨後在37℃下在暗處培育進行烷化。用1 µl 1 M DTT淬滅反應。在還原/烷化之後,添加750 µl消化緩衝液(50 mM Tris-HCl,pH 8)至樣品。隨後藉由兩次添加4 µl 1 µg/µl內切蛋白酶LysC溶液(Wako (Osaka, Japan))且在37℃下分別培育1小時及3小時而消化樣品。添加5 µl TFA以淬滅消化。
LC-MS 量測 . 使用配備有BEH C4 RP管柱(1.7 µm,2.1×100 mm,300 Å,Waters)及Xevo G2 TOF質譜儀(Waters, Milford)之Waters UPLC H-Class使蛋白質樣品經歷LC-MS系統。溶離劑係A:0.1% TFA/水,及B:0.09% TFA/乙腈。將管柱設定為80℃。流速係0.2 ml/min。如下用40 min梯度溶離蛋白質:0-5 min 10% B,5-10 min 10-30% B,10-25 min 30-40% B,25-26 min 40-95% B,26-28 min 95%,28-40 min 10% B。
MS設定:ESI (+) TOF模式,解析模式,質量範圍400-4000 Da,掃描時間1 s,毛細管電壓3 kV,取樣錐25 V-40 V。使用NaCsI溶液校準系統。
藉由RP-LC-MS於耦接至Synapt G2 Q-TOF質譜儀(Waters)、使用CSH130 C18 2.1 mm×150,1.7 µm (Waters, Milford)之H-Class UPLC (Waters)上分析肽消化物。移動相A:0.1% TFA/水,及移動相B:0.09% TFA/乙腈。在40℃管柱溫度下用以下梯度使肽自管柱溶離:0-5 min 0% B,5-10 min 0-2% B,10-40 min 2-20% B,40-120 min 20-40% B,120-135 min 40-70%。在214 nm下記錄UV層析圖,且以正ES(+)解析模式以MSE 實驗形式使用低能量(4 eV)及高能斷裂(30-55 V)進行MS資料獲取。鎖定質量係白胺酸腦啡肽(Waters)。
藉由MassLynx 4.2或UNIFI 1.6軟體(Waters)進行資料處理及評估。MaxEnt1算法用於對蛋白質質譜去卷積。用GPMAW 9.2軟體(Lighthouse data)進行理論質量計算。
(c) 逆相層析 於Agilent 1260 HPLC上使用Poroshell 300 SB-C8 RP管柱,2.1 mm×75 mm,5 µm (Agilent)分析bbmAb樣品。將管柱溫度設定為80℃,流速係2 ml/min,移動相A:90%水、10%乙腈、0.1% TFA、0.3% PEG-300,移動相B:10%水、90%乙腈、0.1% TFA、0.3% PEG-300。所用梯度係:0-5 min 22-37% B,5.0-5.1 min 100% B,5.1-6 min 100% B,6.1.-8.5 min 22% B。在210 nm下記錄UV信號。使用Chromeleon™ 6.8軟體(Thermo Scientific)控制及進行資料獲取及評估。
(d) 尺寸排阻層析 使用Agilent 1260系統使bbmAb1樣品經歷TSK凝膠G3000SWXL (Tosoh編號808541,5 µm,7.8 mm×300 mm) SEC管柱,孔隙尺寸250 A。流動相係150 mM磷酸鉀溶液,pH 6.5,流速係0.4 ml/min,管柱溫度係30℃。在210 nm下記錄UV。使用Chromeleon™ 6.8 (Thermo Scientific)進行資料獲取及峰積分。
(e) 毛細管電泳CE-SDS 在非還原CE-SDS中,將bbmAb樣品與樣品緩衝液(0.1磷酸鈉/1.0% SDS,pH 6.6)混合,且隨後與碘乙醯胺溶液混合。在還原CE-SDS中,將蛋白質與0.1 M Tris/1% SDS樣品緩衝液(pH 8.0)混合且用5% (v/v)巰基乙醇還原。兩種樣品均經歷70℃下之熱變性步驟10分鐘。
於配備有裸熔融二氧化矽毛細管(50 µm,375 OD,67 cm,Beckman)之Beckman PA 800系統上分析樣品,該毛細管之毛細管全長為30 cm且填充有Beckman SDS MW篩分凝膠緩衝液。在15 kV及25℃毛細管溫度下自負至正極性進行分離,在214 nm下藉由UV偵測。使用Chromeleon™ 6.8軟體對電泳圖進行處理及積分。
(f) 毛細管區帶電泳CZE 於配備有214 nm UV偵測器之Beckman Coulter PA 800醫藥分析系統上進行分離。於熔融二氧化矽毛細管(50 µm ID)上在25℃及正極性下分離蛋白質,該毛細管之全長為40 cm,毛細管電壓為20 kV。電泳緩衝液:具有2 mM TETA及0.03% Tween 20之400 mM 6-胺基己酸/乙酸pH 5.7。用Chromeleon™ 6.8軟體進行峰積分。
(8) 分析結果 在使用完整UPLC-MS質量篩選方法蛋白A純化之後分析不同雙特異性抗體組合及構築體在共表現之後的純度及屬性。此方法用以證實及相對定量來自細胞上清液的所形成之雜及同二聚體。可觀測到正確形成之雜二聚bbmAb1及bbmAb2基於完整質量信號強度具有超過85%之相對純度。篩選中觀測到的主要雜質係具有兩個κ輕鏈、兩個λ輕鏈及HC臼-二聚體分子之錯配抗體。 4 . bbmAb1-bbmAb11所獲得之分析結果的概述. 標識l係λ鏈,k係κ鏈。 mAb3係VH3,Vk1型之抗體。 mAb4係VH3,Vk1型之抗體。 mAb5係mAb1之移植形式(VH1,Vl1)。 mAb6係mAb2之移植形式(VH1_46,Vk3)。 mAb7係VH3,Vk1型之抗體。 mAb8係VH1_2,Vk2型之抗體。 mAb9係VH5,Vk6型之抗體。 mAb10係VH1_46,Vk6型之抗體。 mAb11係VH3,Vk3型之抗體。 mAb12係VH3,Vk2型之抗體。
更詳細地表徵bbmAb1以評估在藉由LC-MS使用若干樣品製備方法且用其他分離技術之不同純化步驟之後的所有形成之產物變異體及雜質。在用PNGaseF酶脫糖基化且隨後注射至RP-LC-MS設置中之後測定完整2步(λ/CEC)純化產物之質量。完整bbmAb1之去卷積質譜證實在共表現及λ選擇純化之後杵臼雜二聚體的正確形成。在λ選擇純化之後偵測不到主要雜質,如同二聚體或部分抗體。可在對樣品還原及脫糖基化之後證實四個不同抗體鏈之屬性。
為檢查鏈錯配及其他低含量雜質,藉由番木瓜蛋白酶消化經純化之樣品以分析個別Fab及Fc片段。所量測之片段質量再次證實不同Fab臂(杵-λ,臼-κ)之正確形成以及杵臼Fc片段之正確形成。可觀測到之錯配Fab片段(Fab4,杵-κ)的含量<1%。替代性方法生成Fab片段,測試有限LysC消化,其實現池及純系選擇期間的更快樣品製備。
測試使用IdeS (Fabricator)酶以生成Fc及F(ab')2片段之另一消化策略。在此實驗中,觀測Fc雜二聚體及正確形成之雜二聚F(ab')2的質量。Fc雜二聚體之存在亦為bbmAb1之Fc部分中的額外二硫橋鍵之正確形成之證據,因為否則的話僅生成具有更低質量之Fc/2片段。
用LC-MS進行LysC肽定位可證實肽之總體序列覆蓋度為99%之分子的屬性。
經純化之樣品的特定結果展示於圖2中。特定言之,脫糖基化完整雙特異性mAb之RP-UV層析圖展示於圖2A中。番木瓜蛋白酶消化之bbmAb1片段展示於圖2C中。IdeS消化之bbmAb1片段展示於圖2D中。脫糖基化及DTT還原之bbmAb1片段展示於圖2E中。完整脫糖基化雙特異性mAb bbmAb1之去卷積質譜展示於圖2B中。
結果展示於 5 中。 表5. 藉由RP-LC-MS量測之bbmAb1質量之分配
在應用上文所描述之不同步驟之後獲得的增加之純度可見於圖3中。圖3A係展示在培養之後的表現圖譜之層析圖,圖3B係在藉由LambdaFabSelect™捕捉之後的層析圖,圖3C係在用MabSelect™ SuRe™捕捉之後的層析圖,且圖3D係在用LambdaFabSelect™捕捉、藉由Fractogel™ EMD SO3 高純化及超濾之後的層析圖。
藉由 6 中所列之方法進一步分析最終經2步純化(λ/CEC)之雙特異性bbmAb1。總體而言,如藉由若干分離方法(諸如尺寸排阻層析(SEC)、CE-SDS及毛細管區帶電泳(CZE))所偵測,該材料展示高純度,凝集物或降解產物含量低。 表6.經純化之 bbmAb1 的純度分析
亦已測試其他抗體之其他組合。 4 展示所獲得之分析結果的概述。
6. 實例2:bbmAb1之活體外活性 在多種不同細胞分析中測試bbmAb1之結合活性。
(1) 材料及方法 (a) 在溶液平衡滴定(SET)分析中 使用以下材料: 重組人類IL-18,生物素化(BTP25828) 重組食蟹獼猴IL-1β (Novartis) 經磺基標籤(SULFO-TAG)標記之抗人類IgG抗體(Meso Scale discovery (MSD)編號R32AJ-5) 與MSD磺基標籤NHS酯共軛之山羊抗人類Fab特異性抗體(Jackson Immuno Research編號109-005-097,MSD編號R91AN-1) BSA (Sigma編號A-9647) 具有界面活性劑之MSD讀取緩衝液T (MSD編號R92TC-1) 磷酸鹽緩衝生理食鹽水(PBS) 10× (Teknova編號P0195) Tris緩衝生理食鹽水pH 7.5 (TBS) 10× (Teknova編號T1680) Tween-20 (Fluka編號93773) 聚丙烯微量滴定盤(MTP) (Greiner編號781280) 標準384孔盤(MSD編號L21XA)
(b) 在細胞分析及SET分析中 如章節IL-1β抗體中所描述之mAb2。 如章節IL-18抗體中所描述之mAb1。 如實例1中所描述之bbmAb1。 重組人類IL-18 (BTP 25829),購自MBL Int. Corp. (編號B001-5) 重組狨猴IL-1β (Novartis) 重組狨猴IL-18 (Novartis) 重組人類IL-12 (編號573008)係購自Biolegend KG-1細胞株(ATCC編號CCL-246) 正常人類真皮纖維母細胞(編號CC-2509)係購自Lonza 狨猴皮膚纖維母細胞(編號42637F (510)) HEK-Blue™ IL-18/IL-1β細胞(編號hkb-il18)係購自InvivoGen PBMC係自白血球層分離,係獲自Blutspendezentrum Bern 狨猴血液係獲自SILABE, Niederhausbergen IL-6 ELISA:人類(BioLegend,編號430503);狨猴(U-CyTech biosciences,CT974-5) IFNγ ELISA:人類(BD555142)及狨猴(U-CyTech biosciences編號CT340A) 用於偵測SEAP之QUANTI-Blue™分析(編號rep-qb1)係購自InvivoGen 細胞培養基:補充有10%胎牛血清(Invitrogen編號10108-157)、1% L-麩醯胺酸(Invitrogen編號25030-03)、1%青黴素/鏈黴素(Invitrogen編號15140-148)、10 µM 2-巰基乙醇(Gibco編號31350-010)、5 mM Hepes (Gibco編號15630-080)之RPMI 1640 (Invitrogen編號31870) 圓底的經組織培養物處理之96孔盤(Costar編號3799) 平底的經組織培養物處理之96孔盤(Costar編號3596) Ficoll-Pacque™ Plus (GE Healthcare Life Sciences編號17-1440-02) 無鈣與鎂之PBS 1× (Gibco編號14190094) 具有多孔障壁之Leucosep管,50 ml,聚丙烯(Greiner bio-one編號227290) Falcon 15 ml聚丙烯圓錐管(BD編號352096) Falcon 50 ml聚丙烯圓錐管(BD編號352070)
(c) 藉由SET之親和力量測SET 個別標靶結合分析 於樣品緩衝液(含有0.5%牛血清白蛋白(BSA)及0.02% Tween-20之PBS)中製備22個連續1.6倍稀釋之抗原(最高濃度:huIL-18,5 nM;marIL-18,10 nM;huIL-1β,0.5 nM;marIL-1β,0.5 nM),且添加恆定濃度之抗體(對於IL-18讀出,為10 pM,對於IL-1β讀出,為1 pM)。將60微升/孔體積之各抗原-抗體混合物一式兩份地分佈至384孔聚丙烯微量滴定盤(MTP)。樣品緩衝液充當陰性對照,且僅含有抗體之樣品充當陽性對照(在無抗原情況下之最大電化學發光信號,Bmax )。將盤密封且在室溫(RT)下在震盪器上培育隔夜(o/n,至少16小時)。
IL-18讀出:將經抗生蛋白鏈菌素塗佈之384孔MSD陣列MTP用30微升/孔生物素化huIL-18 (0.1 µg/ml,PBS)塗佈,且在室溫下在震盪器上培育1小時。
IL-1β讀出:將標準384孔MSD陣列MTP用30微升/孔稀釋於PBS中之huIL-1 (3 µg/ml,PBS)作為捕捉劑塗佈,且在4℃下培育隔夜。
將盤在室溫(RT)下用50微升/孔阻斷緩衝液(含有5% BSA之PBS)阻斷1小時(h)。在洗滌(TBST,含有0.05% Tween 20之TBS)之後,將30微升/孔體積經平衡之抗原-抗體混合物自聚丙烯MTP轉移至經塗佈之MSD盤,且在室溫下培育20分鐘。在另一洗滌步驟之後,將30 µl稀釋於樣品緩衝液中的經磺基標籤標記之抗IgG偵測抗體(0.5 µg/ml)添加至各孔,且在室溫下在震盪器上培育30分鐘。洗滌MSD盤,且添加35微升/孔MSD讀取緩衝液,且在室溫下培育5分鐘。生成電化學發光(ECL)信號,且藉由MSD Sector Imager 6000來量測。
SET 同時標靶結合分析 如上文所描述進行SET分析,不同之處在於分析A:在過量的一種標靶(500 pM之IL18或IL-1β)存在下同時評估另一標靶之KD 進行平衡過程(抗體/抗原混合物)。 分析B:兩種標靶同時連續稀釋於一種混合物中(抗體之恆定濃度10 pM,最高抗原濃度參見上文),進行平衡過程(抗體/抗原混合物)。隨後如上文所描述於經IL18及IL-1β塗佈之盤上分析同一混合物之游離抗體濃度。
SET資料輸出至Xlfit,一種MS Excel內加軟體。在各分析內由重複量測計算平均ECL信號。藉由自所有資料點減去最低值對資料進行基線調整,且相對於相應抗原濃度繪製以生成滴定曲線。藉由用以下公式擬合曲線來確定KD 值: 單特異性Ab之1:2結合模型杵臼雙特異性Ab之1:1結合模型其中 y:減去空白之ECL信號 Bmax :在零抗原濃度下之最大ECL信號 [IgG]:施用之抗體濃度 [Fab]:施用之總Fab濃度 KD :解離平衡常數 x:施用之抗原濃度
(d) 細胞培養 使KG-1細胞以2×105 至1×106 個活細胞/毫升之密度生長於補充有10%胎牛血清、1% L-麩醯胺酸及1%青黴素/鏈黴素之RPMI 1640中。
使正常人類纖維母細胞及狨猴纖維母細胞生長於包括bFGF (1 ng/ml,CC-4065)、胰島素(5 μg/ml,CC-4021)及2% FCS (CC-4101)之FBM (Clonetics,CC-3131 )中。使用纖維母細胞基礎培養基(LONZA編號CC-3131)作為饑餓培養基。
使HEK-Blue™ IL-18/IL-1β細胞生長於補充有30 μg/ml殺稻瘟菌素、200 μg/ml HygroGold™及100 μg/ml Zeocin™之生長培養基(DMEM,4.5 g/l葡萄糖,10% (v/v)胎牛血清,50 U/ml青黴素,50 mg/ml鏈黴素,100 mg/ml Normocin™,2 mM L-麩醯胺酸)中。
使用LeucoSep管根據製造商說明書自白血球層新鮮分離人類外周血液單核細胞(PBMC)。簡言之,將13 ml Ficoll-Paque預負載於14 ml LeucoSep管中,在1,000×g下離心30秒。用等體積PBS稀釋肝素化之全血樣品,且添加25 ml經稀釋之血液至LeucoSep管。持續不斷地在室溫下在800×g下使細胞分離管離心15分鐘。收集細胞懸浮層,且將細胞於PBS中洗滌兩次(對於兩次連續洗滌,分別在640及470×g下10分鐘),且在計數之前再懸浮於培養基中。
將狨猴血液收集於肝素化管中且使用70 µm細胞過濾器(BD Biosciences編號352350)過濾
(e) IL-1β中和分析 基本上如所描述(Gram 2000)執行纖維母細胞中的IL-1β誘導之IL-6生產分析,僅有少許修改。簡言之,將纖維母細胞以5×103 個細胞/孔(於100 µl中)之密度接種於96孔平底組織培養盤中。第二天,使細胞於饑餓培養基中饑餓5小時,隨後添加重組IL-1β/化合物溶液混合物(IL-1β濃度指示於表中)。藉由在37℃下將重組IL-1β與一定濃度範圍之化合物一起培育30分鐘預先製備IL-1β/化合物溶液混合物。在於37℃下隔夜培育之後收集細胞上清液,且藉由ELISA測定釋放之IL-6之量。根據以下進行PBMC中的IL-1β誘導之IL-6生產分析。將PBMC以3×105 個細胞/孔(於100 µl中)接種於96孔組織培養盤中,且在37℃下與重組IL-1β/化合物溶液混合物一起培育24小時(IL-1β濃度指示於表中)。藉由在37℃下將重組IL-1β與一定濃度範圍之化合物一起培育30分鐘預先製備IL-1β/化合物溶液混合物。在24小時刺激之後收集細胞上清液,且藉由ELISA測定釋放之IL-6之量。
(f) IL-18中和分析 基本上根據以下執行分析。將KG-1細胞(預先於PBS + 1% FCS中饑餓1小時)或PBMC以3×105 個/孔之密度接種至圓底96孔細胞培養盤中,且與重組IL-18/IL-12與一定濃度範圍之化合物一起的溶液混合物一起培育(IL-18/IL-12濃度指示於表中)。在於37℃下培育24小時之後,收集上清液,且藉由ELISA測定釋放之IFNγ之量。在對狨猴血液之分析中,使用85 µl血液/孔。
(g) HEK-Blue™細胞中之雙重IL1β/IL-18中和 基本上如製造商之處置程序中所描述執行分析。簡言之,將HEK-Blue™細胞以4×104 個/孔之密度接種至96孔細胞培養盤中,且與重組IL-1β及IL-18 (以產生1:1 SEAP信號)與一定濃度範圍之化合物一起的溶液混合物一起培育。在於37℃下培育24小時之後,收集上清液,且藉由根據製造商說明書使用QUANTI-Blue™方法測定釋放之SEAP之量。
所有資料輸出至EXCEL軟體,且藉由使用EXCEL/XLfit4或GraphPad Prism軟體繪製劑量反應曲線用於邏輯曲線擬合函數來計算IC50值。
(2) 結果 (a) 與重組人類及狨猴IL1β及IL-18之親和力 藉由溶液平衡滴定(SET)滴定(圖5)來量測bbmAb1與人類及狨猴重組IL-1β及IL-18蛋白質之結合親和力,且將生成之KD 值與mAb2對於IL-1β之值及mAb1對於IL-18之值相比較。圖5展示溶液中的基於ECL之親和力測定之滴定曲線,抗體之恆定濃度:對於IL-18讀出,為10 pM,對於IL-1β讀出,為1 pM;抗原稀釋:最高濃度:huIL-18,5 nM;marIL-18,10 nM;huIL-1β,0.5 nM;marIL-1β,0.5 nM。實線表示使用上文所描述之模型的資料之擬合。虛線指示95%置信區間,n=3。
比較個別標靶結合分析中的結合親和力,bbmAb1展示與mAb1對於人類及狨猴IL-18相比類似的平均KD ( 7 )。對於人類IL-1β結合,平均KD值對於bbmAb1 (2.6 pM)與mAb2 (0.6 pM)相比略高,但仍處於同一低pM範圍內。同時雙重標靶結合分析中之後續量測值( 8 )證實,IL-1β之bbmAb1結合KD值類似於mAb2與臨床前以及與臨床等級材料之值。因此,bbmAb1對於人類及狨猴中的兩種標靶之結合親和力分別類似於mAb2及mAb1。 7 . 藉由SET (個別標靶結合測定)來量測的與重組人類(hu)及狨猴(mar) IL-1β及IL-18之親和力
除了個別標靶結合結果之外,藉由在評估另一標靶之結合KD 值期間施用過量的一種標靶(分析A)或藉由施用兩種標靶連續稀釋之混合物(分析B),研究bbmAb1之同時雙重標靶結合親和力(表8 ) 同時IL-1β/IL-18親和力測定在分析A (過量的一種抗原)與分析B (兩種抗原連續稀釋之混合物)之間未展示顯著差異,此證明兩種標靶在不影響另一標靶之結合的情況下同時結合。此外,用同時雙重結合分析獲得之KD 值類似於用標準分析獲得之KD 值( 7 ;在無第二抗原存在下),此證明bbmAb1可獨立地結合兩種抗原。因此,bbmAb1同時且獨立地結合人類IL-1β及IL-18兩者且與相應狨猴蛋白質完全交叉反應。 8 . 藉由SET (同時標靶結合測定)來量測的與重組人類(hu)及狨猴(mar) IL-1β及IL-18之親和力
(b) 人類及狨猴細胞分析中bbmAb1之中和活性 評估bbmAb1對兩種細胞介素(IL1β及IL-18)之中和活性。另外,評估bbmAb1對於使用狨猴細胞分析系統中和狨猴IL-1β及IL-18之效力(參見章節d)。
(c) 人類細胞中之個別及同時IL-1β及IL-18中和 藉由抑制人類真皮纖維母細胞(IL-1β在6 pM下使用)及人類PBMC (IL-1β在60 pM下使用)中的重組IL-1β誘導之IL-6生產來評估bbmAb1對IL-1β之中和活性。藉由抑制KG-1細胞及人類PBMC (兩種細胞均用3 nM重組人類IL-18與1 ng/ml重組人類IL-12一起活化)中的重組IL-18誘導之IFN-γ生產來量測bbmAb1對IL-18之中和活性。bbmAb1對IL-1β及IL-18之抑制效力始終分別與mAb2或mAb1之抑制效力相比較。視分析而定,bbmAb1之平均IC50值在低於nM或單數位nM範圍內,且在直接比較中分別比mAb2 (對於IL-1β)及mAb1 (對於IL-18)高多達2至4倍( 9 及表 10 )。與mAb2/mAb1之二價格式相比的bbmAb1之單價格式以及可能KiH突變可為bbmAb1之效力的此細微差異之原因。 9 . 人類真皮纖維母細胞及人類PBMC中,藉由bbmAb1與mAb2相比進行IL-1β中和之平均IC50值。*經重組人類IL-1β (6 pM用於真皮纖維母細胞及60 pM用於PBMC)刺激之人類真皮纖維母細胞或PBMC中的IL-6生產之抑制。所示係平均值± SEM (n=3 PBMC及n=6人類真皮纖維母細胞) 10 . KG-1細胞及人類PBMC中,藉由bbmAb1與mAb1相比進行IL-18中和之平均IC50值。**經重組人類IL-18 (3 nM)及人類IL-12 (1 ng/ml)刺激之KG-1細胞或PBMC中的IFNγ生產之抑制。所示係平均值± SEM (n=3 KG-1及n=4 PBMC)
bbmAb1能夠同時中和IL-1β及IL-18兩者之生物活性,如響應於重組IL-1β及IL-18之1+1刺激產生SEAP的HEK Blue™報導細胞所證實( 11 )。此分析系統中的SEAP之類似抑制僅可藉由mAb2及mAb1之組合而非藉由使用個別抗體實現。 11 . HEK Blue™細胞中的SEAP報導子活性,同時中和IL-1β及IL-18之平均IC50值。所示係n=5個實驗之平均值± SEM。
(a) 狨猴細胞分析中bbmAb1對狨猴IL-1β及狨猴IL-18之中和活性 為了證實bbmAb1於狨猴中之抑制活性,如同人類細胞一樣對狨猴細胞進行類似活體外分析,然而將重組狨猴IL-1β及IL-18用於刺激。當評估狨猴真皮纖維母細胞中的重組狨猴IL-1β誘導之IL-6生產之抑制時,bbmAb1呈現低於nM之效力,IC50值比mAb2高2至3倍( 12 )。用經狨猴IL-1β刺激之人類真皮纖維母細胞測試bbmAb1生成如同人類IL-6之類似抑制圖譜。 12 . 狨猴及人類纖維母細胞中的重組狨猴IL-1β誘導之IL-6生產藉由bbmAb1之抑制。*經重組狨猴IL-1β (18 pM)刺激之狨猴或人類真皮纖維母細胞中的IL-6生產之抑制。展示3個個別實驗(A、B及C)之結果。
bbmAb1之單至雙位數nM IC50值證實bbmAb1對IFNγ生產分析中用狨猴血細胞測試的狨猴IL-18之中和活性( 3 -7 )。用經狨猴IL-18刺激之人類PBMC測試bbmAb1生成當量測人類IFNγ之生產時的類似抑制圖譜。
因此,bbmAb1在使用狨猴應答細胞之功能分析中展示為與狨猴IL-1β及狨猴IL-18完全交叉反應。 13 . 狨猴全血或人類PBMC中抑制重組狨猴IL-18誘導之IFNγ生產之平均IC50值。**經重組狨猴IL-18 (所指示濃度)與人類IL-12 (10 ng/ml)刺激之狨猴全血(n=3各化合物/條件)或人類PBMC (n=6)中的IFNγ生產之抑制。所示係平均值± SEM
在種種細胞分析中證實,bbmAb1(一種KiH格式IL-1β/IL-18雙特異性mAb)當與原始mAb(mAb2及mAb1)相比時,保留了對兩種個別標靶IL-1β及IL-18高親和力結合以及細胞介素中和效力。經證實bbmAb1之雙重IL-1β及IL-18中和特性不僅係針對人類細胞介素/細胞,而且也針對相應的狨猴細胞介素/細胞,此有助恰當的毒理學研究。一些針對IL-1β及IL-18中和作用之細胞分析中產生多達2至4倍高之IC50值可能是bbmAb1之單價結合之結果,此分別與mAb2及mAb1之二價結合結果是相反的。儘管如此,藉由bbmAb1之雙重細胞介素中和作用可能產生活體內累加或協同抑制活性,該等活性在吾等活體外細胞系統中可能未充分地呈現。
7. 實例3:PBMC中組合IL-1β及IL-18刺激及阻斷之效應 效應細胞介素IL-1β及IL-18之炎性體活化依賴性裂解會導致誘導二級促炎性介體,且不僅全身性地而且也會炎症位點促進免疫細胞募集/活化。在致死全身性炎症之兩種不同小鼠模型(a) LPS注射模型及(b) FCAS小鼠(NLRP3中之活化錯義突變)中,IL-1β及IL-18兩者同時不存在/抑制與單一IL-1β或單一IL-18不存在/抑制相比,更能保護免於致死,此證實免疫活化之累加或協同機制(Brydges 2013,van den Berghe 2014)。bbmAb1係不具有嚙齒動物交叉反應性之人類/狨猴IL-1β/IL-18反應性雙特異性mAb,且因此無法於小鼠模型中測試。因此,吾人使用LPS/IL-12活體外模擬炎性體依賴性路徑活化以便刺激人類PBMC以展現藉由bbmAb1之經組合IL-1β/IL-18中和作用之累加或協同抑制效應,且使用微陣列進行無偏基因表現分析。作為互補活動,吾人亦比較經重組IL-1β及重組IL-18之組合或單獨之單一細胞介素刺激的不同供體之PBMC之基因表現圖譜。
(1) 材料及方法 (a) 細胞培養及ELISA 補充有10%胎牛血清(Invitrogen編號10108-157)、1% L-麩醯胺酸(Invitrogen編號25030-03)、1%青黴素/鏈黴素(Invitrogen編號15140-148)、10µM 2-巰基乙醇(Gibco編號31350-010)、5 mM Hepes (Gibco編號15630-080)之RPMI 1640 (Invitrogen編號31870或Gibco編號61870-010) 重組人類IL-1β係購自Sino Biological Inc. (編號10139-HNAE-5) 重組人類IL-18係購自MBL (編號B001-5) 重組人類IL-12係購自Biolegend (編號573008) IFNγ ELISA:MAX Standard Set,BioLegend,編號430103或BD OptEIA人類IFNγ ELISA Set,BD編號555142 IL-6 ELISA:MAX Standard Set,BioLegend,編號430503 IL-26 ELISA:Cloud Clone Corp,編號SEB695Hu 如章節IL-1β抗體中所描述之mAb2。 如章節IL-18抗體中所描述之mAb1。 如實例1中所描述之bbmAb1。 來自腸道沙門氏菌血清型腸炎(Salmonella enterica serotype enteritidis)之LPS,Sigma編號L7770 PBMC係自白血球層分離,白血球層係獲自Blutspendezentrum Bern 圓底的經組織培養物處理之96孔盤(Costar編號3799) 平底的經組織培養物處理之96孔盤(Costar編號3596) Ficoll-Pacque ™Plus (GE Healthcare Life Sciences編號17-1440-02) 無鈣與鎂之PBS 1× (Gibco編號14190094) Falcon 15 ml聚丙烯圓錐管(BD編號352096) Falcon 50 ml聚丙烯圓錐管(BD編號352070) 具有多孔障壁之LeucosepTM管,50 ml,Greiner bio-one編號227290 細胞過濾器70 µM,BD Biosciences編號352350 錐蟲藍(Trypanblue),Sigma編號T8154 RNA分離、量及品質量測及qPCR: 無核酸酶水,Ambion編號AM9938 Rnase Zap,Ambion編號AM9780 1.5 ml Eppendorf管,無菌,無RNA酶與DNA酶 RLT緩衝液,Qiagen編號1015762 Rneasy Mini Kit,Qiagen編號74104 RNase-Free DNase Set,Qiagen編號79254 Agilent RNA 6000 Nano Kit,Agilent編號5067-1511 晶片激活站(Chip priming station),Agilent編號5065-4401 IKA渦流混合器 RNaseZAP®,Ambion編號9780 Agilent 2100 Bioanalyzer 高容量cDNA逆轉錄套組,Applied Biosystems,編號PN4374966 無Nase、薄壁、噴砂蓋(forsted Lid)的0.2 ml PCR管,Ambion編號AM12225 MicroAmp Optical 384孔反應盤,Applied Biosystems編號4309849 TaqMan GenEx Master Mix,Applied Biosystems編號4369514 PCR引子(Applied Biosystems)
PBMC 製備 :藉助於在Leucosep管中根據製造商之說明書進行Ficoll-Paque梯度離心自白血球層分離PBMC。簡言之,將15 mL Histopaque置於50 mL LeucosepTM管中,且在室溫下在1300 rpm下離心30秒。用移液管,於Histopaque溶液頂部添加30 mL白血球層之稀釋懸浮液,且持續不斷地在室溫下在1000g下離心15分鐘。丟棄血漿(約20 ml),且收集界面環(=人類PBMC)並且轉移於50 ml falcon離心管中。將管用50 mL無菌PBS填充,且在室溫下在1200 rpm下離心5分鐘一次。重複此離心2次。輕緩地丟棄上清液,且將細胞再懸浮於具有2% FCS及2 mM EDTA之50 mL PBS中。使用70 µm細胞過濾器過濾細胞懸浮液,且使用錐蟲藍染色(500 µL錐蟲藍+ 200 µL細胞+ 300 µL PBS)對細胞計數。
PBMC之LPS/IL-12刺激:根據以下製備上清液中的細胞介素生產。將250`000個細胞/孔以100 ul最終體積中分佈於96孔圓底盤中。LPS以0.3 ug/ml與3000 ug/ml之間的濃度與10 ng/ml之重組IL-12一起使用。在於37℃及10% CO2 下24小時之後收集上清液。
根據以下進行自細胞集結粒之RNA提取。將3×106 個細胞/孔以1000 ul最終體積中分佈於平底24孔盤中。LPS以3 ug/ml與10 ng/ml之重組IL-12一起使用。在於37℃及10% CO2 下24小時之後收集細胞。
PBMC經重組細胞介素之刺激:於1.5 ml最終完全RPMI培養基中使用7×106 個PBMC/12孔盤之孔。按以下最終濃度添加重組細胞介素:10 ng/ml重組IL-1β,3 nM重組IL-18,1 ng/ml重組IL-12。在於37℃及10% CO2 下4小時及24小時之後收集上清液以及細胞兩者。
RNA分離、量及品質評估:使細胞集結,且將集結粒溶解於具有2% β-巰基乙醇之350 µl Qiagen RTL緩衝液中,且在-20℃或-80℃下冷凍直至收集全研究之所有樣品。使用Qiagen標準方案進行RNA分離。簡言之,添加350 µl 70%乙醇於所有樣品中,隨後轉移至RNeasy自旋管柱,且在8000g下離心15秒。在丟棄流過物之後,添加350 μl緩衝液RW1,且使管柱在8000g下離心15秒以洗滌自旋管柱膜。根據製造商之說明書製備DNA酶I培育混合物溶液,且添加至RNeasy自旋管柱,且在室溫下培育15分鐘。在用350 μl及500 μl緩衝液RW1洗滌之後,將RNeasy自旋管柱置於新的2 ml收集管中,且在全速下離心1分鐘。最後藉由直接添加35 μl無RNA酶水至自旋管柱膜且在8000g下離心1分鐘以溶離RNA來收集RNA。使用Nanodrop ND-1000來量測RNA之量,且將RNA儲存於-20℃下。根據製造商之說明書進行用於RNA品質評估之RIN量測。簡言之,將1 µl RNA或梯吸入Agilent RNA 6000 Nano晶片中,且藉由使用Agilent 2100 Bioanalyser量測。
藉由qPCR進行之細胞介素基因表現分析: 對應於製造商之說明書進行該方法。簡言之,根據說明書使用高容量cDNA逆轉錄套組使400 ng RNA逆轉錄。將cDNA溶液1/10稀釋於無RNA/DNA水中,且將1 µl cDNA轉移至384孔反應盤中,且隨後與1 µl 20× TaqMan® Gene Expression Assay標靶FAM基因及10 µl 2× TaqMan® Gene Expression Master Mix及10 µl無RNA/DNA水混合。將盤負載至Applied Biosystems ViiA™ 7即時PCR系統(Real-Time PCR System)上,且使用以下儀器設定:
用於此研究之管家基因係HPRT1及RLP27。以下公式用以計算標靶基因之相對表現量: 1) Ct [參考] = (Ct [HPRT1] + Ct [RLP27]) /2 2) dCt [參考] = 40 - Ct [參考] 3) dCt [標靶] = Ct [標靶] - Ct [參考] 4) ddCt = dCt [參考] - dCt [標靶] 5) 相對標靶基因表現= 2^ddCt
根據以下進行微陣列。藉由CiToxLAB France於Affymetrix HG_U133_Plus2微陣列上處理樣品。將其RMA標準化,且於GeneSpring 11.5.1 (Agilent Technologies, Santa Clara, CA)中分析。使用Ingenuity Pathway Analysis (IPA)及Nextbio (Illumina)進行路徑分析。獨立地處理兩個資料集。
最初,藉由CiToxLAB,內部QC藉由使用R腳本(MA_AffyQC.R)於Rstudio套件及於GeneSpring (PCA,雜交對照)中,使資料經受標準品質控制(QC)。隨後,將其過濾以消除不可靠表現量:實體(探針集)保持,其中任1個實驗條件中之至少100%的樣品具有超過第20百分位之值。
在GeneSpring中使用「火山圖上過濾器(filter on volcano plot)」特徵鑑別差異表現之基因(DEG)。使用經過濾之基因(第20.0-100.0百分位之間的表現)、用未配對T測試,校正p值低於0.05且倍數變化超過2.0之探針集視為差異表現。在可能的情況下,亦即在LPS (NUID-0000-0202-4150)之研究中,使用Benjamini-Hochberg多重測試校正(Multiple Testing Correction)。
在細胞介素刺激實驗中,使用以下公式計算協同作用:信號A+B / (信號A +信號B -對照) ≥1.5
各別特徵標誌(或DEG清單)用以用費雪精確測試(Fisher's exact test)計算p值,該等p值代表觀測公眾資料集之特徵標誌與『疾病基因清單』(病變性對非病變性)之間的重疊之統計顯著性。為如此進行,將清單上傳至Illumina Base Space Correlation Engine (先前的Nextbio)中,且使用綜合分析(Meta-Analysis)特徵及疾病關鍵字搜索進行比較。
所有資料輸出至EXCEL軟體,且藉由使用EXCEL/XLfit4或GraphPad Prism軟體繪製劑量反應曲線用於邏輯曲線擬合函數來計算IC50 值。藉由使用GraphPad Prism軟體進行單因子ANOVA隨後Dunnett多重比較來分析處理組之間的差異,且結果在p < 0.05下視為統計顯著。
(2) 結果 (a) bbmAb1在抑制全血中的LPS/IL-12誘導之IFNγ生產中高度靈驗 使人類全血曝露於補充有10 ng/ml IL-12之LPS產生很大程度上(但非排他地)依賴於由血細胞生產的「天然」IL-18之IFNγ反應。添加IL-12增強LPS誘導之IFNγ反應,可能藉由上調應答細胞上之IL-18受體進行。
在所用之實驗條件中,用mAb1之IL-18中和僅導致IFNγ生產之不完全抑制,而IL-1β阻斷(使用mAb2)僅對IFNγ反應具有較小影響。有趣的為,IL-1β及IL-18藉由bbmAb1或mAb2及mAb1之組合的組合抑制與單一細胞介素中和相比更深遠且完全地抑制IFNγ生產(圖6)。圖6展示全血中的LPS (0.3 µg/ml)/IL-12誘導之IFNγ藉由bbmAb1、mAb2、mAb1或組合mAb2與mAb1 (組合)之抑制(典型抑制曲線展示於圖6A中)。全血中的n=4個個別供體藉由以100 nM使用之bbmAb1、mAb1或mAb2之IFNγ抑制%(平均值及SEM展示於圖6B中)。
在吾等細胞分析(資料未展示)中,除IFNγ之外,所測試之其他細胞介素(IL-2、IL-4、IL-6、IL-8、IL-10、IL-13及TNFα)中無一者由IL-1β及IL-18之組合中和累加抑制。考慮雙特異性分子之單價格式,bbmAb1之效力與mAb2及mAb1之組合(combination/combo)處於相同範圍內。
(b) 與LPS/IL-12活化之人類PBMC中的單一IL-1β或IL-18抑制相比,IFNγ由bbmAb1 (亦即組合IL-1β/IL-18抑制)累加抑制 需要無偏轉錄物組學評估以便展現藉由使用bbmAb1之組合IL-1β/IL-18抑制的進一步累加效應(除IFNγ之外)。因為全血對於轉錄物組學分析並非最佳,所以吾人將以上材料及方法章節中描述的LPS/IL-12刺激分析條件調整至人類PBMC樣品。藉由使用來自總共9個供體之PBMC,吾人可證實,bbmAb1累加抑制IFNγ蛋白質分泌至PBMC之上清液中(圖7)。與全血實驗相比,在低約10倍濃度的所用各別mAb下抑制IFNγ生產。重要地,在IFNγ之mRNA含量下展現類似抑制模式(圖7),此證實樣品適合用於無偏基於微陣列之基因表現分析。圖7展示人類PBMC中的LPS (0.3 µg/ml)/IL-12誘導之IFNγ蛋白質生產(圖7A)及IFNγ基因表現(圖7B)藉由bbmAb1、mAb2及mAb1 (各自在10 nM濃度下)之抑制。所示係n=9個供體中的抑制百分比± SEM。***p < 0.05 (單因子ANOVA)
用來自PBMC之n=5個個別供體執行Affymetrix微陣列,該等PBMC取樣自以上材料及方法章節中描述的LPS/IL-12刺激實驗。不幸地,基因表現圖譜之總體評估證明強LPS/IL-12刺激效應,且PCA展示經刺激或未經刺激組內按供體而非化合物簇聚。儘管如此,針對差異表現之基因將經LPS/IL-12刺激之樣品與經刺激加bbmAb1比較展現由bbmAb1之組合IL-1β/IL-18阻斷下調的基因之候選名單(shortlist)( 14 )。除再驗證吾等微陣列資料的IFNγ基因之強下調之外,此外,IL-26基因係與單一IL-1β抑制(藉由mAb2)或IL-18抑制(藉由mAb1)相比藉由bbmAb1累加抑制之另一細胞介素基因(參見圖8)。圖8及圖9展示在24小時時在經LPS (0.3 ug/ml)/IL-12刺激之PBMC中的IFNγ及IL-26之微陣列資料來源的基因表現量及藉由bbmAb1、mAb2及mAb1 (各10 nM)之抑制。個別供體之值展示於圖8A (IFNγ)及圖8B (IL-26)中,且n=5個供體之抑制百分比(平均值± SEM)展示於圖9A (IFNγ)及圖9B (IL-26)中。 14 . 差異表現之基因(經LPS/IL-12刺激之樣品中僅在bbmAb1與對照組之間的下調基因)。FC=倍數變化.
(c) IL-26係經LPS/IL-12刺激之PBMC中藉由bbmAb1累加抑制的另一促炎性細胞介素 為進一步證實LPS/IL-12驅動之IL-26基因表現及蛋白質生產由使用bbmAb1之組合IL-1β/IL-18阻斷最高效抑制,將研究延伸至總共n=9個PBMC供體,且藉由qPCR研究IL-26基因表現且藉由ELISA研究IL-26蛋白質生產。如圖10中所示,其很大程度上證實IL-26基因表現之抑制用微陣列方法獲得(圖10A)。有趣的為,上清液中之IL-26蛋白質含量藉由添加mAb在24小時時僅部分降低(圖10B)。此差異之原因未知,然而可能與IL-26基因表現與蛋白質生產之間的動力學差異以及IL-26與IFNγ相比之消耗的差異相關。儘管如此,bbmAb1在降低PBMC上清液中之IL-26蛋白質含量方面優於mAb2及mAb1。圖10展示人類PBMC中的LPS (0.3 ug/ml)/IL-12誘導之IL-26基因表現(藉由qPCR) (圖10A)及IL-26蛋白質含量(圖10B)藉由bbmAb1、mAb2及mAb1 (各10 nM)之抑制。n=9個個別PBMC供體之抑制百分比(平均值及SEM)。***p < 0.05 (單因子ANOVA)。
(d) IL1β/IL18信號傳導特徵標誌與疾病相關 將重組IL-1β刺激導致IL-6生產或重組IL-18/IL-12刺激導致IFNγ生產的先前確立之PBMC培養條件組合以展現累加或協同下游標靶基因或特徵標誌(資料未展示)。用來自n=4個供體、在兩個不同時間點(6小時及24小時)取樣之PBMC,執行用於基因表現圖譜之無偏評估的Affymetrix微陣列評估。展現在6小時及24小時時經IL-1β及IL-18之組合刺激協同上調的基因(資料未展示)。添加IL-12至IL-1β/IL-18組合很大程度上增加一系列上調基因之協同作用。單一或組合IL-1β/IL-18路徑刺激之生成的信號傳導特徵標誌(僅上調基因)用以在若干自體免疫疾病中訊問來自患者之資料集。舉例而言,圖11中展示與公眾肉狀瘤病資料集之相關性作為一實例。P值(用費雪精確測試計算)展示與比較來自肉狀瘤病患者之健康與患病組織的若干公眾研究之顯著相關性。組織包括皮膚以及肺、淚腺及前眶。在所有資料集中,IL1β/IL18信號傳導之組合展示與疾病之最佳相關性,隨後為IL-1β及IL-18。PBMC中的IL-1β/IL-18差異上調基因(DEG)(x軸)與5個不同肉狀瘤病組織相比較『患病對健康』DEG。P值(y軸)代表觀測特徵標誌與『疾病基因清單』之間的重疊之統計顯著性。黑色條係來自皮膚肉狀瘤病病灶之皮膚對來自健康患者之皮膚。淺灰色條係來自皮膚肉狀瘤病病灶之皮膚對非病變皮膚。白色條係來自肉狀瘤病患者對正常之淚腺。深灰色條係來自肉狀瘤病患者對正常之前眶組織。條紋條係具有進行性纖維性肺肉狀瘤病對結節性自限性肺肉狀瘤病之肺樣品。
(e) 結論 LPS及重組IL-12用以模擬活體外培養的前24小時內之病原體相關分子模式(PAMP)依賴性NLRP3炎性體活化。據證實,IL-1β及IL-18藉由使用bbmAb1之組合抑制累加地起作用以降低/抑制經LPS/IL-12刺激之PBMC中的IFNγ生產。IL-12先前描述為與IL-18協同起作用以誘導T、B、NK細胞、巨噬細胞及樹突狀細胞中之IFNγ生產(如Nakanishi, 2001所綜述),但現可在所用之實驗條件下證實IL-1β對IFNγ生產之另一刺激效應。因此,將PBMC與LPS/IL-12共培育高效驅動「天然」IL-1β及IL-18之生產,其兩者均有助於強IFNγ反應。藉由使用無偏微陣列轉錄物組學,鑑別相對於單一IL-1β或IL-18阻斷由組合IL-1β/IL-18中和累加下調之其他基因。其中有IL-26,IL-20細胞介素亞家族(IL-19、IL-20、IL-22、IL-24及IL-26)之成員,其在大多數脊椎動物物種中保守但不存在於大多數嚙齒動物品系(包括小鼠及大鼠)(Donnelly 2010)。其經由由IL-20R1及IL-10R2鏈構成之雜二聚受體複合物發信號。IL-26受體主要表現於非造血細胞類型、尤其上皮細胞上。IL-26之增加含量報導於血清且尤其RA患者之滑液中(Corvaisier 2012),其中其可充當促進Th17細胞生長及分化之因子。不幸地,由IL-1β及IL-18之組合阻斷誘導的其他基因/路徑之發現受PBMC樣品之LPS/IL-12刺激之強效應妨礙。儘管如此,IFNγ及IL-26兩者及在一定程度上IL-22亦為PBMC中由重組IL-1β及IL-18之組合刺激協同上調的基因,證實此兩種因子係此活化路徑中的下游效應子。因此,IL-20亞家族之細胞介素(包括IL-26及IL-22)似乎強烈依賴於IL-1β及IL-18之同時信號。關於個別信號傳導特徵標誌之選擇性以及阻斷之潛在功效適當謹慎,此等比較適用於展示各別路徑在如肉狀瘤病之疾病中為活性的。
8. 實例4:治療用途 在涉及先天性及應變性免疫組分兩者的炎性體驅動之炎性病況中,組合靶向IL-1β及IL-18可代表比單一細胞介素阻斷更有效的治療策略。同時中和IL-1β及IL-18靶向先天性及應變性免疫組分兩者,包括嗜中性白血球、Th1/Tc1及NK細胞、免疫及內皮細胞上之黏附分子及促炎性細胞介素(例如IL-6、IFNγ及IL-17)。阻斷IL-1β及IL-18兩者之優點得到在由組成性Nlrp3炎性體活化及IL-1β及IL-18之過度生產驅動的家族性寒冷自體免疫症候群(FCAS)之臨床前小鼠模型中獲得之資料支持(Brydges 2013)。當遺傳去除IL-1β或IL-18信號傳導時小鼠中實現FCAS病況之部分挽救,證實疾病發病機制中涉及兩種細胞介素。重要地,與兩種細胞介素中僅一者不活化之小鼠相比,不具有IL-18及IL-1β信號傳導兩者之FCAS小鼠患甚至更少的疾病,證實雙重IL-1β/IL-18中和之累加效應。IL-1β及IL-18中和之累加效應亦展現於另一小鼠模型中,其中高劑量之LPS注射於小鼠中以導致敗血性休克(van den Berghe 2014)。在此模型中,IL-1β及IL-18兩者之遺傳缺陷或兩種細胞介素藉由中和抗體之組合中和完全阻止LPS致死,而單一細胞介素缺陷/中和僅具部分保護性。
同時靶向IL-1β及IL-18兩者之雙特異性的總體臨床策略可代表比當前可用的選擇更有效之治療手段。為鑑別候選疾病,利用臨床前及轉譯研究以證實候選疾病之潛在病理生理學中IL-1β及IL-18下游路徑之活性參與。新穎證據顯示慢性肺肉狀瘤病係具有先天性及應變性免疫參與的炎性體驅動之疾病。此外,初始發現指示IL-1β及IL-18效應細胞介素在此疾病中的重要作用。因此,肉狀瘤病代表展現bbmAb1於具有確立之慢性組織炎症的疾病中之雙重特異性的理想機會。bbmAb1於肉狀瘤病中之功效可導致其他間質肺病(諸如歸因於二氧化矽或鈹的過敏性(職業)肺病)之發展。其他候選疾病係涉及其他器官組織之肉芽腫性炎症,諸如克羅恩氏病。
具有組織損傷及內皮功能障礙之血管炎症亦代表bbmAb1之潛在標靶。功能失調性內皮細胞可對有效抗炎性治療起反應,即使在固定血管內缺陷存在下亦導致血管流動改良。最近的文獻證據已將鐮狀細胞疾病(SCD)鑑別為經由高速率之組成性血管內溶血具有強炎性體驅動之組分。歸因於危險信號(尿酸、血基質/Fe3+、其他細胞內組分)自慢性RBC溶解釋放之炎性體活化觸發炎性體受體、其活化且導致血管內炎性級聯,得到內皮細胞黏附分子之上調,嗜中性白血球及血小板之活化,導致內皮細胞之慢性活化。SCD患者中之此不間斷的血管炎症導致反覆性疼痛性血管閉塞危象及慢加急性(acute on chronic)組織損傷。初步內部證據為IL-18以及IL-1β參與SCD之潛在疾病過程提供佐證。因此,藉由bbmAb1治療減少SCD患者中之基礎炎症可減弱慢性背景炎症,且預防具有相關末梢器官損傷之急性危象,預防急性鐮狀細胞危象及相關末梢器官損傷,以及藉由減少相關慢性疼痛及疲勞改良患者之一般生活品質。SCD患者中bbmAb1治療功效之論證可導致涉及高速率溶血之其他慢性或慢加急性炎性病況(諸如瘧疾及血液透析依賴性慢性腎病)之發展。可受益於IL-1β及IL-18調節之其他適應症係與缺血-再灌注組織損傷相關之適應症,諸如心血管疾病或所有類型之改良之傷口癒合,但尤其為燒傷之最嚴重的軟組織損傷。
因此,在本發明之一實施例中,一種治療炎性體相關病症之方法,其包含向罹患炎性體相關病症之個體投與有效量的本文所揭示之bbmAb (諸如bbmAb1)。潛在炎性體相關病症係隱熱蛋白相關自體炎性症候群(CAPS)、家族性地中海熱(FMF)、全身型幼年特發性關節炎(SJIA)、狼瘡性腎炎、糖尿病腎病變、急性腎損傷、腎高血壓、IgA腎病變、絲球體腎炎(GN)、額顳葉型癡呆(FTD)、阿茲海默氏病(AD)、癲癇症、中風、帕金森氏病(PD)、抑鬱、肉狀瘤病(諸如肺肉狀瘤病)、胰臟炎、特發性肺纖維化(IPF)、非酒精性脂肪變性肝炎(NASH)、動脈粥樣硬化、巨細胞動脈炎、抗嗜中性白血球細胞質抗體(ANCA)相關血管炎、年齡相關之黃斑變性(AMD)、移植物抗宿主疾病、2型糖尿病、痤瘡、鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病(PAD)、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、纖維化、瘧疾、血液透析依賴性慢性腎病或克羅恩氏病。
在一個實施例中,提供一種治療個體之鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、肺肉狀瘤病、纖維化、瘧疾、血液透析依賴性慢性腎病或克羅恩氏病的方法,其藉由向該個體投與有效量的本文所揭示之bbmAb (諸如bbmAb1)進行。
9. 實例5:醫藥組合物 本文提供醫藥組合物,其包含bbmAb抗體(諸如bbmAb1),與醫藥學上可接受之載劑調配在一起。該等組合物可另外含有一或多種適用於治療醫學病況之其他治療劑。醫藥學上可接受之載劑增強或穩定組合物,或可用於促進組合物之製備。醫藥學上可接受之載劑包括生理學上相容之溶劑、分散介質、包衣、抗細菌劑及抗真菌劑、等張劑及吸收延遲劑及其類似者。
本文所描述之醫藥組合物可藉由此項技術中已知之多種方法投與。投藥途徑及/或方式視所要結果而變化。投藥較佳為玻璃體內、靜脈內、肌肉內、腹膜內或皮下投藥,或鄰近標靶位點投與。醫藥學上可接受之載劑應適用於玻璃體內、靜脈內、肌肉內、皮下、非經腸、脊或表皮投與(例如,藉由注射或輸注)。視投藥途徑而定,活性化合物(亦即bbmAb)可用保護化合物不受酸及可能使化合物不活化之其他天然條件之作用的材料包覆包衣。
組合物應為無菌及流體。舉例而言,適當流動性可藉由使用諸如卵磷脂之包衣、藉由在分散液之情況下維持所需粒度及藉由使用界面活性劑來維持。在許多情況下,組合物中較佳包括等張劑,例如糖、多元醇(諸如甘露糖醇或山梨糖醇)及氯化鈉。可注射組合物之長期吸收可藉由使組合物中包括延遲吸收劑(例如單硬脂酸鋁或明膠)來實現。
本文所描述之醫藥組合物可根據此項技術中熟知且常規實踐之方法製備。參見例如Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 第20版, 2000;及Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson編, Marcel Dekker, Inc., New York, 1978。醫藥組合物較佳在GMP條件下製備。典型地,治療有效劑量或靈驗劑量之bbmAb用於本文所描述之醫藥組合物中。bbmAb藉由熟習此項技術者已知的習知方法調配為醫藥學上可接受之劑型。調整給藥方案以得到最佳所要反應(例如治療反應)。舉例而言,可投與單一大丸劑,可隨時間投與若干分次劑量,或可如治療情形之緊急程度所指示而依比例減少或增加劑量。就投藥之簡便性及劑量之均一性而言,將非經腸組合物調配成單位劑型尤其有利。如本文所用,單位劑型係指適合作為單個劑量用於待治療之個體的物理離散單位;各單位含有與所需醫藥載劑結合,經計算以產生所要治療效應的預定量之活性化合物。
本文所描述之醫藥組合物中活性成分之實際劑量水準可變化以便獲得有效達成特定患者、組合物及投藥模式之所要治療反應而對患者無毒性的活性成分之量。所選劑量水準視多種藥物動力學因素而定,該等因素包括所採用之在本文所描述之特定組合物或其酯、鹽或醯胺之活性、投藥途徑、投藥時間、所採用之特定化合物之排泄速率、治療持續時間、與所採用之特定組合物組合使用之其他藥物、化合物及/或材料、所治療患者之年齡、性別、體重、病況、一般健康情況及之前病史及其類似因素。
醫師或獸醫可以比達成所要治療效應所需水準更低之水準開始醫藥組合物中採用的本文所描述之抗體之劑量且逐漸增加劑量直至達成所要效應。一般而言,本文所描述之組合物用於治療本文所描述之消耗病症的有效劑量視許多不同因素而變化,該等因素包括投藥方式、標靶位點、患者之生理狀態、患者係人類抑或動物、所投與之其他藥劑及治療係預防性抑或治療性的。需要滴定治療劑量以使安全性及功效達最佳。全身性投與抗體時,劑量範圍為每公斤宿主體重約0.0001 mg至100 mg,且更通常為每公斤宿主體重0.01 mg至15 mg。玻璃體內投與抗體時,劑量範圍可為每眼0.1 mg至每眼5 mg。例示性治療方案需要每兩週全身投藥一次或一月一次或每3至6個月一次。一例示性治療方案需要每兩週全身投藥一次或一月一次或每3至6個月一次,或按需要投藥(PRN)。
生物治療劑(諸如bbmAb1)通常多次投與。單次劑量之間的時間間隔可為每週、每月或每年。如藉由量測患者中之bbmAb1之血液含量所指示,時間間隔亦可不規律。另外,替代給藥時間間隔可由醫師確定,且每月或視靈驗性需要來投與。在全身投藥之一些方法中,調整劑量以達成1-1000 µg/ml、且在一些方法中25-500 µg/ml之血漿抗體濃度。或者,抗體可以持續釋放調配物之形式投與,在此情況下,需要較不頻繁之投藥。劑量及頻率視患者中抗體之半衰期而變化。一般而言,人類抗體展示其半衰期比嵌合抗體及非人類抗體之半衰期長。投藥之劑量及頻率可視治療為預防性抑或治療性而變化。在預防性應用中,在長時間段內,以相對不頻繁之時間間隔投與相對低之劑量。一些患者在其餘生中繼續接受治療。在治療性應用中,有時需要以相對短時間間隔投與相對高劑量,直至疾病之進展降低或終止,且較佳直至患者展示疾病之症狀部分或完全改善。之後,可向患者投與預防性方案。
序列表 用於實踐本發明之適用胺基酸及核苷酸序列揭示於 15 中。 表15. 根據本發明之實施例的序列
在本申請案之文本通篇,本說明書之文本(例如 15 )與序列表之間若存在不一致,則應以本說明書之文本為準。
圖1係根據一實施例之載體設置的示意性概述。 圖2A-2E展示根據一實施例之層析圖。圖2A係根據一實施例之脫糖基化完整bbmAb的RP-UV層析圖。圖2B係根據一實施例之完整脫糖基化bbmAb1的去卷積質譜。圖2C係展示根據一實施例之bbmAb之番木瓜蛋白酶消化片段的RP-UV層析圖。圖2D係展示根據一實施例之bbmAb之IdeS消化片段的RP-UV層析圖。圖2E係展示根據一實施例之bbmAb之脫糖基化及DTT還原片段的RP-UV層析圖。 圖3A-3D展示根據一實施例之RP-UV層析圖。圖3A係展示根據一實施例之bbmAb在培養之後的表現純度圖譜之層析圖。圖3B係根據一實施例之bbmAb在藉由LambdaFabSelect™捕捉之後的層析圖。圖3C係根據一實施例之bbmAb在用MabSelect™ SuRe™捕捉之後的層析圖。圖3D係根據一實施例之bbmAb在用LambdaFabSelect™捕捉、藉由Fractogel™ EMD SO3 高純化及超濾之後的層析圖。 圖4A-4M係雙特異性錯配之不同選擇的示意性概述。圖4A係mAb1杵(λ)單體之示意性圖示,其中編號1表示可變重鏈結構域,編號2表示第一恆定重鏈結構域,編號3表示第二恆定重鏈結構域,且編號4表示第三恆定重鏈結構域。編號5表示可變輕鏈結構域,且編號6表示可變重鏈結構域。圖4B係mAb1杵(λ)同二聚體之示意性圖示。圖4C係mAb2臼(κ)單體之示意性圖示,其中編號7表示重鏈可變結構域,編號8表示第一恆定重鏈結構域,編號9表示第二恆定重鏈結構域,且編號10表示第三恆定重鏈結構域。編號11表示可變輕鏈結構域,且編號12表示恆定重鏈結構域。圖4D係mAb2臼(κ)同二聚體之示意性圖示。圖4E係具有一個CH/LC錯配之mAb1杵同二聚體的示意性圖示。圖4F係具有兩個CH/LC錯配之mAb1杵同二聚體的示意性圖示。圖4G係具有一個CH/LC錯配之mAb1杵同二聚體的示意性圖示。圖4H係具有一個CH/LC錯配之mAb2臼同二聚體的示意性圖示。圖4I係具有兩個CH/LC錯配之mAb2臼同二聚體的示意性圖示。圖4J係具有一個CH/LC錯配之mAb2臼同二聚體的示意性圖示。圖4K係具有一個κ (CH/LC)錯配之bbmAb1的示意性圖示。圖4L係具有一個λ (CH/LC)錯配之bbmAb1的示意性圖示。圖4M係具有兩個CH/LC錯配之bbmAb1的示意性圖示。 圖5展示根據一實例的基於ECL之親和力測定之滴定曲線。 圖6A-6B展示根據一實例之兩個圖。 圖7A-7B展示根據一實例之兩個圖。 圖8A-8B展示根據一實例之mRNA表現量。 圖9A-9B展示根據一實例之mRNA表現量。 圖10A-10B展示根據一實例之兩個圖。 圖11係展示根據一實例之統計相關性的圖。

Claims (34)

  1. 一種適用於在共同宿主細胞中共表現之雙特異性抗體,其中該抗體包含: a. 第一部分,其係具有以下之免疫球蛋白:特異性結合至第一標靶之λ野生型之第一可變輕鏈(VL1)及野生型之第一可變重鏈(VH1);及具有雜二聚修飾之第一恆定重鏈(CH1),及 b. 第二部分,其係具有以下之免疫球蛋白:特異性結合至不同於第一標靶之第二標靶之κ野生型之第二可變輕鏈(VL2)及野生型之第二可變重鏈(VH2);及具有雜二聚修飾之第二恆定重鏈(CH2),該第二恆定重鏈之雜二聚修飾與該第一恆定重鏈之雜二聚修飾互補, 其中當該第一部分及該第二部分在共同宿主細胞中共表現時,形成雙特異性抗體。
  2. 如請求項1之雙特異性抗體,其中該第一及第二恆定重鏈係人類IgA、IgD、IgE、IgG或IgM,較佳IgD、IgE或IgG,諸如人類IgG1、IgG2、IgG3或IgG4,較佳IgG1。
  3. 如請求項2之雙特異性抗體,其中該第一可變輕鏈具有λ 1型,且該第二可變輕鏈具有κ 6型。
  4. 如請求項3之雙特異性抗體,其中該第一及第二恆定重鏈係IgG1,且其中 a. 該第一恆定重鏈具有生成杵結構之點突變,且該第二恆定重鏈具有生成臼結構之點突變,或 b. 該第一恆定重鏈具有生成臼結構之點突變,且該第二恆定重鏈具有生成杵結構之點突變,且視情況 c. 該第一及第二恆定重鏈具有產生二硫橋鍵之突變。
  5. 如請求項1至4中任一項之雙特異性抗體,其包含第一免疫球蛋白VH1結構域、第一免疫球蛋白VL1結構域、第二免疫球蛋白VH2結構域及第二免疫球蛋白VL2結構域,其中: a. 該第一免疫球蛋白VH1結構域包含(例如在序列中): i. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:76,該CDR2具有胺基酸序列SEQ ID NO:77,且該CDR3具有胺基酸序列SEQ ID NO:78;或 ii. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:79,該CDR2具有胺基酸序列SEQ ID NO:80,且該CDR3具有胺基酸序列SEQ ID NO:81;且 b. 該第一免疫球蛋白VL1結構域包含(例如在序列中): i. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:92,該CDR2具有胺基酸序列SEQ ID NO:93,且該CDR3具有胺基酸序列SEQ ID NO:94;或 ii. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:95,該CDR2具有胺基酸序列SEQ ID NO:96,且該CDR3具有胺基酸序列SEQ ID NO:97;且 c. 該第二免疫球蛋白VH2結構域包含(例如在序列中): i. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:44,該CDR2具有胺基酸序列SEQ ID NO:45,且該CDR3具有胺基酸序列SEQ ID NO:46;或 ii. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:47,該CDR2具有胺基酸序列SEQ ID NO:48,且該CDR3具有胺基酸序列SEQ ID NO:49;且 d. 該第二免疫球蛋白VL2結構域包含(例如在序列中): i. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:60,該CDR2具有胺基酸序列SEQ ID NO:61,且該CDR3具有胺基酸序列SEQ ID NO:62;或 ii. 高變區CDR1、CDR2及CDR3,該CDR1具有胺基酸序列SEQ ID NO:63,該CDR2具有胺基酸序列SEQ ID NO:64,且該CDR3具有胺基酸序列SEQ ID NO:65。
  6. 如請求項1至4中任一項之雙特異性抗體,其包含第一免疫球蛋白VH1結構域、第一免疫球蛋白VL1結構域、第二免疫球蛋白VH2結構域及第二免疫球蛋白VL2結構域,其中: a. 該第一免疫球蛋白VH1結構域包含胺基酸序列SEQ ID NO: 85, b. 該第一免疫球蛋白VL1結構域包含胺基酸序列SEQ ID NO: 101, c. 該第二免疫球蛋白VH2結構域包含胺基酸序列SEQ ID NO: 53,且 d. 該第二免疫球蛋白VL2結構域包含胺基酸序列SEQ ID NO: 69。
  7. 如請求項1至4中任一項之雙特異性抗體,其包含第一免疫球蛋白重鏈、第一免疫球蛋白輕鏈、第二免疫球蛋白重鏈及第二免疫球蛋白輕鏈,其中: a. 該第一免疫球蛋白重鏈包含胺基酸序列SEQ ID NO: 87, b. 該第一免疫球蛋白輕鏈包含胺基酸序列SEQ ID NO: 103, c. 該第二免疫球蛋白重鏈包含胺基酸序列SEQ ID NO: 55,且 d. 該第二免疫球蛋白輕鏈包含胺基酸序列SEQ ID NO: 71。
  8. 一種選擇如請求項1至7中任一項之雙特異性抗體之方法,該方法包含: a. 選擇第一部分及第二部分之第一步驟; b. 使該第一部分及該第二部分在共同宿主細胞中共表現,產生包含該第一部分及該第二部分之雙特異性抗體的第二步驟; c. 藉由自該正確匹配之雙特異性抗體移除錯配片段來純化該雙特異性抗體之第三步驟。
  9. 如請求項8之方法,其中該純化第三步驟產生至少60% (質量)、70% (質量)、80% (質量)、85% (質量)純,諸如至少90% (質量)純、95% (質量)、96% (質量)、97% (質量)、98% (質量)或99% (質量)純之雙特異性抗體。
  10. 一種藉由在共同宿主細胞中共表現來製備如請求項1至7中任一項之雙特異性抗體之方法,該方法包含: a. 生成至少一種編碼第一部分及第二部分之載體的第一步驟; b. 將該至少一種載體引入至該共同宿主細胞中之第二步驟; c. 選擇特異性表現該雙特異性抗體之細胞的第三步驟; d. 在該等細胞表現該雙特異性抗體之條件下培養該等所選細胞之第四步驟;及 e. 純化至少60% (質量)、70% (質量)、80% (質量)或85% (質量)純,諸如至少90% (質量)純、95% (質量)、96% (質量)、97% (質量)、98% (質量)或99% (質量)純之該雙特異性抗體的第五步驟。
  11. 如請求項10之方法,其中該第一步驟包含生成編碼該第一部分之第一載體及編碼該第二部分之第二載體。
  12. 一種包含至少一種載體之表現系統,該至少一種載體包含編碼如請求項1至7中任一項之雙特異性抗體之第一部分或第二部分的聚核苷酸,及可選標記。
  13. 如請求項12之表現系統,其包含: a. 編碼第一可選標記(sm I)之聚核苷酸; b. 編碼第二可選標記(sm II)之聚核苷酸,該第二可選標記不同於該第一可選標記(sm I)。
  14. 如請求項12或13之表現系統,其中該第一可選標記(sm I)係葉酸轉運體或編碼突變葉酸受體之聚核苷酸,其中該突變葉酸受體與野生型葉酸受體相比具有降低之葉酸結合親和力,且該第二可選標記(sm II)係DHFR。
  15. 如請求項12或13之表現系統,其中該第一可選標記(sm I)係潮黴素,且該第二可選標記(sm II)係Neo/G418。
  16. 如請求項12或13之表現系統,其包含兩種表現載體,其中: a. 第一載體,其包含編碼至少第一可選標記(sm I)之聚核苷酸及至少編碼該第一部分之聚核苷酸;及 b. 第二載體,其包含編碼至少第二可選標記(sm II)之聚核苷酸及至少編碼該第二部分之聚核苷酸。
  17. 如請求項12或13之表現系統,其包含編碼重鏈之聚核苷酸下游的終止密碼子及位於該終止密碼子下游的編碼免疫球蛋白膜錨之聚核苷酸。
  18. 一種方法,其係用於選擇供使用於如請求項8至11中任一項之方法的共同宿主細胞,該方法包含 a. 提供複數種宿主細胞之第一步驟,該等宿主細胞包含如請求項12至17中任一項之表現系統;及 b. 在針對可選標記選擇性之條件下培養該複數種宿主細胞,進而獲得表現所關注產物之宿主細胞。
  19. 如請求項18之方法,其中選擇性培養基係使用: a. 包含限制濃度之葉酸;及/或 b. 包含濃度為500 nM或更低之葉酸;及/或 c. 包含濃度選自以下之葉酸: i. 1000 nM - 100 pM; ii. 100 nM - 1 nM; iii. 15 nM - 1 nM; iv. 10 nM - 1 nM;及 v. 10 nM - 2.5 nM;及/或 d. 包含DHFR抑制劑;及/或 e. 包含抗葉酸劑;及/或 f. 包含濃度為500 nM或更低之抗葉酸劑;及/或 g. 包含濃度選自以下之MTX: i. 500 nM - 3 nM; ii. 100 nM - 10 nM; iii. 50 nM - 10 nM;及 iv. 50 nM;及/或 h. 包含濃度為該葉酸濃度的至多20倍之抗葉酸劑;及/或 i. 包含濃度為該葉酸濃度的10-20倍之抗葉酸劑;及/或 j. 包含濃度為至多15 nM且等莫耳濃度為MTX的至多20倍之葉酸。
  20. 如請求項18或19之方法,其中該宿主細胞包含如請求項17之表現系統,其中第一或第二部分之至少一部分係經表現呈包含免疫球蛋白跨膜錨或其片段之融合多肽,且其中該融合多肽呈現於該宿主細胞之表面上,該方法進一步包含以下步驟: a. 使該複數種宿主細胞與結合該融合多肽之偵測化合物接觸; b. 基於結合至該細胞表面的該偵測化合物之存在或量選擇至少一種宿主細胞。
  21. 如請求項20之方法,其中該偵測化合物包含第一或第二標靶或其衍生物及至少一種偵測標籤。
  22. 如請求項10或11之方法,其中該純化該雙特異性抗體之第五步驟包含親和層析及/或離子交換層析。
  23. 如請求項22之方法,其中該層析包含 a. 捕捉之第一步驟; b. 高純化之第二步驟;及視情況 c. 進一步高純化之第三步驟。
  24. 如請求項23之方法,其中該捕捉第一步驟係用選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;λ輕鏈特異性親和層析,諸如LambdaFabSelect™;κ輕鏈特異性親和層析,諸如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;離子交換層析,諸如Capto™ adhere或Fractogel™ EMD SO3 ;及疏水相互作用層析。
  25. 如請求項22之方法,其中該高純化第二步驟係用選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;λ輕鏈特異性親和層析,諸如LambdaFabSelect™;κ輕鏈特異性親和層析,諸如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;離子交換層析,諸如Capto™ adhere或Fractogel™ EMD SO3 ;疏水相互作用層析;及病毒不活化。
  26. 如請求項25之方法,其中該進一步高純化第三步驟係用單獨或組合之選自由以下組成之群的原理進行:Fc結合親和層析,諸如蛋白A或蛋白G;λ輕鏈特異性親和層析,諸如LambdaFabSelect™;κ輕鏈特異性親和層析,諸如KappaSelect™;抗個體基因型親和層析,諸如該第一部分或該第二部分;基於標靶之親和層析,諸如使用第一標靶或第二標靶之親和層析;離子交換層析,諸如Capto™ adhere或Fractogel™ EMD SO3 ;疏水相互作用層析;及病毒不活化。
  27. 如請求項23之方法,其選自: a. 蛋白A捕捉,諸如MabSelect™ SuRe™之第一步驟;λ輕鏈親和層析,諸如LambdaFabSelect™之第二步驟;及κ輕鏈親和層析,諸如KappaSelect™之第三步驟;或 b. 蛋白A,諸如MabSelect™ SuRe™之第一步驟;κ輕鏈親和層析,諸如KappaSelect™之第二步驟;及λ輕鏈親和層析,諸如LambdaFabSelect™之第三步驟;或 c. κ輕鏈親和層析,諸如KappaSelect™之第一步驟;及λ輕鏈親和層析,諸如LambdaFabSelect™之第二步驟;或 d. λ輕鏈親和層析,諸如LambdaFabSelect™之第一步驟;及κ輕鏈親和層析,諸如KappaSelect™之第二步驟。
  28. 如請求項8至11、18及19中任一項之方法,其中該細胞株係選自由以下組成之群:CHO細胞;非生產融合瘤,諸如Sp 2/0或NS0;人類來源之細胞株,諸如HEK或PER.C6;幼倉鼠腎(BHK)衍生物;酵母或絲狀真菌;原核細菌,諸如大腸桿菌(E. coli)或螢光假單胞菌(Pseudomonas fluorescence);植物衍生物;藻類;及纖毛蟲。
  29. 一種醫藥組合物,其包含如請求項1至7中任一項之抗體及醫藥學上可接受之載劑。
  30. 如請求項1至4中任一項之雙特異性抗體或如請求項29之醫藥組合物,其用作藥劑。
  31. 如請求項1至4中任一項之雙特異性抗體或如請求項29之醫藥組合物,其用於治療炎性體相關疾病。
  32. 如請求項1至4中任一項之雙特異性抗體或如請求項29之醫藥組合物,其如請求項31用於治療炎性體相關疾病,其中該炎性體相關疾病係選自由以下組成之群:鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、肺肉狀瘤病、纖維化、瘧疾、血液透析依賴性慢性腎病及克羅恩氏病(Crohn's disease)。
  33. 一種如請求項1至7之雙特異性抗體或如請求項29之醫藥組合物的用途,其用於製備用於治療炎性體相關病症之藥劑。
  34. 如請求項33之用途,其中該炎性體相關病症係鐮狀細胞疾病、血管病變、缺血-再灌注損傷、心血管疾病、外周動脈疾病、動脈粥樣硬化、血管功能障礙、骨胳肌肉缺血、肺肉狀瘤病、纖維化、瘧疾、血液透析依賴性慢性腎病或克羅恩氏病。
TW107119828A 2017-06-12 2018-06-08 製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途 TWI826377B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762518090P 2017-06-12 2017-06-12
US62/518,090 2017-06-12

Publications (2)

Publication Number Publication Date
TW201906864A true TW201906864A (zh) 2019-02-16
TWI826377B TWI826377B (zh) 2023-12-21

Family

ID=62948274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119828A TWI826377B (zh) 2017-06-12 2018-06-08 製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途

Country Status (25)

Country Link
US (2) US20190002589A1 (zh)
EP (1) EP3638692A1 (zh)
JP (2) JP7106234B2 (zh)
KR (2) KR102633368B1 (zh)
CN (1) CN110730788A (zh)
AR (1) AR112419A1 (zh)
AU (2) AU2018284303B2 (zh)
BR (1) BR112019025904A2 (zh)
CA (1) CA3061097A1 (zh)
CL (1) CL2019003613A1 (zh)
CO (1) CO2019013838A2 (zh)
CR (1) CR20190558A (zh)
CU (1) CU20190100A7 (zh)
EA (1) EA201992670A1 (zh)
EC (1) ECSP19087580A (zh)
IL (1) IL271179A (zh)
JO (1) JOP20190283B1 (zh)
MA (1) MA49394A (zh)
MX (1) MX2019015021A (zh)
PE (1) PE20200384A1 (zh)
SG (1) SG10201913536TA (zh)
TW (1) TWI826377B (zh)
UY (1) UY37758A (zh)
WO (1) WO2018229612A1 (zh)
ZA (1) ZA201906757B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
JOP20200308A1 (ar) * 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
EP3092049A1 (en) 2014-01-08 2016-11-16 Flodesign Sonics Inc. Acoustophoresis device with dual acoustophoretic chamber
CN105820251B (zh) * 2015-01-08 2019-10-15 江苏康宁杰瑞生物制药有限公司 具有共同轻链的双特异性抗体或抗体混合物
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
KR20180069839A (ko) 2015-10-08 2018-06-25 자임워크스 인코포레이티드 카파 및 람다 경사슬을 포함하는 항원-결합 폴리펩티드 구조체 및 이의 용도
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
BR112020009889A2 (pt) 2017-12-14 2020-11-03 Flodesign Sonics, Inc. acionador e controlador de transdutor acústico
US20210371511A1 (en) * 2018-05-09 2021-12-02 Novartis Ag Use of canakinumab
CN111018969A (zh) * 2019-12-27 2020-04-17 上海药明生物技术有限公司 采用轻链select联合层析色谱纯化双特异性抗体的方法
CN115066258A (zh) * 2020-02-28 2022-09-16 上海药明生物技术有限公司 双特异性抗体的纯化
KR20230110291A (ko) * 2020-11-18 2023-07-21 노파르티스 아게 Nlrc4-gof 염증복합체병증의 치료에 사용하기 위한 이중특이적 항체
WO2022269451A1 (en) 2021-06-22 2022-12-29 Novartis Ag Bispecific antibodies for use in treatment of hidradenitis suppurativa
CN113980135B (zh) * 2021-12-27 2022-04-19 三优生物医药(上海)有限公司 一种结合冠状病毒双特异性抗体的抗药抗体及其制备方法和应用
WO2023209568A1 (en) * 2022-04-26 2023-11-02 Novartis Ag Multispecific antibodies targeting il-13 and il-18

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3572982D1 (en) 1984-03-06 1989-10-19 Takeda Chemical Industries Ltd Chemically modified lymphokine and production thereof
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
GB8725529D0 (en) 1987-10-30 1987-12-02 Delta Biotechnology Ltd Polypeptides
EP0401384B1 (en) 1988-12-22 1996-03-13 Kirin-Amgen, Inc. Chemically modified granulocyte colony stimulating factor
US5582996A (en) 1990-12-04 1996-12-10 The Wistar Institute Of Anatomy & Biology Bifunctional antibodies and method of preparing same
DK0605522T3 (da) 1991-09-23 2000-01-17 Medical Res Council Fremgangsmåde til fremstilling af humaniserede antistoffer
US5932448A (en) 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
KR100254759B1 (ko) 1992-01-23 2000-05-01 플레믹 크리스티안 단량체 및 이량체 항체-단편 융합 단백질
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
EP0714409A1 (en) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antibodies
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US20030148463A1 (en) * 1997-04-14 2003-08-07 Micromet Ag Novel method for the production of anti-human antigen receptors and uses thereof
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
PT1071700E (pt) 1998-04-20 2010-04-23 Glycart Biotechnology Ag Modificação por glicosilação de anticorpos para melhorar a citotoxicidade celular dependente de anticorpos
ES2694002T3 (es) 1999-01-15 2018-12-17 Genentech, Inc. Polipéptido que comprende una región Fc de IgG1 humana variante
PT1914244E (pt) 1999-04-09 2013-07-26 Kyowa Hakko Kirin Co Ltd Processo para regular a actividade de moléculas funcionais sob o ponto de vista imunológico
DE60139720D1 (de) 2000-06-28 2009-10-08 Glycofi Inc Verfahren für die Herstellung modifizierter Glykoproteine
GB0020685D0 (en) 2000-08-22 2000-10-11 Novartis Ag Organic compounds
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
EP1443961B1 (en) 2001-10-25 2009-05-06 Genentech, Inc. Glycoprotein compositions
ES2442615T5 (es) 2002-07-18 2023-03-16 Merus Nv Producción recombinante de mezclas de anticuerpos
WO2006028936A2 (en) 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
RU2009148597A (ru) * 2007-05-29 2011-07-10 Новартис АГ (CH) Новые показания к применению при лечении антителами против il-1-бета
US20110045536A1 (en) 2007-12-21 2011-02-24 Novartis Ag Mammalian expression vector
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
CN102197136B (zh) 2008-08-28 2016-09-28 诺华股份有限公司 通过终止密码子连读的多肽同种型的细胞表面展示
PL2401383T3 (pl) 2009-02-27 2014-02-28 Novartis Ag Sposoby selekcji komórek eukariotycznych wykazujących ekspresję heterologicznego białka
PT2401377T (pt) * 2009-02-27 2016-08-18 Novartis Ag Sistema de vectores de expressão compreendendo dois marcadores de selecção
WO2011116387A1 (en) * 2010-03-19 2011-09-22 Tetragenetics, Inc. Production of aglycosylated monoclonal antibodies in ciliates
SG184427A1 (en) 2010-04-20 2012-11-29 Genmab As Heterodimeric antibody fc-containing proteins and methods for production thereof
RU2608640C2 (ru) 2010-08-16 2017-01-23 Новиммун С.А. Способы получения мультиспецифичных и мультивалентных антител
LT2771364T (lt) 2011-10-27 2019-09-10 Genmab A/S Heterodimerinių baltymų gamyba
PT2794905T (pt) * 2011-12-20 2020-06-30 Medimmune Llc Polipéptidos modificados para estrutura de anticorpos bispecíficos
JOP20200308A1 (ar) * 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
CN110981964B (zh) 2013-01-14 2023-09-15 Xencor股份有限公司 新型异二聚体蛋白
MA38396B1 (fr) 2013-03-15 2019-05-31 Novartis Ag Anticorps medicamenteux conjugues et leurs compositions pharmaceutiques pour traiter un cancer positif a ckit
EP3936521A1 (en) 2013-03-15 2022-01-12 Xencor, Inc. Heterodimeric proteins
CN106029691A (zh) 2013-12-20 2016-10-12 诺华股份有限公司 用于重组表达感兴趣产物的新型真核细胞和方法
WO2015092735A1 (en) 2013-12-20 2015-06-25 Novartis Ag Novel eukaryotic cells and methods for recombinantly expressing a product of interest
GB201414823D0 (en) * 2014-08-20 2014-10-01 Argen X Bv Multispecific antibodies
CA2967426A1 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and tumor antigens
PE20171103A1 (es) 2014-11-26 2017-08-07 Xencor Inc Anticuerpos heterodimericos que se unen a cd3 y cd38
US20160176969A1 (en) 2014-11-26 2016-06-23 Xencor, Inc. Heterodimeric antibodies including binding to cd8
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
EP3265010B1 (en) 2015-03-05 2022-11-02 Think Surgical, Inc. Methods for locating and tracking a tool axis
PE20180188A1 (es) 2015-05-08 2018-01-23 Xencor Inc Anticuerpos heterodimericos que se unen a cd3 y a antigenos tumorales
WO2017011773A2 (en) 2015-07-15 2017-01-19 Modernatx, Inc. Codon-optimized nucleic acids encoding antibodies
KR20180069839A (ko) 2015-10-08 2018-06-25 자임워크스 인코포레이티드 카파 및 람다 경사슬을 포함하는 항원-결합 폴리펩티드 구조체 및 이의 용도
CA3036564A1 (en) * 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains

Also Published As

Publication number Publication date
CN110730788A (zh) 2020-01-24
KR102633368B1 (ko) 2024-02-06
CR20190558A (es) 2020-01-28
UY37758A (es) 2019-01-31
ECSP19087580A (es) 2019-12-27
EP3638692A1 (en) 2020-04-22
CL2019003613A1 (es) 2020-07-03
RU2019140335A (ru) 2021-07-13
AU2018284303A1 (en) 2019-11-07
JOP20190283A1 (ar) 2019-12-05
JP2022116038A (ja) 2022-08-09
CU20190100A7 (es) 2020-11-30
US20190002589A1 (en) 2019-01-03
US20200308309A1 (en) 2020-10-01
AU2021206810A1 (en) 2021-08-12
JOP20190283B1 (ar) 2023-09-17
SG10201913536TA (en) 2020-02-27
RU2019140335A3 (zh) 2021-10-04
JP7106234B2 (ja) 2022-07-26
TWI826377B (zh) 2023-12-21
MA49394A (fr) 2020-04-22
MX2019015021A (es) 2020-02-24
WO2018229612A1 (en) 2018-12-20
KR20200005746A (ko) 2020-01-16
PE20200384A1 (es) 2020-02-24
KR20220167340A (ko) 2022-12-20
CA3061097A1 (en) 2018-12-20
CO2019013838A2 (es) 2020-05-29
JP2020524991A (ja) 2020-08-27
BR112019025904A2 (pt) 2020-06-30
AR112419A1 (es) 2019-10-30
IL271179A (en) 2020-01-30
AU2018284303B2 (en) 2021-04-22
EA201992670A1 (ru) 2020-07-08
ZA201906757B (en) 2023-03-29

Similar Documents

Publication Publication Date Title
TWI826377B (zh) 製備雙特異性抗體的方法、雙特異性抗體及此等抗體的治療用途
AU2016370659B2 (en) Anti-TL1A/anti-TNF-alpha bispecific antigen binding proteins and uses thereof
ES2602051T3 (es) Anticuerpos biespecíficos contra CD3epsilon y BCMA
JP6976322B2 (ja) 新規抗ctla4抗体
JP2021521784A (ja) IL−15/IL−15RaFc融合タンパク質とPD−1抗原結合ドメインを含むPD−1標的化ヘテロダイマー融合タンパク質およびそれらの使用
US20210388105A1 (en) Novel anti-cd39 antibodies
TWI713453B (zh) 干擾素α及ω抗體拮抗劑
TW201829466A (zh) 抗-神經纖毛蛋白質(neuropilin)抗原-結合蛋白及其使用方法
JP2021503280A (ja) 免疫グロブリン様転写産物3(ilt3)に特異的な抗体およびその使用
AU2022285741A1 (en) Anti-ccr8 antibodies and uses thereof
KR20230104651A (ko) Cd19 결합 분자 및 이의 용도
KR20220143869A (ko) 항-il-2 항체, 이의 항원-결합 단편 및 이의 의학적 용도
RU2795240C2 (ru) Способ получения биспецифических антител, биспецифические антитела и терапевтическое применение таких антител
US20230374148A1 (en) Binding molecules that multimerise cd45
KR20230034367A (ko) 항-종양 괴사 인자 수용체 (tnfr2) 항체 및 그 용도
CN116472289A (zh) Cd19结合分子及其用途
BR112016030202B1 (pt) Anticorpo monoclonal isolado do interferon alfa e ômega, seu uso,composição farmacêutica, polinucleotídeo, vetor, célula hospedeira, método para produção do anticorpo