TW201905580A - 附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法 - Google Patents

附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法

Info

Publication number
TW201905580A
TW201905580A TW107121261A TW107121261A TW201905580A TW 201905580 A TW201905580 A TW 201905580A TW 107121261 A TW107121261 A TW 107121261A TW 107121261 A TW107121261 A TW 107121261A TW 201905580 A TW201905580 A TW 201905580A
Authority
TW
Taiwan
Prior art keywords
film
substrate
multilayer reflective
reflective film
multilayer
Prior art date
Application number
TW107121261A
Other languages
English (en)
Other versions
TWI784012B (zh
Inventor
小坂井弘文
尾上貴弘
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW201905580A publication Critical patent/TW201905580A/zh
Application granted granted Critical
Publication of TWI784012B publication Critical patent/TWI784012B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明提供一種附有多層反射膜之基板,其用以製造具有對曝光之光之反射率較高,且膜應力較小之多層反射膜之反射型光罩。 本發明之附有多層反射膜之基板之特徵在於,其係具備包含於基板上交替地積層有低折射率層與高折射率層之多層膜,且用以反射曝光之光之多層反射膜者,且上述多層反射膜含有氪(Kr)。

Description

附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法
本發明係關於一種用於半導體裝置之製造等之反射型光罩、及用以製造反射型光罩之附有多層反射膜之基板及反射型光罩基底。又,本發明係關於一種使用上述反射型光罩之半導體裝置之製造方法。
近年來,於半導體產業中,伴隨半導體裝置之高積體化,必需超過先前之使用紫外光之光微影法之轉印極限之微細圖案。為能形成此種微細圖案,希望視為作為使用極紫外(Extreme Ultra Violet:以下稱為「EUV」)光之曝光技術之EUV微影法。此處,所謂EUV光,係指軟X射線區域或真空紫外線區域之波段之光,具體而言為波長為0.2~100 nm左右之光。作為於該EUV微影法中使用之轉印用光罩,提出有反射型光罩。此種反射型光罩係於基板上形成反射曝光之光之多層反射膜,於該多層反射膜上具有圖案狀地形成吸收曝光之光之吸收體膜之吸收體膜圖案者。
該反射型光罩由具有基板、形成於該基板上之多層反射膜、與形成於該多層反射膜上之吸收體膜之反射型光罩基底製造。吸收體膜圖案係藉由利用光微影法等形成吸收體膜之圖案而製造。
就伴隨近年之圖案微細化之缺陷品質之提高、或轉印用光罩所要求之光學特性之觀點而言,附有多層反射膜之基板要求具有更高之平滑性。多層反射膜藉由於光罩基底用基板之表面上交替地積層高折射率層及低折射率層而形成。該等各層通常藉由使用包含該等層之形成材料之濺鍍靶之濺鍍而形成。
作為濺鍍之方法,較佳地實施離子束濺鍍。離子束濺鍍有無需利用放電製作電漿,因此雜質不易混入多層反射膜中,離子源獨立,因此條件設定比較容易等優點。為形成平滑性及面均勻性良好之多層反射膜之各層,以具有相對於光罩基底用基板之主表面之法線(與上述主表面正交之直線)為較大之角度即相對於基板主表面傾斜或者接近平行之角度之方式,使濺鍍粒子到達基板,而成膜高折射率層及低折射率層。
作為利用此種方法製造附有多層反射膜之基板之技術,專利文獻1中記載,於在基板上成膜EUV微影法用反射型光罩基底之多層反射膜時,使基板以其中心軸為中心旋轉,並且將基板之法線與入射至基板之濺鍍粒子形成之角度α之絕對值保持為35度≦α≦80度而實施離子束濺鍍。
又,作為上述多層反射膜,通常使用相對折射率較高之物質與相對折射率較低之物質以數nm級交替地積層之多層膜。例如作為對13~14 nm之EUV光之反射率較高者,已知有交替地積層Si與Mo之薄膜之多層膜。於使用此種多層反射膜之反射型光罩中,為利用短波長之光獲得高反射率,必須提高多層膜之各層之膜密度。因此,必然變為多層反射膜具有較高壓縮應力之情況。
專利文獻2中記載,形成Mo/Si多層反射膜後,於約100℃~約400℃下實施約30秒鐘~約12小時之加熱處理,藉此不會損害Mo/Si多層反射膜之反射特性,而可緩和Mo/Si多層反射膜之膜應力。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特表2009-510711號公報 [專利文獻2]美國專利第6,309,705號
[發明所欲解決之問題]
於使用反射型光罩之曝光時,藉由圖案狀地形成之吸收體膜吸收曝光之光,於多層反射膜露出之部分,曝光之光經多層反射膜反射。為於曝光時獲得較高之對比度,多層反射膜之對曝光之光之反射率較理想為較高。
又,於多層反射膜之形成後之加熱處理中,越提高加熱處理溫度越可減少多層反射膜之膜應力。然而,構成Mo/Si多層反射膜之各層界面上之混合進行。若混合過度進行,則產生多層反射膜之對EUV光之反射率降低之問題。於多層反射膜之對曝光之光之反射率充分高之情形時,即便於發生此種混合之情形時,亦可維持承受使用之反射率。
因此,本發明之目的在於提供一種具有對曝光之光之反射率較高、且膜應力較小之多層反射膜之反射型光罩。又,本發明之目的在於提供一種用以製造具有對曝光之光之反射率較高、且膜應力較小之多層反射膜之反射型光罩的附有多層反射膜之基板及反射型光罩基底。進而,本發明之目的在於提供一種使用上述反射型光罩之半導體裝置之製造方法。 [解決問題之技術手段]
本發明者等人發現:於藉由離子束濺鍍成膜多層反射膜時,對靶,自離子源供給氪(Kr)離子粒子而成膜多層反射膜,藉此可提高成膜後之反射率。又,本發明者等人發現:由於本發明中使用之多層反射膜之反射率較高,故而即便於對多層反射膜進行加熱處理而緩和膜應力之情形時,亦可維持較高之反射率。基於以上見解,本發明者等人完成本發明。
為解決上述課題,本發明具有以下之構成。
(構成1) 本發明之構成1係一種附有多層反射膜之基板,其特徵在於,其係具備包含於基板上交替地積層有低折射率層與高折射率層之多層膜,用以反射曝光之光之多層反射膜者;且 上述多層反射膜含有氪(Kr)。
(構成2) 本發明之構成2係如構成1之附有多層反射膜之基板,其中上述多層反射膜之氪(Kr)含量為3原子%以下。
(構成3) 本發明之構成3係如構成1或2之附有多層反射膜之基板,其中上述低折射率層為鉬(Mo)層,高折射率層為矽(Si)層,且上述低折射率層與上述高折射率層相比氪(Kr)含量相對較少。
(構成4) 本發明之構成4係如構成1至3中任一項之附有多層反射膜之基板,其中於上述多層反射膜上具有保護膜。
(構成5) 本發明之構成5係一種反射型光罩基底,其特徵在於:於如構成1至3中任一項之附有多層反射膜之基板之上述多層反射膜上、或於如構成4之附有多層反射膜之基板之上述保護膜上,具有吸收體膜。
(構成6) 本發明之構成6係一種反射型光罩,其特徵在於:於上述多層反射膜上,具有將如構成5之反射型光罩基底之上述吸收體膜圖案化而成之吸收體圖案。
(構成7) 本發明之構成7係一種半導體裝置之製造方法,其特徵在於具有使用如構成6之反射型光罩,進行使用曝光裝置之微影製程,於被轉印體上形成轉印圖案之步驟。 [發明之效果]
根據本發明,可提供一種具有對曝光之光之反射率較高、且膜應力較小之多層反射膜之反射型光罩之製造方法。又,根據本發明,可提供一種用以製造具有對曝光之光之反射率較高、且膜應力較小之多層反射膜之反射型光罩的附有多層反射膜之基板及反射型光罩基底之製造方法。進而,根據本發明,可提供一種使用上述反射型光罩之半導體裝置之製造方法。
以下對本發明之實施形態,一面參照圖式一面具體地進行說明。再者,以下之實施形態係用以具體地說明本發明之形態,並非將本發明限定於其範圍內者。
如圖1所示,本發明之附有多層反射膜之基板110係於基板1上具備多層反射膜5者。多層反射膜5係用以反射曝光之光之膜,包含交替地積層有低折射率層與高折射率層之多層膜。本發明之附有多層反射膜之基板110中之多層反射膜之特徵在於含有氪(Kr)。
於本發明之附有多層反射膜之基板110之製造時,藉由離子束濺鍍於基板1上成膜多層反射膜5。具體而言,離子束濺鍍係藉由對高折射率材料之靶及低折射率材料之靶,自離子源供給離子粒子而進行。多層反射膜5係藉由於離子束濺鍍時,自離子源對靶供給氪(Kr)離子粒子而形成。自離子源供給之Kr離子粒子與靶碰撞,產生靶材料之濺鍍粒子。藉由濺鍍粒子於基板1之表面堆積,可於基板1上成膜特定材料之膜。
若藉由使用Kr離子粒子之離子束濺鍍成膜多層反射膜5,則可獲得含有Kr之多層反射膜5,並可提高多層反射膜5之對曝光之光之反射率。於使用Kr離子粒子之情形時,與使用Ar離子粒子之情形相比可提高反射率之理由可如下所述進行推測。Kr與Ar相比原子量接近低折射率層之材料(例如Mo),因此與靶碰撞後之反射Kr離子粒子之數量及/或動能變小。因此,可使多層反射膜5中所含之Kr含量少於使用Ar離子粒子作為濺鍍粒子之情形時之Ar含量。於進行離子束濺鍍之情形時,高折射率層之材料(例如Si)擴散至低折射率層(例如Mo層)而形成金屬擴散層(例如MoSi擴散層)。認為藉由減少多層反射膜5中所含之稀有氣體之含量,可抑制金屬擴散層形成,因此可獲得高反射率之多層反射膜5。
因此,於使用Kr離子粒子成膜多層反射膜5之情形時,不易形成金屬擴散層,因此可對附有多層反射膜之基板110於高溫下實施加熱處理而減小多層反射膜5之膜應力。因此,本發明之附有多層反射膜之基板110可維持著多層反射膜5之高反射率,減小膜應力。
使用本發明之附有多層反射膜之基板110,可製造反射型光罩基底100。若使用本發明之附有多層反射膜之基板110,則可製造具有對曝光之光之反射率較高、且膜應力較小之多層反射膜5之反射型光罩基底100。
圖3表示本發明之反射型光罩基底100之一例之剖面模式圖。具體而言,可製成於附有多層反射膜之基板110之最表面(例如多層反射膜5或保護膜6之表面)上,具有吸收體膜7之反射型光罩基底100。藉由使用本發明之反射型光罩基底100,可獲得具有對EUV光之反射率較高之多層反射膜5之反射型光罩200。
於本說明書中,所謂「附有多層反射膜之基板110」,係指於特定之基板1上形成多層反射膜5者。圖1及圖2表示附有多層反射膜之基板110之剖面模式圖之一例。再者,「附有多層反射膜之基板110」包含形成有多層反射膜5以外之薄膜例如保護膜6及/或背面導電膜2者。於本說明書中,所謂「反射型光罩基底100」,係指於附有多層反射膜之基板110上形成吸收體膜7者。再者,「反射型光罩基底100」包含形成有蝕刻光罩膜及抗蝕膜等進一步之薄膜者。
於本說明書中,所謂「於多層反射膜5之上(多層反射膜5上)配置(形成)吸收體膜7」,除意指吸收體膜7與多層反射膜5之表面相接而配置(形成)之情形以外,亦包含意指於多層反射膜5、與吸收體膜7之間具有其他膜之情形。關於該其他膜亦相同。又,於本說明書中,例如所謂「膜A與膜B之表面相接而配置」,係意指於膜A與膜B之間不介隔其他膜,膜A與膜B以直接接觸之方式配置。
<附有多層反射膜之基板110> 以下對構成本發明之附有多層反射膜之基板110之基板1及各薄膜進行說明。
<<基板1>> 本發明之附有多層反射膜之基板110中之基板1必須防止因EUV曝光時之熱引起之吸收體圖案變形之產生。因此,作為基板1,可較佳地使用具有0±5 ppb/℃之範圍內之低熱膨脹係數者。作為具有該範圍之低熱膨脹係數之素材,例如可使用SiO2 -TiO2 系玻璃、多成分系玻璃陶瓷等。
基板1之形成有轉印圖案(下述吸收體膜7構成其)側之第1主表面就至少獲得圖案轉印精度、及位置精度之觀點而言,以成為特定之平坦度之方式進行表面加工。於EUV曝光之情形時,於基板1之形成有轉印圖案側之主表面之132 mm×132 mm之區域內,平坦度較佳為0.1 μm以下,更佳為0.05 μm以下,進而較佳為0.03 μm以下。又,與形成有吸收體膜7側為相反側之第2主表面(背面)係於設置於曝光裝置時被靜電吸附之表面。第2主表面於132 mm×132 mm之區域內,平坦度較佳為0.1 μm以下,更佳為0.05 μm以下,進而較佳為0.03 μm以下。再者,反射型光罩基底100中之第2主表面之平坦度於142 mm×142 mm之區域內,平坦度較佳為1 μm以下,更佳為0.5 μm以下,進而較佳為0.3 μm以下。
又,基板1之表面平滑性之高度亦為極重要之項目。形成有轉印用吸收體圖案之第1主表面之表面粗糙度較佳為以均方根粗糙度(Rms)計為0.15 nm以下,更佳為以Rms計為0.10 nm以下。再者,表面平滑性可利用原子力顯微鏡測定。
進而,為防止因形成於基板1上之膜(多層反射膜5等)之膜應力引起之變形,基板1較佳為具有較高之剛性者。尤其是基板1較佳為具有65 GPa以上之高楊氏模數者。
<<基底膜>> 本發明之附有多層反射膜之基板110可與基板1之表面相接而具有基底膜。基底膜係形成於基板1與多層反射膜5之間之薄膜。藉由具有基底膜,可防止利用電子束進行之光罩圖案缺陷檢查時之充電,並且多層反射膜5之相位缺陷較少,可獲得較高之表面平滑性。
作為基底膜之材料,可較佳地使用包含釕或鉭作為主成分之材料。例如可為Ru金屬單體、Ta金屬單體,亦可為於Ru或Ta中含有鈦(Ti)、鈮(Nb)、鉬(Mo)、鋯(Zr)、釔(Y)、硼(B)、鑭(La)、鈷(Co)、及/或錸(Re)等金屬之Ru合金或Ta合金。基底膜之膜厚例如較佳為1 nm~10 nm之範圍。
<<多層反射膜5>> 多層反射膜5係於反射型光罩200中,賦予反射EUV光之功能者。多層反射膜5係週期性地積層有以折射率不同之元素為主成分之各層之多層膜。
一般而言,作為多層反射膜5,使用40至60個週期左右交替地積層有作為高折射率材料之輕元素或其化合物之薄膜(高折射率層)、與作為低折射率材料之重元素或其化合物之薄膜(低折射率層)之多層膜。
用作多層反射膜5之多層膜可以自基板1側依序積層高折射率層與低折射率層之高折射率層/低折射率層之積層構造為1個週期而積層複數個週期,亦可以自基板1側依序積層低折射率層與高折射率層之低折射率層/高折射率層之積層構造為1個週期而積層複數個週期。再者,多層反射膜5之最表面之層即與基板1側為相反側之多層反射膜5之表面層較佳為設為高折射率層。於上述多層膜中,於以自基板1側依序積層高折射率層與低折射率層之高折射率層/低折射率層之積層構造為1個週期而積層複數個週期之情形時,最上層成為低折射率層。於該情形時,若低折射率層構成多層反射膜5之最表面,則容易被氧化之反射型光罩200之反射率減小。因此,較佳為進而於最上層之低折射率層上形成高折射率層而製成多層反射膜5。另一方面,於上述多層膜中,於以自基板1側依序積層低折射率層與高折射率層之低折射率層/高折射率層之積層構造為1個週期而積層複數個週期之情形時,最上層成為高折射率層。因此,於該情形時,無需形成進一步之高折射率層。
作為高折射率層,可使用包含矽(Si)之層。作為包含Si之材料,除Si單體以外,可使用於Si中包含硼(B)、碳(C)、氮(N)、及/或氧(O)之Si化合物。藉由使用包含Si之高折射率層,獲得EUV光之反射率優異之反射型光罩200。又,作為低折射率層,可使用選自鉬(Mo)、釕(Ru)、銠(Rh)、及鉑(Pt)中之金屬單體、或該等之合金。於本發明之附有多層反射膜之基板110中,較佳為低折射率層為鉬(Mo)層,高折射率層為矽(Si)層。例如作為用以反射波長13 nm至14 nm之EUV光之多層反射膜5,可較佳地使用40至60個週期左右交替地積層Mo層與Si層之Mo/Si週期積層膜。再者,可利用矽(Si)形成作為多層反射膜5之最上層之高折射率層,於最上層(Si)與保護膜6之間,形成包含矽及氧之矽氧化物層。於該構造之情形時,可提高耐光罩清洗性。
多層反射膜5含有氪(Kr)。於該情形時,如上所述,與使用Ar離子粒子之離子束濺鍍之情形相比,可抑制金屬擴散層形成,提高反射率。多層反射膜5中之Kr含量較佳為3原子%以下,更佳為1.5原子%以下。又,Kr含量相對於Si含量之比率較佳為0.06以下,更佳為0.03以下。若Kr含量過多,則反射率降低,因此欠佳。
又,於將低折射率層設為Mo層,將高折射率層設為Si層之情形時,較佳為Mo層與Si層相比Kr含量相對較少。於Mo層之Kr含量較少之情形時,可抑制Mo層之表面粗糙度變大,其結果為,可抑制多層反射膜5之最表層之表面粗糙度變大。Mo層之Kr含量較Si層之Kr含量可少0.5原子%以上,亦可少1原子%以上。又,Mo層為多晶結構,Si層可設為非晶狀結構。
低折射率層或高折射率層之Kr含量可藉由調整各層之離子束濺鍍時之Kr離子粒子之供給量、Kr離子粒子之加速電壓、及入射角度(基板之法線與入射至基板之濺鍍粒子形成之角度)等而變化。例如藉由使成膜Mo層時之入射角度小於成膜Si層時之入射角度,可使Mo層之Kr含量進一步少於Si層之Kr含量。
成膜低折射率層及高折射率層時之入射角度較佳為0°~40°。若將入射角度設為超過40°,則可使金屬擴散層變薄,但膜厚之面內均勻性變差,損害反射率之面內均勻性。因此,將入射角度設為超過40°欠佳。藉由使用Kr離子粒子成膜多層反射膜5,即便於將低折射率層及高折射率層之入射角度設為0°~40°之情形時,亦可使金屬擴散層變薄。例如,於低折射率層為Mo層,高折射率層為Si層之情形時,MoSi擴散層之膜厚可設為1.2 nm以下。
多層反射膜5之單獨之反射率通常為65%以上,上限通常為73%。再者,多層反射膜5之各構成層之膜厚及週期可根據曝光波長適當選擇。具體而言,多層反射膜5之各構成層之膜厚及週期可以滿足布勒格反射定律之方式選擇。於多層反射膜5中,分別存在複數個高折射率層及低折射率層,但高折射率層彼此之膜厚、或低折射率層彼此之膜厚亦可不一定相同。又,多層反射膜5之最表面之Si層之膜厚可於不降低反射率之範圍內進行調整。最表面之Si(高折射率層)之膜厚可設為3 nm至10 nm。
於本發明之附有多層反射膜之基板110之製造時,藉由離子束濺鍍,於基板1上成膜多層反射膜5。圖5表示離子束濺鍍裝置500之內部構造之模式圖。具體而言,離子束濺鍍藉由對高折射率材料之靶及低折射率材料之靶,自離子源供給離子粒子而進行。於多層反射膜5為Mo/Si週期多層膜之情形時,藉由離子束濺鍍法,例如首先使用Si靶於基板1上成膜膜厚4 nm左右之Si層。其後使用Mo靶成膜膜厚3 nm左右之Mo層。將該Si層及Mo層設為1個週期,積層40至60個週期,而形成多層反射膜5(最表面之層設為Si層)。
繼而,對可於本發明中使用之離子束濺鍍裝置500,使用圖5進行說明。
如圖5之模式圖所示,可於本發明中使用之離子束濺鍍裝置500具備大致矩形之真空腔室502。於真空腔室502之一短邊面(將圖5之下邊設為一邊之壁面。以下,為說明之方便起見,適當稱為「下側短邊面」),經由保持器安裝桿504配設基板保持器503。基板保持器503以可於保持於下文闡述詳細情況之基板1之狀態下自轉之方式構成。又,基板保持器503於角部具備設置有壓針518之上夾具517。基板1配置於基板保持器503上後,以利用壓針518按壓基板1之主表面之角之形式,被上夾具517夾住。上夾具517具有與基板保持器503一起保持基板1之功能,並且亦作為對向基板1側面之膜附著之遮罩發揮作用。上夾具517之材料就按壓基板1並抑制發塵之觀點而言,較佳為絕緣性材料,例如為樹脂製者。進而,樹脂中,較佳為相對硬度較高之材質,例如尤佳為聚醯亞胺系樹脂。
又,於真空腔室502之另一短邊面(將圖5之上邊設為一邊之壁面。以下適當稱為「上側短邊面」)附近,俯視大致矩形之基台506以與基板保持器503對向之方式配設。於基台506之一長邊側(包含一長邊之面),配設第一濺鍍靶507,於基台506之另一長邊側(包含另一長邊之面),配設第二濺鍍靶508。作為構成第一濺鍍靶507、第二濺鍍靶508之材料,為成膜光罩基底中之具有特定光學特性之薄膜,可使用金屬、合金、非金屬或該等之化合物。作為上述特定之光學特性,係反射率、及透過率等。使用該離子束濺鍍裝置500,可形成交替地積層有高折射率材料與低折射率材料之多層反射膜5。於該情形時,作為構成第一濺鍍靶507之材料,可使用Si或Si化合物之高折射率材料。又,作為構成第二濺鍍靶508之材料,可使用Mo、Nb、Ru或Rh等低折射率材料。此處,對於第一濺鍍靶507使用矽(Si)材料,於第二濺鍍靶508使用鉬材料之情形進行說明。又,於基台506之中心部配設旋轉軸509,基台506以可與旋轉軸509一體性地旋轉之方式構成。
於真空腔室502之一長邊面(將圖5之左邊設為一邊之壁面。以下適當稱為「左側長邊面」),連接配設有真空泵511之給排通路510。又,於給排通路510,將閥(未圖示)設置為自由開閉。
於真空腔室502之另一長邊面(將圖5之右邊設為一邊之壁面。以下適當稱為「右側長邊面」),分別配設用以測定真空腔室502內之壓力之壓力感測器512、用以供給經離子化之粒子之離子源505。離子源505與電漿氣體供給機構(未圖示)連接,自該電漿氣體供給機構供給電漿氣體之離子粒子(氪離子)。又,離子源505以與基台506對向之方式配設,以將自電漿氣體供給機構供給之離子粒子供給至基台506之濺鍍靶507或508中之任一者之方式構成。
又,為供給用以使來自離子源505之離子粒子中性化之電子,配設有中和器513。於中和器513,設置有自特定氣體之電漿引出電子之電子供給源(未圖示),以對自離子源505朝向濺鍍靶507或508之離子粒子之路徑,照射電子之方式構成。再者,藉由中和器513未必使全部離子粒子中性化。因此,於本說明書中,於藉由中和器513一部分中性化之離子粒子(Kr 粒子),亦使用「離子粒子(Kr 粒子)」之用語。
而且,以保持器安裝桿504、離子源505、旋轉軸509、真空泵511、及壓力感測器512等各設備連接於控制裝置(未圖示),藉由該控制裝置控制動作之方式構成。
對使用具備如上所述之構成之離子束濺鍍裝置500之多層反射膜5之形成方法進行說明。
首先,使真空泵511作動,而自真空腔室502內,使氣體經由給排通路510排出。然後,等待直至藉由壓力感測器512測量之真空腔室502內之壓力達到特定之真空度(對所形成之膜之特性無影響之真空度,例如10-8 Torr(1.33×10-6 Pa))。
繼而,將作為薄膜形成用基板之基板1經由機械臂(未圖示)導入至真空腔室502內,以基板1之主表面露出之方式收容於基板保持器503之開口部。然後,將配置於基板保持器503之基板1,以利用壓針518按壓基板1之主表面之角之形式藉由上夾具517夾住。
再者,與真空腔室502相鄰之機械臂收容室(未圖示)內亦保持為特定之真空狀態。因此,於導入基板1時,亦可將真空腔室502保持為上述真空狀態。
然後,自電漿氣體供給機構,經由離子源505將電漿氣體(氪氣)導入至真空腔室502內。此時,真空腔室502之真空度以保持為適合進行濺鍍之10-4 ~10-2 Torr(1.33×10-2 ~1.33 Pa)之方式控制。
然後,自離子源505將離子化之粒子(即Kr 粒子)供給至配置於基台506之第一濺鍍靶507。使該粒子與第一濺鍍靶507碰撞,而使構成靶507之矽粒子自其表面擊出(濺鍍),使該矽粒子附著於基板1之主表面。該步驟中,使中和器513作動,使離子化之粒子(Kr 粒子)中性化。又,於該步驟中,以基板保持器503之桿504以特定之旋轉速度旋轉之方式,而且,以第一濺鍍靶507之傾斜角度於一定範圍內變動之方式,藉由控制設備控制基板保持器503之桿504及基台506之旋轉軸509。藉此,可於基板1之主表面上,均勻地成膜矽膜。
矽膜之成膜結束後,使基台506之旋轉軸509旋轉大致180°,而使第二濺鍍靶508與基板1之主表面對向。然後,自離子源505,將Kr 粒子供給至配置於基台506之第二濺鍍靶508。藉由Kr 粒子,將構成靶508之鉬粒子自其表面擊出(濺鍍),使該鉬粒子附著於成膜於基板1之主表面之矽膜表面。該步驟中,使中和器513作動,使離子化之粒子(Kr 粒子)中性化。又,以與上述之矽膜之成膜處理相同之方式,藉由控制基板保持器503之桿504或旋轉軸509,可於成膜於基板1上之矽膜上,以均勻之厚度成膜鉬膜。然後,藉由重複特定次數(例如40至60次)進行該等矽膜及鉬膜之成膜處理,獲得交替地積層有矽膜與鉬膜之對作為曝光之光之EUV光具有特定之反射率之多層反射膜5。
於本發明中,如上所述,於用以形成多層反射膜5之離子束濺鍍時,自離子源,對靶供給氪(Kr)離子粒子,藉此可於基板1上形成含有Kr、金屬擴散層較小、且對曝光之光之反射率較高之多層反射膜5。
<<保護膜6>> 於本發明之附有多層反射膜之基板110中,如圖2所示,較佳為於多層反射膜5上形成保護膜6。藉由於多層反射膜5上形成保護膜6,可抑制使用附有多層反射膜之基板110製造反射型光罩200時之對多層反射膜5表面之損傷。因此,所獲得之反射型光罩200之對EUV光之反射率特性變得良好。
保護膜6為保護多層反射膜5免於受到下述反射型光罩200之製造步驟中之乾式蝕刻及清洗之傷害,形成於多層反射膜5上。又,保護膜6亦兼備使用電子束(EB)之光罩圖案之黑點缺陷修正時保護多層反射膜5之功能。此處,圖2表示保護膜6為1層之情形。然而,可將保護膜6設為3層以上之積層構造,將最下層及最上層例如設為包含含有Ru之物質之層,於最下層與最上層之間,介隔Ru以外之金屬、或者合金。保護膜6例如由包含釕為主成分之材料形成。作為包含釕為主成分之材料,可列舉Ru金屬單體、於Ru中含有鈦(Ti)、鈮(Nb)、鉬(Mo)、鋯(Zr)、釔(Y)、硼(B)、鑭(La)、鈷(Co)、及/或錸(Re)等金屬之Ru合金、及於該等中包含氮之材料。該等之中,尤其較佳為使用包含含有Ti之Ru系材料之保護膜6。於該情形時,可抑制作為多層反射膜5之構成元素之矽自多層反射膜5之表面向保護膜6擴散之現象。因此,光罩清洗時之表面粗糙變少,又,亦變得不易產生膜剝離。由於表面粗糙之減少直接關係到防止多層反射膜5對EUV曝光之光之反射率降低,故而為改善EUV曝光之曝光效率、提高產能,表面粗糙之減少較重要。
用於保護膜6之Ru合金之Ru含有比率為50原子%以上且未達100原子%,較佳為80原子%以上且未達100原子%,更佳為95原子%以上且未達100原子%。尤其是於Ru合金之Ru含有比率為95原子%以上且未達100原子%之情形時,可抑制對保護膜6之多層反射膜5之構成元素(矽)之擴散。又,該情形之保護膜6可充分確保EUV光之反射率,並且兼備耐光罩清洗性、對吸收體膜7進行蝕刻加工時之蝕刻終止功能、及防止多層反射膜5之經時變化之功能。
於EUV微影法中,由於相對於曝光之光透明之物質較少,故而防止異物向光罩圖案面附著之EUV光罩護膜技術上不簡單。因此種情況,不使用光罩護膜之無光罩護膜運用成為主流。又,於EUV微影法中,因EUV曝光產生碳膜堆積於光罩,氧化膜生長之類之曝光污染。因此,於將光罩用於半導體裝置之製造之階段,必須多次進行清洗,而去除光罩上之異物及污染。因此種情況,EUV反射型光罩200要求與光微影法用穿透式光罩相比出色之耐光罩清洗性。若使用包含含有Ti之Ru系材料之保護膜6,則對硫酸、硫酸過氧化氫混合物(SPM)、氨、氨水過氧化氫混合物(APM)、OH自由基清洗水、及濃度為10 ppm以下之臭氧水等清洗液之耐清洗性變得特別高,可滿足耐光罩清洗性之要求。
保護膜6之膜厚只要可實現作為保護膜6之功能,則並無特別限制。就EUV光之反射率之觀點而言,保護膜6之膜厚較佳為1.0 nm至8.0 nm,更佳為1.5 nm至6.0 nm。
作為保護膜6之形成方法,可無特別限制地採用公知之膜形成方法。作為具體例,作為保護膜6之形成方法,可列舉濺鍍法及離子束濺鍍法。
<加熱處理> 如上所述,於多層反射膜5之形成後之加熱處理(退火)中,越提高加熱處理溫度越可減少多層反射膜5之膜應力,但產生多層反射膜5之對EUV光之反射率降低之問題。因此,於利用離子束濺鍍進行之多層反射膜5之成膜時,於使用氪(Kr)離子粒子之情形、及使用氬(Ar)離子粒子之情形時,藉由改變退火溫度而進行平坦度之測定,評價可使附有多層反射膜之基板110之多層反射膜5之膜應力減少何種程度。
藉由下述之依據實施例1之方法,於多層反射膜5之成膜時,自離子源505供給氪(Kr)離子粒子,而進行離子束濺鍍,藉此形成多層反射膜5,試製附有多層反射膜之基板110(試樣1)。又,於離子束濺鍍時,自離子源505供給氬(Ar)離子粒子,除此以外,於與試樣1相同之條件下形成多層反射膜5,試製附有多層反射膜之基板110(試樣2)。
於使用Kr離子粒子之試樣1之情形時,將退火溫度設為150℃、200℃、240℃、及280℃,於使用Ar離子粒子之試樣2之情形時,將退火溫度設為180℃、200℃、210℃、及220℃。於試樣1及試樣2之退火後,測定多層反射膜5之平坦度及對EUV光之反射率。附有多層反射膜之基板110之多層反射膜5之平坦度之測定係使用平坦度測定裝置(TOROPEL公司製造 UltraFlat200),以多層反射膜5之成膜區域內之132 mm角之TIR進行評價。將其結果示於圖6。
如根據圖6所知,於使用Kr離子粒子之試樣1之情形時,伴隨退火溫度之上升之反射率之降低亦緩慢,即便退火溫度為280℃反射率亦為67.2%之高反射率。又,於退火溫度為250℃附近,TIR成為0 nm。另一方面,於使用Ar離子粒子之試樣2之情形時,退火溫度為200℃,反射率為65.4%,低於使用Kr離子粒子之試樣1之情形,於210℃以上反射率急遽降低,於220℃下為64.9%。又,推測退火溫度為220℃、TIR為283 nm,TIR成為0 nm之退火溫度變得高於試樣1之情形。
藉此可知,於使用Kr離子粒子之情形時,可藉由調整退火溫度,而將多層反射膜5之膜應力設為零。又,可知於離子束濺鍍時,較Ar離子粒子,使用Kr離子粒子者係多層反射膜5之耐退火性提高,即便進行退火亦可維持較高之反射率。
對形成有多層反射膜5之狀態、或於多層反射膜5上形成有保護膜6之狀態之附有多層反射膜之基板110,較理想為於150℃以上且300℃以下、較佳為200℃以上且280℃以下進行熱處理(退火)。藉由該退火,應力緩和,而可防止因光罩基底應力應變引起之平坦度之降低,並且可防止多層反射膜5之EUV光反射率經時變化。又,藉由對上述附有多層反射膜之基板110,於210℃以上進行退火,可維持較高之反射率,並且使膜應力成為零。
由於形成於本發明之附有多層反射膜之基板110之多層反射膜5之對EUV光之反射率較高,故而即便於對附有多層反射膜之基板110實施加熱處理之情形時,亦可維持承受作為反射型光罩200之使用之多層反射膜5之反射率。
<反射型光罩基底100> 對本發明之反射型光罩基底100進行說明。
<<吸收體膜7>> 反射型光罩基底100於上述附有多層反射膜之基板110上,具有吸收體膜7。即,吸收體膜7形成於多層反射膜5上(於形成有保護膜6之情形時,保護膜6上)。吸收體膜7之基本功能係吸收EUV光。吸收體膜7可為以EUV光之吸收為目的之吸收體膜7,亦可為亦考慮EUV光之相位差之具有相位偏移功能之吸收體膜7。所謂具有相位偏移功能之吸收體膜7,係吸收EUV光並且使一部分反射而使相位偏移者。即,於將具有相位偏移功能之吸收體膜7圖案化之反射型光罩200中,於形成有吸收體膜7之部分,吸收EUV光而消光並且以對圖案轉印無不良影響之水準使一部分光反射。又,於未形成吸收體膜7之區域(場部),EUV光介隔保護膜6自多層反射膜5反射。因此,於自具有相位偏移功能之吸收體膜7之反射光、與自場部之反射光之間具有所需之相位差。具有相位偏移功能之吸收體膜7以自吸收體膜7之反射光、與自多層反射膜5之反射光之相位差成為170度至190度之方式形成。藉由180度附近之反轉之相位差之光彼此於圖案邊緣部相互干涉,投影光學影像之像對比度提高。伴隨該像對比度之提高,解像度提高,可增大曝光量裕度、及焦點裕度等與曝光有關之各種裕度。
吸收體膜7可為單層之膜,亦可如圖4(a)所示為包含複數個膜(例如下層吸收體膜71及上層吸收體膜72)之多層膜。於單層膜之情形時,有可削減光罩基底製造時之步驟數而提高生產效率之特徵。於多層膜之情形時,上層吸收體膜72可以變為使用光之光罩圖案檢查時之抗反射膜之方式,適當設定其光學常數與膜厚。藉此,使用光之光罩圖案檢查時之檢查感度提高。又,若於上層吸收體膜72使用耐氧化性提高之添加有氧(O)及氮(N)等之膜,則經時穩定性提高。如此,可藉由使吸收體膜7成為多層膜而附加各種功能。於吸收體膜7為具有相位偏移功能之吸收體膜7之情形時,藉由設為多層膜可增大光學面之調整之範圍,因此變得容易獲得所需之反射率。
作為吸收體膜7之材料,只要具有吸收EUV光之功能,可藉由蝕刻等進行加工(較佳為可利用氯(Cl)或氟(F)系氣體之乾式蝕刻進行蝕刻),則並無特別限定。作為具有此種功能者,可較佳地使用鉭(Ta)單體或包含Ta作為主成分之鉭化合物。
上述鉭及鉭化合物等之吸收體膜7可利用DC(direct current,直流)濺鍍法及RF(radio frequency,射頻)濺鍍法等磁控濺鍍法形成。例如,可藉由使用包含鉭及硼之靶,使用添加有氧或氮之氬氣之反應性濺鍍法,成膜吸收體膜7。
用以形成吸收體膜7之鉭化合物包含Ta之合金。於吸收體膜7為Ta之合金之情形時,就平滑性及平坦性之方面而言,吸收體膜7之結晶狀態較佳為非晶狀或微晶之結構。若吸收體膜7之表面不平滑、平坦,則有吸收體圖案7a之邊緣粗糙度變大,圖案之尺寸精度變差之情況。吸收體膜7之較佳之表面粗糙度以均方根粗糙度(Rms)計為0.5 nm以下,更佳為0.4 nm以下,進而較佳為0.3 nm以下。
作為用以形成吸收體膜7之鉭化合物,可使用包含Ta及B之化合物,包含Ta及N之化合物,包含Ta、O及N之化合物,包含Ta及B、進而包含O與N中之至少一者之化合物,包含Ta及Si之化合物,包含Ta、Si及N之化合物,包含Ta及Ge之化合物,及包含Ta、Ge及N之化合物等。
Ta係EUV光之吸收係數較大,又,可利用氯系氣體或氟系氣體容易地進行乾式蝕刻之材料。因此,可認為Ta為加工性優異之吸收體膜7材料。進而,藉由於Ta中添加B、Si及/或Ge等,可容易地獲得非晶狀之材料。其結果為,可提高吸收體膜7之平滑性。又,若於Ta中添加N及/或O,則吸收體膜7之對氧化之耐性提高,因此獲得可提高經時性之穩定性之效果。
藉由將吸收體膜7設為包含TaBN之下層吸收體膜71及TaBO之上層吸收體膜72之積層膜,並將上層吸收體膜72之TaBO之膜厚設為約14 nm,於使用光之光罩圖案缺陷檢查時,該上層吸收體膜72成為抗反射膜。因此,可提高光罩圖案缺陷檢查時之檢查感度。
又,作為構成吸收體膜7之材料,除鉭或鉭化合物以外,可列舉Cr、CrN、CrCON、CrCO、CrCOH、及CrCONH等鉻及鉻化合物以及WN、TiN及Ti等材料。
<<背面導電膜2>> 於基板1之第2主表面(背面)上(多層反射膜5之形成面之相反側,於在基板1上形成有氫侵入抑制膜等中間層之情形時為中間層上),形成靜電吸附用之背面導電膜2。作為靜電吸附用,背面導電膜2所要求之薄片電阻通常為100 Ω/□以下。背面導電膜2之形成方法例如為使用鉻或鉭等金屬、或該等之合金之靶之磁控濺鍍法或離子束濺鍍法。背面導電膜2之包含鉻(Cr)之材料較佳為於Cr中含有選自硼、氮、氧、及碳中之至少一者之Cr化合物。作為Cr化合物,例如可列舉CrN、CrON、CrCN、CrCON、CrBN、CrBON、CrBCN及CrBOCN等。作為背面導電膜2之包含鉭(Ta)之材料,較佳為使用Ta(鉭)、含有Ta之合金、或於該等中之任一者中含有硼、氮、氧、及碳中之至少一者之Ta化合物。作為Ta化合物,例如可列舉TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON、及TaSiCON等。背面導電膜2之膜厚只要滿足作為靜電吸附用之功能則並無特別限定,通常為10 nm至200 nm。又,該背面導電膜2亦兼備光罩基底100之第2主表面側之應力調整。即,背面導電膜2以與來自形成於第1主表面側之各種膜之應力保持平衡,獲得平坦之反射型光罩基底100之方式進行調整。
再者,於形成上述吸收體膜7之前,可對附有多層反射膜之基板110形成背面導電膜2。於該情形時,可獲得如圖2所示之具備背面導電膜2之附有多層反射膜之基板110。
<其他薄膜> 利用本發明之製造方法製造之附有多層反射膜之基板110及反射型光罩基底100可於吸收體膜7上具備蝕刻用硬質光罩膜(亦稱為「蝕刻光罩膜」)及/或抗蝕膜。作為蝕刻用硬質光罩膜之代表性材料,有矽(Si)、及於矽中添加氧(O)、氮(N)、碳(C)、及/或氫(H)之材料、或鉻(Cr)、及於鉻中添加氧(O)、氮(N)、碳(C)、及/或氫(H)之材料等。具體而言,可列舉SiO2 、SiON、SiN、SiO、Si、SiC、SiCO、SiCN、SiCON、Cr、CrN、CrO、CrON、CrC、CrCO、CrCN、及CrOCN等。然而,於吸收體膜7為包含氧之化合物之情形時,作為蝕刻用硬質光罩膜,就耐蝕刻性之觀點而言較佳為避開包含氧之材料(例如SiO2 )。於形成蝕刻用硬質光罩膜之情形時,可使抗蝕膜之膜厚變薄,對圖案之微細化較為有利。
本發明之附有多層反射膜之基板110及反射型光罩基底100較佳為於該等之基板1即玻璃基板、與含有鉭或鉻之背面導電膜2之間,具備抑制氫自基板1侵入至背面導電膜2之氫侵入抑制膜。藉由氫侵入抑制膜之存在,可抑制於背面導電膜2中摻入氫,並可抑制背面導電膜2之壓縮應力之增大。
氫侵入抑制膜之材料只要為氫不易透過,可抑制自基板1向背面導電膜2之氫之侵入之材料,則可為任何種類。作為氫侵入抑制膜之材料,具體而言,例如可列舉Si、SiO2 、SiON、SiCO、SiCON、SiBO、SiBON、Cr、CrN、CrON、CrC、CrCN、CrCO、CrCON、Mo、MoSi、MoSiN、MoSiO、MoSiCO、MoSiON、MoSiCON、TaO及TaON等。氫侵入抑制膜可為該等材料之單層,又,亦可為複數層及梯度組成膜。
<反射型光罩200>
本發明係將上述反射型光罩基底100之吸收體膜7圖案化,而於多層反射膜5上具有吸收體圖案7a之反射型光罩200。藉由使用本發明之反射型光罩基底100,可獲得具有對EUV光之反射率較高、且膜應力較小之多層反射膜5之反射型光罩200。
使用本實施形態之反射型光罩基底100,製造反射型光罩200。此處,僅進行概要說明,下面於實施例中一面參照圖式一面詳細地進行說明。
準備反射型光罩基底100,於其第1主表面之最表面(如以下之實施例中所說明,吸收體膜7上),形成抗蝕膜8(作為反射型光罩基底100,具備抗蝕膜之情形不需要),於該抗蝕膜8上描繪(曝光)電路圖案等所需之圖案,進而進行顯影、沖洗,藉此形成特定之抗蝕圖案8a。
使用該抗蝕圖案8a作為遮罩,對吸收體膜7進行乾式蝕刻,藉此形成吸收體圖案7a。再者,作為蝕刻氣體,可使用選自Cl2 、SiCl4 、及CHCl3 等氯系氣體、以特定之比率包含氯系氣體與O2 之混合氣體、以特定之比率包含氯系氣體與He之混合氣體、以特定之比率包含氯系氣體與Ar之混合氣體、CF4 、CHF3 、C2 F6 、C3 F6 、C4 F6 、C4 F8 、CH2 F2 、CH3 F、C3 F8 、SF6 、及F2 等氟系氣體、及以特定之比率包含氟系氣體與O2 之混合氣體等中者。此處,若於蝕刻之最終階段,蝕刻氣體中包含氧,則於Ru系保護膜6產生表面粗糙。因此,於Ru系保護膜6暴露於蝕刻之過蝕刻階段,較佳為使用不含氧之蝕刻氣體。
其後,藉由灰化或抗蝕劑剝離液去除抗蝕圖案8a,製作形成有所需之電路圖案之吸收體圖案7a。
藉由以上之步驟,可獲得本發明之反射型光罩200。
<半導體裝置之製造方法> 本發明係具有使用上述反射型光罩200,進行使用曝光裝置之微影製程,於被轉印體上形成轉印圖案之步驟的半導體裝置之製造方法。根據本發明之半導體裝置之製造方法,可使用具有對EUV光之反射率較高、且膜應力較小之多層反射膜5之反射型光罩200,因此可製造具有微細且高精度之轉印圖案之半導體裝置。
具體而言,藉由使用上述本實施形態之反射型光罩200而進行EUV曝光,可於半導體基板上形成所需之轉印圖案。除該微影步驟以外,經過被加工膜之蝕刻或絕緣膜、導電膜之形成、摻雜劑之導入、或者退火等各種步驟,藉此可以高良率製造形成有所需之電子電路之半導體裝置。 [實施例]
以下,對各實施例一面參照圖式一面進行說明。
(實施例1) 作為實施例1,如圖1所示,製作於基板1之一主表面上形成有多層反射膜5之附有多層反射膜之基板110。實施例1之附有多層反射膜之基板110之製作以下述方式進行。
((基板1)) 準備作為第1主表面及第2主表面之兩表面經研磨之6025尺寸(約152 mm×152 mm×6.35 mm)之低熱膨脹玻璃基板之SiO2 -TiO2 系玻璃基板,製成基板1。以成為平坦且平滑之主表面之方式,進行包含粗研磨加工步驟、精密研磨加工步驟、局部加工步驟、及接觸研磨加工步驟之研磨。
((多層反射膜5)) 使用如圖5所示之離子束濺鍍裝置500,於上述基板1之第1主表面上,形成多層反射膜5。該多層反射膜5為設為適合波長13.5 nm之EUV光之多層反射膜5,製成包含Si與Mo之週期多層反射膜5。具體而言,作為高折射率材料之靶及低折射率材料之靶(第一及第二濺鍍靶507及508),使用Si靶及Mo靶。對該等靶507及508,自離子源505供給氪(Kr)離子粒子,而進行離子束濺鍍,藉此於基板1上交替地積層Si層及Mo層。
此處,Si及Mo之濺鍍粒子以相對於基板1之主表面之法線為30度之角度入射。首先,以4.2 nm之膜厚成膜Si層,繼而,以2.8 nm之膜厚成膜Mo層。將其設為1個週期,並以相同之方式積層40個週期,最後以4.0 nm之膜厚成膜Si層,形成多層反射膜5。因此,多層反射膜5之最下層即最接近基板1之多層反射膜5之材料為Si,又,多層反射膜5之最上層即與保護膜6相接之多層反射膜5之材料亦為Si。再者,此處設為40個週期,但並不限定於此,例如亦可為60個週期。於設為60個週期之情形時,較40個週期步驟數增加,但可提高對EUV光之反射率。
於多層反射膜5之成膜時,作為用以使中和器513作動之氣體,使用氪氣。因此,於離子束濺鍍時導入至腔室內之氣體僅為氪氣。於中和器513,氪氣被電漿化,自電漿引出電子。電子之引出以對自離子源505朝向濺鍍靶507或508之離子粒子之路徑照射之方式進行。
以上述方式,製造實施例1之附有多層反射膜之基板110。
測定實施例1之附有多層反射膜之基板110之反射率。如表1所示,波長13.5 nm之反射率為68.4%。又,對此時之實施例1之附有多層反射膜之基板110之多層反射膜5之平坦度,使用平坦度測定裝置(TOROPEL公司製造 UltraFlat200)進行測定,結果如表1所示,平坦度為900 nm。
又,藉由拉塞福逆散射譜法測定多層反射膜5之組成,結果如圖7所示,Kr含量為1.1原子%(at%),Mo含量為43.6原子%,Si含量為55.3原子%。Kr含量相對於Si含量之比率為0.02。又,藉由X射線光電子光譜法進行分析,可知Kr幾乎不含於Mo層中,含有於Si層中。進而,利用穿透式電子顯微鏡觀察多層反射膜5之剖面,可知Mo層具有多晶結構,Si層具有非晶狀結構。又,藉由X射線反射率測定法測定金屬擴散層之厚度,結果於使Mo粒子入射至Si層上時形成之Si層上之MoSi擴散層為1.1 nm。
繼而,對實施例1之附有多層反射膜之基板110,以溫度230℃、10分鐘進行退火(加熱處理)。其後,再次測定實施例1之附有多層反射膜之基板110之反射率。如表1所示,退火後之波長13.5 nm之反射率為67.7%。又,如表1所示,測定實施例1之附有多層反射膜之基板110的退火後之多層反射膜5之平坦度,結果平坦度為350 nm。又,退火後之多層反射膜5之組成幾乎不變。
(實施例2) 如表1所示,作為實施例2,以與實施例1相同之方式,製造於基板1之第1主表面上形成有多層反射膜5之附有多層反射膜之基板110。
將退火溫度設為200℃,除此以外,以與實施例1相同之方式,對實施例2之附有多層反射膜之基板110進行退火。又,測定退火前後之多層反射膜5之反射率及平坦度。將該等測定結果示於表1。
(實施例3) 如表1所示,作為實施例3,以與實施例1相同之方式,製造於基板1之第1主表面上形成有多層反射膜5之附有多層反射膜之基板110。
將退火溫度設為260℃,除此以外,以與實施例1相同之方式,對實施例3之附有多層反射膜之基板110進行退火。又,測定退火前後之多層反射膜5之反射率及平坦度。將該等測定結果示於表1。
(實施例4) 作為實施例4,將Si之濺鍍粒子之入射角度變更為25度,除此以外,以與實施例1相同之方式,製造於基板1之第1主表面上形成有多層反射膜5之附有多層反射膜之基板110。
以與實施例1相同之方式,測定附有多層反射膜之基板110之反射率及平坦度,結果反射率為68.4%,平坦度為850 nm。
又,藉由拉塞福逆散射譜法測定多層反射膜5之組成,結果Kr含量為1.0原子%(at%),Mo含量為43.6原子%,Si含量為55.4原子%。Kr含量相對於Si含量之比率為0.02。又,藉由X射線光電子光譜法進行分析,可知Kr幾乎不含於Mo層中,含有於Si層中。進而,利用穿透式電子顯微鏡觀察多層反射膜5之剖面,可知Mo層具有多晶結構,Si層具有非晶狀結構。又,藉由X射線反射率測定法測定金屬擴散層之厚度,結果於使Mo粒子入射至Si層上時形成之Si層上之MoSi擴散層為1.15 nm。
繼而,以與實施例1相同之方式,對附有多層反射膜之基板110,以溫度230℃、10分鐘進行退火(加熱處理)。其後,測定實施例5之附有多層反射膜之基板110之反射率及平坦度,結果反射率為67.7%,平坦度為330 nm。又,退火後之多層反射膜5之組成幾乎不變。
(比較例1) 如表1所示,作為比較例1,於多層反射膜5之成膜時,自離子源,使用氬離子作為離子粒子,使用氬氣作為用以使中和器513作動之氣體,除此以外,以與實施例1相同之方式,製造於基板1之第1主表面上形成有多層反射膜5之附有多層反射膜之基板110。即,於比較例1之多層反射膜5之成膜時,不使用氪。
藉由拉塞福逆散射譜法測定多層反射膜5之組成,結果Ar含量為1.3原子%,Mo含量為43.7原子%,Si含量為55.0原子%。又,藉由X射線反射率測定法測定金屬擴散層之厚度,結果Si層上之MoSi擴散層為1.3 nm。
以與實施例1相同之方式,對比較例1之附有多層反射膜之基板110進行退火。又,測定退火前後之多層反射膜5之反射率及平坦度。將該等測定結果示於表1。
(實施例1~4及比較例1之附有多層反射膜之基板110之評價結果) 於實施例1、4中,金屬擴散層之厚度分別為1.1 nm、1.15 nm,薄於比較例1之金屬擴散層之厚度1.3 nm。又,如根據表1所知,於自離子源505供給氪離子而形成含有Kr之多層反射膜5之實施例1~4之附有多層反射膜之基板110之情形時,可獲得退火前之多層反射膜5之反射率為68.4%之高值反射率。相對於此,比較例1之附有多層反射膜之基板110之退火前之多層反射膜5之反射率為66.0%,為低值。又,實施例1~4之退火後之多層反射膜5之反射率亦為67.5%以上,高於比較例1之退火前之多層反射膜5之反射率。又,實施例3係反射率高於比較例1,且平坦度亦較高,為50 nm。根據上述情況明確可知,於實施例1~4之附有多層反射膜之基板110之情形時,可使金屬擴散層變薄,可藉由退火減少多層反射膜5之膜應力而提高附有多層反射膜之基板110之平坦度,並且維持承受作為反射型光罩200之使用之多層反射膜5之反射率。
(反射型光罩基底100) 可使用上述實施例1~4之附有多層反射膜之基板110,製造反射型光罩基底100。以下對反射型光罩基底100之製造方法進行說明。
((保護膜6)) 於上述附有多層反射膜之基板110之表面,形成保護膜6。於Ar氣氛圍中,藉由使用Ru靶之離子束濺鍍,以2.5 nm之膜厚成膜包含Ru之保護膜6。此處,Ru之濺鍍粒子以相對於基板1之主表面之法線為30度之角度入射。其後,於大氣中進行130℃之退火。
((吸收體膜7)) 繼而,藉由DC濺鍍法,積層膜厚56 nm之TaBN膜作為下層吸收體膜71,積層膜厚14 nm之TaBO膜作為上層吸收體膜72,形成包含該兩層膜之吸收體膜7。TaBN膜係將TaB用於靶,於Ar氣與N2 氣之混合氣體氛圍中利用反應性濺鍍法形成。TaBO膜係將TaB用於靶,於Ar氣與O2 氣之混合氣體氛圍中利用反應性濺鍍法形成。TaBO膜係經時變化較少之膜,並且該膜厚之TaBO膜於使用光之光罩圖案檢查時作為抗反射膜發揮作用,提高檢查感度。於利用EB進行光罩圖案檢查之情形時,因產能之關係,亦多用併用以光進行之光罩圖案檢查之方法。即,對記憶體單元部之類之使用微細圖案之區域,利用檢查感度較高之EB進行光罩圖案檢查,對間接周邊電路部之類之由比較大之圖案構成之區域,利用產能較高之光進行光罩圖案檢查。
((背面導電膜2)) 繼而,於基板1之第2主表面(背面),藉由磁控濺鍍(反應性濺鍍)法,於下述條件下形成包含CrN之背面導電膜2。背面導電膜2之形成條件:Cr靶、Ar與N2 之混合氣體氛圍(Ar:90原子%,N:10原子%)、膜厚20 nm。
以上述方式,使用實施例1~4之附有多層反射膜之基板110,製造反射型光罩基底100。
(反射型光罩200) 繼而,使用實施例1~4之上述反射型光罩基底100,製造反射型光罩200。參照圖5,對反射型光罩200之製造進行說明。
首先,如圖4(b)所示,於反射型光罩基底100之上層吸收體膜72上,形成抗蝕膜8。然後,於該抗蝕膜8上描繪(曝光)電路圖案等所需之圖案,進而進行顯影、沖洗,藉此形成特定之抗蝕圖案8a(圖4(c))。繼而,使抗蝕圖案8a成為光罩,對TaBO膜(上層吸收體膜72)使用CF4 氣體進行乾式蝕刻,緊接著對TaBN膜(下層吸收體膜71)使用Cl2 氣體進行乾式蝕刻,藉此形成吸收體圖案7a(圖4(d))。包含Ru之保護膜6對Cl2 氣體之耐乾式蝕刻性極高,成為充分之蝕刻終止。其後,利用灰化或抗蝕劑剝離液等去除抗蝕圖案8a(圖4(e))。
以上述方式製造實施例1~4之反射型光罩200。
(半導體裝置之製造) 將使用實施例1~4之附有多層反射膜之基板110製造之反射型光罩200設置於EUV掃描儀,對於半導體基板上形成有被加工膜與抗蝕膜之晶圓進行EUV曝光。然後,藉由對該曝光過之抗蝕膜進行顯影,於形成有被加工膜之半導體基板上形成抗蝕圖案。
使用實施例1~4之附有多層反射膜之基板110製造之反射型光罩200具有對曝光之光之反射率較高之多層反射膜5,因此可形成微細且高精度之轉印圖案。
藉由蝕刻將該抗蝕圖案轉印於被加工膜,又,經過絕緣膜、導電膜之形成、摻雜劑之導入、或者退火等各種步驟,藉此可以高良率製造具有所需之特性之半導體裝置。
[表1]
1‧‧‧基板
2‧‧‧背面導電膜
5‧‧‧多層反射膜
6‧‧‧保護膜
7‧‧‧吸收體膜
7a‧‧‧吸收體圖案
8‧‧‧抗蝕膜
8a‧‧‧抗蝕圖案
71‧‧‧吸收體膜(下層吸收體膜)
71a‧‧‧吸收體圖案(下層吸收體圖案)
72‧‧‧吸收體膜(上層吸收體膜)
72a‧‧‧吸收體圖案(上層吸收體圖案)
100‧‧‧反射型光罩基底
110‧‧‧附有多層反射膜之基板
200‧‧‧反射型光罩
500‧‧‧離子束濺鍍裝置
502‧‧‧真空腔室
503‧‧‧基板保持器
504‧‧‧保持器安裝桿
505‧‧‧離子源
506‧‧‧基台
507‧‧‧第一濺鍍靶
508‧‧‧第二濺鍍靶
509‧‧‧旋轉軸
510‧‧‧給排通路
511‧‧‧真空泵
512‧‧‧壓力感測器
513‧‧‧中和器混合機
517‧‧‧上夾具
518‧‧‧壓針
圖1係本發明之附有多層反射膜之基板之一例之剖面模式圖。 圖2係本發明之附有多層反射膜之基板之另一例之剖面模式圖。 圖3係本發明之反射型光罩基底之一例之剖面模式圖。 圖4(a)~(e)係利用剖面模式圖表示本發明之反射型光罩之製造方法之步驟圖。 圖5係離子束濺鍍裝置之內部構造之模式圖。 圖6係表示使用Kr或Ar製造之附有多層反射膜之基板之多層反射膜之平坦度及EUV光反射率相對於退火溫度的圖表。 圖7係表示實施例1中之多層反射膜之利用拉塞福逆散射譜法所得之分析結果的圖表。

Claims (7)

  1. 一種附有多層反射膜之基板,其特徵在於,其係具備包含於基板上交替地積層有低折射率層與高折射率層之多層膜,用以反射曝光之光之多層反射膜者;且 上述多層反射膜含有氪(Kr)。
  2. 如請求項1之附有多層反射膜之基板,其中上述多層反射膜之氪(Kr)含量為3原子%以下。
  3. 如請求項1或2之附有多層反射膜之基板,其中上述低折射率層為鉬(Mo)層,高折射率層為矽(Si)層;且 上述低折射率層與上述高折射率層相比,氪(Kr)含量相對較少。
  4. 如請求項1至3中任一項之附有多層反射膜之基板,其中於上述多層反射膜上具有保護膜。
  5. 一種反射型光罩基底,其特徵在於:於如請求項1至3中任一項之附有多層反射膜之基板之上述多層反射膜上、或於如請求項4之附有多層反射膜之基板之上述保護膜上,具有吸收體膜。
  6. 一種反射型光罩,其特徵在於:於上述多層反射膜上,具有將如請求項5之反射型光罩基底之上述吸收體膜圖案化而成之吸收體圖案。
  7. 一種半導體裝置之製造方法,其特徵在於具有使用如請求項6之反射型光罩,進行使用曝光裝置之微影製程,於被轉印體上形成轉印圖案之步驟。
TW107121261A 2017-06-21 2018-06-21 附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法 TWI784012B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121485 2017-06-21
JP2017-121485 2017-06-21

Publications (2)

Publication Number Publication Date
TW201905580A true TW201905580A (zh) 2019-02-01
TWI784012B TWI784012B (zh) 2022-11-21

Family

ID=64735657

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107121261A TWI784012B (zh) 2017-06-21 2018-06-21 附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法
TW111141292A TWI846116B (zh) 2017-06-21 2018-06-21 附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111141292A TWI846116B (zh) 2017-06-21 2018-06-21 附有多層反射膜之基板、反射型光罩基底及反射型光罩、及半導體裝置之製造方法

Country Status (6)

Country Link
US (1) US11454878B2 (zh)
JP (2) JP7118962B2 (zh)
KR (2) KR102653352B1 (zh)
SG (2) SG10202112738PA (zh)
TW (2) TWI784012B (zh)
WO (1) WO2018235721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790020B (zh) * 2021-07-30 2023-01-11 台灣積體電路製造股份有限公司 反射型罩幕及其製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484826B2 (ja) 2021-06-18 2024-05-16 信越化学工業株式会社 反射型マスクブランク、及び反射型マスクの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110607A (en) 1998-02-20 2000-08-29 The Regents Of The University Of California High reflectance-low stress Mo-Si multilayer reflective coatings
JP2004331998A (ja) * 2003-04-30 2004-11-25 Nikon Corp 多層膜成膜方法、反射鏡及び露光装置
WO2005038886A1 (ja) * 2003-10-15 2005-04-28 Nikon Corporation 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置
JP2005250187A (ja) * 2004-03-05 2005-09-15 Nikon Corp 多層膜ミラー及びeuv露光装置
KR100699858B1 (ko) * 2005-08-03 2007-03-27 삼성전자주식회사 극자외선 리소그래피용 반사 디바이스 및 그 제조 방법 및이를 적용한 극자외선 리소그래피용 마스크, 프로젝션광학계 및 리소그래피 장치
US7504185B2 (en) 2005-10-03 2009-03-17 Asahi Glass Company, Limited Method for depositing multi-layer film of mask blank for EUV lithography and method for producing mask blank for EUV lithography
JP5233321B2 (ja) 2008-02-27 2013-07-10 凸版印刷株式会社 極端紫外線露光用マスクブランク、極端紫外線露光用マスク、極端紫外線露光用マスクの製造方法及び極端紫外線露光用マスクを用いたパターン転写方法
JP5725015B2 (ja) * 2010-03-16 2015-05-27 旭硝子株式会社 Euvリソグラフィ光学部材用基材の製造方法
JP5616265B2 (ja) 2011-03-25 2014-10-29 Hoya株式会社 薄膜の成膜方法、マスクブランクの製造方法及び転写用マスクの製造方法
JP6460617B2 (ja) 2012-02-10 2019-01-30 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び反射型マスクブランクの製造方法
US9274411B2 (en) * 2012-06-05 2016-03-01 SK Hynix Inc. Reflection type blank masks, methods of fabricating the same, and methods of fabricating reflection type photo masks using the same
JP2014229825A (ja) * 2013-05-24 2014-12-08 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクの製造方法および、該マスクブランク用の反射層付基板の製造方法
WO2015037564A1 (ja) * 2013-09-11 2015-03-19 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP6348116B2 (ja) 2013-09-27 2018-06-27 Hoya株式会社 多層反射膜付き基板、マスクブランク、転写用マスク及び半導体装置の製造方法
WO2016043147A1 (ja) * 2014-09-17 2016-03-24 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2017116931A (ja) 2015-12-17 2017-06-29 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP6792901B2 (ja) * 2016-03-31 2020-12-02 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクブランク、反射型マスクの製造方法、反射型マスク、及び半導体装置の製造方法
US10942440B2 (en) 2016-08-26 2021-03-09 Hoya Corporation Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP6597523B2 (ja) * 2016-08-29 2019-10-30 Agc株式会社 多層膜付基板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790020B (zh) * 2021-07-30 2023-01-11 台灣積體電路製造股份有限公司 反射型罩幕及其製造方法

Also Published As

Publication number Publication date
WO2018235721A1 (ja) 2018-12-27
KR20240046292A (ko) 2024-04-08
JP7368564B2 (ja) 2023-10-24
JP7118962B2 (ja) 2022-08-16
SG10202112738PA (en) 2021-12-30
JPWO2018235721A1 (ja) 2020-04-23
JP2022159362A (ja) 2022-10-17
TW202309649A (zh) 2023-03-01
US20210247688A1 (en) 2021-08-12
SG11201911415VA (en) 2020-01-30
TWI784012B (zh) 2022-11-21
KR102653352B1 (ko) 2024-04-02
US11454878B2 (en) 2022-09-27
KR20200018428A (ko) 2020-02-19
TWI846116B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
TWI827823B (zh) 附多層反射膜之基板、反射型光罩基底及反射型光罩、與半導體裝置之製造方法
JP7061715B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
JP7379027B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2021060253A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP7368564B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP2017116931A (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
TW202027130A (zh) 反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法
WO2021039163A1 (ja) 導電膜付基板、反射型マスクブランク及び反射型マスク、並びに半導体デバイスの製造方法
CN111752085B (zh) 带多层反射膜的基板、反射型掩模坯料及反射型掩模、以及半导体装置的制造方法
JP7288782B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP7271760B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
TW202115483A (zh) 附薄膜之基板、附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法