WO2005038886A1 - 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置 - Google Patents

多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置 Download PDF

Info

Publication number
WO2005038886A1
WO2005038886A1 PCT/JP2004/015284 JP2004015284W WO2005038886A1 WO 2005038886 A1 WO2005038886 A1 WO 2005038886A1 JP 2004015284 W JP2004015284 W JP 2004015284W WO 2005038886 A1 WO2005038886 A1 WO 2005038886A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
multilayer
substrate
block
Prior art date
Application number
PCT/JP2004/015284
Other languages
English (en)
French (fr)
Inventor
Noriaki Kandaka
Katsuhiko Murakami
Takaharu Komiya
Masayuki Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34468462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005038886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020067007278A priority Critical patent/KR101083466B1/ko
Priority to AT04792501T priority patent/ATE538491T1/de
Priority to EP04792501.1A priority patent/EP1675164B2/en
Priority to JP2005514803A priority patent/JP4466566B2/ja
Publication of WO2005038886A1 publication Critical patent/WO2005038886A1/ja
Priority to US11/401,946 priority patent/US7382527B2/en
Priority to HK06114243.0A priority patent/HK1099603A1/xx
Priority to US11/907,798 priority patent/US7440182B2/en
Priority to US12/232,241 priority patent/US7706058B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure

Definitions

  • Multilayer reflector method of manufacturing multilayer reflector, and exposure apparatus
  • the present invention relates to a multilayer reflector used in EUV lithography, and more particularly, to a technique for reducing the incident angle dependence of the reflectance on the surface of a reflector.
  • Non-Patent Document 1 This technology has recently been called EUV (Extreme Ultraviolet, soft X-ray) lithography.
  • EUV lithography is expected as a technology with a resolution of 45 nm or less, which was not feasible with conventional optical lithography (wavelength of about 190 nm or more).
  • a lens which is a transmission type optical element can be used.
  • a reduction projection optical system that requires high resolution is composed of many lenses.
  • EUV light soft X-ray
  • the refractive index of the substance is very close to 1, so that the conventional optical element utilizing refractive cannot be used.
  • oblique incidence mirrors that use total internal reflection, and multilayer film reflectors that obtain a high reflectance as a whole by superimposing a large number of reflected light by adjusting the phase of weak reflected light at the interface, etc. used.
  • the configuration of the illumination optical system is also important.
  • the projection optical system In addition to illuminating the exposure area on the mask on which the circuit pattern to be transferred is formed with uniform intensity, it is necessary for the projection optical system to have uniform illumination intensity within the pupil in order to exhibit sufficient resolution. . It is also important to illuminate with as strong light as possible to secure throughput.
  • An example of such an illumination optical system is disclosed in Patent Document 2, for example.
  • a material suitable for obtaining a high reflectance differs depending on a wavelength band of incident light. For example, in the wavelength band around 13.5 nm, if a MoZSi multilayer film in which molybdenum (Mo) layers and silicon (Si) layers are alternately stacked is used, a reflectance of 67.5% can be obtained at normal incidence. In the wavelength band around 11.3 nm, if a MoZBe multilayer film in which Mo layers and beryllium (Be) layers are alternately laminated is used, a reflectance of 70.2% can be obtained at normal incidence (see Non-Patent Document 2). ).
  • the full width at half maximum (FWHM) of the reflectance peak of the multilayer film reported in Non-Patent Document 2 etc. is about 0% in the case of a MoZSi multilayer film whose period length is adjusted to have a peak at a wavelength of 13.5 nm at normal incidence. It is 56nm.
  • FIG. 19 is a graph showing an example of the incident angle dependence of the reflectance of a conventional multilayer mirror.
  • the horizontal axis of the figure is the incident angle (degree (°)) of the light incident on the multilayer mirror, and the vertical axis is the reflectance (%) for EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • a high reflectivity of 70% or more is obtained up to an incident angle of about 0 ° to 5 °. It has dropped significantly.
  • FIG. 20 is a graph showing an example of the spectral reflectance characteristics of a conventional multilayer mirror.
  • the horizontal axis in the figure is the wavelength (nm) of the incident light, and the vertical axis is the reflectance (%).
  • the incident angle is 0 ° (perpendicular to the reflection surface).
  • Non-Patent Document 3 describes that the thickness of each layer of a 50-layer pair is adjusted by using a commercially available multilayer film optimization program to obtain a reflectance angle distribution or a spectral reflectance! The structure of a multilayer film with a band is shown!
  • Non-Patent Document 3 discloses a multilayer film having a non-uniform film thickness in which the reflectance is almost constant at about 45% when the incident angle is in the range of 0 ° to 20 °.
  • the full width at half maximum (FWHM) of the spectral reflectance peak of a normal MoZSi multilayer film is about 0.56 nm.
  • Non-Patent Document 3 shows that the reflectance is almost 30% at a normal incidence from 13 nm to 15 nm over a wavelength range of 13 nm to 15 nm. A uniform structure is also shown.
  • the uniformity of the reflectivity over a wide wavelength range and the uniformity of the reflectivity over a wide incident angle range can provide a uniform reflectivity over a wide wavelength range, which cannot be controlled individually.
  • the change in reflectance tends to be small even in a wide incident angle range.
  • a multilayer film that can obtain a uniform reflectance in such a wide wavelength range has a lower reflectance peak value than a normal multilayer film, but can use EUV light in a wide wavelength range, so that the bandwidth of the incident light wavelength is wide. In some cases, a large amount of light can be expected depending on the application.
  • the reflectance is increased by making the ⁇ value (the ratio of the thickness of the Mo layer to the period length of the multilayer film) non-uniform in the depth direction. It is reported by Non-Patent Document 4).
  • the EUV reflectivity of the MoZSi multilayer film is maximized when the ⁇ value is 0.35 to 0.4, but in Non-Patent Document 4, the Z value of MoZSi is a constant value of 0.4 for the entire multilayer film. It is shown that the reflectance increases when approaching 0.5 at the substrate side (deep layer side) of the multilayer film as compared to the case where!
  • RuZSi is also known in addition to MoZSi (Ru is ruthenium). If n is the refractive index and k is the extinction coefficient (imaginary part of the complex refractive index), the light of silicon at a wavelength of 13.5 nm The scientific constant (n, k) is
  • the RuZSi multilayer film is suitable from the viewpoint of the refractive index, and the MoZSi multilayer film is more suitable for obtaining a higher reflectance from the viewpoint of absorption. In the case of these two multilayers, the effect of absorption is greater, and the MoZSi multilayer has a higher peak reflectivity.
  • the half width of the reflectance peak of the multilayer film is caused by a difference in refractive index.
  • the full bandwidth (2 ⁇ g) of the reflectance peak of a dielectric multilayer film (a multilayer film formed by alternately forming two substances having different refractive indices) well-known in the infrared, visible, and ultraviolet regions is as follows. It is known to be represented by an equation (for example, see Non-Patent Document 5).
  • n is the refractive index of the high refractive index substance
  • n is the refractive index of the low refractive index substance
  • the peak value of the dielectric multilayer film reflectance approaches 100% Power It does not reach 100% due to absorption in EUV region! / ,.
  • the peak reflectivity of the multilayer film in the EUV region increases as the number of pairs formed increases, but saturates at a certain number of pairs.
  • the number of pairs reaching saturation is about 50 pair layers for MoZSi multilayers and about 30 pair layers for RuZSi multilayers.
  • the reflectance reaches saturation because EUV light hardly reaches deeper positions due to reflection and absorption at each interface when passing through the film, and does not contribute to the reflection of the entire film.
  • RuZSi multilayers absorb more than MoZSi multilayers and reflectivity at a single interface is higher, so fewer pairs reach saturation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-15040
  • Patent Document 2 JP-A-11-312638
  • Non-Patent Document 1 Daniel A. Tichenor, 21 others, "Recent results in the development of an integrated EUVL laboratory tool", “Kokusai Hikari” Proceedings of SPIE, “(USA), SPIE, The International Society for Optical Engineering, May 1995, Vol. 2437, p. 292
  • Non-Patent Document 2 Cloud “Claude Montcalm”, et al., “Multilayer reflective coatings for extreme ultraviolet lithography (Multilayer reflective coatings for
  • Non-Patent Document 3 Thomas Kuhlmann, et al., "EUV multilayer mirrors with tailored spectral reflectivity” (EUV multilayer mirrors with tailored spectral reflectivity), “Proceedings of SPIE), (USA), The International Society for Optical Engineering, 2003, Vol. 4782, p. 196
  • Non-Patent Document 4 Mandeep Singh, et al., "Improved Theoretical Reflectivities of Extreme Ultraviolet Mirrors) "," Proceedings of SPIE “, (USA), The International Society for Optical Engineering, July 2000, Vol. 3997, p. 412
  • Non-Patent Document 5 H.A. Macleod, translated by Shigetaro Ogura (three outsiders), "Optical Thin Film”, Nikkan Kogyo Shimbun, November 1989
  • An actual projection optical system used for EUV lithography is composed of a multilayer mirror in which a MoZSi multilayer film is formed on a substrate.
  • FIG. 21 shows an example of a projection optical system composed of six reflecting mirrors.
  • This projection optical system includes six reflecting mirrors CM1 to CM6, and projects the light reflected by the mask M onto the wafer W.
  • the four reflecting mirrors CM1 to CM4 on the upstream side (closer to the mask M) of the optical system constitute a first reflection imaging optical system G1 for forming an intermediate image of the mask pattern on the mask M, and the downstream side ( The two reflecting mirrors CM5 and CM6 (on the side closer to the wafer W) constitute a second reflection imaging optical system G2 that reduces and projects the intermediate image of the mask pattern onto the wafer W.
  • the light reflected by the mask M is reflected by the reflecting surface R1 of the first concave reflecting mirror CM1, and is reflected by the reflecting surface R2 of the second convex reflecting mirror CM2.
  • the light reflected by the reflecting surface R2 passes through the aperture stop AS, and is sequentially reflected by the reflecting surface R3 of the third convex reflecting mirror CM3 and the reflecting surface R4 of the fourth concave reflecting mirror, and then the intermediate image of the mask pattern is formed.
  • light from the intermediate image of the mask pattern formed via the first reflection imaging optical system G1 is reflected by the reflection surface R5 of the fifth convex reflection mirror CM5 and the reflection surface R6 of the sixth concave reflection mirror CM6. After being sequentially reflected, a reduced image of the mask pattern is formed on wafer W.
  • the in-plane periodic length distribution of the MoZSi multilayer film formed on the reflector surface directly affects the in-plane reflectivity distribution, and the in-plane distribution of the reflectivity varies with the in-plane illuminance unevenness on the image plane. Since the variation in the amount of light in the pupil plane affects the imaging performance, it is necessary to consider these factors to obtain an optimal in-plane distribution. However, since it is difficult to form a film with a free film thickness distribution on a substrate, it is common practice to optimize the film with an axially symmetric film thickness distribution around the optical axis of the optical system when configuring the optical system. It is. [0022] Even if the cycle length distribution is optimized as described above, there are the following problems.
  • the luminous flux contributing to the imaging of one point on the image plane is reflected by a region with a finite area on each reflector substrate, and corresponds to two points that are not too far apart on the image plane
  • the areas on the reflector substrate partially overlap each other.
  • the reflection at a certain point on the reflector substrate contributes to the image formation in a widened area on the image plane, and the light reflected at the same point on the reflector is reflected.
  • a different point on the imaging plane is reached. At this time, light arriving at different points on the image plane is incident on the same point on the reflecting mirror at different angles, and the incident angle of light at a certain point on the reflecting surface is wide.
  • the optimum period length for a certain wavelength depends on the incident angle, and therefore, the optimum period length for all the incident angles does not strictly exist. If the spread of the incident angle is not so large, no significant effect occurs.
  • the distribution of the normal MoZSi multilayer film (constant period length) within the period length plane is optimized for the reflector substrate that constitutes the optical system as shown in Fig. 21 so that the wavefront aberration of the transmitted light is reduced. Even if the light intensity is optimized, large unevenness occurs in the light intensity in the pupil plane.
  • the distribution of the periodicity of the multilayer film is optimized within a range of a distribution that is axisymmetric about the optical axis when the optical system is configured, as described above.
  • the illumination light intensity distribution on the mask and the pupil plane light intensity distribution of the illumination optical system also need to be uniform. This is because the light intensity distribution in the pupil plane of the illumination optical system is directly reflected in the intensity distribution on the image plane and the intensity distribution in the pupil in the projection optical system.
  • the currently proposed multilayer reflector of the illumination optical system has an in-plane distribution of the incident angle. Is big. For this reason, it is difficult to exactly match the optimal period length at all points on a certain reflection surface. This means that the amount of change in the in-plane periodic length distribution must be increased, and a slight deviation occurs during the control of the periodic length distribution during film formation and the alignment as an illumination optical system. This is because the film thickness corresponding to the actual incident angle is different from the film thickness corresponding to the actual incident angle, resulting in a large decrease in reflectance. In this case, there is a problem that the amount of light available for illumination is reduced and the throughput is reduced. Therefore, a method of reducing the incident angle dependence of the reflectance on the reflecting mirror surface is required! / Pita.
  • An object of the present invention is to provide a technique for reducing the incident angle dependence of the reflectance in a multilayer reflector or the like.
  • the multilayer mirror has a reflective multilayer film in which EUV light high-refractive-index films and low-refractive-index films are alternately stacked, and is characterized by the following points. .
  • the low-refractive-index film has a material power containing molybdenum (Mo)
  • the high-refractive-index film has a material power containing silicon (Si).
  • the low refractive index film is made of a material containing ruthenium (Ru), and the high refractive index film is also made of a material containing silicon.
  • the high-refractive-index film or the low-refractive-index film may be a single layer or a composite layer in which a plurality of layers are stacked. Further, another layer may be interposed between the high refractive index film and the low refractive index film.
  • the “substance containing molybdenum” includes, for example, molybdenum itself, as well as, for example, orifice (Rh), carbon (C), silicon (Si), and the like. That is, the “substance containing molybdenum” may be molybdenum containing Rh, C, or Si as an impurity, or a compound of these substances and molybdenum. The same applies to "substances containing silicon.”
  • the term “substance containing ruthenium” includes, for example, rhodium (Rh), carbon (C), silicon (Si), etc., in addition to ruthenium itself.
  • the term “substance containing silicon” means not only silicon itself but also carbon (C), carbon tetraboride (B C),
  • the number of laminated pairs of the high refractive index film and the low refractive index film in the surface layer film group is 2-10.
  • the number of layers of the MoZSi multilayer film is 10 or less, the half width of the reflectance peak is kept wide due to the influence of RuZSi deposited on the substrate side.
  • the outermost surface is a MoZSi multilayer film having a higher reflectance than the RuZSi multilayer film, the peak reflectance increases.
  • a multilayer film having a high reflectivity and a wide half width which cannot be obtained by using the MoZSi multilayer film or the RuZSi multilayer film alone, can be obtained.
  • FIG. 22 (A) is a graph showing the incident wavelength characteristics of the theoretical reflectance of the MoZSi multilayer film and the RuZSi multilayer film.
  • the horizontal axis in the figure is the wavelength of the incident light, and the vertical axis is the theoretical reflectance (calculated reflectance).
  • the solid line in the figure indicates the theoretical reflectivity of the MoZSi multilayer film of 100 pair layers, and the broken line indicates the theoretical reflectivity of the RuZSi multilayer film of 100 pair layers.
  • the half width of the MoZSi multilayer film having a sufficiently large number of 100 pair layers is 0.6 nm
  • the half width of the RuZSi multilayer film is 0.8 nm.
  • FIG. 22 (B) shows a half-width and a peak reflectance of a MoZSi multilayer film formed on a RuZSi multilayer film with respect to the number of paired layers of the MoZSi multilayer film.
  • 6 is a graph showing a change in the graph.
  • the horizontal axis in the figure is the number of paired layers of the MoZSi multilayer formed on the RuZSi multilayer of 100 pairs.
  • the half width with respect to the number of pair layers of the MoZSi multilayer film is indicated by an open triangle ( ⁇ ), and the peak value of the reflectance (peak reflectance) is indicated by a black circle (reference).
  • the peak reflectivity increases as the number of paired layers in the MoZSi multilayer film increases, but it is almost saturated when the number of paired layers increases to about 15 or more.
  • the half width decreases as the number of pair layers of the MoZSi multilayer increases.
  • the value of the MoZSi multilayer falls below 0.7 nm (see FIG. 22 (A)). )).
  • the number of pairs formed of the MoZSi multilayer film is two or more. Even more preferably, it is a 5-10 pair layer.
  • the multilayer reflector of the first embodiment can be manufactured by the following method. That is, a step of depositing a substance containing ruthenium and a substance containing silicon alternately on a substrate to form a deep film group, and alternately, a substance containing molybdenum and a substance containing silicon on the deep film group. A step of depositing and forming a surface layer group.
  • the multilayer reflector has a reflective multilayer film in which EUV light high-refractive-index films and low-refractive-index films are alternately stacked, and is characterized by the following points. .
  • First the multilayer film group on the light incident surface side (surface film group), the additional layer on the anti-incident surface side of the surface film group, and the multilayer film group on the anti-incident surface side of the additional layer (deep film group)
  • the multilayer reflector has a reflective multilayer film in which EUV light high-refractive-index films and low-refractive-index films are alternately laminated, and is characterized by the following points. .
  • the low-refractive-index film is made of a material containing ruthenium (Ru)
  • the high-refractive-index film is made of a material containing silicon (Si).
  • the low refractive index film is made of a material containing ruthenium (Ru), and the high refractive index film is made of a material containing silicon.
  • the thickness of the additional layer is approximately half the period length of the multilayer film, or the thickness obtained by adding "an integer multiple of the period length of the multilayer film" to "substantially half the period length of the multilayer film”. is there.
  • the low refractive index film in the surface film group is not made of a substance containing ruthenium (Ru) as described above, but may be replaced with a substance that also has a molybdenum (Mo) force.
  • the low-refractive-index film in the deep-layer film group may be replaced with a substance such as molybdenum (Mo) instead of ruthenium!
  • the unit periodic structure (pair) of the surface film group Is preferably 10-30, and the number of pairs in the deep film group is preferably 5-50% of the number of pairs in the surface film group.
  • the additional layer is provided at the position of the 10th or 30th cycle from the outermost surface of the multilayer film. Light arrives. Therefore, the reflected light from the multilayer film group (deep film group) on the side opposite to the incident surface (substrate side) of the additional layer contributes to the reflectance of the entire multilayer film.
  • the optimized wavelength (the wavelength at which the reflectance peak is obtained) is shifted. If the wavelength is shifted, the reflected light from the interface near the surface has a small phase shift, so the amplitude is Is the increasing force, the surface force, and the phase of the reflected light of the distant interfacial force may be in opposite phase to attenuate the amplitude.
  • the reflected light from the interface between the 10th pair layer and the 30th pair layer and below acts to reduce the reflected light intensity.
  • the phase of the reflected light of the interfacial force at a deeper position is shifted by a half wavelength, and the amplitude of the reflected light increases.
  • the tip of the reflectance peak is flattened, and the reflectance at the bottom of the reflectance rises.
  • the half value width of the rate peak increases.
  • a reflectance exceeding 60% is theoretically obtained in a wavelength range of 12 to 15 ⁇ m.
  • the reflectance peak value is 50% or more, and no additional layer is provided! /, RuZSi, MoZSU also have a multilayer film having a wide half width and a high reflectance. Is obtained.
  • FIG. 23 shows the reflectance peak shape when the thickness of the additional layer (the silicon layer in this example) is changed with respect to the period length of the MoZSi multilayer film.
  • the horizontal axis of the figure is the wavelength of the incident light, and the vertical axis is The axis is reflectivity.
  • the top is not so flat, but in the case of the solid line (in that case, the top of the reflectance peak is Therefore, it is effective to make the thickness of the additional layer “approximately half the period length of the multilayer film” to reduce the change in the reflectance near the peak. .
  • “Half the period length of the multilayer film” means half the optical thickness (film thickness X refractive index) of one period in the periodic structure portion in the multilayer film.
  • the thickness of the additional layer is preferably half of the optical thickness, but it is not required to be strictly "half of the optical thickness” but may be any thickness that is substantially the same. Therefore, the difference between the “thickness of the additional layer” and the “half of the optical thickness” is preferably within 5Z100 of the wavelength of EUV light used, more preferably within 3Z100 of the used wavelength. Good to be.
  • the optical thickness of one cycle in the multilayer film structure is about half of the wavelength of the incident light.
  • the optical thickness of the additional layer is set to approximately one quarter of the wavelength used.
  • the “additional layer thickness” should be within the range of “half the period length of the multilayer film” ⁇ 0.68 nm. When used in the range, it is desirable to be within the range of 3.4 ⁇ 0.68 nm.
  • the configuration of the multilayer film of the present invention is slightly different from that of an etalon used for infrared, visible, and ultraviolet light and having a spacer having a thickness of 1 of the wavelength used between reflective films. There may be similarities. However, as described below, the multilayer film of the present invention is completely different from an etalon in configuration, purpose of use, and characteristics.
  • the etalon which is a kind of Fabry-Perot resonator, is mainly used as a narrow band filter.
  • FIG. 24 is a schematic diagram of the structure of the etalon.
  • the etalon 300 is a device utilizing multiple interference, and has a structure in which two high-reflectance mirrors 301 are arranged with a spacer 302 having a certain thickness interposed therebetween. Most of the light 303 (left arrow) incident on the etalon 300 is reflected on the left side of the figure, and becomes reflected light 305. On the other hand, the two mirrors 301 and the spacer 302 serve as a resonator, and transmit only light having a wavelength that satisfies the resonance condition among the incident lights 303 as transmitted light 304.
  • the etalon 300 transmits only light having a wavelength satisfying the resonance condition as described above, the reflectance is reduced only near the wavelength, and the high reflectance is maintained at other wavelengths. Therefore, the spectral reflectance characteristics of the etalon 300 have sharp valleys. In order to use the etalon 300 as a narrow-band filter, the reflectances of the two reflecting surfaces must both be high and almost equal.
  • the reflectance of the multilayer films above and below the additional layer must not be equal, and the reflectance of the multilayer film on the substrate side needs to be low. If the reflectivity of the multilayer film on the substrate side is equivalent to that of the multilayer film on the front side, the decrease in reflectivity due to interference occurs in a narrow wavelength region, and a sharp valley occurs near the peak apex. I will.
  • Non-Patent Document 3 As disclosed in Non-Patent Document 3, even a multilayer film having a structure in which layers having various cycle lengths are stacked can obtain a relatively high reflectance over a wide band. However, in this case, it is difficult to evaluate the structure. Generally, as a method of evaluating the structure of a multilayer film, a method of performing small-angle scattering measurement of X-rays and evaluating a peak angular force period detected is used.
  • FIG. 25 is a graph showing a diffraction peak shape expected when the X-ray diffraction intensity angle distribution is changed.
  • FIG. 25 (A) shows the diffraction peak shape of the periodic structure multilayer film
  • FIG. 25 (B) shows the diffraction peak shape of the non-uniform periodic structure
  • FIG. 25 (C) shows the additional layer (in this example, 2 shows a diffraction peak shape of a multilayer film including a recon layer.
  • the horizontal axis of the figure shows the incident angle of the incident light, and the vertical axis shows the reflectance.
  • the thickness of the additional layer can be controlled in the present invention. Specifically, the thickness (deposition rate) at which the additional layer material is deposited per unit time in the deposition operation, determined from the evaluation results of the period length of the periodic structure of the multilayer film and the time required for deposition. The thickness of the additional layer can be controlled by adjusting the deposition time
  • the number of paired layers in the deep film group is less than half the number of paired layers in the surface film group.
  • the reflectance near the reflectance peak is lower than the reflectance when only the surface layer group exists.
  • the number of pair layers in the deep film group is less than half of the surface film group, the amount of decrease in reflectance is small, and the shape of the reflectance peak is such that the tip is flat or slightly concave. The vicinity of the rate peak value does not become a sharp deep valley.
  • FIG. 26 is a graph showing a change in the reflectance peak shape of the MoZSi multilayer film when the number of pairs of the deep film group is changed.
  • the horizontal axis in the figure is the wavelength of the incident light, and the vertical axis is the reflectance.
  • the additional layer is silicon.
  • the solid line (i), dash-dot line (ii), and broken line (iii) in the figure show the reflectance when the deep film group is composed of 4 pairs, 2 pairs, and 12 pairs, respectively. Each is a 20-pair layer.
  • the reflectance peak is not sufficiently flat and sharp.
  • the number of paired layers in the deep film group is increased to four pairs, (i), the reflectance peak is flattened. If the number of deep film groups is further increased to 12 pairs (m), a deep valley is formed at the top of the reflectance peak, and a flat shape cannot be obtained.
  • the number of pairs of layers in the deep film group is at least half or less than the number of pairs of layers in the surface film group. As described above, according to the present invention, a reflectance peak having a wide half width and a flat peak can be obtained.
  • the additional layer may be made of silicon (Si), porone (B), or a material containing these. Silicon (Si) and boron
  • Si silicon
  • B porone
  • k extinction coefficient
  • the multilayer mirror has a reflective multilayer film in which EUV light high-refractive-index films and low-refractive-index films are alternately stacked, and is characterized by the following points. .
  • the multilayer film group on the light incident surface side (surface film group), the additional layer on the anti-incident surface side of the surface film group, and the multilayer film group on the anti-incident surface side of the additional layer (deep film group) It has.
  • the low refractive index film is made of a material containing molybdenum (Mo)
  • the high refractive index film is made of silicon (Si). Material power also becomes.
  • the low refractive index film is made of a material containing ruthenium (Ru), and the high refractive index film is made of a material containing silicon.
  • the low refractive index film is made of a material containing ruthenium (Ru)
  • the high refractive index film is made of a material containing silicon.
  • a multilayer film having molybdenum and silicon power is formed on a multilayer film having a structure in which an additional layer is added to a substantially periodic multilayer film having ruthenium and silicon power.
  • the RuZSi multilayer film has a wider half-value width than the MoZSi multilayer film even in the case of a periodic structure or a structure with an additional layer whose half-width is wider than that of the MoZSi multilayer film.
  • the multilayer film reflecting mirror has a condition according to Bragg's reflection condition that makes reflected light of EUV light from a plurality of interfaces between the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points. First, it has an intervening layer whose thickness is more than half the center wavelength of EUV light. Second, the band of EUV light wavelength or angle of incidence where EUV light reflectance is relatively high. Are broadband.
  • the pair (layer pair) of the high-refractive-index film and the low-refractive-index film is partially composed of two kinds of material, and another part is composed of three or more kinds. May also have the material power of.
  • the reflective multilayer film may include a plurality of blocks in which pairs (layer pairs) of the high refractive index film H and the low refractive index films L1 and L2 having different structures are repeatedly laminated. .
  • a block having a repetitive force of the layer pair of L1ZL2ZL1ZH and a block having a repetitive force of the layer pair of L1ZH are included, and the number of times of repeating the layer pair in each block is 115 times. it can.
  • the thickness of the layers included in the layer pairs may be different for each layer pair.
  • L1 and L2 have different film constituents (the same applies to the following).
  • the films may be stacked while arbitrarily changing the film thickness so that the reflectance for light having a wavelength of 13.1 nm to 13.9 nm may be 45% or more.
  • the multilayer film reflecting mirror is provided under a condition according to Bragg's reflection condition for making reflected light of EUV light from a plurality of interfaces between the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points.
  • the reflective multilayer film includes a plurality of blocks in which pairs (layer pairs) of high refractive index films H and low refractive index films L1 and L2 having different structures are repeatedly laminated.
  • the block on the substrate side of the multilayer reflector also has the repetition force of the layer pair of L2ZH
  • the second block from the substrate also has the repetition force of the layer pair of L2ZL1ZH
  • the third block from the substrate has The fourth block from the substrate consists of a repetition of the layer pair L1 / L2 / L1 / H
  • the fifth block from the substrate consists of the repetition of the layer pair L2ZL1ZH.
  • the sixth block from the substrate is the repetition force of the layer pair of L1ZH
  • the substrate force is also the seventh block is the repetition of the layer pair of L1ZL2ZL1ZH
  • the eighth block from the substrate is the repetition of the layer pair of L1ZH It is also powerful.
  • the number of repeated layer stacks in each block is 1 to 50.
  • the wavelength range including the desired wavelength is 0.5 nm, more preferably 0.6 nm
  • the reflectance is 50% or more
  • the reflectance peak is flat (the reflectance is It is preferable that the shape is within a range where the variation is within 5%.
  • the “relatively high incident angle of the EUV light reflectance” includes the maximum value of the reflectance in the graph in which the horizontal axis represents the incident angle and the vertical axis represents the reflectance, and the graph is flattened. It is within the range where the reflectance is almost constant.
  • the reflectivity for obliquely incident light that is incident at an incident angle of at least 18 degrees to 25 degrees is 50% or more.
  • the incident angle range including the desired angle (for example, 20 degrees) within the incident angle range of 0 to 25 degrees is 5 degrees, more preferably the reflectivity is 50% or more within the incident angle range of 7 degrees, and the reflectance peak is flat. It is preferable that the shape is within the range (a variation of the reflectance is within ⁇ 5%).
  • the multilayer film reflecting mirror is configured so that EUV light reflected from a plurality of interfaces between the high refractive index film and the low refractive index film has the same phase as Bragg's reflection condition.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points.
  • the reflective multilayer film includes a plurality of blocks in which pairs (layer pairs) of high refractive index films H and low refractive index films L1 and L2 having different structures are repeatedly laminated.
  • the block on the substrate side of the multilayer reflector also has the repetition force of the layer pair of L2ZH
  • the second block from the substrate also has the repetition force of the layer pair of L2ZL1ZH
  • the third block from the substrate has The fourth block from the substrate is the repetition force of the layer pair L2ZL1ZH
  • the fifth block from the substrate is the repetition of the layer pair L1ZL2ZL1ZH
  • the sixth block from the substrate is the sixth block from the substrate.
  • the block is the repetitive force of the layer pair of L1ZH
  • the substrate force is also the seventh block is the repetition of the layer pair of L1ZL2ZL1ZH
  • the eighth block from the substrate is the repetitive force of the layer pair of L1ZH.
  • the number of repeated layer stacks in each block is 1 to 50.
  • the band of relatively high EUV light wavelengths or angles of incidence has been broadened.
  • the total thickness of the reflective multilayer film is arbitrarily changed according to the incident angle of light at each position in the reflective surface to make the reflectivity uniform over the entire reflective surface. Can .
  • the total film thickness of the reflective multilayer film is changed while maintaining the ratio of the film thickness of each layer in the reflective multilayer film, and the light is incident at an incident angle of at least 0 to 20 degrees.
  • the reflectivity for obliquely incident light can be 50% or more.
  • the multilayer film reflecting mirror is provided under the condition according to Bragg's reflection condition for making the reflected light of EUV light from a plurality of interfaces between the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points.
  • the reflective multilayer film includes a plurality of blocks in which pairs (layer pairs) of high refractive index films H and low refractive index films L1 and L2 having different structures are repeatedly laminated.
  • the block on the substrate side of the multilayer reflector also has the repetition force of the layer pair of L1ZL2ZL1ZH
  • the second block from the substrate has the repetition force of the layer pair of L2ZL1ZH
  • the third block from the substrate has
  • the fourth block from the substrate consists of a repetition of the layer pair L2ZL1ZH
  • the fifth block from the substrate consists of the repetition of the layer pair L1 / H
  • the sixth block from the substrate consists of the repetition of the layer pair L1ZL2ZL1ZH.
  • the seventh block consists of repeating layers of L1ZL2ZL1ZH
  • the seventh block from the substrate consists of repeating layers of L2ZL1ZH
  • the eighth block also has substrate strength.
  • the ninth block consists of a repeating layer pair of L1ZH
  • the tenth block from the substrate consists of a repeating layer pair of L1ZL2ZL1ZH
  • the eleventh block from the substrate consists of a repeating layer pair of L2ZL1ZH.
  • Ri, 12 th block from the substrate is made of a repetition of the layer pairs L1 / L2 / L1ZH
  • 13 th block from the substrate is also repeated strength of the layer pairs L1ZH.
  • the number of repeated layer pairs in each block is 1 to 50 times.
  • the band of EUV light wavelength or angle of incidence which has relatively high EUV light reflectance, has been broadened.
  • the reflectance for obliquely incident light that is incident at an incident angle in the range of at least 0 ° to 20 ° is 45% or more.
  • the multilayer-film reflective mirror is provided under a condition according to Bragg's reflection condition for making reflected light of EUV light from a plurality of interfaces between the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points.
  • the reflective multilayer film includes a plurality of blocks in which pairs (layer pairs) of high refractive index films H and low refractive index films L1 and L2 having different structures are repeatedly laminated.
  • the block on the substrate side of the layer reflection mirror also has the repetition force of the layer pair of L2ZH
  • the second block from the substrate also has the repetition force of the layer pair of L2ZL1ZH
  • the third block from the substrate has the layer pair of L2ZH.
  • the fourth block from the substrate is the repetition force of the L1ZH layer pair
  • the fifth block from the substrate is also the repetition force of the L2ZH layer pair
  • the sixth block from the substrate is the L2ZL1ZH
  • the seventh block from the substrate consists of a repeating layer pair
  • the seventh block from the substrate consists of a repeating layer pair of L1ZH
  • the eighth block from the substrate consists of a repeating layer pair of L2 / L1ZH
  • the ninth block from the substrate The tenth block from the substrate consists of the repetition of the layer pair L2ZL1ZH
  • the eleventh block from the substrate consists of the repetition force of the layer pair L1ZH.
  • the twelfth block is The 13th block from the substrate consists of the repetition of the layer pair of L2ZL1ZH, and the 14th block from the substrate also has the repetition force of the layer pair of L1ZH.
  • the number of repeated layer pairs in each block is 1 to 50 times.
  • the band of the EUV light wavelength or the angle of incidence having a relatively high EUV light reflectance is broadened.
  • the reflectance for light having a wavelength of 13.1 nm to 13.9 nm is preferably 45% or more.
  • the multilayer film reflecting mirror has a condition according to Bragg's reflection condition for making reflected light of EUV light from a plurality of interfaces between the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films (a high-refractive-index film and a low-refractive-index film) are alternately laminated on a substrate is provided, and is characterized by the following points.
  • a reflective multilayer film includes a plurality of blocks in which pairs (layer pairs) of a high refractive index film H and low refractive index films L1 and L2 having different structures are repeatedly laminated.
  • the block on the substrate side of the multilayer mirror is a single layer of H
  • the second block from the substrate consists of repeating layer pairs of L2ZH
  • the third block from the substrate is the layer of L2ZL1ZH
  • the repetitive power of the pair also becomes.
  • the number of repeated layer pairs in each block is 1 to 50 times.
  • the band of EUV light wavelength or incident angle, which has relatively high EUV light reflectance, has been broadened.
  • the multilayer-film reflective mirror is provided under the condition according to Bragg's reflection condition for making reflected light of EUV light from a plurality of interfaces of the high refractive index film and the low refractive index film have the same phase.
  • a reflective multilayer film in which both films are alternately laminated on a substrate is provided, and is characterized by the following points.
  • First Pico At least one layer of the high-refractive-index film has a thickness of one half or more of the center wavelength of EUV light.
  • the band of the EUV light wavelength or the angle of incidence, which has a relatively high EUV light reflectance, is broadened.
  • the exposure apparatus of the present invention is an exposure apparatus that selectively irradiates EUV light onto a sensitive substrate to form a pattern, and includes the above-described multilayer mirror in an optical system. .
  • a multilayer film having a wide band is formed on at least a part of the projection optical system and the illumination optical system. Therefore, the illuminance on the image plane and the amount of light in the pupil can be made uniform and high. The imaging performance can be maintained. Further, in the projection optical system, it is possible to prevent a decrease in light amount due to an alignment error of a mirror having a large distribution in a cycle length plane.
  • the multilayer film reflecting mirror of the present invention has a relatively high reflectance and a wide peak width at half maximum. Since the multilayer film having a large half width of the spectral reflectance has a small angle dependence of the reflectance, according to the present invention, the imaging performance of the projection optical system can be kept high. Since the exposure apparatus of the present invention uses such a multilayer film reflecting mirror, the illuminance on the image plane and the amount of light in the pupil can be made uniform, and high imaging performance can be maintained.
  • FIG. 1 is a cross-sectional view showing a multilayer reflector according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing a calculated value of the reflectance of the multilayer mirror according to the first embodiment of the present invention as a dependence on the wavelength of incident light.
  • FIG. 3 is a graph showing calculated values of the reflectivity of the multilayer mirror according to the first embodiment of the present invention as dependence on the incident angle of incident light.
  • FIG. 4 is a cross-sectional view showing a multilayer reflector according to a second embodiment of the present invention.
  • FIG. 5 is a graph showing the calculated values of the reflectivity of the multilayer mirror according to the second embodiment of the present invention, where (A) shows the dependence of the incident light on the wavelength, and (B) shows the dependence on the incident light. Shows the dependence of the angle of incidence on the incident angle.
  • FIG. 6 is a cross-sectional view showing a multilayer reflector according to a third embodiment of the present invention.
  • FIG. 7 is a graph showing the calculated values of the reflectivity of the multilayer mirror according to the third embodiment of the present invention, where (A) shows the dependence of the incident light on the wavelength, and (B) shows the dependence on the incident light. For the incident angle of Show dependencies.
  • FIG. 8 is a cross-sectional view illustrating a multilayer reflector according to a fourth embodiment of the present invention.
  • Fig. 9 is a graph showing the calculated reflectance of the multilayer reflector according to the fourth embodiment of the present invention, where (A) shows the dependence of the incident light on the wavelength, and (B) shows the dependence of the incident light on the wavelength. The dependence on the incident angle is shown.
  • FIG. 10 is a graph showing the incident angle dependence of the reflectance of a multilayer mirror according to a fifth embodiment of the present invention.
  • FIG. 11 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to a sixth embodiment of the present invention.
  • FIG. 12 is a graph showing the incident angle dependence of the reflectance of a multilayer mirror according to a sixth embodiment of the present invention.
  • FIG. 13 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to a seventh embodiment of the present invention.
  • FIG. 14 is a graph showing a spectral reflectance characteristic of the multilayer mirror according to the eighth embodiment of the present invention.
  • FIG. 15 is a graph showing the spectral reflectance characteristics of the multilayer mirror according to the ninth embodiment of the present invention.
  • FIG. 16 is a graph showing the spectral reflectance characteristics of the multilayer mirror according to the tenth embodiment of the present invention.
  • FIG. 17 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to the tenth embodiment of the present invention.
  • FIG. 18 is a diagram schematically showing an exposure apparatus according to an embodiment of the present invention.
  • FIG. 19 is a graph showing an example of the incident angle dependence of the reflectance of a conventional multilayer mirror.
  • Fig. 20 is a graph showing an example of a spectral reflectance characteristic of a conventional multilayer mirror.
  • FIG. 21 is a diagram illustrating an example of an optical system including six reflecting mirrors.
  • FIG. 22 (A) is a graph showing the incident wavelength characteristic of the theoretical reflectance of a MoZSi multilayer film and a RuZSi multilayer film, and (B) is a configuration in which a MoZSi multilayer film is formed on a RuZSi multilayer film. Of the half-width and the peak reflectivity of the MoZSi multilayer film with respect to the number of layer pairs, It is a graph which shows a change.
  • FIG. 24 is a diagram schematically showing the structure of an etalon.
  • FIG. 25 is a graph showing expected diffraction peak shapes when the X-ray diffraction intensity angle distribution is changed.
  • A is a periodic structure multilayer film
  • B is a non-uniform periodic structure
  • C shows the case of a multilayer film including an additional layer.
  • FIG. 26 is a graph showing a change in the reflectance peak shape of the MoZSi multilayer film when the number of pairs of the deep film group is changed.
  • FIG. 1 is a schematic sectional view of a multilayer reflector according to a first embodiment of the present invention.
  • Substrate 1 is made of low thermal expansion glass polished until the surface (upper surface in the figure) has a roughness of 0.2 nm RMS or less.
  • the periodic length of the RuZSi multilayer film 3 (the thickness of the unit periodic structure (layer pair) of RuZSi, shown as d in the figure) is 6.86 ⁇
  • the ⁇ value of these multilayer films is 0.4 in any unit periodic structure.
  • the ⁇ value is the thickness (d) of the Ru layer or Mo layer occupying the period length (d) of the multilayer film.
  • the surface of the low-thermal-expansion glass substrate 1 is polished until it becomes 0.2 nm RMS or less.
  • 20 pairs of RuZSi multilayer films 3 are formed on the surface of the substrate 1 by magnetron sputtering.
  • five pairs of MoZSi multilayer films 5 are formed on the surface of the RuZSi multilayer film 3 by magnetron sputtering.
  • FIGS. 2 and 3 are graphs showing calculated values of the reflectance of the multilayer mirror according to the present embodiment.
  • FIGS. 3 (A) and 3 (B) show the dependence on the incident angle of the incident light.
  • the horizontal axis in FIG. 2 is the wavelength of the incident light.
  • Horizontal axis in Fig. 3 Is the angle of incidence (hereinafter, the angle of incidence is the angle between the normal to the reflecting surface and the incident light)
  • the vertical axis represents the reflectivity of the multilayer film
  • the solid line (0 represents the reflectivity of the multilayer film of the present embodiment (the RuZSi20 pair layer on the deep layer and the MoZSi5 pair layer on the surface layer).
  • the broken line (ii) in Fig. 3 (A) and the broken line (iii) in Fig. 2 (B) and Fig. 3 (B) are comparative examples, and the comparative example (ii) shows a 26-layer RuZSi multilayer film.
  • Comparative example (iii) is the reflectivity of a MoZSi multilayer film having 27 pairs of layers.
  • the multilayer film (i) of this example has a reflectivity peak value of 69.7% and a half width of 0.86 nm.
  • Comparative Example (ii) RuZSi multilayer film of 26 pair layers
  • the half width is as wide as 0.86 nm as in Example (i), but the peak reflectance is 67.4%. 2% or more low.
  • FIG. 2 (B) in Comparative Example (iii) (MoZSi multilayer film having 27 pairs of layers), the peak value is about 70.0%, which is almost the same as that of Example (i). Is 0.72 nm and narrower than 0.1 nm.
  • the multilayer film (i) of the present embodiment has a point that the reflectance is maximum and almost constant in the range of the incident angle of 0 ° to about 10 °. Force similar to Comparative Example (ii) Higher peak reflectivity than Comparative Example (ii). Further, as shown in FIG. 3 (B), the multilayer film (i) of the present example has a higher peak reflectance than that of the comparative example (iii), and the incident angle range in which the peak reflectance is constant is comparative example. Wider than (iii). Thus, in this embodiment, a substantially constant high reflectance can be obtained in a wide incident angle range.
  • the period length described in the present embodiment is an example, and the period length may be adjusted in accordance with the intended use wavelength.
  • the force film forming method for forming the multilayer film by magnetron sputtering is not limited to this, and the film may be formed by ion beam sputtering or vacuum evaporation.
  • the ⁇ value of the multilayer film is set to 0.4, but the ⁇ value is not limited to this. If the periodic structure can be controlled, for example, the ⁇ value is about 0.5 on the substrate side. May be increased. In this case, higher reflectance can be obtained (see Non-patent Document 4 described above).
  • FIG. 4 is a schematic sectional view of a multilayer mirror according to a second embodiment of the present invention.
  • Substrate 10 Is made of low thermal expansion glass polished until the surface (upper surface in the figure) has a roughness of 0.2 nm RMS or less.
  • the period length (thickness of the MoZSi pair layer) of the MoZSi multilayer film 11 is 6.9 nm, and the ⁇ value is 0.5.
  • an additional layer 12 (a silicon layer in this example) is formed on the surface of the MoZSi multilayer film 11.
  • the thickness of the additional layer 12 is adjusted so that the optical thickness is about ⁇ of the wavelength of the incident light.
  • the thickness of the additional layer 12 is about 3.5 nm.
  • 20 pairs of MoZSi multilayer films (surface layer group) 13 having a period length of 6.9 nm and a ⁇ value of 0.4 are formed. In the drawing, the surface layer group 13 and the deep layer group 11 are shown in a simplified manner.
  • FIG. 5 is a graph showing the calculated reflectance of the multilayer mirror according to the present embodiment.
  • FIG. 5 (A) shows the dependence of the incident light on the wavelength
  • FIG. 5 (B) shows the dependence on the incident angle of the incident light.
  • the horizontal axis in FIG. 5A is the wavelength of the incident light
  • the horizontal axis in FIG. 5B is the incident angle.
  • the vertical axis indicates the calculated reflectance.
  • the solid line (W1) in the figure shows the reflectivity of the multilayer mirror of this example
  • the broken line (C) shows the comparative example.
  • Comparative Example (C) shows the reflectance of a MoZSi multilayer film having 40 pairs of layers.
  • the half-value width of the reflectance peak of the multilayer film (W1) of the present embodiment is 0.9 nm or more.
  • the shape of the reflectance peak of the present example (W1) has a flat top, and is almost constant at about 52% in a wavelength range of 13.2 nm to 13.7 nm. Comparing this with Comparative Example (C), the peak value of the reflectance of the multilayer film (W1) of this example is not as high as that of Comparative Example (C), which is a simple multilayer film having a periodic structure. It can be seen that the reflectivity uniformity over the range is very excellent.
  • the multilayer film (W1) of the present example has a substantially constant reflectance over a wide range of incident angles from 0 ° to about 13 °.
  • the incident angle range where the reflectance is almost constant is 0 ° to about 7 °.
  • the range in which the reflectance is constant is clearly wider than the comparative example (C). Therefore, according to this embodiment, the dependency of the reflectance on the incident angle is greatly reduced, and it is a component that a high reflectance can be obtained in a wide incident angle range.
  • a multilayer film is formed above and below the additional layer 12.
  • the present invention is not limited to this.
  • the ⁇ value may be the same.
  • the material of the force applying layer using silicon as the material of the additional layer 12 is not limited to this.
  • the material of the additional layer include boron (B), Mo, Ru, or carbon tetraboride (BC), silicon carbide (SiC), and the like, which have low absorption in the EUV region, such as silicon force. preferable.
  • a strong decrease in reflectivity is a major problem.
  • the thickness of the additional layer 12 should be approximately one-fourth of the wavelength of the incident light (approximately half the period of the multilayer film), or It is necessary to have a thickness obtained by adding an integral multiple of the cycle length. The same applies to the supplementary items described above in Examples 3 and 4 described later.
  • the number of force pairs for forming the four-pair layer on the substrate side and the twenty-pair layer on the incident side with the additional layer 12 interposed therebetween is not limited thereto. Depending on the purpose of use, it is desirable to change the number of pairs to obtain an appropriate reflectivity or a uniform reflectivity.
  • FIG. 6 is a schematic sectional view of a multilayer reflector according to a third embodiment of the present invention.
  • the substrate 20 is made of low thermal expansion glass polished until the surface (upper surface in the figure) has a roughness of 0.2 nm RMS or less.
  • the periodic length (the thickness of the RuZSi pair layer) of the RuZSi multilayer film 21 is 6.96 nm, and the ⁇ value is 0.5.
  • an additional layer 22 (a silicon layer in this example) is formed on the surface of the RuZSi multilayer film 21 on the surface of the RuZSi multilayer film 21, an additional layer 22 (a silicon layer in this example) is formed.
  • the thickness of the additional layer 22 is adjusted so that the optical thickness is about ⁇ of the wavelength of the incident light. In this embodiment, the thickness of the additional layer 22 is about 3.85 nm.
  • 20 pairs of RuZSi multilayer films (surface layer group) 23 having a period length of 6.96 nm and a ⁇ value of 0.4 are formed on the surface of the adhesive layer 22.
  • FIG. 7 is a graph showing the calculated reflectance of the multilayer mirror according to the present embodiment.
  • FIG. 7 (A) shows the dependence of the incident light on the wavelength
  • FIG. 7 (B) shows the dependence on the incident angle of the incident light.
  • the horizontal axis in FIG. 7A is the wavelength of the incident light
  • the horizontal axis in FIG. 7B is the incident angle.
  • the vertical axis indicates the calculated reflectance.
  • the solid line (W2) in the figure shows the reflectivity of the multilayer mirror of this example
  • the broken line (C) shows the comparative example.
  • Fig. 4 shows the reflectance of a MoZSi multilayer film having 40 pairs of layers.
  • the half-value width of the reflectance peak of the multilayer film (W2) of this example is 1. On m or more.
  • the shape of the reflectance peak of the present example (W2) has a flat top, and is substantially constant at about 60% in the wavelength range of 13.2 nm to 13.7 nm. Comparing this with Comparative Example (C), the peak value of the reflectance of the multilayer film (W2) of this example is not as high as that of Comparative Example (C), which is a simple periodic structure multilayer film, but has a wider wavelength range. It can be seen that the reflectivity uniformity over the range is very excellent.
  • the multilayer film (W2) of this example has a substantially constant reflectance over a wide range of incident angles from 0 ° to about 13 °.
  • Comparative Example (C) the incident angle range where the reflectance is almost constant is 0 ° to about 7 °. Therefore, in this example, the range in which the reflectance is constant is clearly wider than the comparative example (C). As described above, in this embodiment, it is understood that the dependency of the reflectance on the incident angle is greatly reduced, and a high reflectance can be obtained in a wide incident angle range.
  • the number of force pairs for forming 5 pair layers on the substrate side and 20 pair layers on the incident side with the additional layer 22 interposed therebetween is not limited to this. Depending on the purpose of use, it is desirable to change the reflectivity to an appropriate number or to the number of pairs that can provide a uniform reflectivity.
  • FIG. 8 is a schematic sectional view of a multilayer mirror according to a fourth embodiment of the present invention.
  • the substrate 30 is made of low thermal expansion glass polished until the surface (upper surface in the figure) has a roughness of 0.2 nm RMS or less.
  • the period length (the thickness of the RuZSi pair layer) of the RuZSi multilayer film 31 is 6.96 nm, and the ⁇ value is 0.5.
  • an additional layer 32 (a silicon layer in this example) is formed on the surface of the RuZSi multilayer film 31 .
  • the thickness of the additional layer 32 is adjusted so that the optical thickness is about 4 of the wavelength of the incident light. In this embodiment, the thickness of the additional layer 32 is about 3.75 nm.
  • 16 pairs of RuZSi multilayer films (second surface film group) 33 having a period length of 6.96 nm and a ⁇ value of 0.4 are formed.
  • 5 pairs of MoZSi multilayer films (first surface layer group) 34 having a period length of 6.9 nm and a ⁇ value of 0.4 are formed.
  • FIG. 9 is a graph showing the calculated reflectance of the multilayer mirror according to the present embodiment.
  • FIG. 9 (A) shows the dependence of the incident light on the wavelength
  • FIG. 9 (B) shows the dependence on the incident angle of the incident light.
  • the horizontal axis in FIG. 9A is the wavelength of the incident light
  • the horizontal axis in FIG. 9B is the incident angle.
  • the vertical axis indicates the calculated reflectance
  • the solid line (W3) indicates the reflectance of the multilayer mirror of this example
  • the broken line (C) indicates the comparative example.
  • Comparative Example (C) shows the reflectance of a MoZSi multilayer film having 40 pair layers.
  • the half-value width of the reflectance peak of the multilayer film (W3) of this example is 1. On m or more.
  • the shape of the reflectance peak of this example (W3) has a flat top, and is substantially constant at about 62% in the wavelength range of 13.2 nm to 13.7 nm.
  • the peak value of the reflectivity of the multilayer film (W3) of this example is not as high as that of Comparative Example (C), which is a simple multilayer film having a periodic structure, but over a wide wavelength range. It can be seen that the reflectance uniformity over the entire surface is very excellent.
  • the multilayer film (W3) of the present example has a substantially constant reflectance over a wide range from 0 ° to about 10 °, and the incident angle is Up to about 15 °, the reflectivity does not decrease significantly.
  • Comparative Example (C) the incident angle range where the reflectivity is almost constant is 0 ° to about 7 °, and the reflectivity sharply drops near the incident angle of about 10 °. Therefore, in this embodiment, the range where the reflectance is constant is clearly wider than the comparative example (C).
  • the dependence of the reflectance on the incident angle is greatly reduced, and it is an advantage that a high V ⁇ reflectance can be obtained in a wide incident angle range.
  • the number of pairs is not limited to this. It is desirable to change the number of pairs to obtain an appropriate reflectivity or a uniform reflectivity depending on the purpose of use.
  • the multilayer film according to the present embodiment has a structure in which each layer has a uniform reflectance with respect to EUV light (extreme ultraviolet light) having a wavelength of 13.5 nm incident at an incident angle in the range of 15 ° to 25 °. Material composition and film thickness Optimized using the Needle Method.
  • EUV light extreme ultraviolet light
  • the multilayer film of this embodiment is formed on a precisely polished synthetic quartz substrate surface, and includes a plurality of blocks in which layer pairs having different structures (unit periodic structures) are repeatedly laminated.
  • the layer pair (unit periodic structure) is a stack of a plurality of low-refractive-index films having a low refractive index and a high-refractive-index film having a high refractive index for EUV light.
  • Mo molybdenum
  • Si silicon
  • the configuration of the multilayer film is represented by the configuration of one layer pair in each block (unit periodic structure) and the number of times the layer pair is laminated (the number of repetitions), and each block is counted by the substrate force. Number (A-th).
  • Table 1 shows the configuration of the multilayer film of this example. Note that the total film thickness of the multilayer film of this embodiment is about 450 nm. Further, it is preferable that the thickness of each layer of the multilayer film is not constant, but is changed depending on a position in the multilayer film, and is adjusted so as to obtain a desired reflectance.
  • Tables 2, 3 and 4 below show the film thickness of each layer of the multilayer film of this example.
  • each layer of the multilayer film is represented by a number counted from the substrate side, and “a preferable range of film thickness (nm)” and “more preferable film thickness (nm)” are described for each layer. Note that the number of layers in the multilayer film was large. Therefore, it is shown in several tables.
  • the 54th and 80th silicon layers are thicker than other layers (this is referred to as an extremely thick silicon layer in the following description).
  • the ultra-thick silicon layer has a thickness of half or more of the center wavelength of EUV light, and adjusts the phase difference of EUV light reflected at the interface of each layer to provide EUV light with a relatively high EUV light reflectance. It acts as an intervening layer that broadens the band of light wavelengths or angles of incidence.
  • FIG. 10 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to the present embodiment.
  • the horizontal axis in the figure is the incident angle (degree (°;)) of the light entering the multilayer mirror, and the vertical axis is the reflectance (%) for EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • a high reflectance of 50% or more is obtained for EUV light in a wide incident angle range (at least an incident angle of 18 ° to 25 °).
  • the area A1 incident angle ⁇ 1 (18.4 ° G ⁇ 2 (24.8 °) range
  • the ratio of the film thickness of each layer is maintained so that a high reflectance can be obtained with respect to EUV light having a wavelength of 13.5 nm incident within an incident angle range of 0 ° to 20 °.
  • the material composition and total film thickness of each layer were optimized as it was.
  • the multilayer film of the present embodiment controls the total film thickness of each part of an optical element having a different light incident angle in each part within the same reflection surface, and achieves a uniform high reflectance over the entire reflection surface. Used to get.
  • the multilayer film of this example is a multilayer film having a structure shown in the following Table 5 formed on a precision-polished synthetic quartz substrate. Note that the total thickness of the multilayer film of this embodiment is about 420 nm to 430 nm. Further, it is preferable that the thickness of each layer of the multilayer film is not constant, but is changed depending on the position in the multilayer film, and is adjusted so as to obtain a desired reflectance.
  • Tables 6, 7, and 8 below show the film thickness of each layer of the multilayer film of this example. Since the number of layers of the multilayer film is large, it is shown in a plurality of tables. According to these tables, the 28th and 69th silicon layers counted from the substrate side are extremely thick silicon layers.
  • Preferable cycle period More preferred Unit circumference Lower preferred Structure Film thickness range Film thickness (nm)
  • FIG. 11 and FIG. 12 are graphs showing the incident angle dependence of the reflectance of the multilayer mirror according to this example.
  • the horizontal axis of the figure is the incident angle (degree (°;)) of the light incident on the multilayer mirror, and the vertical axis is the reflectance (%) for EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • the reflectivity shown in each of FIGS. 11 and 12 is obtained for a multilayer film in which the total film thickness is changed while maintaining the ratio of the film thickness of each layer of the multilayer film.
  • the film thickness given in each figure is a value when the total film thickness of the multilayer film in FIG. 11 (A) is 1.000, and is 1.000 (FIG. 11 (A)) — 0.9650 (012 (0) In the range of 0.0025 at intervals!
  • a region A2 sandwiched between two vertical dotted lines indicates an incident angle range where the reflectance is high and the dependency of the reflectance on the incident angle is small.
  • the area A2 shifts to a larger incident angle (right side in the figure).
  • the area A2 in FIG. 12 (G) has an incident angle in the range of about 4 ° to about 9 °, while in FIG. 11 (A), the incident angle is in the range of about 17 ° to about 20 °. Therefore, according to the present embodiment, by changing the total film thickness of the multilayer film, a high reflectance of 50% or more can be obtained in a wide range of the incident angle from 0 ° to 20 °.
  • the multilayer film of this example has a material configuration and a film thickness of each layer such that a high reflectance is obtained for EUV light having a wavelength of 13.5 nm over the entire range of incident angles of 0 ° to 20 °. It is the one that has been optimized.
  • the multilayer film of this example is a multilayer film having a structure shown in Table 9 below formed on a precision-polished synthetic quartz substrate. Note that the total film thickness of the multilayer film of this embodiment is about 280 nm. Further, it is preferable that the thickness of each layer of the multilayer film is not constant, but is adjusted depending on a position in the multilayer film so as to obtain a desired reflectance.
  • FIG. 13 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to the present embodiment.
  • the horizontal axis in the figure is the incident angle (degree (°;)) of the light entering the multilayer mirror, and the vertical axis is the reflectance (%) for EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • a high reflectance of 45% or more can be obtained over a wide range of incident angles from 0 ° to 20 °.
  • Example 8 Next, an eighth embodiment of the present invention will be described.
  • the material composition and film thickness of each layer are adjusted so that a high reflectance can be obtained for EUV light (extreme ultraviolet light) having a vertically incident wavelength of 13.1 nm to 13.9 nm.
  • the multilayer film of this example is obtained by forming a multilayer film having a structure shown in the following Table 10 on a precision-polished synthetic quartz substrate. Note that the total thickness of the multilayer film of this embodiment is about 360 nm. Further, it is preferable that the thickness of each layer of the multilayer film is not constant, but is changed depending on a position in the multilayer film, and is adjusted so as to obtain a desired reflectance.
  • Tables 11 and 12 below show the film thickness of each layer of the multilayer film of this example. Since the number of layers of the multilayer film is large, it is shown in a plurality of tables. According to these tables, the 28th, 51st, 73rd, and 75th silicon layers counted from the substrate side are extremely thick silicon layers.
  • FIG. 14 is a graph showing the spectral reflectance characteristics of the multilayer mirror according to the present embodiment.
  • the horizontal axis in the figure is the wavelength (nm) of the incident light, and the vertical axis is the reflectance (%).
  • the incident angle of light is 0 ° (perpendicular to the reflection surface).
  • a high reflectance of 45% or more can be obtained over the above wide wavelength range.
  • the multilayer film of the present embodiment is obtained by optimizing the material composition and the film thickness of each layer so as to obtain as high a reflectance as possible with respect to EUV light having a wavelength of 13.5 nm and vertically incident.
  • the multilayer film of this example is obtained by forming a multilayer film having a structure shown in the following Table 13 on a precision-polished synthetic quartz substrate.
  • the total thickness of the multilayer film of this embodiment is about 510 nm.
  • it is preferable that the thickness of each layer of the multilayer film is varied depending on a position in the multilayer film which is not constant, and is adjusted so as to obtain a desired reflectance.
  • FIG. 15 is a graph showing the spectral reflectance characteristics of the multilayer mirror according to the present embodiment.
  • the horizontal axis in the figure is the wavelength (nm) of the incident light, and the vertical axis is the reflectance (%).
  • the incident angle is 0 ° (perpendicular to the reflecting surface).
  • the reflectance of EUV light having a wavelength of 13.5 nm is higher than that of FIG. can get.
  • the multilayer film of this example has a material configuration and a film structure of each layer so that a high reflectance can be obtained with respect to EUV light (extreme ultraviolet light) having a wavelength of 13.5 nm to 14.2 nm during vertical incidence.
  • EUV light extreme ultraviolet light
  • the thickness has been optimized.
  • the multilayer film of this embodiment is a MoZSi multilayer film in which a molybdenum layer (low-refractive-index film layer) and a silicon layer (high-refractive-index film layer) are alternately stacked on a precision-polished synthetic quartz substrate.
  • the total thickness of the multilayer film of this embodiment is about 330 nm. Further, it is preferable that the thickness of each layer of the multilayer film is changed depending on the position in the multilayer film which is not constant, and is adjusted so as to obtain a desired reflectance. Tables 14 and 15 below show the film thickness of each layer of the multilayer film of this example. Since the number of layers of the multilayer film is large, it is shown in a plurality of tables. According to these tables, the 46th silicon layer (the silicon layer located almost in the middle of the multilayer film) is an extremely thick silicon layer, counting the substrate side force.
  • FIG. 16 is a graph showing the spectral reflectance characteristics of the multilayer mirror according to the present embodiment.
  • ion beam sputtering is used for the method of forming the multilayer film.
  • the horizontal axis in the figure is the wavelength (nm) of the incident light, and the vertical axis is the reflectance (%).
  • the incident angle of light is 0 ° (perpendicular to the reflecting surface).
  • the solid line in FIG. 16 shows the wavelength characteristics of the reflectance when the film was formed using argon (Ar) gas as the sputtering gas, and the broken line shows the film formed using krypton (Kr) gas as the sputtering gas.
  • the wavelength characteristics of the reflectivity when the film is formed are shown.
  • a high reflectance of 45% or more can be obtained over the above wide wavelength range.
  • the half-width of the spectral reflectance is wider and the reflectance peak is larger than when the film is formed using the solid line Ar gas. .
  • FIG. 17 is a graph showing the incident angle dependence of the reflectance of the multilayer mirror according to the present embodiment.
  • the horizontal axis in the figure is the incident angle (degree (°;)) of the light entering the multilayer mirror, and the vertical axis is the reflectance (%) for EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • the wavelength of EUV light having a wavelength ( ⁇ ) of 13.5 nm.
  • FIG. 18 is a schematic view of an exposure apparatus according to one embodiment of the present invention.
  • the EUV exposure apparatus 100 includes an X-ray generator (laser plasma X-ray source) 101.
  • the X-ray generator 101 includes a spherical vacuum container 102, and the inside of the vacuum container 102 is evacuated by a vacuum pump (not shown).
  • a multilayered film parabolic mirror 104 is installed with the reflecting surface 104a directed downward (+ Z direction) in the drawing.
  • a lens 106 is disposed on the right side of the vacuum vessel 102 in the figure, and a laser light source (not shown) is disposed on the right side of the lens 106.
  • This laser light source emits a pulse laser beam 105 in the Y direction.
  • the pulse laser beam 105 is focused on the focal point of the multilayer parabolic mirror 104 by the lens 106.
  • a target material 103 xenon (Xe) or the like
  • a plasma 107 is generated.
  • This plasma 107 emits soft X-rays (EUV light) 108 in a wavelength band around 13 nm.
  • An X-ray filter 109 for cutting visible light is provided below the vacuum vessel 102.
  • the EUV light 108 is reflected in the + Z direction by the multilayer parabolic mirror 104, passes through the X-ray filter 109, and is guided to the exposure chamber 110. At this time, the spectrum of the visible light band of the EUV light 108 is cut.
  • a substance such as tin (Sn), which may be a xenon cluster or a droplet using xenon gas as a target material may be used.
  • a force discharge plasma X-ray source using a laser plasma X-ray source can be employed as the X-ray generation device 101.
  • a discharge plasma X-ray source is a device that converts a target material into a plasma by pulsed high-voltage discharge and emits X-rays from this plasma.
  • An exposure chamber 110 is provided below the X-ray generator 101 in the figure.
  • An illumination optical system 113 is disposed inside the exposure chamber 110.
  • the illumination optical system 113 is composed of a condenser mirror, a fly-eye optical mirror, and the like (simplified in the figure), and EUV light 108 incident from the X-ray generator 101. Is formed into an arc shape and irradiated toward the left in the figure.
  • a reflection mirror 115 is disposed on the left side of the illumination optical system 113.
  • the reflecting mirror 115 is a circular concave mirror, and is held vertically (parallel to the Z axis) by a holding member (not shown) so that the reflecting surface 115a faces rightward (+ Y direction) in the drawing.
  • An optical path bending reflecting mirror 116 is disposed on the right side of the reflecting mirror 115 in the drawing.
  • a reflection type mask 111 is disposed horizontally (parallel to the XY plane) such that the reflection surface 111a faces downward (+ Z direction) above the optical path bending reflection mirror 116 in the drawing.
  • the EUV light emitted from the illumination optical system 113 is reflected and condensed by the reflecting mirror 115, and reaches the reflecting surface 11 la of the reflecting mask 111 via the optical path bending reflecting mirror 116.
  • the reflecting mirrors 115 and 116 also have a substrate surface made of a low-thermal-expansion glass that has a highly-reflective reflecting surface and is less thermally deformed.
  • a reflecting multilayer film in which high refractive index films and low refractive index films are alternately laminated is formed on the reflecting surface 115a of the X-ray generator 101. Have been.
  • substances such as molybdenum (Mo), ruthenium (Ru), and rhodium (Rh), silicon (Si), beryllium (Be), and carbon tetraboride It may be a reflective multi-layer film in combination with a substance such as (BC)! /.
  • a reflective film made of a multilayer film is also formed on the reflective surface 11la of the reflective mask 111.
  • a mask pattern corresponding to the pattern to be transferred to the wafer 112 is formed on the reflection film of the reflection type mask 111.
  • the reflection type mask 111 is attached to a mask stage 117 shown in the upper part of the figure.
  • the mask stage 117 is movable at least in the Y direction, and the EUV light reflected by the optical path bending reflecting mirror 116 is sequentially scanned on the reflective mask 111.
  • a projection optical system 114 and a wafer (substrate coated with a sensitive resin) 112 are arranged below the reflection mask 111 in the figure in the order of the upward force.
  • the projection optical system 114 includes a plurality of reflecting mirrors and the like.
  • the ueno 112 is fixed on a wafer stage 118 movable in the XYZ directions so that the exposure surface 112a faces upward (1Z direction) in the figure.
  • the EUV light reflected by the reflective mask 111 is reduced to a predetermined reduction magnification (for example, 1Z4) by the projection optical system 114 to form an image on the wafer 112, and the pattern on the mask 111 is formed on the wafer 112.
  • a predetermined reduction magnification for example, 1Z4
  • the reflecting mirror used in the exposure apparatus 100 of the present embodiment is (a grazing incidence mirror utilizing total internal reflection). Except for this, a multilayer film having the structure described in any of the above-described embodiments 110 is formed. Note that a cooling mechanism (not shown) is provided on the multilayer parabolic mirror 104, the reflecting mirrors of the illumination optical system 113, and the projection optical system 114 so that the surface does not rise to 100 ° C. or more. Since the angle of incidence of EUV light on the reflecting surface of the multilayer parabolic mirror 104 changes greatly depending on the position in the plane, the period length also changes greatly in the plane.
  • the error between the incident angle assumed during the cycle length control and the actual incidence angle is determined.
  • the reflectivity due to radiation can change. According to the present embodiment, such a change in the reflectance hardly occurs by using the multilayer reflector having a wide half width of the reflectance according to the above-described example. Further, by using a multilayer film having a wide reflection band as the multilayer film reflecting mirror constituting the illumination optical system 113 and the projection optical system 114, the imaging performance of the optical system can be kept high. The above illuminance and the amount of light in the pupil can be made uniform, and an excellent resolution can be obtained.
  • the multilayer parabolic mirror 104 and the like are cooled.
  • the cooling is not sufficiently performed, for example, a film configuration in which a decrease in reflectance is small even when the temperature rises ( Mo / SiC / Si, MoCZSi multilayer film, etc.) may be used, and additional layers as in Examples 2, 3, and 4 may be formed in the structure.
  • the present invention can be used to a great extent in the fields of multilayer mirrors and exposure apparatuses.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 多層膜反射鏡において、反射率の入射角依存性を軽減することを目的とする。  基板1は、表面(図中上面)の粗さが0.2nmRMS以下となるまで研磨された低熱膨張ガラス製である。基板1の表面には、ピーク反射率の半値幅の広い、Ru/Si多層膜3が成膜されており、このRu/Si多層膜3上にピーク反射率値の高い、Mo/Si多層膜5が成膜されている。従って、Ru/Siのみの場合よりも反射率が高く、Mo/Si多層膜5のみの場合よりも半値幅が広い反射率ピークが得られる。また、RuはMoよりもEUV光の吸収が大きいので、Mo/Si多層膜5上にRu/Si多層膜3を成膜した構造よりも高い反射率が得られる。分光反射率において半値幅が広い多層膜は、反射率の角度依存性が小さいので、本発明によれば、投影光学系の結像性能を高く保つことができる。                                                                                 

Description

明 細 書
多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置
技術分野
[0001] 本発明は、 EUVリソグラフィに用いられる多層膜反射鏡等に関し、特に、反射鏡表 面における反射率の入射角依存性を軽減する技術に関する。
背景技術
[0002] 現在、半導体集積回路の製造方法として、高 、処理速度が得られる縮小投影露光 が広く利用されている。縮小投影露光技術では、半導体集積回路素子の微細化の 一層の進展に伴い、紫外線に代わって、波長 11一 14nm程度の軟 X線を使用する 投影リソグラフィの開発が進められている(非特許文献 1参照)。この技術は、最近で は EUV (Extreme Ultraviolet,極紫外線、軟 X線)リソグラフィとも呼ばれている。 EU Vリソグラフィは、従来の光リソグラフィ (波長 190nm程度以上)では実現不可能であ つた 45nm以下の解像力を有する技術として期待されている。
[0003] ところで、現在主流の可視或いは紫外光を利用した縮小投影露光光学系では、透 過型の光学素子であるレンズが使用できる。そして、高解像度が求められる縮小投 影光学系は、数多くのレンズによって構成されている。これに対し、 EUV光 (軟 X線) の波長帯では、透明な物質が存在せず、物質の屈折率が 1に非常に近いので、屈 折を利用した従来の光学素子は使用できない。それに代わって、全反射を利用した 斜入射ミラーや、界面での微弱な反射光の位相を合わせることによりその反射光を多 数重畳させて全体としては高い反射率を得る多層膜反射鏡などが使用される。
[0004] レンズを用いた投影光学系内においては、光が光軸に沿って一方向に進むような 光学系を実現できるが、反射鏡で構成された投影光学系の場合、光束が何度も折り 返される。このため、折り返された光束と反射鏡基板が空間的に干渉しないようにす る必要が生じ、光学系の開口数 (NA)に制約が生じる。
現在のところ、このような投影光学系として 4枚或いは 6枚の反射鏡力 なるものが 提案されている。十分な解像力を得るためには、投影光学系の開口数は大きい方が 望ましぐより大きな開口数が得られる 6枚光学系が有力であると考えられる。 6枚光 学系の例としては、高橋らが提案した構成がある(特許文献 1、及び後述の図 21参照
) o
[0005] 縮小投影露光において縮小投影光学系が十分な性能を発揮するためには、照明 光学系の構成も重要である。転写する回路パターンを形成したマスク上の露光領域 を均一な強度で照明するとともに、投影光学系が十分な解像力を発揮するためには 瞳内で均一な照射強度となっていることも必要である。また、スループットを確保する ためにできるだけ強い光で照明を行うことが重要である。このような照明光学系の例と しては、例えば、特許文献 2に開示されているものがある。
[0006] EUV光学系を構成する多層膜反射鏡では、高い反射率を得るのに適した材質は 、入射光の波長帯により異なる。例えば、 13. 5nm付近の波長帯では、モリブデン( Mo)層とシリコン (Si)層を交互に積層した MoZSi多層膜を用いると、垂直入射で 6 7. 5%の反射率が得られる。また、 11. 3nm付近の波長帯では、 Mo層とベリリウム( Be)層を交互に積層した MoZBe多層膜を用いると、垂直入射で 70. 2%の反射率 が得られる (非特許文献 2参照)。非特許文献 2等で報告されている多層膜の反射率 ピークの半値全幅(FWHM)は、垂直入射において波長 13. 5nmにピークを持つよ うに周期長を調整した MoZSi多層膜の場合、およそ 0. 56nmである。
[0007] ところで、多層膜反射鏡の反射率は、光の入射角や波長によって大きく変化するこ とが知られている。図 19は、従来の多層膜反射鏡の反射率の入射角依存性の例を 示すグラフである。図の横軸は、多層膜反射鏡に入射する光の入射角(degree (° ) ) であり、縦軸は、波長(λ ) 13. 5nmの EUV光に対する反射率(%)である。図から分 かるように、従来の多層膜反射鏡では、入射角が 0° — 5° 付近までは、 70%以上 の高い反射率が得られている力 だいたい 10° 以上になると、反射率が大幅に低下 している。
[0008] 図 20は、従来の多層膜反射鏡の分光反射率特性の例を示すグラフである。図の横 軸は入射光の波長 (nm)であり、縦軸は反射率(%)である。なお、入射角は 0° (反 射面に対して垂直に入射)とする。図から分かるように、従来の多層膜反射鏡では、 波長 13. 5nm近傍(図の中央部)では、 70%以上の高反射率が得られている力 そ れ以外の波長帯になると、反射率が急激に低下して 、る。 [0009] このような問題に対して、反射多層膜の周期構造 (各層の膜厚)を不均一にすること により、広い波長域に亘つてほぼ均一な反射率を有する反射多層膜が Kuhlmannら (非特許文献 3参照)によって提案されている。非特許文献 3には、 50層対の多層膜 各層の厚さを市販の多層膜最適化プログラムを利用して調整して得た、反射率角度 分布又は分光反射率にお!、て広、帯域を有する多層膜の構造が示されて!/、る。
[0010] 例えば、周期長が一定の多層膜では、垂直入射配置で反射率が最大となるように 周期長を最適化した場合、高反射率を保つことができるのは入射角 0° — 5° の範 囲であり、入射角が 10° になると反射率は大きく低下してしまう。これに対して、非特 許文献 3には、入射角が 0° — 20° の範囲で反射率が約 45%でほぼ一定となる膜 厚不均一構造の多層膜が開示されている。また、通常の MoZSi多層膜の分光反射 率ピークの半値全幅(FWHM)は 0. 56nm程度である力 非特許文献 3には、垂直 入射で波長 13nmから 15nmにわたつて反射率が 30%とほぼ均一となる構造も示さ れている。
[0011] 上述のような、広い波長域での反射率の均一化と、広い入射角度範囲での反射率 の均一化は、個別に制御できる特性ではなぐ広い波長域で均一な反射率が得られ る多層膜においては、広い入射角度範囲でも反射率の変化が小さくなる傾向がある 。このような広い波長域で均一な反射率が得られる多層膜は、反射率ピーク値は通 常の多層膜より低いものの広い波長領域の EUV光が利用できるため、入射光波長 のバンド巾が広い場合等、用途によっては大きな光量が得られると期待できる。
[0012] また、 MoZSi多層膜において、 Γ値 (多層膜の周期長に対する Mo層の厚さの割 合)を深さ方向で不均一にすることによって、反射率が上昇することが Singhら (非特 許文献 4参照)によって報告されている。 MoZSi多層膜の EUV反射率は Γ値が 0. 35-0. 4の場合に最大となるが、非特許文献 4には、 MoZSiの Γ値を多層膜全体 で 0. 4と一定の値とした場合よりも、多層膜の基板側 (深層側)の部分で 0. 5に近づ けた方が、反射率の上昇が得られることが示されて!/ヽる。
[0013] ところで、波長 13nm付近の EUV光に対して高い反射率が得られる反射多層膜の 構成としては、 MoZSiの他に RuZSiも知られている(Ruはルテニウム)。 nを屈折率 、 kを消衰係数 (複素屈折率の虚部)とすれば、波長 13. 5nmにおけるシリコンの光 学定数 (n, k)は、
n (Si) =0. 9993,
k (Si) =0. 0018,
である。これに対し、モリブデンとルテニウムの光学定数 (n, k)は、それぞれ、
n (Mo) =0. 9211,
k (Mo) =0. 0064,
n (Ru) =0. 8872,
k (Ru) =0. 0175,
である。
[0014] EUV光に対する多層膜のように、多層膜自体に吸収がある場合、高い反射率を得 るためには、多層膜を構成する物質の屈折率の差が大きぐ且つ、吸収が小さいこと が望ましい。上述の光学定数力 分力るように、屈折率の点からは RuZSi多層膜が 適しており、吸収の点からは MoZSi多層膜の方が高い反射率を得るために適して いる。これら 2つの多層膜の場合、吸収の影響が勝り、 MoZSi多層膜の方がピーク 反射率は高い。
[0015] 多層膜の反射率ピークの半値幅は屈折率の違いによってもたらされる。赤外、可視 、紫外領域でよく知られている誘電体多層膜 (屈折率が違う 2つの物質を交互に成膜 した多層膜)の反射率のピークの帯域全幅(2 Δ g)は、次式で表されることが知られて いる (例えば、非特許文献 5参照)。
[0016] [数 1]
Figure imgf000006_0001
ここで、 nは、高屈折率物質の屈折率、 nは、低屈折率物質の屈折率である。
H L
上式力 分力るように、多層膜を構成する 2つの物質の屈折率差が大き 、ほど帯域 幅は増大するため、 MoZSi多層膜よりも RuZSi多層膜の方が広い半値幅が得られ る。膜による吸収がない場合、誘電体多層膜反射率のピーク値は 100%に漸近する 力 EUV領域では吸収があるため 100%には達しな!/、。
また、吸収の大きさは波長に依存するため、波長に対する反射率の変化をプロット すると、反射率はピーク波長の前後で非対称になる。 EUV領域における多層膜のピ ーク反射率は成膜ペア数の増大につれて上昇するが、ある程度のペア数で飽和す る。飽和に達するペア数は、 MoZSi多層膜では約 50ペア層であり、 RuZSi多層膜 では約 30ペア層である。反射率が飽和に達するのは、膜を透過する際の各界面で の反射や吸収により、それより深い位置へは EUV光がほとんど到達せず、膜全体の 反射に寄与しなくなるためである。 RuZSi多層膜は MoZSi多層膜よりも吸収が大き ぐ単一の界面での反射率も高いため、飽和に達するペア数がより少ない。
特許文献 1:特開 2003—15040号公報
特許文献 2 :特開平 11-312638号公報
非特許文献 1 :ダニエル 'エイ 'テイチノール(Daniel A. Tichenor)、外 21名、「極紫外 線実験装置の開発における最新情報(Recent results in the development of an integrated EUVL laboratory tool)」、「国際光工学会会報 (Proceedings of SPIE)」、( 米国)、国際光工学会 (SPIE, The International Society for Optical Engineering)、 19 95年 5月、第 2437卷、 p. 292
非特許文献 2 :クラウド 'モンカ一(Claude Montcalm)、外 5名、「極紫外線リソグラフィ に用いる多層反射膜コーティング(Multilayer reflective coatings for
extreme- ultraviolet lithography)」、「国際光工学会会報(Proceedings of SPIE)」、 ( 米国)、国際光工学会 (SPIE, The International Society for Optical Engineering)、 19 98年 6月、第 3331卷、 p. 42
非特許文献 3 :トーマス ·カールマン(Thomas Kuhlmann)、外 3名、「最適な分光反射 率を有する EUV多眉膜^フー (EUV multilayer mirrors with tailored spectral reflectivity)」、「国際光工学会会報 (Proceedings of SPIE)」、(米国)、国際光工学会 (SPIE, The International Society for Optical Engineering)、 2003年、第 4782卷、 p . 196
非特許文献 4 :マンディープ 'シン(Mandeep Singh)、外 1名、「EUVミラーにおける理 論的汉射率の改 (Improved Theoretical Reflectivities of Extreme Ultraviolet Mirrors)」、「国際光工学会会報(Proceedings of SPIE)」、(米国)、国際光工学会( SPIE, The International Society for Optical Engineering)、 2000年 7月、第 3997卷、 p. 412
非特許文献 5 :エイチ'エイ'マクラウド (H. A. Macleod)著、小倉繁太郎(外 3名)訳、「 光学薄膜」、 日刊工業新聞社、 1989年 11月
発明の開示
発明が解決しょうとする課題
[0019] 実際の EUVリソグラフィに利用する投影光学系では、基板に MoZSi多層膜を成 膜した多層膜反射鏡によって構成される。
図 21は、 6枚の反射鏡で構成された投影光学系の例を示す。この投影光学系は、 6枚の反射鏡 CM1— CM6から構成されており、マスク Mで反射された光をウェハ W に投影する。光学系の上流側(マスク Mに近い側)の 4枚の反射鏡 CM1— CM4は、 マスク M上のマスクパターンの中間像を形成する第 1反射結像光学系 G1を構成し、 下流側(ウェハ Wに近い側)の 2枚の反射鏡 CM5、 CM6は、マスクパターンの中間 像をウェハ W上に縮小投影する第 2反射結像光学系 G2を構成する。
[0020] マスク Mで反射された光は第 1凹面反射鏡 CM1の反射面 R1で反射されて、第 2凸 面反射鏡 CM2の反射面 R2で反射される。反射面 R2で反射された光は、開口絞り A Sを通過して、第 3凸面反射鏡 CM3の反射面 R3及び第 4凹面反射鏡の反射面 R4 で順次反射された後、マスクパターンの中間像を形成する。そして、第 1反射結像光 学系 G1を介して形成されたマスクパターンの中間像からの光は、第 5凸面反射鏡 C M5の反射面 R5及び第 6凹面反射鏡 CM6の反射面 R6で順次反射された後、ゥェ ハ W上にマスクパターンの縮小像を形成する。
[0021] 反射鏡表面に成膜する MoZSi多層膜の基板面内周期長分布は面内の反射率分 布に直接影響し、反射率の面内分布は結像面での面内照度ムラや瞳面内の光量ム ラとなって結像性能に影響するため、これらを考慮して最適な面内分布とする必要が ある。但し、基板上に自由な膜厚分布で成膜を行うのは困難なため、光学系を構成 した場合の光学系の光軸周りに軸対称な膜厚分布で最適化を行うのが一般的であ る。 [0022] 上述のように周期長分布を最適化しても次に述べるような問題がある。図 21に示す 投影光学系において、結像面上の 1点に到達する光は、一方向からだけ結像面上に 到達するのではなぐある広がりを持った立体角空間から 1点に収束する。つまり、結 像面上の 1点の結像に寄与する光束は、各反射鏡基板上の有限な面積を持つ領域 で反射しており、結像面上であまり離れていない 2点に対応する反射鏡基板上の領 域は、互いに一部が重なり合つている。換言すれば、反射鏡基板上のある 1点におけ る反射は、結像面上で広がりを持った領域での結像に寄与しており、反射鏡上の同 じ点で反射した光が結像面上の違う点に到達する。このとき、結像面上の違う点に到 達する光は、反射鏡上の同じ点に違う角度で入射しており、反射面上のある点にお ける光の入射角は広がりを持つ。
[0023] 多層膜反射鏡では、一定の波長に対して最適な周期長は入射角に依存するので 、すべての入射角に最適な周期長は、厳密には存在しない。入射角の広がりがそれ ほど大きくなければ大きな影響は生じない。しかし、例えば図 21に示したような光学 系を構成する反射鏡基板に対して通常の MoZSi多層膜 (周期長一定)の周期長面 内分布を最適化し、透過光の波面収差が小さくなるように最適化しても、瞳面内の光 強度には大きなムラが生じる。ここで、多層膜周期長の分布は、上述のような成膜方 法の制約力 光学系構成時の光軸周りに軸対称な分布の範囲で最適化されている
[0024] 瞳面内で光強度にムラがあることは、実効的な NAがいびつに小さくなつていること と光学的に等価であるため、結像性能が大きく劣化してしまう。これは、通常の MoZ Si多層膜では,反射率の入射角依存性が大きいために生じる問題である。このため 、結像性能の劣化をもたらす反射鏡表面における反射率の入射角依存性を軽減し、 高 ヽ結像性能を達成する方法が求められて 、た。
[0025] また、投影光学系にお 、て高 、結像性能を達成するためには、マスク上の照明光 強度分布と照明光学系の瞳面内光強度分布も均一である必要がある。これは、照明 光学系の瞳面内光強度分布が投影光学系において結象面での強度分布と瞳内の 強度分布にそのまま反映されるためである。
さらに、現在提案されている照明光学系の多層膜反射鏡では、入射角の面内分布 が大きい。このため、ある反射面上のすべての点において最適な周期長に厳密に合 わせることには困難が伴う。これは、面内周期長分布の変化量を大きくせざるを得ず 、成膜時の周期長分布制御や照明光学系としてのァライメントの際にわずかなズレが 生じるため、想定された入射角に対応する膜厚と、実際の入射角に対応する膜厚と が異なり、反射率の大きな低下を招くからである。この場合、照明に利用できる光量 が低下し、スループットが低下するという問題があるため、反射鏡表面における反射 率の入射角依存性を軽減する方法が求められて!/ヽた。
[0026] 本発明の目的は、多層膜反射鏡等における反射率の入射角依存性を軽減する技 術を提供することである。
課題を解決するための手段
[0027] 本発明の第 1の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 とを交互に積層した反射多層膜を有し、以下の点を特徴とする。第 1に、光の入射面 側の多層膜 (表層膜群)においては、低屈折率膜がモリブデン (Mo)を含む物質力 なり、高屈折率膜がシリコン (Si)を含む物質力もなる。第 2に、表層膜群の反入射面 側の多層膜 (深層膜群)においては、低屈折率膜がルテニウム (Ru)を含む物質から なり、高屈折率膜がシリコンを含む物質力もなる。
[0028] ここで、高屈折率膜又は低屈折率膜は、単一の層であっても、複数の層が重なった 複合層であってもよい。また、高屈折率膜と低屈折率膜の間に他の層が介在してい てもよい。
本発明では、『モリブデンを含む物質』とは、モリブデンそのもののほか、例えば、口 ジゥム (Rh)、炭素(C)、シリコン(Si)等を含むものである。即ち、『モリブデンを含む 物質』とは、不純物として Rh、 C、 Siを含むモリブデンであっても、これらの物質とモリ ブデンとの化合物であってもよ 、(以下の『ルテニウムを含む物質』、『シリコンを含む 物質』でも同様)。また、『ルテニウムを含む物質』とは、ルテニウムそのもののほか、例 えば、ロジウム (Rh)、炭素(C)、シリコン (Si)等を含むものである。また、『シリコンを 含む物質』とは、シリコンそのもののほか、例えば、炭素(C)、四ホウ化炭素(B C)、
4 ホウ素(B)等を含むものである。
[0029] 上記第 1の形態では、反射率ピークの半値幅が大きい RuZSi多層膜上に、反射 率のピーク値の高い MoZSi多層膜が成膜されているため、 RuZSiのみの場合より も反射率が高ぐ MoZSi多層膜のみの場合よりも半値幅が広い反射率ピークが得ら れる。また、 Ruは Moよりも EUV光の吸収が大きいので、 MoZSi多層膜上に RuZ Si多層膜を成膜した構造よりも高 、反射率が得られる。分光反射率にお!、て半値幅 が広い多層膜は、反射率の角度依存性が小さいので、本発明によれば、投影光学 系の結像性能を高く保つことができる。
[0030] 第 1の形態では、表層膜群における高屈折率膜と低屈折率膜の積層対の数が 2— 10であることが好ましい。これにより、 MoZSi多層膜の積層数が 10以下であること から、基板側に成膜されている RuZSiの影響で反射率ピークの半値幅は広く保たれ る。また、最表面は RuZSi多層膜よりも反射率が高い MoZSi多層膜であるため、ピ ーク反射率は上昇する。これにより、 MoZSi多層膜、 RuZSi多層膜単独では得ら れなかった高反射率で、且つ、半値幅の広い多層膜が得られる。
[0031] 図 22 (A)は、 MoZSi多層膜と RuZSi多層膜の理論反射率の入射波長特性を示 すグラフである。図の横軸は入射光の波長であり、縦軸は理論反射率 (反射率の計 算値)である。図中の実線は 100ペア層の MoZSi多層膜の理論反射率を示し、破 線は 100ペア層の RuZSi多層膜の理論反射率を示す。図 22 (A)力も分力るように 、成膜ペア数が 100ペア層と十分多い MoZSi多層膜の半値幅は 0. 6nmであり、 R uZSi多層膜の半値幅は 0. 8nmである。
[0032] 図 22 (B)は、 RuZSi多層膜上に MoZSi多層膜を成膜して構成された多層膜に ぉ 、て、 MoZSi多層膜の成膜ペア層の数に対する半値幅とピーク反射率の変化を 示すグラフである。図の横軸は、 100ペア層の RuZSi多層膜上に成膜する MoZSi 多層膜のペア層の数である。 MoZSi多層膜のペア層の数に対する半値幅は白抜き 三角(△)で示されており、反射率のピーク値 (ピーク反射率)は黒丸(參)で示されて いる。
[0033] 図 22 (B)力も分力るように、 MoZSi多層膜のペア層の数が多くなると、ピーク反射 率が上昇するが、だいたい 15ペア層以上になるとほぼ飽和している。一方、半値幅 は、 MoZSi多層膜のペア層の数が多くなると低下する。そして、 MoZSi多層膜の ペア層の数が 15ペア層になると 0. 7nmを下回り、 MoZSi多層膜の値(図 22 (A)参 照)に近くなる。
[0034] 以上により、反射率上昇の効果を得て、しかも、半値幅減少の影響を最小限に留め るには、 MoZSi多層膜の成膜ペア数は 2ペア層以上であることが好ましぐさらに好 ましくは、 5— 10ペア層であることが好ましい。第 1の形態の多層膜反射鏡は、以下 の方法により製造できる。即ち、基板上にルテニウムを含む物質とシリコンを含む物 質を交互に堆積して、深層膜群を成膜する工程と、この深層膜群上にモリブデンを 含む物質とシリコンを含む物質を交互に堆積して、表層膜群を成膜する工程とを有 するものとすればよい。
[0035] 本発明の第 2の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 とを交互に積層した反射多層膜を有し、以下の点を特徴とする。第 1に、光の入射面 側の多層膜群 (表層膜群)と、表層膜群における反入射面側の付加層と、付加層に おける反入射面側の多層膜群 (深層膜群)とを備えている。第 2に、付加層の存在に よって反射光の位相をずらすことにより、付加層がない場合よりも、反射鏡全体として の反射率ピーク値が低くされていると共にピーク周辺波長の反射率が高くされている
[0036] 本発明の第 3の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 とを交互に積層した反射多層膜を有し、以下の点を特徴とする。第 1に、光の入射面 側の多層膜群 (表層膜群)と、表層膜群における反入射面側の付加層と、付加層に おける反入射面側の多層膜群 (深層膜群)とを備えている。第 2に、表層膜群におい ては、低屈折率膜がルテニウム (Ru)を含む物質力もなり、高屈折率膜がシリコン (Si )を含む物質カゝらなる。第 3に、深層膜群においては、低屈折率膜がルテニウム (Ru) を含む物質からなり、高屈折率膜がシリコンを含む物質力もなる。第 4に、付加層の 厚さが、多層膜の周期長の略半分か、又は、『多層膜の周期長の略半分』に『多層膜 の周期長の整数倍』を加えた厚さである。なお、表層膜群における低屈折率膜は、上 記のようにルテニウム (Ru)を含む物質からなるものではなく、モリブデン(Mo)力もな る物質に代えてもよい。また、深層膜群における低屈折率膜も、ルテニウムではなぐ モリブデン (Mo)力 なる物質に代えてもよ!、。
[0037] 上記第 2及び第 3の形態の多層膜反射鏡では、表層膜群の単位周期構造 (ペア) の数が、 10— 30であり、深層膜群のペアの数が、表層膜群のペアの数の 5— 50% であることが好ましい。
上記第 2及び第 3の形態の多層膜反射鏡では、多層膜の最表面から 10周期目な いし 30周期目の位置に付加層が設けられている力 この付加層より深い位置にも E UV光が到達する。従って、付加層の反入射面側 (基板側)にある多層膜群 (深層膜 群)からの反射光が、多層膜全体の反射率に寄与する。
[0038] 付加層の上下 (入射面側、及び反入射面側)の周期的多層膜からの反射光の位相 は、付加層の厚さのために反射率ピークの付近でずれるので、反射光の振幅は減衰 する。このため、付加層の存在によって反射率ピークの先端部分で反射率が低下す る。反射率が飽和するに至らないペア数の多層膜における反射率ピーク形状は頂上 部分が尖った形状であるところ、ピーク部の反射率が低下することによりピークの頂上 部分は平坦な形状に近づく(ピーク部がブロードな特性となる)。
[0039] 一方、ピークから離れた裾の部分では事情が大きく異なる。通常の周期構造では、 最適化した波長 (反射率ピークが得られる波長)力 波長がずれて 、る場合、表面近 くの界面からの反射光は位相のズレが小さいために、重なり合うことによって振幅は 増大する力 表面力 離れた界面力 の反射光の位相は逆位相となって振幅を減衰 させる場合がある。 MoZSiや RuZSi多層膜の反射率ピークの裾の部分となる波長 では、 10ペア層目一 30ペア層目以降の界面からの反射光は反射光強度を低下さ せるように作用する。しかし、ここに付加層が加わると、それより深い位置にある界面 力 の反射光の位相が半波長分だけずれて、反射光の振幅は増大する。
[0040] このように、表層膜群と深層膜群との間に付加層を設けることにより、反射率ピーク の先端部分は平坦化し、反射率の裾の部分では反射率が上昇するので、反射率ピ ークの半値幅は増大する。 RuZSi多層膜或いは MoZSi多層膜では波長 12— 15η mの範囲では理論的には 60%を越える反射率が得られる。これらの多層膜において 本発明の多層膜構造を用いることにより、反射率ピーク値が 50%以上で、付加層を 設けな!/、RuZSi、 MoZSUりも半値幅の広 、反射率を有する多層膜が得られる。
[0041] 図 23は、 MoZSi多層膜の周期長に対して、付加層(この例ではシリコン層)の厚さ を変化させた場合の反射率ピーク形状を示す。図の横軸は入射光の波長であり、縦 軸は反射率である。図の実線 (0は、付加層の厚さを多層膜の周期長の略半分(= 約 3. 5nm)とした場合の反射率の波長特性を示し、破線 (ii)及び一点鎖線 (iii)はそ れぞれ、付加層の厚さを、多層膜の周期長の略半分(=約 3. 5nm)より薄くした場合 (付加層の厚さ =約 2. 8nm)、及び厚くした場合 (付加層の厚さ =約 4. 2nm)の反 射率の波長特性を示す。
[0042] 図 23から分力るように、破線 (ii)及び一点鎖線 (m)の場合には頂上部がそれほど 平坦にはならないが、実線 (その場合には、反射率ピークの頂上部がかなり平坦にな つている。このことから、付加層の厚さを『多層膜の周期長の略半分』とすることが、ピ ーク付近での反射率の変化を小さくするために有効である。
『多層膜の周期長の半分』とは、多層膜中の周期構造部分における 1周期の光学 的厚さ (膜厚 X屈折率)の半分という意味である。付加層の厚さは、光学的厚さの半 分であるとよいが、厳密に前記『光学的厚さの半分』でなくてもよぐ実質的にその厚 さであればよい。従って、『付加層の厚さ』と『光学的厚さの半分』との差は、利用する EUV光の波長の 5Z100以内であることが望ましぐより好ましくは、利用波長の 3Z 100以内であるとよい。
[0043] 多層膜構造における 1周期の光学的厚さは、入射光の波長の約半分であるので、 換言すれば、付加層の光学的厚さを、利用波長の略 4分の 1とする必要がある。なお 、透過 EUV光が境界面の法線となす角(屈折角)が大きくなるほど、単位周期構造 における光路長が膜厚より長くなる(屈折角を Θとすれば、光路長 =膜厚 Zcos Θ )。 従って、付加層の厚さは、利用する際の EUV光の入射角度に応じて調整する必要 がある。利用波長が例えば 13. 5nmの場合、『付加層の厚さ』は、『多層膜の周期長 の半分』 ±0. 68nmの範囲内であることが望ましぐ入射角が 5° — 15° の範囲で の使用に際しては 3. 4±0. 68nmの範囲内であることが望ましい。
[0044] なお、本発明の多層膜の構成は、赤外、可視、紫外光で用いられ、反射膜の間に 使用波長の 4分の 1の厚さのスぺーサを付加するエタロンに若干類似する部分がある とも考えられる。しかし、本発明の多層膜は、以下に述べるように、構成、使用目的、 特性の点においてエタロンとは全く異なる。一種のフアブリペロー型共振器であるェ タロンは主に狭帯域フィルタ一として用いられて 、る。 [0045] 図 24は、エタロンの構造の模式図である。エタロン 300は多重干渉を利用したデバ イスであり、 2つの高反射率ミラー 301が、ある厚さのスぺーサ 302を挟んで配置され た構造を有している。エタロン 300に入射した光 303 (左側の矢印)はその大部分が 、図の左側に反射され、反射光 305となる。一方、 2つのミラー 301とスぺーサ 302は 共振器の役割を果たし、入射光 303のうち、共振条件を満たす波長の光だけを透過 光 304として透過させる。
[0046] このため、鋭い透過率ピークが生じる。エタロン 300は、上述のように共振条件を満 たす波長の光だけを透過させるため、その波長近傍でのみ反射率が低下し、その他 の波長では高反射率を維持する。従って、エタロン 300の分光反射率特性は、鋭い 谷を有するものとなる。なお、エタロン 300を狭帯域のフィルタ一として用いるために は、 2つの反射面の反射率はどちらも高ぐほぼ等しくなければならない。
[0047] これに対し、本発明の多層膜では、付加層の上下にある多層膜の反射率が同等で あってはならず、基板側の多層膜の反射率が低いことが必要である。基板側の多層 膜の反射率が表面側の多層膜と同等な場合、干渉による反射率の低下が狭い波長 領域で生じ、ピーク頂上付近に鋭い谷が生じてしまうので、広帯域多層膜ではなくな つてしまう。
非特許文献 3に開示されているように、さまざまな周期長の層を重ね合わせた構造 の多層膜でも、広帯域で比較的高い反射率が得られる。しかしながら、この場合には 構造の評価が難しい。一般に、多層膜の構造を評価する手法としては、 X線の小角 散乱測定を行い、検出されるピーク角度力 周期を評価する方法が用いられている。
[0048] 図 25は、 X線回折強度角度分布を変化させた場合に予想される回折ピーク形状を 示すグラフである。図 25 (A)は、周期構造多層膜の回折ピーク形状を示し、図 25 (B )は、不均一周期構造の回折ピーク形状を示し、図 25 (C)は、付加層(この例ではシ リコン層)を含む多層膜の回折ピーク形状を示す。図の横軸は入射光の入射角を示 し、縦軸は反射率を示す。
[0049] 図 25 (A)に示すように、周期構造を有する多層膜では、入射角に対するピークが 鋭く出ている。一方、広帯域多層膜として報告されている不等周期多層膜 (非特許文 献 3参照)のように周期長が不均一の場合には、図 25 (B)に示すように、不規則な形 状のピークが多数発生し、多層膜の周期長の評価が困難である。
これに対し本発明では、図 25 (C)に示すように、多層膜の周期構造中に付加層が 加わっているだけなので、鋭い回折光のピークが存在し、多層膜周期長の評価は容 易である。なお、付加層の厚さを直接測定することはできないが、本発明では付加層 の厚さを制御できる。具体的には、多層膜の周期構造部分の周期長評価結果と成膜 に要した時間から求めた、成膜作業において単位時間に付加層物質が成膜される 厚さ (成膜速度)に基づいて、成膜時間を調整することで付加層の厚さを制御できる
[0050] また、本発明においては、深層膜群のペア層の数は、表層膜群のペア層の数の半 分以下である。上述のように、付加層より基板側に多層膜が存在する場合、表層膜 群だけが存在する場合の反射率に対して、反射率ピーク近傍における反射率が低 下する。ここで、深層膜群のペア層の数が表層膜群の半分以下であるため、反射率 の低下量は小さぐ反射率ピークの形状は先端部が平坦ィヒ又はやや凹む程度であり 、反射率ピーク値近傍が鋭ぐ深い谷となることはない。
[0051] 図 26は、深層膜群のペア数を変えた場合の MoZSi多層膜の反射率ピーク形状 の変化を示すグラフである。図の横軸は入射光の波長であり、縦軸は反射率である。 図 26の例では、付加層はシリコンである。図中の実線 (i)、一点鎖線 (ii)、破線 (iii)は 、それぞれ深層膜群を 4ペア層、 2ペア層、 12ペア層とした場合の反射率を示し、表 層膜群はいずれも 20ペア層である。
[0052] 図 26から分力るように、表層膜群のペア層数 20に対して、深層膜群が 2ペア層の 場合 )には、反射率ピークが十分に平坦になっておらず尖鋭ィ匕している力 深層 膜群のペア層数を 4ペア層まで増やした場合 (i)には、反射率ピークは平坦化する。 さらに深層膜群を増やして 12ペア層の場合 (m)には、反射率ピークの頂上部に深い 谷が形成され、平坦な形状が得られない。このように、深層膜群のペア層数は表層 膜群のペア層数の少なくとも半分以下であることが好ましい。上述のように、本発明に よれば、半値幅が広ぐ且つ、ピークの平坦な反射率ピークが得られる。
[0053] また、上記第 2及び第 3の形態の多層膜反射鏡では、付加層を、シリコン (Si)、ポロ ン(B)或いはこれらを含む物質力もなるものとすることができる。シリコン(Si)やボロン (B)の消衰係数 kは、波長 13. 5nmにおいて、
k (Si) =0. 0018,
k (B) =0. 0041,
と比較的小さい。付加層の役割は、深層膜群と表層膜群の反射光の位相を 1Z2波 長ずらすことであるから、吸収はできるだけ小さいことが望ましぐこれらの物質、或い はこれらの物質を含む物質 (例えば B C)を用いることにより、より高い反射率が達成
4
される。
[0054] 本発明の第 4の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 とを交互に積層した反射多層膜を有し、以下の点を特徴とする。第 1に、光の入射面 側の多層膜群 (表層膜群)と、表層膜群の反入射面側の付加層と、付加層の反入射 面側の多層膜群 (深層膜群)とを備えている。第 2に、表層膜群における入射面側の 多層膜群 (第 1表層膜群)では、低屈折率膜がモリブデン (Mo)を含む物質からなり、 高屈折率膜がシリコン (Si)を含む物質力もなる。第 3に、表層膜群における付加層側 の多層膜群 (第 2表層膜群)では、低屈折率膜がルテニウム (Ru)を含む物質からな り、高屈折率膜がシリコンを含む物質力もなる。第 4に、深層膜群においては、低屈 折率膜がルテニウム (Ru)を含む物質からなり、高屈折率膜がシリコンを含む物質か らなる。
[0055] 上記第 4の形態では、ルテニウムとシリコン力もなる略周期的な多層膜中に付加層 が加えられた構造の多層膜上に、モリブデンとシリコン力もなる多層膜が形成されて いる。 RuZSi多層膜は周期的構造の場合にも MoZSi多層膜より半値幅が広ぐ付 加層を加えた構造でも MoZSi多層膜よりも広い半値幅が得られる。この上に MoZ Siを成膜することによってピーク反射率のピーク値を高めることができ、且つ、広い半 値幅が得られる。
[0056] 本発明の第 5の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、両 膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、以 下の点を特徴とする。第 1に、厚さが EUV光の中心波長の 2分の 1以上である介在層 を有する。第 2に、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域 が広帯域化されている。
[0057] 上記第 5の形態では、高屈折率膜と低屈折率膜との対 (層対)は、その一部が 2種 類の物質力 なっており、別の一部が 3種類以上の物質力もなつていてもよい。
また、第 5の形態では、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2との対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含むものとしてもよい。 例えば、 L1ZL2ZL1ZHの層対の繰り返し力 なるブロックと、 L1ZHの層対の繰 り返し力 なるブロックとを含み、各ブロックにおける層対の繰り返し積層回数が 1一 5 0回であるものとすることができる。この場合、層対に含まれる層の膜厚が、各層対ご とに異なっていてもよい。なお、 L1と L2は、膜構成物質が異なるものとする(以下も同 様)。さらに、第 5の形態では、各膜の膜厚を任意に変化させながら積層して、波長 1 3. lnm— 13. 9nmの光に対する反射率を 45%以上としてもよい。
[0058] 本発明の第 6の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、両 膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、以 下の点を特徴とする。第 1に、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2と の対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含む。第 2に、多 層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返し力もなり、基板から 2番 目のブロックは、 L2ZL1ZHの層対の繰り返し力もなり、基板から 3番目のブロックは 、 L1ZHの層対の繰り返しからなり、基板から 4番目のブロックは、 L1/L2/L1/H の層対の繰り返しからなり、基板から 5番目のブロックは、 L2ZL1ZHの層対の繰り 返しからなり、基板から 6番目のブロックは、 L1ZHの層対の繰り返し力 なり、基板 力も 7番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返しからなり、基板から 8番 目のブロックは、 L1ZHの層対の繰り返し力もなる。第 3に、各ブロックにおける層対 の繰り返し積層回数は 1一 50回である。第 4に、 EUV光反射率の比較的高い EUV 光波長又は入射角度の帯域が広帯域化されている。
[0059] ここでの『EUV光反射率の比較的高 、EUV光波長』とは、横軸を波長、縦軸を反 射率としたグラフにおいて、反射率の最大値を含むと共に、グラフが平坦になってい る(反射率がほぼ一定となっている)範囲内の意味である。例えば前述の図 26の実 線 (i)では、波長が約 13. 2—約 13. 6nmの範囲内である。 EUV波長領域における 所望の波長(例えば 13. 5nm)を含む波長範囲が 0. 5nm、より好ましくは 0. 6nmの 範囲内で反射率が 50%以上で、なおかつ反射率ピークが平坦 (反射率の変動が士 5%以内)な形状である範囲内であることが好ましい。
[0060] また、『EUV光反射率の比較的高い入射角度』とは、横軸を入射角度、縦軸を反 射率としたグラフにおいて、反射率の最大値を含むと共に、グラフが平坦になってい る(反射率がほぼ一定となっている)範囲内の意味である。なお、第 6の形態では、少 なくとも 18度から 25度の範囲の入射角で入射する斜入射光に対する反射率が 50% 以上であることが好ま 、。入射角 0— 25度以内における所望の角度 (例えば 20度) を含む入射角度範囲が 5度、より好ましくは 7度の入射角度範囲内で反射率が 50% 以上で、なおかつ反射率ピークが平坦 (反射率の変動が ±5%以内)な形状である 範囲内であることが好ましい。
[0061] 本発明の第 7の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、両 膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、以 下の点を特徴とする。第 1に、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2と の対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含む。第 2に、多 層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返し力もなり、基板から 2番 目のブロックは、 L2ZL1ZHの層対の繰り返し力もなり、基板から 3番目のブロックは 、 L1ZHの層対の繰り返しからなり、基板から 4番目のブロックは、 L2ZL1ZHの層 対の繰り返し力 なり、基板から 5番目のブロックは、 L1ZL2ZL1ZHの層対の繰り 返しからなり、基板から 6番目のブロックは、 L1ZHの層対の繰り返し力 なり、基板 力も 7番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返しからなり、基板から 8番 目のブロックは、 L1ZHの層対の繰り返し力もなる。第 3に、各ブロックにおける層対 の繰り返し積層回数は 1一 50回である。第 4に、比較的高い EUV光波長又は入射 角度の帯域が広帯域化されている。
[0062] 上記第 7の形態では、反射多層膜の合計膜厚を、反射面内の各位置における光の 入射角に応じて任意に変化させて、反射面全面で反射率を均一化することができる 。また、第 7の形態では、反射多層膜の合計膜厚を、反射多層膜中の各層の膜厚の 比率を維持したまま変化させて、少なくとも 0度から 20度の範囲の入射角で入射する 斜入射光に対する反射率を 50%以上とすることができる。
[0063] 本発明の第 8の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、両 膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、以 下の点を特徴とする。第 1に、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2と の対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含む。第 2に、多 層膜反射鏡の基板側のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、基 板から 2番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、基板から 3番目 のブロックは、 L1ZL2ZL1ZHの層対の繰り返しからなり、基板から 4番目のブロッ クは、 L2ZL1ZHの層対の繰り返しからなり、基板から 5番目のブロックは、 L1/H の層対の繰り返しからなり、基板から 6番目のブロックは、 L1ZL2ZL1ZHの層対 の繰り返しからなり、基板から 7番目のブロックは、 L2ZL1ZHの層対の繰り返しから なり、基板力も 8番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、基 板から 9番目のブロックは、 L1ZHの層対の繰り返しからなり、基板から 10番目のブ ロックは、 L1ZL2ZL1ZHの層対の繰り返しからなり、基板から 11番目のブロックは 、 L2ZL1ZHの層対の繰り返しからなり、基板から 12番目のブロックは、 L1/L2/ L1ZHの層対の繰り返しからなり、基板から 13番目のブロックは、 L1ZHの層対の 繰り返し力もなる。第 3に、各ブロックにおける層対の繰り返し積層回数は 1一 50回で ある。第 4に、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広 帯域化されている。第 8の形態では、少なくとも 0度カゝら 20度の範囲の入射角で入射 する斜入射光に対する反射率が 45%以上であることが好ましい。
[0064] 本発明の第 9の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率膜 の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、両 膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、以 下の点を特徴とする。第 1に、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2と の対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含む。第 2に、多 層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返し力もなり、基板から 2番 目のブロックは、 L2ZL1ZHの層対の繰り返し力もなり、基板から 3番目のブロックは 、 L2ZHの層対の繰り返しからなり、基板から 4番目のブロックは、 L1ZHの層対の 繰り返し力 なり、基板から 5番目のブロックは、 L2ZHの層対の繰り返し力もなり、基 板から 6番目のブロックは、 L2ZL1ZHの層対の繰り返しからなり、基板から 7番目 のブロックは、 L1ZHの層対の繰り返しからなり、基板から 8番目のブロックは、 L2/ L1ZHの層対の繰り返しからなり、基板から 9番目のブロックは、 L1ZHの層対の繰 り返し力らなり、基板から 10番目のブロックは、 L2ZL1ZHの層対の繰り返しからな り、基板から 11番目のブロックは、 L1ZHの層対の繰り返し力 なり、基板から 12番 目のブロックは、 L2ZL1ZHの層対の繰り返しからなり、基板から 13番目のブロック は、 L1ZL2ZL1ZHの層対の繰り返しからなり、基板から 14番目のブロックは、 L1 ZHの層対の繰り返し力もなる。第 3に、各ブロックにおける層対の繰り返し積層回数 は 1一 50回である。第 4に、 EUV光反射率の比較的高い EUV光波長又は入射角度 の帯域が広帯域ィ匕されている。第 9の形態では、波長 13. lnm— 13. 9nmの光に 対する反射率が 45%以上であることが好ま 、。
[0065] 本発明の第 10の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率 膜の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、 両膜 (高屈折率膜及び低屈折率膜)を基板上に交互に積層した反射多層膜を備え、 以下の点を特徴とする。第 1に、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L 2との対 (層対)が繰り返し積層された複数のブロックを、反射多層膜が含む。第 2に、 多層膜反射鏡の基板側のブロックは、 1層の Hであり、基板から 2番目のブロックは、 L2ZHの層対の繰り返しからなり、基板から 3番目のブロックは、 L2ZL1ZHの層対 の繰り返し力もなる。第 3に、各ブロックにおける層対の繰り返し積層回数は 1一 50回 である。第 4に、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が 広帯域化されている。
[0066] 本発明の第 11の形態では、多層膜反射鏡は、 EUV光の高屈折率膜と低屈折率 膜の複数の界面からの反射光を同位相にするブラッグの反射条件に従う条件下で、 両膜を基板上に交互に積層した反射多層膜を備え、以下の点を特徴とする。第 1〖こ 、高屈折率膜の少なくとも 1層が EUV光の中心波長の 2分の 1以上の厚さを有する。 第 2に、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域ィ匕 されている。
[0067] 本発明の露光装置は、感応基板上に EUV光を選択的に照射してパターンを形成 する露光装置であって、光学系中に上記の多層膜反射鏡を有することを特徴とする 。本発明の露光装置では、投影光学系、照明光学系の少なくとも一部に帯域の広い 多層膜が成膜されているので、結像面上での照度と瞳内光量とを均一にでき、高い 結像性能を保つことができる。また、投影光学系において周期長面内分布の大きなミ ラーのァライメント誤差などに起因する光量低下を防止できる。
発明の効果
[0068] 本発明の多層膜反射鏡は、反射率が比較的高ぐ且つ、半値幅が広い反射率ピー ク特性が得られる。分光反射率の半値幅が広い多層膜は、反射率の角度依存性が 小さいので、本発明によれば、投影光学系の結像性能を高く保つことができる。 本発明の露光装置は、このような多層膜反射鏡を用いているので、結像面上での 照度と瞳内光量とを均一にすることができ、高い結像性能を保つことができる。
図面の簡単な説明
[0069] [図 1]本発明の第 1の実施例に係る多層膜反射鏡を示す断面図である。
[図 2]本発明の第 1の実施例に係る多層膜反射鏡の反射率計算値を、入射光の波長 に対する依存性として示したグラフである。
[図 3]本発明の第 1の実施例に係る多層膜反射鏡の反射率計算値を、入射光の入射 角度に対する依存性として示したグラフである。
[図 4]本発明の第 2の実施例に係る多層膜反射鏡を示す断面図である。
[図 5]本発明の第 2の実施例に係る多層膜反射鏡の反射率計算値を示すグラフであ り、(A)は入射光の波長に対する依存性を示し、(B)は入射光の入射角度に対する 依存性を示す。
[図 6]本発明の第 3の実施例に係る多層膜反射鏡を示す断面図である。
[図 7]本発明の第 3の実施例に係る多層膜反射鏡の反射率計算値を示すグラフであ り、(A)は入射光の波長に対する依存性を示し、(B)は入射光の入射角度に対する 依存性を示す。
圆 8]本発明の第 4の実施例に係る多層膜反射鏡を示す断面図である。
圆 9]本発明の第 4の実施例に係る多層膜反射鏡の反射率計算値を示すグラフであ り、(A)は入射光の波長に対する依存性を示し、(B)は入射光の入射角度に対する 依存性を示す。
[図 10]本発明の第 5の実施例に係る多層膜反射鏡の反射率の入射角依存性を示す グラフである。
[図 11]本発明の第 6の実施例に係る多層膜反射鏡の反射率の入射角依存性を示す グラフである。
[図 12]本発明の第 6の実施例に係る多層膜反射鏡の反射率の入射角依存性を示す グラフである。
[図 13]本発明の第 7の実施例に係る多層膜反射鏡の反射率の入射角依存性を示す グラフである。
[図 14]本発明の第 8の実施例に係る多層膜反射鏡の分光反射率特性を示すグラフ である。
[図 15]本発明の第 9の実施例に係る多層膜反射鏡の分光反射率特性を示すグラフ である。
[図 16]本発明の第 10の実施例に係る多層膜反射鏡の分光反射率特性を示すグラフ である。
[図 17]本発明の第 10の実施例に係る多層膜反射鏡の反射率の入射角依存性を示 すグラフである。
圆 18]本発明の一実施形態に係る露光装置を模式的に示す図である。
[図 19]従来の多層膜反射鏡の反射率の入射角依存性の例を示すグラフである。 圆 20]従来の多層膜反射鏡の分光反射率特性の例を示すグラフである。
[図 21]6枚の反射鏡で構成された光学系の例を示す図である。
[図 22] (A)は、 MoZSi多層膜と RuZSi多層膜の理論反射率の入射波長特性を示 すグラフであり、 (B)は、 RuZSi多層膜上に MoZSi多層膜を成膜して構成された多 層膜にぉ 、て、 MoZSi多層膜の成膜ペア層の数に対する半値幅とピーク反射率の 変化を示すグラフである。
[図 23]M。ZSi多層膜の周期長に対して、付加層(シリコン層)の厚さを変化させた場 合の反射率ピーク形状を示す。
[図 24]エタロンの構造の模式的に示す図である。
[図 25]X線回折強度角度分布を変化させた場合に予想される回折ピーク形状を示す グラフであり、(A)は周期構造多層膜の場合、(B)は不均一周期構造の場合、 (C) は付加層を含む多層膜の場合をそれぞれ示す。
[図 26]深層膜群のペア数を変えた場合の MoZSi多層膜の反射率ピーク形状の変 化を示すグラフである。
発明を実施するための最良の形態
[0070] 以下、本発明の実施例を図面を用いて説明する。
実施例 1
[0071] 図 1は、本発明の第 1の実施例に係る多層膜反射鏡の断面模式図である。基板 1 は、表面(図中上面)の粗さが 0. 2nmRMS以下となるまで研磨された低熱膨張ガラ ス製である。基板 1の表面には、 RuZSi多層膜 3が 20ペア層成膜されており、この R uZSi多層膜 3上には、 MoZSi多層膜 5が 5ペア層成膜されている。 RuZSi多層膜 3の周期長(図中に d として示す、 RuZSiの単位周期構造 (層対)の厚さ)は 6. 86η
11
mであり、 MoZSi多層膜 5の周期長(図中に d として示す、 MoZSiの層対の厚さ)
12
は 6. 9nmである。これらの多層膜の Γ値は、いずれの単位周期構造においても 0. 4である。なお、 Γ値とは、多層膜の周期長(d)に占める Ru層又は Mo層の厚さ(d
Ru
、又は、 d )の割合(
Mo r =d Ru Zd、又は、 r =d o Zd)である。
[0072] ここで、本実施例の多層膜の製造方法につ!、て説明する。まず、低熱膨張ガラス製 基板 1の表面を、 0. 2nmRMS以下となるまで研磨する。次に、基板 1の表面に、マ グネトロンスパッタにより、 RuZSi多層膜 3を 20ペア層成膜する。そして、 RuZSi多 層膜 3の表面に、マグネトロンスパッタにより、 MoZSi多層膜 5を 5ペア層成膜する。
[0073] 図 2、図 3は、本実施例に係る多層膜反射鏡の反射率計算値を示すグラフである。
図 2 (A)、(B)は、入射光の波長に対する依存性を示し、図 3 (A)、(B)は、入射光の 入射角度に対する依存性を示す。図 2の横軸は、入射光の波長である。図 3の横軸 は入射角度 (以下、入射角度は、反射面の法線と入射光線とがなす角である)である
。両図において、縦軸は多層膜の反射率であり、実線 (0は本実施例の多層膜 (深層 側 RuZSi20ペア層、表層側 MoZSi5ペア層)の反射率である。図 2 (A)、図 3 (A) の破線 (ii)、及び図 2 (B)、図 3 (B)の破線 (iii)は比較例である。比較例 (ii)は、 26ぺ ァ層の RuZSi多層膜の反射率であり、比較例 (iii)は、 27ペア層の MoZSi多層膜 の反射率である。
[0074] 図 2 (A)に示すように、本実施例の多層膜 (i)の反射率ピーク値は 69. 7%、半値幅 は 0. 86nmである。これに対し、比較例(ii) (26ペア層の RuZSi多層膜)では、本実 施例 (i)と同様に半値幅は 0. 86nmと広いが、反射率ピーク値は 67. 4%と 2%以上 低い。また、図 2 (B)に示すように、比較例 (iii) (27ペア層の MoZSi多層膜)では、 ピーク値は約 70. 0%で本実施例(i)とほぼ同等だ力 半値幅は 0. 72nmと 0. lnm 以上狭い。このように、 RuZSi多層膜上に MoZSi多層膜を成膜することにより、ピ ーク値が高ぐ且つ、半値幅の広い反射率が得られる。
[0075] 図 3 (A)に示すように、本実施例の多層膜 (i)は、入射角 0° —約 10° の範囲にお いて反射率が最大でほぼ一定であるという点で、比較例 (ii)と同様である力 比較例 (ii)よりもピーク反射率が高い。また、図 3 (B)に示すように、本実施例の多層膜 (i)は 、比較例 (iii)よりもピーク反射率が高ぐそのピーク反射率が一定の入射角範囲が比 較例 (iii)よりも広い。このように、本実施例では、広い入射角範囲においてほぼ一定 の高い反射率が得られる。
[0076] なお、本実施例で挙げた周期長は一例であり、目的とする使用波長に合わせて周 期長を調整すればよい。また、本実施例においては、多層膜をマグネトロンスパッタ により成膜している力 成膜方法はこれに限るものではなぐイオンビームスパッタや 真空蒸着によって成膜してもよい。本実施例においては、多層膜の Γ値を 0. 4として いるが、 Γ値はこれに限るものではなぐ周期構造の制御が可能ならば、例えば、基 板側で Γ値を 0. 5程度まで大きくしてもよい。この場合、より高い反射率が得られる( 前掲の非特許文献 4参照)。
実施例 2
[0077] 図 4は、本発明の第 2の実施例に係る多層膜反射鏡の断面模式図である。基板 10 は、表面(図中上面)の粗さが 0. 2nmRMS以下となるまで研磨された低熱膨張ガラ ス製である。基板 10の表面には、 MoZSi多層膜 (深層膜群) 11が 4ペア層成膜され ている。この MoZSi多層膜 11の周期長(MoZSiペア層の厚さ)は 6. 9nmであり、 Γ値は 0. 5である。
[0078] MoZSi多層膜 11の表面には、付加層 12 (この例ではシリコン層)が形成されてい る。この付加層 12の厚さは、光学的厚さが入射光の波長の 4分の 1程度になるように 調整されている。本実施例では、付加層 12の厚さは、およそ 3. 5nmである。さらに、 この付加層 12の表面には、周期長 =6. 9nm、 Γ値 =0. 4の MoZSi多層膜(表層 膜群) 13が 20ペア層成膜されている。なお、図では、表層膜群 13及び深層膜群 11 は、一層に簡略ィ匕して示している。
[0079] 図 5は、本実施例に係る多層膜反射鏡の反射率計算値を示すグラフである。図 5 ( A)は、入射光の波長に対する依存性を示し、図 5 (B)は、入射光の入射角度に対す る依存性を示す。図 5 (A)の横軸は、入射光の波長であり、図 5 (B)の横軸は入射角 度である。両図において縦軸は、反射率計算値を示す。図の実線 (W1)は、本実施 例の多層膜反射鏡の反射率を示し、破線 (C)は比較例を示している。比較例(C)は 、 40ペア層の MoZSi多層膜の反射率を示す。
[0080] 図 5 (A)に示すように、本実施例の多層膜 (W1)の反射率ピークの半値幅は 0. 9n m以上ある。また、本実施例 (W1)の反射率ピークの形状は頂上が平坦な形状にな つており、波長 13. 2nm— 13. 7nmの範囲において約 52%とほぼ一定である。これ を比較例(C)と比較すると、本実施例の多層膜 (W1)の反射率のピーク値は、単純 な周期構造多層膜である比較例 (C)には及ばないが、広い波長域に亘る反射率均 一性は非常に優れて 、ることが分かる。
[0081] 図 5 (B)に示すように、本実施例の多層膜 (W1)は、入射角度が 0° —約 13° の広 範囲に亘り、反射率がほぼ一定である。これに対し比較例(C)では、反射率がほぼ 一定の入射角度範囲は 0° —約 7° である。本実施例は、反射率が一定の範囲が比 較例 (C)よりも明らかに広い。従って、本実施例によれば反射率の入射角依存性が 大きく軽減され、広い入射角範囲において高い反射率が得られることが分力る。
[0082] 以下、実施例 2の補足事項を説明する。本実施例では、付加層 12の上下で多層膜 の Γ値を変えている力 本発明はこれに限定されるものではなぐ例えば、 Γ値が同 じでもよい。また、本実施例では付加層 12の材質としてシリコンを使用している力 付 加層の材質はこれに限るものではない。付加層の材質としては、シリコンのほ力、 EU V領域での吸収の少ない、ボロン(B)、 Mo、 Ru、或いは、これらを含む 4ホウ化炭素 (B C)、炭化シリコン (SiC)等が好ましい。また、反射率のわず力な低下が大きな問
4
題にならない場合にはその他の物質でもよい。但し、どの物質を用いる場合であって も、付加層 12の厚さは、その光学的厚さが入射光の波長の 4分の 1程度 (多層膜周 期長の略半分)、或いは、それに周期長の整数倍を加えた厚さである必要がある。以 上の補足事項は、後述の実施例 3、実施例 4も同様である。
[0083] 本実施例では、付加層 12を挟んで基板側に 4ペア層と入射側に 20ペア層の成膜 を行っている力 ペア数はこれに限るものではない。使用目的によって、適当な反射 率或いは均一な反射率が得られるペア数に変更することが望ま 、。
実施例 3
[0084] 図 6は、本発明の第 3の実施例に係る多層膜反射鏡の断面模式図である。基板 20 は、表面(図中上面)の粗さが 0. 2nmRMS以下となるまで研磨された低熱膨張ガラ ス製である。基板 20の表面には、 RuZSi多層膜 (深層膜群) 21が 5ペア層成膜され ている。この RuZSi多層膜 21の周期長(RuZSiペア層の厚さ)は 6. 96nmであり、 Γ値は 0. 5である。
[0085] この RuZSi多層膜 21の表面には、付加層 22 (この例ではシリコン層)が形成され ている。この付加層 22の厚さは、光学的厚さが入射光の波長の 4分の 1程度になるよ うに調整されている。本実施例では、付加層 22の厚さは、およそ 3. 85nmである。さ らに、この付カ卩層 22の表面には、周期長 =6. 96nm、 Γ値 =0. 4の RuZSi多層膜 (表層膜群) 23が 20ペア層成膜されている。
[0086] 図 7は、本実施例に係る多層膜反射鏡の反射率計算値を示すグラフである。図 7 ( A)は、入射光の波長に対する依存性を示し、図 7 (B)は、入射光の入射角度に対す る依存性を示す。図 7 (A)の横軸は、入射光の波長であり、図 7 (B)の横軸は入射角 度である。両図において縦軸は、反射率計算値を示す。図の実線 (W2)は、本実施 例の多層膜反射鏡の反射率を示し、破線 (C)は比較例を示している。比較例(C)は 、 40ペア層の MoZSi多層膜の反射率を示す。
[0087] 図 7 (A)に示すように、本実施例の多層膜 (W2)の反射率ピークの半値幅は 1. On m以上ある。また、本実施例 (W2)の反射率ピークの形状は頂上が平坦な形状にな つており、波長 13. 2nm— 13. 7nmの範囲において約 60%とほぼ一定である。これ を比較例(C)と比較すると、本実施例の多層膜 (W2)の反射率のピーク値は、単純 な周期構造多層膜である比較例 (C)には及ばないが、広い波長域に亘る反射率均 一性は非常に優れて 、ることが分かる。
[0088] 図 7 (B)に示すように、本実施例の多層膜 (W2)は、入射角度が 0° —約 13° の広 範囲に亘り、反射率がほぼ一定である。これに対し比較例(C)では、反射率がほぼ 一定の入射角度範囲は 0° —約 7° である。従って、本実施例は、反射率が一定の 範囲が比較例 (C)よりも明らかに広い。このように本実施例では、反射率の入射角依 存性が大きく軽減され、広い入射角範囲において高い反射率が得られることが分か る。
[0089] なお、本実施例では、付加層 22を挟んで基板側に 5ペア層と入射側に 20ペア層 の成膜を行っている力 ペア数はこれに限るものではない。使用目的によって、適当 な反射率或 、は均一な反射率が得られるペア数に変更することが望まし 、。
実施例 4
[0090] 図 8は、本発明の第 4の実施例に係る多層膜反射鏡の断面模式図である。基板 30 は、表面(図中上面)の粗さが 0. 2nmRMS以下となるまで研磨された低熱膨張ガラ ス製である。基板 30の表面には、 RuZSi多層膜 (深層膜群) 31が 5ペア層成膜され ている。 RuZSi多層膜 31の周期長(RuZSiペア層の厚さ)は 6. 96nmであり、 Γ値 は 0. 5である。
[0091] RuZSi多層膜 31の表面には、付加層 32 (この例ではシリコン層)が形成されてい る。付加層 32の厚さは、光学的厚さが入射光の波長の 4分の 1程度になるように調整 されている。本実施例では、付加層 32の厚さは、およそ 3. 75nmである。さらに、こ の付加層 32の表面には、周期長 =6. 96nm、 Γ値 =0. 4の RuZSi多層膜 (第 2表 層膜群) 33が 16ペア層成膜されており、この RuZSi多層膜 33の表面に周期長 =6 . 9nm、 Γ値 =0. 4の MoZSi多層膜 (第 1表層膜群) 34が 5ペア層成膜されている [0092] 図 9は、本実施例に係る多層膜反射鏡の反射率計算値を示すグラフである。図 9 ( A)は、入射光の波長に対する依存性を示し、図 9 (B)は、入射光の入射角度に対す る依存性を示す。図 9 (A)の横軸は、入射光の波長であり、図 9 (B)の横軸は入射角 度である。両図において、縦軸は反射率計算値を示し、実線 (W3)は本実施例の多 層膜反射鏡の反射率を示し、破線 (C)は比較例を示す。比較例(C)は、 40ペア層 の MoZSi多層膜の反射率を示す。
[0093] 図 9 (A)に示すように、本実施例の多層膜 (W3)の反射率ピークの半値幅は 1. On m以上ある。また、本実施例 (W3)の反射率ピークの形状は頂上が平坦な形状にな つており、波長 13. 2nm— 13. 7nmの範囲において約 62%とほぼ一定である。これ を比較例(C)と比較すると、本実施例の多層膜 (W3)の反射率のピーク値は単純な 周期構造多層膜である比較例 (C)には及ばないが、広い波長域に亘る反射率均一 性は非常に優れて 、ることが分かる。
[0094] 図 9 (B)に示すように、本実施例の多層膜 (W3)は、入射角度が 0° —約 10° の広 範囲に亘り、反射率がほぼ一定であり、入射角度が約 15° までは、反射率が大きく 低下しない。これに対し比較例(C)では、反射率がほぼ一定の入射角度範囲は 0° 一約 7° であり、入射角度が約 10° 付近で反射率が急峻に低下している。従って、 本実施例は、反射率が一定の範囲が比較例 (C)よりも明らかに広い。このように本実 施例では、反射率の入射角依存性が大きく軽減され、広い入射角範囲において高 Vヽ反射率が得られることが分力る。
[0095] なお、本実施例では、付加層 32を挟んで、基板側に 5ペア層、入射側に 21 (= 16
+ 5)ペア層の成膜を行っている力 ペア数はこれに限るものではない。使用目的に よって、適当な反射率或いは均一な反射率が得られるペア数に変更することが望ま しい。
実施例 5
[0096] 次に、本発明の第 5の実施例に係る多層膜反射鏡について説明する。本実施例の 多層膜は、 15° — 25° の範囲の入射角で入射する波長 13. 5nmの EUV光 (極端 紫外光)に対して、一様に高い反射率が得られるように各層の材料構成及び膜厚を 、 Needle Methodを用いて最適化したものである。
本実施例の多層膜は、精密に研磨された合成石英の基板表面に成膜されたもの であり、異なる構造の層対 (単位周期構造)が繰り返し積層された、複数のブロックを 含んでいる。ここで、層対 (単位周期構造)とは、 EUV光に対する屈折率の低い物質 力 なる低屈折率膜と、屈折率の高い物質力 なる高屈折率膜が複数積層されたも のである。本実施例においては、低屈折率物質としてモリブデン (Mo)及びルテニゥ ム (Ru)、高屈折率物質としてシリコン (Si)を用いてレ、る。
[0097] なお、以下の説明では、多層膜の構成を各ブロック中の 1層対の構成 (単位周期構 造)と層対を積層した回数 (繰り返し回数)で表し、各ブロックを基板力 数えた番号( A番目)で表す。
本実施例の多層膜の構成を表 1に示す。なお、本実施例の多層膜の合計膜厚は 4 50nm程度である。また、多層膜の各層の厚さは一定ではなぐ多層膜中の位置によ つて変化させて、所望の反射率が得られるように調整することが好ま 、。
[0098] [表 1]
Figure imgf000030_0001
以下の表 2、表 3、表 4に、本実施例の多層膜各層ごとの膜厚を示す。これらの表で は、多層膜各層を基板側から数えた番号で表し、各層ごとに『好ましい膜厚の範囲( nm)』及び『より好ましい膜厚 (nm)』を記している。なお、多層膜の層の数が多いた め、複数の表に分けて示した。
[0100] [表 2]
Figure imgf000031_0001
Figure imgf000031_0002
[0101] [表 3] 単位周期好ましい より好ましい 単位周 好ましい より好ましい 構造 膜厚の範囲膜厚 期構造 膜厚の範囲膜厚 (nm) (nm) (nm)
Mo 5〜2 3 99 Mo 2〜0 1
S i 6〜2 4 100 R u 3〜1 2
Mo 5〜2 3 101 Mo 2〜0 1
S i 6〜2 4 102 S i 6〜2 4
Mo 5〜2 3 103 Mo 2〜0 1
S i 7〜2 4 104 R u 3〜1 2
Mo 5〜2 3 105 Mo 2〜0 1
S i 7〜2 5 106 S i 6〜2 4
Mo 4〜1 3 107 Mo 2〜0 1
S i 8〜3 5 】08 R u 3〜1 2
Mo 3〜1 2 109 Mo 2〜0 1
S i 35〜: 12 23 110 S i 6〜2 4
Mo 4〜1 3 111 Mo 2〜0 1
S i 7〜2 5 112 R u 3〜1 2
Mo 5〜2 3 113 Mo 2〜0 1
S i 6〜2 4 114 S i 6〜2 4
Mo 5〜2 3 115 Mo 2〜0 1
S i 6〜2 4 116 R u 3〜1 2
Mo 2〜0 1 117 Mo 2〜0 1
R u 2〜0 1 118 S i 6〜2 4
Mo 3〜1 2 119 Mo 2〜0 1
S i 6〜2 4 120 R u 3〜1 2
Mo 2〜0 1 121 Mo 2~0 1
R u 3〜1 2 122 S i 6~2 4
Mo 2〜0 1 123 Mo 2〜0 1
S i 6〜2 4 124 R u 3〜1 2
Mo 2〜0 1 125 Mo 2〜0 2
R u 3〜1 2 126 S i 6〜2 4
Mo 2〜0 1
S i 6〜2 4
Figure imgf000033_0001
[0103] 表によると、基板側力 数えて、 54層目及び 80層目のシリコン層は、他の層に比べ て厚くなつている(以下の説明では、これを極厚シリコン層と呼ぶ)。極厚シリコン層は 、 EUV光の中心波長の 2分の 1以上の厚さを有し、各層の界面で反射される EUV光 の位相差を調整して、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯 域を広帯域ィヒする介在層としての役割を果たす。
[0104] 図 10は、本実施例に係る多層膜反射鏡の反射率の入射角依存性を示すグラフで ある。図の横軸は、多層膜反射鏡に入射する光の入射角(degree (° ;) )であり、縦軸 は、波長(λ ) 13. 5nmの EUV光に対する反射率(%)である。図から分力るように、 本実施例の多層膜では、広い入射角範囲 (少なくとも入射角 18° — 25° )の EUV 光に対して 50%以上の高い反射率が得られる。特に、図に示す領域 A1 (入射角が θ 1 (18. 4° ト θ 2 (24. 8° )の範囲)は、反射率が 60%付近でほぼ一定しており 、反射率の入射角依存性がほとんどないので、高解像度が得られる。
実施例 6
[0105] 次に、本発明の第 6の実施例について説明する。本実施例の多層膜は、 0° — 20 ° の入射角範囲内で入射する波長 13. 5nmの EUV光に対して高反射率が得られ るように、各層ごとの膜厚の比率を維持したまま各層の材料構成及び合計膜厚を最 適化したものである。本実施例の多層膜は、例えば、同一反射面内で部分ごとに光 線入射角の異なる光学素子に対して各部ごとに合計膜厚を制御し反射面全域で一 様に高 、反射率を得るために用いられる。
[0106] 本実施例の多層膜は、精密に研磨された合成石英基板上に、次の表 5に示す構 造の多層膜を成膜したものである。なお、本実施例の多層膜の合計膜厚は 420nm 一 430nm程度である。また、多層膜の各層の厚さは一定ではなぐ多層膜中の位置 によって変化させて、所望の反射率が得られるように調整することが好ま 、。
[0107] [表 5]
Figure imgf000034_0001
[0108] 以下の表 6、表 7、表 8に、本実施例の多層膜各層ごとの膜厚を示す。なお、多層 膜の層の数が多いため、複数の表に分けて示した。これらの表によれば、基板側から 数えて、 28層目及び 69層目のシリコン層が極厚シリコン層となっている。
[0109] [表 6] 単位周期好ましい より好ましい 単位周 好ましい より好ましい 構造 膜厚の範囲膜厚 期構造 膜厚の範囲膜厚 (nm) (nm) (nm)
R u 9〜3 6 35 o 5〜2 3
S i 6〜2 4 36 S i 6〜2 4
R u 6〜2 4 37 R u 2〜0 1
S i 6〜2 4 38 Mo 3〜1 2
R u 6〜2 4 39 S i 6〜2 4
S i 6〜2 4 40 R u 2〜0 2
R u 6〜2 4 41 Mo 3〜1 2
S i 6〜2 4 42 S i 6〜2 4
R u 5〜2 3 43 R u 2〜0 1
Mo 2〜0 1 44 Mo 3〜1 2
S i 6〜2 4 45 S i 6〜2 4
R u 4〜1 3 46 R u 2〜0 1
Mo 2〜0 1 47 Mo ト 1 2
S i 6〜2 4 48 S i 6〜2 4
R u 4〜1 3 49 R u 2〜0 1
Mo 2〜0 1 50 o 3〜1 2
S i 6〜2 4 51 S i 6〜2 4
R u 4〜1 3 52 Mo 2〜0 1
Mo 2〜0 1 53 R u 2〜0 1
S i 6〜2 4 54 Mo 3〜1 2
R u 3〜1 2 55 S i 6〜2 4
Mo 2〜0 1 56 Mo 2〜0 1
S i 6〜2 4 57 R u 2〜0 1
R u 2〜0 I 58 Mo 4〜1 2
Mo 3〜1 2 59 S i 6〜2 4
S i 6〜2 4 60 Mo 5〜2 3
Mo 5〜2 3 61 S i 7〜2 4
S i 22〜7 15 62 Mo 4〜1 3
Mo 5〜2 3 63 S i 7〜2 5
S i 6〜2 4 64 o 4〜1 3
Mo 5〜2 3 65 S i 7〜2 5
S i 6〜2 4 66 Mo 3~1 2
Mo 5〜2 3 67 S i 8〜3 5
S i 6〜2 4
申-位周期好ましい より好ましい 単位周 下ましい より好ましい 構造 膜厚の範囲膜厚 (nm) 期構造 膜厚の範囲膜厚 (nm)
(nm) (nm)
Mo 2〜0 1 98 Mo 2〜0 1
S i 36〜12 24 99 R u 3〜1 2
Mo 3〜1 2 100 Mo 2〜0 1
S i 7〜2 5 101 S i 6〜2 4
Mo 4~1 3 102 Mo 2〜0 1
S i 6〜2 4 103 R u 3〜1 2
Mo 5〜2 3 104 Mo 2〜0 1
S i 6〜2 4 105 S i 6〜2 4
Mo 5〜2 3 106 Mo 2〜0 1
S i 6〜2 4 107 R u 3〜1 2
Mo 2〜0 1 108 Mo 2〜0 1
R u 2〜0 1 109 S i 6〜2 4
Mo 3〜L 2 110 Mo 2〜0 1
S i 6〜2 4 111 R u 3〜1 2
Mo 2〜() 1 112 Mo 2〜0 1
R u 3〜1 2 113 S i 6〜2 4
Mo 2〜0 2 114 Mo 2〜0 1
S i 6〜2 4 115 R u 3〜1 2
Mo 2〜0 1 116 Mo 2〜0 1
R u 3〜1 2 117 S i 6〜2 4
Mo 2—0 1 118 Mo 2〜0 1
S i 6〜2 4 119 R u 3〜1
Mo 2〜0 1 120 Mo 2〜0 1
R u 3〜1 2 121 S i 6〜2 4
Mo 2〜0 1 122 Mo 2〜0 1
S i 6〜2 4 123 R u 3〜1 り
Mo 2〜0 1 L24 Mo 2〜0 2
R u 3〜1 2 125 S i 6〜2 4
Mo 2〜0 1
S i 6〜2 4
単位周期好ましい より好ましい 単位周 好ましい より好ましい
構造 膜厚の範囲膜厚(nm) 期構造 膜厚の範囲膜厚 (nm)
(nm) (nra)
126 Mo 2〜0 1 146 Mo 2〜0 1
127 R u 2〜0 2 147 R u 2〜0 1
128 Mo 2〜0 2 148 Mo 3〜1 2
129 S i 6〜2 4 149 S i 6〜2 4
130 Mo 2〜0 1 150 Mo 2〜0 1
131 R u 2〜0 1 151 R u 2〜0 1
132 Mo 2〜0 2 152 Mo 3〜1 2
133 S i 6〜2 4 153 S i 6〜2 4
134 Mo 2〜0 1 154 Mo 5〜2 3
135 R u 2〜0 1 155 S i 6〜2 4
136 Mo 3〜1 2 156 Mo 5〜2 3
137 S i 6〜2 4 157 S i 6〜2 4
138 Mo 2〜0 1 158 Mo 4〜1 3
139 R u 2〜0 1 159 S i 7〜1 4
140 Mo 3〜1 2 160 Mo 4〜1 3
141 S i 6〜2 4
142 Mo 2〜0 1
143 R u 2〜0 1
144 Mo 3〜1 2
145 S i 6〜2 4
[0112] 図 11及び図 12は、本実施例に係る多層膜反射鏡の反射率の入射角依存性を示 すグラフである。図の横軸は、多層膜反射鏡に入射する光の入射角(degree (° ;))で あり、縦軸は、波長(λ)13.5nmの EUV光に対する反射率(%)である。図 11及び 図 12の各図に示された反射率は、多層膜各層の膜厚の比率を維持したまま、合計 膜厚を変化させた多層膜について得られたものである。各図に付された膜厚は、図 1 1(A)の多層膜の合計膜厚を 1.000としたときの値であり、 1.000 (図 11(A) )— 0. 9650(012(0)の範囲で 0.0025間隔で変ィ匕させて!/ヽる。
[0113] 各図中で 2本の縦の点線に挟まれた領域 A2は、高反射率で、且つ、反射率の入 射角依存性の小さい入射角範囲を示す。図 11及び図 12から分力ゝるように、合計膜 厚が厚くなるほど、領域 A2は、入射角の大きい方(図の右側)にシフトしている。例え ば、図 12(G)の領域 A2は、入射角が約 4° 一約 9° の範囲であるのに対し、図 11 ( A)では、約 17° —約 20° の範囲である。従って、本実施例によれば、多層膜の合 計膜厚を変化させることにより、入射角が 0° — 20° の広い範囲で、 50%以上の高 い反射率が得られる。 実施例 7
[0114] 次に、本発明の第 7の実施例について説明する。本実施例の多層膜は、入射角 0 ° 一 20° の範囲の全域に亘つて、波長 13. 5nmの EUV光に対して高い反射率が 得られるように、各層の材料構成及び膜厚を最適ィ匕したものである。本実施例の多 層膜は、精密に研磨された合成石英基板上に、次の表 9に示す構造の多層膜を成 膜したものである。なお、本実施例の多層膜の合計膜厚は 280nm程度である。また 、多層膜の各層の厚さは一定ではなく、多層膜中の位置によって変化させて、所望 の反射率が得られるように調整することが好ま 、。
[0115] [表 9]
Figure imgf000038_0001
[0116] 図 13は、本実施例に係る多層膜反射鏡の反射率の入射角依存性を示すグラフで ある。図の横軸は、多層膜反射鏡に入射する光の入射角(degree (° ;) )であり、縦軸 は、波長(λ ) 13. 5nmの EUV光に対する反射率(%)である。図から分かるように、 本実施例の多層膜反射鏡によれば、 0° — 20° の広い入射角全域に亘つて 45% 以上 (より詳しくは 54%以上)の高い反射率が得られる。
実施例 8 [0117] 次に、本発明の第 8の実施例について説明する。本実施例の多層膜は、垂直に入 射する波長 13. lnmから 13. 9nmまでの EUV光 (極端紫外光)に対して高い反射 率が得られるように、各層の材料構成及び膜厚を最適化したものである。本実施例の 多層膜は、精密に研磨された合成石英基板上に、次の表 10に示す構造の多層膜を 成膜したものである。なお、本実施例の多層膜の総膜厚は 360nm程度である。また 、多層膜の各層の厚さは一定ではなぐ多層膜中の位置によって変化させて、所望 の反射率が得られるように調整することが好まし 、。
[0118] [表 10]
Figure imgf000039_0001
[0119] 以下の表 11、表 12に、本実施例の多層膜の各層ごとの膜厚を示す。なお、多層膜 の層の数が多いため、複数の表に分けて示した。これら表によれば、基板側から数え て、 28層目、 51層目、 73層目及び 75層目のシリコン層が極厚シリコン層となってい る。
[0120] [表 11] 単位周期好ましい より好ましい '中-位周 好ましい より好ましい 構造 膜厚の範囲膜厚 (nm) 期構造 膜厚の範囲膜厚( (nm) (nm)
R u 6〜2 4 35 R u 2〜0 1
S i 5〜2 3 36 Mo 3〜1 2
R u 5〜2 3 37 S i 6〜2 4
Mo 2〜0 1 38 R u 2〜0 2
S i 5〜2 3 39 Mo 3〜1 2
R u 5〜2 4 40 S i 6〜2 4
S i 6〜2 4 41 R u 2〜0 1
Mo 8〜3 6 42 Mo 3〜1 2
S i 7〜2 5 43 S i 6〜2 4
Mo 6〜2 4 44 R u 2〜0 1
S i 5—2 3 45 Mo 3〜1 2
R u 5〜2 3 46 S i 6〜2 4
S i 5〜2 4 47 R u 2〜0 1
R u 4〜1 3 48 Mo 4〜丄 2
Mo 2〜0 1 49 S i 6〜2 4
S i 5〜2 4 50 Mo 4〜1 3
R u 4〜1 3 51 S i 24〜8 16
Mo 2〜0 1 52 Mo 2〜0 1
S i 5〜2 4 53 S i 7〜2 4
R u 3〜1 2 54 Mo 5〜2 3
Mo 2〜0 2 55 S i 5〜2 4
S i 5〜2 4 56 Mo 5〜2 3
R u 2〜0 2 57 R u 5〜2 4
Mo 3〜1 2 58 Mo 5〜2 4
S i 5〜2 4 59 S i 6〜2 4
R u 2〜0 1 60 R u 2〜0 1
Mo 4〜1 2 61 Mo 3〜: L 2
S i 12〜4 8 62 S i 6〜2 4
Mo 2〜0 1 63 R u 2〜0 1
S i 6〜2 4 64 Mo 3〜1 2
Mo 5〜2 3 65 S i 6〜2 4
S i 5〜2 4 66 R u 2〜0 1
Mo 5〜2 3 67 Mo 3〜1 2
S i 6〜2 4 68 S i 6〜2 4
単位周期好ましい より好ましい 単位周 好ましい より好ましい
構造 膜厚の範囲膜厚 (nm) 期構造 膜厚の範囲膜厚 (nm)
(nm) (nm)
69 R u 2〜0 1 98 R u 3〜1 2
70 Mo 4〜1 2 99 Mo 2〜0 1
71 S i 6〜2 4 100 S i 6〜2 4
72 Mo 4〜1 3 101 R u 3〜1 2
73 S i 18〜6 12 102 Mo 2〜0 1
74 Mo 2〜0 1 103 S i 6〜2 4
75 S i 15〜5 10 104 R u 3〜1 2
76 Mo 4〜1 3 105 Mo 2〜0 1
77 S i 6〜2 4 106 S i 6〜2 4
78 Mo 5〜2 3 107 R u 3〜1 2
79 S i 6〜2 4 108 Mo 2~0 1
80 R u 2〜0 1 109 S i 6〜2 4
81 Mo 3〜1 2 110 R u 3〜1 2
82 S i 6〜2 4 111 Mo 2〜0 1
83 R u 3〜1 2 112 S i 6〜2 4
84 Mo 2〜0 1 113 R u 3〜1 2
85 S i 6〜2 4 114 Mo 2〜0 1
86 R u 3〜1 2 115 S i 6〜2 4
87 Mo 2〜0 1 116 Mo 2〜0 1
88 S i 5〜2 4 117 R u 2〜0 2
89 R u 3〜1 2 118 Mo 2〜0 1
90 Mo 2〜0 1 119 S i 6〜2 4
91 S i 5〜2 4 120 Mo 2〜0 1
92 R u 3〜1 2 121 R u 2〜0 1
93 Mo 2~0 1 122 Mo 2〜0 1
94 S i 5〜2 4 123 S i 6〜2 4
95 R u 3〜1 2 124 Mo 4〜1 3
96 Mo 2〜0 1 125 S i 6〜2 4
97 S i 6〜2 4 126 Mo 4〜1 3
[0122] 図 14は、本実施例に係る多層膜反射鏡の分光反射率特性を示すグラフである。図 の横軸は入射光の波長 (nm)であり、縦軸は反射率(%)である。なお、光の入射角 は 0° (反射面に対して垂直に入射)とする。図から分力るように、本実施例の多層膜 反射鏡によれば、上記の広い波長範囲に亘つて 45%以上 (より詳しくは 50%以上) の高い反射率が得られる。
実施例 9
[0123] 次に、本発明の第 9の実施例について説明する。本実施例の多層膜は、垂直に入 射する波長 13.5nmの EUV光に対して極力高い反射率が得られるように、各層の 材料構成及び膜厚を最適化したものである。本実施例の多層膜は、精密に研磨され た合成石英基板上に、次の表 13に示す構造の多層膜を成膜したものである。なお、 本実施例の多層膜の総膜厚は 510nm程度である。また、多層膜の各層の厚さは一 定ではなぐ多層膜中の位置によって変化させて、所望の反射率が得られるように調 整することが好ましい。
[0124] [表 13]
Figure imgf000042_0001
[0125] 図 15は、本実施例に係る多層膜反射鏡の分光反射率特性を示すグラフである。図 の横軸は入射光の波長 (nm)であり、縦軸は反射率(%)である。なお、入射角は 0° (反射面に対して垂直に入射)とする。図から分かるように、本実施例の多層膜反射 鏡によれば、波長 13. 5nmの EUV光に対して、前述の図 20よりも高い、 70%以上( 例えば 76%程度)の反射率が得られる。
実施例 10
[0126] 次に、本発明の第 10の実施例について説明する。本実施例の多層膜は、垂直入 射時において波長 13. 5nm力ら 14. 2nmまでの EUV光(極端紫外光)に対して高 い反射率が得られるように、各層の材料構成及び膜厚を最適化したものである。本実 施例の多層膜は、精密に研磨された合成石英基板上に、モリブデン層 (低屈折率膜 層)とシリコン層(高屈折率膜層)を交互に積層した MoZSi多層膜である。
[0127] なお、本実施例の多層膜の総膜厚は 330nm程度である。また、多層膜の各層の 厚さは一定ではなぐ多層膜中の位置によって変化させて、所望の反射率が得られ るように調整することが好ましい。以下の表 14、表 15に、本実施例の多層膜各層ごと の膜厚を示す。なお、多層膜の層の数が多いため、複数の表に分けて示した。これ た表によれば、基板側力も数えて、 46層目のシリコン層(多層膜のほぼ中間に位置 するシリコン層)が極厚シリコン層となっている。
[0128] [表 14] 単位周期好ましい より好ましい 単位周 好ましい より好ましい 構造 膜厚の範囲膜厚 ( 期構造 膜厚の範囲膜厚 (nm) (nm) (nm)
Mo 20〜5 11 23 Mo 6〜2 3
S i 6〜2 4 24 S i 6〜2 4
Mo 6〜2 4 25 Mo 12〜3 7
S i 6〜2 4 26 S i 6〜2 4
Mo 6〜2 4 27 Mo 6〜2 3
S i 6〜2 3 28 S i 6〜2 4
Mo 9〜3 6 29 Mo 6~2 4
S i 8〜3 5 30 S i 6〜2 4
Mo 7〜2 4 31 Mo 6〜2 4
S i 6〜2 3 32 S i 6〜2 4
Mo 6〜2 4 33 Mo 6〜2 4
S i 6〜2 4 34 S i 6〜2 4
Mo 6〜2 4 35 Mo 6〜2 4
S i 6〜2 4 36 S i 6〜2 4
Mo 6〜2 4 37 Mo 6〜2 4
S i 6〜2 4 38 S i 6〜2 4
Mo 6〜2 4 39 Mo 6~2 3
S i 6〜2 4 40 S i 6〜2 4
Mo 6〜2 4 41 Mo 6〜2 3
S i 6〜2 4 42 S i 6〜2 4
Mo 6〜2 4 43 Mo 6〜2 3
S i 6〜2 4 44 S i 8〜2 5
Figure imgf000044_0001
[0130] 図 16は、本実施例に係る多層膜反射鏡の分光反射率特性を示すグラフである。な お、この多層膜の成膜方法には、イオンビームスパッタを用いている。図の横軸は入 射光の波長 (nm)であり、縦軸は反射率(%)である。なお、光の入射角は 0° (反射 面に対して垂直に入射)とする。図 16の実線は、スパッタガスとしてアルゴン (Ar)ガ スを用いて成膜した場合の反射率の波長特性を示しており、破線は、スパッタガスと してクリプトン (Kr)ガスを用いて成膜した場合の反射率の波長特性を示して ヽる。
[0131] 図 16から分力るように、本実施例の多層膜反射鏡によれば、上記の広い波長範囲 に亘つて 45%以上の高い反射率が得られる。また、破線の Krガスを用いて成膜した 場合には、実線の Arガスを用いて成膜した場合と比べて、反射率ピークが大きぐま た分光反射率の半値幅が広くなつて 、る。
図 17は、本実施例に係る多層膜反射鏡の反射率の入射角依存性を示すグラフで ある。図の横軸は、多層膜反射鏡に入射する光の入射角(degree (° ;) )であり、縦軸 は、波長(λ ) 13. 5nmの EUV光に対する反射率(%)である。図力も分力るように、 本実施例の多層膜反射鏡によれば、 0° — 20° の広い入射角全域に亘つて 45% 以上 (より好ましくは 50%以上)の高い反射率が得られる。
実施例 11
[0132] 図 18は、本発明の一実施形態に係る露光装置の模式図である。図に示すように、 EUV露光装置 100は、 X線発生装置(レーザープラズマ X線源) 101を備えている。 X線発生装置 101は、球状の真空容器 102を備え、真空容器 102の内部は、図示せ ぬ真空ポンプで排気されている。真空容器 102内の図中上側には、多層膜放物面ミ ラー 104が反射面 104aを図中下方(+Z方向)に向けて設置されている。
[0133] 真空容器 102の図中右方にはレンズ 106が配置されており、このレンズ 106の右方 には図示せぬレーザー光源が配置されている。このレーザー光源は、 Y方向にパ ルスレーザー光 105を放出する。パルスレーザー光 105は、レンズ 106によって多層 膜放物面ミラー 104の焦点位置に集光する。この焦点位置には、標的材料 103 (キ セノン (Xe)等)が配置されており、集光されたパルスレーザー光 105が標的材料 10 3に照射されると、プラズマ 107が生成される。このプラズマ 107は、 13nm付近の波 長帯の軟 X線 (EUV光) 108を放射する。
[0134] 真空容器 102の下部には、可視光をカットする X線フィルター 109が設けられてい る。 EUV光 108は、多層膜放物面ミラー 104によって、 +Z方向に反射されて、 X線 フィルター 109を通過し、露光チャンバ 110に導かれる。このとき、 EUV光 108の可 視光帯域のスペクトルがカットされる。
なお、本実施形態においては、標的材料としてキセノンガスを用いている力 キセノ ンクラスターや液滴等でもよぐスズ (Sn)等の物質であってもよい。また、 X線発生装 置 101としてレーザープラズマ X線源を用いている力 放電プラズマ X線源を採用す ることもできる。放電プラズマ X線源とは、パルス高電圧の放電により標的材料をブラ ズマ化し、このプラズマから X線を放射させるものである。
[0135] X線発生装置 101の図中下方には、露光チャンバ 110が設置されている。露光チ ヤンバ 110の内部には、照明光学系 113が配置されている。照明光学系 113は、コ ンデンサ系の反射鏡、フライアイ光学系の反射鏡等で構成されており(図では簡略化 して示されている)、 X線発生装置 101から入射した EUV光 108を円弧状に成形し、 図中左方に向けて照射する。 [0136] 照明光学系 113の左方には、反射鏡 115が配置されている。この反射鏡 115は、 円形の凹面鏡であり、反射面 115aが図中右方(+Y方向)に向くように、図示せぬ保 持部材により垂直に (Z軸に平行に)保持されて!、る。反射鏡 115の図中右方には、 光路折り曲げ反射鏡 116が配置されて 、る。この光路折り曲げ反射鏡 116の図中上 方には、反射型マスク 111が、反射面 111aが下向き(+Z方向)になるように水平 (X Y平面に平行)に配置されている。照明光学系 113から放出された EUV光は、反射 鏡 115により反射集光された後に、光路折り曲げ反射鏡 116を介して、反射型マスク 111の反射面 11 laに達する。
[0137] 反射鏡 115、 116は、反射面が高精度に加工された、熱変形の少ない低熱膨張ガ ラス製の基板力もなる。反射鏡 115の反射面 115aには、 X線発生装置 101の多層膜 放物面ミラー 104の反射面と同様に、高屈折率膜と低屈折率膜が交互に積層された 反射多層膜が形成されている。なお、波長が 10— 15nmの X線を用いる場合には、 モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)等の物質と、シリコン(Si)、ベリリウ ム (Be)、 4ホウ化炭素 (B C)等の物質とを組み合わせた反射多層膜でもよ!/、。
4
[0138] 反射型マスク 111の反射面 11 laにも多層膜からなる反射膜が形成されている。反 射型マスク 111の反射膜には、ウェハ 112に転写するパターンに応じたマスクパター ンが形成されている。反射型マスク 111は、図中上方に図示されたマスクステージ 11 7に取り付けられている。マスクステージ 117は、少なくとも Y方向に移動可能であり、 光路折り曲げ反射鏡 116で反射された EUV光は、反射型マスク 111上で順次走査 される。
[0139] 反射型マスク 111の図中下方には、上力も順に投影光学系 114、ウェハ (感応性榭 脂を塗布した基板) 112が配置されている。投影光学系 114は、複数の反射鏡等か らなっている。ウエノ、 112は、露光面 112aが図中上方(一 Z方向)を向くように、 XYZ 方向に移動可能なウェハステージ 118上に固定されて 、る。反射型マスク 111によつ て反射された EUV光は、投影光学系 114により所定の縮小倍率 (例えば 1Z4)に縮 小されてウェハ 112上に結像し、マスク 111上のパターンがウェハ 112上に転写され る。
[0140] 本実施例の露光装置 100に使用されている反射鏡は (全反射を利用する斜入射鏡 を除き)、上述した実施例 1一 10のいずれかに挙げた構造の多層膜を成膜している。 なお、多層膜放物面ミラー 104、照明光学系 113及び投影光学系 114の反射鏡等 には、表面が 100°C以上に上昇しないように、図示せぬ冷却機構が設けられている。 多層膜放物面ミラー 104の反射面への EUV光の入射角は面内の位置によって大 きく変化するので、周期長も面内で大きく変化している。前述のように、多層膜放物 面ミラー 104の周期長の分布や基板取り付け位置にはわず力な誤差が存在するた め、周期長制御時に想定した入射角と実際の入射角との誤差による反射率が変化し 得る。本実施形態によれば、上述の実施例に係る反射率の半値幅が広い多層膜反 射鏡を用いることにより、このような反射率の変化はほとんど生じない。また、照明光 学系 113、及び投影光学系 114を構成する多層膜反射鏡として、反射帯域の広い 多層膜を用いることにより、光学系の結像性能を高く保つことができるので、結像面 上での照度と瞳内光量を均一にすることができ、優れた解像力が得られる。
[0141] なお、本実施形態では多層膜放物面ミラー 104等の冷却を行っているが、冷却が 十分に行えない場合、例えば、温度が上昇しても反射率の低下が小さい膜構成 (M o/SiC/Si, MoCZSi多層膜等)を利用し、その構造中に実施例 2、 3、 4のような 付加層をカ卩えてもよい。
産業上の利用可能性
[0142] 以上詳述したように本発明は、多層膜反射鏡、露光装置の分野において大いに利 用可能である。

Claims

請求の範囲
[1] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡であって、
光の入射面側の多層膜 (表層膜群)においては、低屈折率膜がモリブデン (Mo)を 含む物質力 なり、高屈折率膜がシリコン (Si)を含む物質力 なり、
前記表層膜群の反入射面側の多層膜 (深層膜群)においては、低屈折率膜がルテ -ゥム (Ru)を含む物質力 なり、高屈折率膜がシリコンを含む物質力もなる
ことを特徴とする多層膜反射鏡。
[2] 前記表層膜群における高屈折率膜と低屈折率膜の積層対の数が 2— 10である ことを特徴とする請求項 1記載の多層膜反射鏡。
[3] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡の製造方法であって、
基板上にルテニウムを含む物質とシリコンを含む物質を交互に堆積して、深層膜群 を成膜する工程と、
前記深層膜群上にモリブデンを含む物質とシリコンを含む物質を交互に堆積して、 表層膜群を成膜する工程と
を含むことを特徴とする多層膜反射鏡の製造方法。
[4] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡であって、
光の入射面側の多層膜群 (表層膜群)と、
前記表層膜群の反入射面側の付加層と、
前記付加層の反入射面側の多層膜群 (深層膜群)と
を備え、
前記表層膜群の反射率が前記深層膜群の反射率より高ぐ
前記付加層の存在によって反射光の位相をずらすことにより、前記付加層がない 場合よりも、反射鏡全体としての反射率ピーク値が低くされていると共にピーク周辺 波長の反射率が高くされている
ことを特徴とする多層膜反射鏡。
[5] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡であって、
光の入射面側の多層膜群 (表層膜群)と、
前記表層膜群における反入射面側の付加層と、
前記付加層における反入射面側の多層膜群 (深層膜群)と
を備え、
前記表層膜群においては、低屈折率膜がモリブデン (Mo)を含む物質力 なり、高 屈折率膜がシリコン (Si)を含む物質力 なり、
前記深層膜群においては、低屈折率膜がモリブデン (Mo)を含む物質力もなり、高 屈折率膜がシリコンを含む物質力 なり、
前記付加層の厚さが、多層膜の周期長の略半分か、又は、それに前記周期長の整 数倍をカロえた厚さである
ことを特徴とする多層膜反射鏡。
[6] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡であって、
光の入射面側の多層膜群 (表層膜群)と、
前記表層膜群における反入射面側の付加層と、
前記付加層における反入射面側の多層膜群 (深層膜群)と
を備え、
前記表層膜群においては、低屈折率膜がルテニウム (Ru)を含む物質力 なり、高 屈折率膜がシリコン (Si)を含む物質力 なり、
前記深層膜群においては、低屈折率膜がルテニウム (Ru)を含む物質カゝらなり、高 屈折率膜がシリコンを含む物質力 なり、
前記付加層の厚さが、多層膜の周期長の略半分か、又は、それに前記周期長の整 数倍をカロえた厚さである
ことを特徴とする多層膜反射鏡。
[7] 前記表層膜群の単位周期構造 (ペア)の数が、 10— 30であり、
前記深層膜群のペアの数力 前記表層膜群のペアの数の 5— 50%である ことを特徴とする請求項 4一請求項 6のいずれかに記載の多層膜反射鏡。
[8] 前記付加層が、シリコン (Si)、ボロン (B)或いはこれらを含む物質力 なる
ことを特徴とする請求項 4一請求項 7のいずれかに記載の多層膜反射鏡。
[9] EUV光の高屈折率膜と低屈折率膜とを交互に積層した反射多層膜を有する多層 膜反射鏡であって、
光の入射面側の多層膜群 (表層膜群)と、
前記表層膜群における反入射面側の付加層と、
前記付加層における反入射面側の多層膜群 (深層膜群)と
を備え、
前記表層膜群における入射面側の多層膜群 (第 1表層膜群)は、低屈折率膜がモ リブデン (Mo)を含む物質力 なり、高屈折率膜がシリコン (Si)を含む物質力もなり、 前記表層膜群における前記付加層側の多層膜群 (第 2表層膜群)は、低屈折率膜 がルテニウム (RU)を含む物質力 なり、高屈折率膜がシリコンを含む物質力 なり、 前記深層膜群においては、低屈折率膜がルテニウム (Ru)を含む物質カゝらなり、高 屈折率膜がシリコンを含む物質力 なる
ことを特徴とする多層膜反射鏡。
[10] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
前記 EUV光の中心波長の 2分の 1以上の厚さを有する介在層を有し、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[11] 高屈折率膜と低屈折率膜との対 (層対)の一部は、 2種類の物質からなっており、 別の一部は 3種類以上の物質からなる
ことを特徴とする請求項 10記載の多層膜反射鏡。
[12] 前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記複数のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力 なるブロックと、 L1
ZHの層対の繰り返し力 なるブロックとを含み、
各ブロックにおける層対の繰り返し積層回数が 1一 50回である
ことを特徴とする請求項 10又は請求項 11記載の多層膜反射鏡。
[13] 前記層対に含まれる層の膜厚が、各層対ごとに異なる
ことを特徴とする請求項 12記載の多層膜反射鏡。
[14] 各膜の膜厚を任意に変化させながら積層して、波長 13. lnm— 13. 9nmの光に 対する反射率を 45%以上とした
ことを特徴とする請求項 10—請求項 13のいずれかに記載の多層膜反射鏡。
[15] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記多層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返しからなり、 前記基板から 2番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 3番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 4番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 5番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 6番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 7番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 8番目のブロックは、 L1ZHの層対の繰り返し力 なり、
各ブロックにおける層対の繰り返し積層回数は 1一 50回であり、
EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[16] 少なくとも 18度から 25度の範囲の入射角で入射する斜入射光に対する反射率が 5 0%以上である ことを特徴とする請求項 15記載の多層膜反射鏡。
[17] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記多層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返しからなり、 前記基板から 2番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 3番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 4番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 5番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 6番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 7番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 8番目のブロックは、 L1ZHの層対の繰り返し力 なり、
各ブロックにおける層対の繰り返し積層回数は 1一 50回であり、
EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[18] 前記反射多層膜の合計膜厚を、反射面内の各位置における光の入射角に応じて 任意に変化させて、反射面全面で反射率を均一化したことを特徴とする請求項 17記 載の多層膜反射鏡。
[19] 前記反射多層膜の合計膜厚を、前記反射多層膜中の各層の膜厚の比率を維持し たまま変化させて、少なくとも 0度力も 20度の範囲の入射角で入射する斜入射光に 対する反射率を 50%以上としたことを特徴とする請求項 17又は請求項 18記載の多 層膜反射鏡。
[20] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、 前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記多層膜反射鏡の基板側のブロックは、 L1ZL2ZL1ZHの層対の繰り返しか らなり、
前記基板から 2番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 3番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 4番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 5番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 6番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 7番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 8番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 9番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 10番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返しからなり、 前記基板から 11番目のブロックは、 L2ZL1ZHの層対の繰り返しからなり、 前記基板から 12番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 13番目のブロックは、 L1ZHの層対の繰り返し力 なり、 各ブロックにおける層対の繰り返し積層回数は 1一 50回であり、
EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[21] 少なくとも 0度から 20度の範囲の入射角で入射する斜入射光に対する反射率が 45
%以上であることを特徴とする請求項 20記載の多層膜反射鏡。
[22] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記多層膜反射鏡の基板側のブロックは、 L2ZHの層対の繰り返しからなり、 前記基板から 2番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 3番目のブロックは、 L2ZHの層対の繰り返し力 なり、
前記基板から 4番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 5番目のブロックは、 L2ZHの層対の繰り返し力 なり、
前記基板から 6番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 7番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 8番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 前記基板から 9番目のブロックは、 L1ZHの層対の繰り返し力 なり、
前記基板から 10番目のブロックは、 L2ZL1ZHの層対の繰り返しからなり、 前記基板から 11番目のブロックは、 L1ZHの層対の繰り返し力 なり、 前記基板から 12番目のブロックは、 L2ZL1ZHの層対の繰り返しからなり、 前記基板から 13番目のブロックは、 L1ZL2ZL1ZHの層対の繰り返し力もなり、 前記基板から 14番目のブロックは、 L1ZHの層対の繰り返し力 なり、 各ブロックにおける層対の繰り返し積層回数は 1一 50回であり、
EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[23] 波長 13. lnm— 13. 9nmの光に対する反射率が 45%以上である
ことを特徴とする請求項 22記載の多層膜反射鏡。
[24] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
前記反射多層膜は、異なる構造の高屈折率膜 Hと低屈折率膜 L1及び L2 (L1と L2 は膜構成物質が異なる)との対 (層対)が繰り返し積層された複数のブロックを含み、 前記多層膜反射鏡の基板側のブロックは、 1層の Hであり、
前記基板から 2番目のブロックは、 L2ZHの層対の繰り返し力 なり、
前記基板から 3番目のブロックは、 L2ZL1ZHの層対の繰り返し力 なり、 各ブロックにおける層対の繰り返し積層回数は 1一 50回であり、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[25] EUV光の高屈折率膜と低屈折率膜の複数の界面からの反射光を同位相にするブ ラッグの反射条件に従う条件下で、両膜 (高屈折率膜及び低屈折率膜)を基板上に 交互に積層した反射多層膜を備える多層膜反射鏡であって、
高屈折率膜の少なくとも 1層が EUV光の中心波長の 2分の 1以上の厚さを有し、 EUV光反射率の比較的高い EUV光波長又は入射角度の帯域が広帯域化されて いる
ことを特徴とする多層膜反射鏡。
[26] 感応基板上に EUV光を選択的に照射してパターンを形成する露光装置であって、 請求項 1一請求項 25の 、ずれかに記載の多層膜反射鏡を光学系中に有する ことを特徴とする露光装置。
PCT/JP2004/015284 2003-10-15 2004-10-15 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置 WO2005038886A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020067007278A KR101083466B1 (ko) 2003-10-15 2004-10-15 다층막 반사경, 다층막 반사경의 제조방법, 및 노광장치
AT04792501T ATE538491T1 (de) 2003-10-15 2004-10-15 Mehrschichtiger filmreflexionsspiegel, herstellungsverfahren für einen mehrschichtigen filmreflexionsspiegel und belichtungssystem
EP04792501.1A EP1675164B2 (en) 2003-10-15 2004-10-15 Multilayer film reflection mirror, production method for multilayer film reflection mirror, and exposure system
JP2005514803A JP4466566B2 (ja) 2003-10-15 2004-10-15 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置
US11/401,946 US7382527B2 (en) 2003-10-15 2006-04-12 EUV multilayer mirror with phase shifting layer
HK06114243.0A HK1099603A1 (en) 2003-10-15 2006-12-28 Multilayer film reflection mirror, production method for multilayer film reflection mirror, and exposure system
US11/907,798 US7440182B2 (en) 2003-10-15 2007-10-17 Multilayer mirror, method for manufacturing the same, and exposure equipment
US12/232,241 US7706058B2 (en) 2003-10-15 2008-09-12 Multilayer mirror, method for manufacturing the same, and exposure equipment

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003354989 2003-10-15
JP2003354568 2003-10-15
JP2003-354568 2003-10-15
JP2003-354561 2003-10-15
JP2003-354989 2003-10-15
JP2003354561 2003-10-15
JP2004-094633 2004-03-29
JP2004094633 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/401,946 Continuation US7382527B2 (en) 2003-10-15 2006-04-12 EUV multilayer mirror with phase shifting layer

Publications (1)

Publication Number Publication Date
WO2005038886A1 true WO2005038886A1 (ja) 2005-04-28

Family

ID=34468462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015284 WO2005038886A1 (ja) 2003-10-15 2004-10-15 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置

Country Status (7)

Country Link
US (3) US7382527B2 (ja)
EP (1) EP1675164B2 (ja)
JP (1) JP4466566B2 (ja)
KR (1) KR101083466B1 (ja)
AT (1) ATE538491T1 (ja)
HK (1) HK1099603A1 (ja)
WO (1) WO2005038886A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340459A (ja) * 2004-05-26 2005-12-08 Canon Inc 投影光学系及び露光装置及びデバイス製造方法及びデバイス
JP2007109968A (ja) * 2005-10-14 2007-04-26 Hoya Corp 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007109971A (ja) * 2005-10-14 2007-04-26 Hoya Corp 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007140105A (ja) * 2005-11-18 2007-06-07 Nikon Corp 多層膜反射鏡及び露光装置
JP2007258625A (ja) * 2006-03-27 2007-10-04 Nikon Corp 露光装置及びレチクル
JP2010118437A (ja) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd 多層膜反射鏡、多層膜反射マスク及びそれらを用いたeuv露光装置
JP2011228698A (ja) * 2010-03-17 2011-11-10 Carl Zeiss Smt Gmbh 投影リソグラフィ用の照明光学系
JP2012524391A (ja) * 2009-04-15 2012-10-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv波長域用のミラー、そのようなミラーを備えるマイクロリソグラフィ用の投影対物鏡、およびそのような投影対物鏡を備えるマイクロリソグラフィ用の投影露光装置
JP2013514651A (ja) * 2009-12-18 2013-04-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvリソグラフィ用反射マスク
KR20140129031A (ko) * 2012-01-19 2014-11-06 수프리야 자이스왈 리소그래피 및 다른 적용분야에서 극자외 방사선을 이용하는 재료, 성분 및 사용을 위한 방법
JP2016504631A (ja) * 2013-01-11 2016-02-12 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvミラー及びeuvミラーを備える光学システム
JP2016513291A (ja) * 2013-02-28 2016-05-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 厚さを最適化した反射コーティング
JP2016523386A (ja) * 2013-06-27 2016-08-08 カール・ツァイス・エスエムティー・ゲーエムベーハー 分離コーティングを有するミラーの表面補正
JP2017076150A (ja) * 2013-05-09 2017-04-20 株式会社ニコン 光学素子、投影光学系、露光装置及びデバイス製造方法
WO2018235721A1 (ja) * 2017-06-21 2018-12-27 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837686A4 (en) * 2004-12-17 2009-11-18 Yupo Corp LIGHT REFLECTOR AND DEVICE PRODUCING SURFACE LIGHT
JP2008083189A (ja) * 2006-09-26 2008-04-10 Matsushita Electric Ind Co Ltd 位相シフトマスクおよび集光素子の製造方法
JPWO2008090988A1 (ja) * 2007-01-25 2010-05-20 株式会社ニコン 光学素子、これを用いた露光装置、及びデバイス製造方法
US20080266651A1 (en) * 2007-04-24 2008-10-30 Katsuhiko Murakami Optical apparatus, multilayer-film reflective mirror, exposure apparatus, and device
DE102008002403A1 (de) * 2008-06-12 2009-12-17 Carl Zeiss Smt Ag Verfahren zum Herstellen einer Mehrlagen-Beschichtung, optisches Element und optische Anordnung
US8693090B2 (en) 2008-07-07 2014-04-08 Koninklijke Philips N.V. Extreme UV radiation reflecting element comprising a sputter-resistant material
US20100271693A1 (en) * 2009-04-24 2010-10-28 Manuela Vidal Dasilva Narrowband filters for the extreme ultraviolet
DE102009032779A1 (de) * 2009-07-10 2011-01-13 Carl Zeiss Smt Ag Spiegel für den EUV-Wellenlängenbereich, Projektionsobjektiv für die Mikrolithographie mit einem solchen Spiegel und Projektionsbelichtungsanlage für die Mikrolithographie mit einem solchen Projektionsobjektiv
CN103229248B (zh) 2010-09-27 2016-10-12 卡尔蔡司Smt有限责任公司 反射镜,包含这种反射镜的投射物镜,以及包含这种投射物镜的用于微光刻的投射曝光设备
DE102010062597A1 (de) * 2010-12-08 2012-06-14 Carl Zeiss Smt Gmbh Reflektives optisches Abbildungssystem
DE102011015141A1 (de) * 2011-03-16 2012-09-20 Carl Zeiss Laser Optics Gmbh Verfahren zum Herstellen eines reflektiven optischen Bauelements für eine EUV-Projektionsbelichtungsanlage und derartiges Bauelement
DE102011075579A1 (de) 2011-05-10 2012-11-15 Carl Zeiss Smt Gmbh Spiegel und Projektionsbelichtungsanlage für die Mikrolithographie mit einem solchen Spiegel
DE102011005940A1 (de) 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh EUV-Spiegelanordnung, optisches System mit EUV-Spiegelanordnung und Verfahren zum Betreiben eines optischen Systems mit EUV-Spiegelanordnung
KR101952465B1 (ko) 2011-03-23 2019-02-26 칼 짜이스 에스엠테 게엠베하 Euv 미러 배열체, euv 미러 배열체를 포함하는 광학 시스템 및 euv 미러 배열체를 포함하는 광학 시스템을 작동시키는 방법
DE102011077234A1 (de) 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh EUV-Spiegelanordnung, optisches System mit EUV-Spiegelanordnung und Verfahren zum Betreiben eines optischen Systems mit EUV-Spiegelanordnung
DE102011076011A1 (de) * 2011-05-18 2012-11-22 Carl Zeiss Smt Gmbh Reflektives optisches Element und optisches System für die EUV-Lithographie
FR2984584A1 (fr) * 2011-12-20 2013-06-21 Commissariat Energie Atomique Dispositif de filtrage des rayons x
DE102012203633A1 (de) 2012-03-08 2013-09-12 Carl Zeiss Smt Gmbh Spiegel für den EUV-Wellenlängenbereich, Herstellungsverfahren für einen solchen Spiegel und Projektionsbelichtungsanlage mit einem solchen Spiegel
DE102012105369B4 (de) * 2012-06-20 2015-07-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multilayer-Spiegel für den EUV-Spektralbereich
JP2014160752A (ja) 2013-02-20 2014-09-04 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクおよび該マスクブランク用反射層付基板
JP6112201B2 (ja) 2013-07-05 2017-04-12 株式会社ニコン 多層膜反射鏡、多層膜反射鏡の製造方法、投影光学系、露光装置、デバイスの製造方法
EP3049836A1 (en) * 2013-09-23 2016-08-03 Carl Zeiss SMT GmbH Multilayer mirror
KR101986982B1 (ko) * 2016-04-15 2019-06-10 루미리즈 홀딩 비.브이. 광대역 미러
DE102017206118A1 (de) 2017-04-10 2018-04-19 Carl Zeiss Smt Gmbh Reflektives optisches Element und optisches System
WO2020153228A1 (ja) 2019-01-21 2020-07-30 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法
KR102511751B1 (ko) * 2019-11-05 2023-03-21 주식회사 에스앤에스텍 극자외선 리소그래피용 블랭크마스크 및 포토마스크
KR102525928B1 (ko) * 2020-09-02 2023-04-28 주식회사 에스앤에스텍 극자외선용 반사형 블랭크 마스크 및 그 제조방법
CN117091809B (zh) * 2023-08-23 2024-02-23 同济大学 一种间接标定窄带多层膜反射峰位的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134385A (ja) * 2000-10-20 2002-05-10 Nikon Corp 多層膜反射鏡および露光装置
JP2002323599A (ja) * 2001-04-27 2002-11-08 Nikon Corp 多層膜反射鏡の製造方法及び露光装置
KR20020089613A (ko) 2001-05-23 2002-11-30 안진호 극자외선 노광 공정용 Ru/Mo/Si 반사형 다층 박막미러
JP2003501681A (ja) * 1999-05-26 2003-01-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア モリブデンルテニウム/ベリリウム多層構造
US20030043456A1 (en) 1999-07-02 2003-03-06 Asm Lithography B.V. Multilayer extreme ultraviolet mirrors with enhanced reflectivity
JP2003516643A (ja) * 1999-12-08 2003-05-13 コミツサリア タ レネルジー アトミーク 極短紫外領域の放射の光源を用いるリソグラフィ装置、およびこの領域内で広いスペクトル帯域を有する多層膜反射鏡
EP1318424A2 (en) 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
JP2004095980A (ja) * 2002-09-03 2004-03-25 Nikon Corp 多層膜反射鏡、反射型マスク、露光装置及び反射型マスクの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262198A (ja) * 1995-03-27 1996-10-11 Toyota Gakuen X線多層膜反射鏡
JP4238390B2 (ja) * 1998-02-27 2009-03-18 株式会社ニコン 照明装置、該照明装置を備えた露光装置および該露光装置を用いて半導体デバイスを製造する方法
US6295164B1 (en) * 1998-09-08 2001-09-25 Nikon Corporation Multi-layered mirror
JP2001057328A (ja) * 1999-08-18 2001-02-27 Nikon Corp 反射マスク、露光装置および集積回路の製造方法
US20020171922A1 (en) * 2000-10-20 2002-11-21 Nikon Corporation Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for same, and EUV optical systems comprising same
JP3600849B2 (ja) * 2001-06-11 2004-12-15 理学電機工業株式会社 ホウ素蛍光x線分析用多層膜分光素子
JP2003015040A (ja) * 2001-07-04 2003-01-15 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
US6643353B2 (en) * 2002-01-10 2003-11-04 Osmic, Inc. Protective layer for multilayers exposed to x-rays
US20050111083A1 (en) * 2002-03-27 2005-05-26 Yakshin Andrey E. Optical broad band element and process for its production
JP2005056943A (ja) * 2003-08-08 2005-03-03 Canon Inc X線多層ミラーおよびx線露光装置
US7522335B2 (en) * 2004-03-29 2009-04-21 Intel Corporation Broad-angle multilayer mirror design

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501681A (ja) * 1999-05-26 2003-01-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア モリブデンルテニウム/ベリリウム多層構造
US20030043456A1 (en) 1999-07-02 2003-03-06 Asm Lithography B.V. Multilayer extreme ultraviolet mirrors with enhanced reflectivity
JP2003516643A (ja) * 1999-12-08 2003-05-13 コミツサリア タ レネルジー アトミーク 極短紫外領域の放射の光源を用いるリソグラフィ装置、およびこの領域内で広いスペクトル帯域を有する多層膜反射鏡
JP2002134385A (ja) * 2000-10-20 2002-05-10 Nikon Corp 多層膜反射鏡および露光装置
JP2002323599A (ja) * 2001-04-27 2002-11-08 Nikon Corp 多層膜反射鏡の製造方法及び露光装置
KR20020089613A (ko) 2001-05-23 2002-11-30 안진호 극자외선 노광 공정용 Ru/Mo/Si 반사형 다층 박막미러
EP1318424A2 (en) 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
JP2004095980A (ja) * 2002-09-03 2004-03-25 Nikon Corp 多層膜反射鏡、反射型マスク、露光装置及び反射型マスクの製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340459A (ja) * 2004-05-26 2005-12-08 Canon Inc 投影光学系及び露光装置及びデバイス製造方法及びデバイス
JP4532991B2 (ja) * 2004-05-26 2010-08-25 キヤノン株式会社 投影光学系、露光装置及びデバイス製造方法
JP4703353B2 (ja) * 2005-10-14 2011-06-15 Hoya株式会社 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007109968A (ja) * 2005-10-14 2007-04-26 Hoya Corp 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007109971A (ja) * 2005-10-14 2007-04-26 Hoya Corp 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP4703354B2 (ja) * 2005-10-14 2011-06-15 Hoya株式会社 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007140105A (ja) * 2005-11-18 2007-06-07 Nikon Corp 多層膜反射鏡及び露光装置
JP2007258625A (ja) * 2006-03-27 2007-10-04 Nikon Corp 露光装置及びレチクル
JP2010118437A (ja) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd 多層膜反射鏡、多層膜反射マスク及びそれらを用いたeuv露光装置
JP2012524391A (ja) * 2009-04-15 2012-10-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv波長域用のミラー、そのようなミラーを備えるマイクロリソグラフィ用の投影対物鏡、およびそのような投影対物鏡を備えるマイクロリソグラフィ用の投影露光装置
JP2013514651A (ja) * 2009-12-18 2013-04-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvリソグラフィ用反射マスク
JP2011228698A (ja) * 2010-03-17 2011-11-10 Carl Zeiss Smt Gmbh 投影リソグラフィ用の照明光学系
KR20140129031A (ko) * 2012-01-19 2014-11-06 수프리야 자이스왈 리소그래피 및 다른 적용분야에서 극자외 방사선을 이용하는 재료, 성분 및 사용을 위한 방법
JP2015510688A (ja) * 2012-01-19 2015-04-09 スプリヤ ジャイスワル リソグラフィ及び他の用途における極端紫外線放射で使用する材料、成分及び方法
KR101930926B1 (ko) 2012-01-19 2019-03-11 수프리야 자이스왈 리소그래피 및 다른 적용분야에서 극자외 방사선을 이용하는 재료, 성분 및 사용을 위한 방법
JP2023017775A (ja) * 2012-01-19 2023-02-07 スプリヤ ジャイスワル リソグラフィ及び他の用途における極端紫外線放射で使用する材料、成分及び方法
JP2021170123A (ja) * 2012-01-19 2021-10-28 スプリヤ ジャイスワル リソグラフィ及び他の用途における極端紫外線放射で使用する材料、成分及び方法
JP2019179246A (ja) * 2012-01-19 2019-10-17 スプリヤ ジャイスワル リソグラフィ及び他の用途における極端紫外線放射で使用する材料、成分及び方法
JP2016504631A (ja) * 2013-01-11 2016-02-12 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvミラー及びeuvミラーを備える光学システム
US10146136B2 (en) 2013-02-28 2018-12-04 Carl Zeiss Smt Gmbh Reflecting coating with optimized thickness
JP2016513291A (ja) * 2013-02-28 2016-05-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 厚さを最適化した反射コーティング
US10353120B2 (en) 2013-05-09 2019-07-16 Nikon Corporation Optical element, projection optical system, exposure apparatus, and device manufacturing method
JP2017076150A (ja) * 2013-05-09 2017-04-20 株式会社ニコン 光学素子、投影光学系、露光装置及びデバイス製造方法
JP2016523386A (ja) * 2013-06-27 2016-08-08 カール・ツァイス・エスエムティー・ゲーエムベーハー 分離コーティングを有するミラーの表面補正
WO2018235721A1 (ja) * 2017-06-21 2018-12-27 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JPWO2018235721A1 (ja) * 2017-06-21 2020-04-23 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP7118962B2 (ja) 2017-06-21 2022-08-16 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
US11454878B2 (en) 2017-06-21 2022-09-27 Hoya Corporation Substrate with multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
US7440182B2 (en) 2008-10-21
US20080049307A1 (en) 2008-02-28
US20090097104A1 (en) 2009-04-16
EP1675164A4 (en) 2010-01-06
US7382527B2 (en) 2008-06-03
US7706058B2 (en) 2010-04-27
EP1675164B1 (en) 2011-12-21
KR101083466B1 (ko) 2011-11-16
US20060192147A1 (en) 2006-08-31
HK1099603A1 (en) 2007-08-17
JPWO2005038886A1 (ja) 2007-11-22
KR20070017476A (ko) 2007-02-12
EP1675164A1 (en) 2006-06-28
EP1675164B2 (en) 2019-07-03
ATE538491T1 (de) 2012-01-15
JP4466566B2 (ja) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4466566B2 (ja) 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置
JP5406602B2 (ja) 多層ミラー及びリソグラフィ装置
TWI534557B (zh) 微影裝置、光譜純度濾光器及元件製造方法
JP4390683B2 (ja) 光学素子、このような光学素子を備えたリソグラフィ装置及びデバイス製造方法
JP5716038B2 (ja) Euvリソグラフィ用反射光学素子
JP4320970B2 (ja) 多層膜反射鏡の製造方法
CN100449690C (zh) 多层膜反射镜、多层膜反射镜的制造方法及曝光系统
JP2013511827A (ja) 多層ミラー
KR20210105333A (ko) 비-반사 영역을 구비한 반사 층을 갖는 포토마스크
CN110050231B (zh) Euv微光刻的强度适配滤光器、产生其的方法以及具有对应滤光器的照明系统
KR20120098886A (ko) Euv 리소그래피를 위한 반사 마스크
JP4144301B2 (ja) 多層膜反射鏡、反射型マスク、露光装置及び反射型マスクの製造方法
KR101625934B1 (ko) 다층 미러 및 리소그래피 장치
US11073766B2 (en) Reflective optical element and optical system for EUV lithography having proportions of substances which differ across a surface
JP2006194764A (ja) 多層膜反射鏡および露光装置
JP2001027699A (ja) 多層膜反射鏡および反射光学系
US11385536B2 (en) EUV mask blanks and methods of manufacture
US10578783B2 (en) Optical grating and optical assembly for same
JP2019144569A (ja) 反射光学素子及びマイクロリソグラフィ投影露光装置の光学系
JP2006029915A (ja) 反射素子、露光装置
JP2005260072A (ja) 反射素子、露光装置
KR20030089765A (ko) 다층막 반사경 및 노광장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030249.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514803

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11401946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067007278

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792501

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11401946

Country of ref document: US