TW202027130A - 反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法 - Google Patents

反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法 Download PDF

Info

Publication number
TW202027130A
TW202027130A TW108130563A TW108130563A TW202027130A TW 202027130 A TW202027130 A TW 202027130A TW 108130563 A TW108130563 A TW 108130563A TW 108130563 A TW108130563 A TW 108130563A TW 202027130 A TW202027130 A TW 202027130A
Authority
TW
Taiwan
Prior art keywords
film
reflective mask
absorber
substrate
etching
Prior art date
Application number
TW108130563A
Other languages
English (en)
Inventor
片岡瑞生
池邊洋平
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202027130A publication Critical patent/TW202027130A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本發明係提供一種可降低反射型遮罩的陰影效應,且可形成微細且高精確度的吸收體圖案之反射型遮罩基底。
一種反射型遮罩基底,係具有基板、設置於該基板上之多層反射膜、以及設置於該多層反射膜上之吸收體膜;該吸收體膜係於該吸收體膜的至少一部分包含有選自鈷(Co)及鎳(Ni)所構成的群之至少1種高吸收係數元素,以及會加快乾蝕刻速度之元素;該吸收體膜係包含有含有基板側的表面之下面區域,以及含有與基板為相反側的表面之上面區域;該上面區域之該高吸收係數元素的濃度(原子%)係高於該下面區域之該高吸收係數元素的濃度(原子%)。

Description

反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法
本發明係關於一種半導體裝置的製造等所使用之反射型遮罩,以及被使用來製造反射型遮罩之反射型遮罩基底。又,本發明係關於一種使用上述反射型遮罩之半導體裝置的製造方法。
半導體裝置製造中之曝光裝置的光源波長已慢慢地變短。具體而言,光源的波長係從436nm(g線)、365nm(i線)、248nm(KrF雷射)、193nm(ArF雷射)而慢慢地縮短。為實現更微細的圖案轉印,已開發出一種使用波長約13.5nm的極紫外線(EUV:Extreme Ultra Violet)之EUV微影。由於相對於EUV光為透明的材料較少,故在EUV微影中係使用反射型遮罩。反射型遮罩係以具有形成於低熱膨脹基板上用以反射曝光光線之多層反射膜、形成於該多層反射膜上用以保護該多層反射膜之保護膜、以及形成於保護膜上之所需的轉印用圖案之遮罩構造來作為基本構造。又,代表性反射型遮罩有二元式反射型遮罩及相位轉移型反射型遮罩(半調式相位轉移型反射型遮罩)。二元式反射型遮罩係具有會充分吸收EUV光之較厚的吸收體圖案(轉印用圖案)。相位轉移型反射型遮罩係具有能夠藉由光吸收來減少EUV光,且會產生能夠使相位相對於來自多層反射膜的反射光而幾乎反轉(約180度的相位反轉)的反射光之較薄的吸收體圖案。該相位轉移型反射型遮罩係與穿透型光相位轉移遮罩同樣地可藉由相位轉移效果來獲得高轉印光學像對比。因此,相位轉移型反射型遮罩便會具有提升解析度之效果。又,由於相位轉移型反射型遮罩之吸收體圖案(相位轉移圖案)的膜厚較薄,故可高精確度地形成微細的相位轉移圖案。
在EUV微影中,由於透光率的關係而會使用複數反射鏡所構成的投影光學系統。在投影光學系統中,係使EUV光相對於反射型遮罩來從斜向入射,以使該等複數反射鏡不會遮蔽到投影光(曝光光線)。曝光光線朝反射型遮罩的入射角度目前是以相對於反射型遮罩基板的垂直面而呈6度者為主流。隨著投影光學系統之開口數(NA)的提升,已在朝更斜向的入射角(具體來說為8度左右)之方向做評估。
EUV微影中,由於曝光光線係相對於反射型遮罩而從斜向入射,故會有被稱作陰影效應之固有問題。陰影效應係指因曝光光線從斜向朝具有立體構造的吸收體圖案入射而產生陰影,導致所轉印形成的圖案尺寸及/或位置改變之現象。吸收體圖案的立體構造會成為障壁而在背光側產生陰影,造成所轉印形成之圖案的尺寸及/或位置改變。例如,所配置之吸收體圖案的方向在相對於斜入射光的方向呈平行之情況與相對於斜入射光的方向呈垂直之情況下,由於兩者的轉印圖案尺寸與位置會產生差異,故轉印精確度會降低。
上述般EUV微影用反射型遮罩以及用以製作其之遮罩基底相關的技術已被揭示在專利文獻1~專利文獻3中。又,專利文獻1中關於陰影效應亦有所揭示。過去,係藉由使用相位轉移型反射型遮罩作為EUV微影用反射型遮罩,來使相位轉移圖案的膜厚相較二元式反射型遮罩的情況會較薄,藉此抑制陰影效應造成的轉印精確度降低。
[先前技術文獻]
[專利文獻]
專利文獻1:日本特開2010-080659號公報
專利文獻2:日本特開2004-207593號公報
專利文獻3:日本特開2004-39884號公報
若使圖案愈微細且愈提高圖案尺寸及圖案位置的精確度,則半導體裝置的電氣特性性能便會提升,又,可提高集積度且降低晶片尺寸。因此,EUV微影已被要求較過去更高的高精確度微細尺寸圖案轉印性能。目前,被要求對應於hp16nm(half pitch 16nm)世代來形成超微細高精確度圖案。針對上述般要求,為了減少陰影效應,吸收體膜(相移膜)已被要求更加薄膜化。 尤其是EUV曝光的情況,吸收體膜(相移膜)的膜厚被要求要小於60nm,較佳為50nm以下。
如專利文獻1~3所揭示般,過去係使用Ta來作為形成反射型遮罩基底的吸收體膜(相移膜)之材料。Ta在EUV光(例如波長13.5nm)中的折射率n為大約0.943。因此,即便是利用Ta的相位轉移效果,對於僅以Ta所形成之吸收體膜(相移膜)的薄膜化來說60nm已是極限。藉由使用消光係數k高(吸收係數高)的金屬材料來作為二元式反射型遮罩基底的吸收體膜,便可使吸收體膜更加薄膜化。在波長13.5nm中的消光係數k較大之金屬材料舉例有鈷(Co)及鎳(Ni)。
為了轉印形成微細圖案,已被要求要使反射型遮罩的吸收體圖案為接近於垂直之剖面形狀。但消光係數k較大的Co及Ni為不易進行蝕刻之材料,需要較長的蝕刻時間。因此,便難以使包含有Co及Ni之吸收體圖案的剖面形狀為垂直。亦即,藉由乾蝕刻來將吸收體膜圖案化的情況,在蝕刻氣體已到達吸收體膜下面的階段中,吸收體圖案下部的側壁之蝕刻並不會充分進行。於是,吸收體圖案之剖面形狀便會傾斜而成為下部較寬的錐(taper)狀。為了使吸收體圖案下部的側壁確實地受到蝕刻,而必須進行追加蝕刻(過蝕刻)。
然而,為了去除吸收體圖案剖面的錐狀部分,若使過蝕刻的時間變長,則吸收體圖案上部的側壁亦會被蝕刻。於是,便難以使吸收體圖案的剖面形狀為垂直。當使用吸收體圖案的剖面形狀為錐狀之反射型遮罩的情況,則會發生被轉印基板上所形成之轉印圖案的精確度降低之問題。又,若使過蝕刻太長,則會有對較吸收體膜要配置於基板側的保護膜及/或多層反射膜造成損傷之可能性。
本發明有鑑於上述問題點,其目的為提供一種可降低反射型遮罩的陰影效應,並形成微細且高精確度的吸收體圖案之反射型遮罩基底。具體而言,本發明之目的為提供一種在形成反射型遮罩的吸收體圖案之際,可抑制吸收體圖案的剖面形狀變成錐狀之反射型遮罩基底。又,本發明之目的 為提供一種可降低陰影效應,且可抑制吸收體圖案的剖面形狀變成錐狀之反射型遮罩及其製造方法。又,本發明之目的為提供一種使用該反射型遮罩之半導體裝置的製造方法。
為解決上述課題,本發明係具有以下構成。
(構成1)
本發明之構成1為一種反射型遮罩基底,係具有基板、設置於該基板上 之多層反射膜、以及設置於該多層反射膜上之吸收體膜;
該吸收體膜係於該吸收體膜的至少一部分包含有選自鈷(Co)及鎳(Ni)所構成的群之至少1者高吸收係數元素,以及會加快乾蝕刻速度之元素;
該吸收體膜係包含有含有基板側的表面之下面區域,以及含有與基板為相反側的表面之上面區域;
該上面區域之該高吸收係數元素的濃度(原子%)係高於該下面區域之該高吸收係數元素的濃度(原子%)。
(構成2)
本發明之構成2係如構成1之反射型遮罩基底,其中該下面區域之該會加快乾蝕刻速度之元素的濃度(原子%)係高於該上面區域之該會加快乾蝕刻速度之元素的濃度(原子%)。
(構成3)
本發明之構成3係如構成1或2之反射型遮罩基底,其中該會加快乾蝕刻速度之元素為選自鉭(Ta)、鎢(W)及錫(Sn)所構成的群之至少1種元素。
(構成4)
本發明之構成4係如構成1至3中任一反射型遮罩基底,其中該吸收體膜為包含有含有該下面區域的下層與含有該上面區域的上層之層積膜;
使該下層的材料所含該高吸收係數元素的濃度(原子%)為C1lower,並使該上層的材料所含該高吸收係數元素的濃度(原子%)為C1upper時,係滿足以下式1的關係式:
式1:C1upper>C1lower≧0。
(構成5)
本發明之構成5係如構成4之反射型遮罩基底,其中使該下層的材料所含該會加快乾蝕刻速度之元素的濃度(原子%)為C2lower,並使該上層的材料所含該會加快乾蝕刻速度之元素的濃度(原子%)為C2upper時,係滿足以下式2的關係式:
式2:C2lower>C2upper≧0。
(構成6)
本發明之構成6係如構成4或5之反射型遮罩基底,其中該上層的材料係含有鈷(Co)及鉭(Ta),該下層的材料係含有鉭(Ta)。
(構成7)
本發明之構成7係如構成4或5之反射型遮罩基底,其中該上層的材料係含有鎳(Ni)及鉭(Ta),該下層的材料係含有鉭(Ta)。
(構成8)
本發明之構成8係如構成4至7中任一反射型遮罩基底,其中該上層係由可藉由含有第一氯系氣體的乾蝕刻氣體來進行蝕刻之材料所構成,該下層係由含有可藉由不同於該第一氯系氣體的第二氯系氣體之乾蝕刻氣體來進行蝕刻之材料所構成。
(構成9)
本發明之構成9係如構成1至8中任一反射型遮罩基底,其中該多層反射膜與該吸收體膜間係具有保護膜。
(構成10)
本發明之構成10係如構成9之反射型遮罩基底,其中該保護膜與該吸收體膜間係具有蝕刻停止膜;該蝕刻停止膜係由含鉻(Cr)材料或含矽(Si)材料所構成。
(構成11)
本發明之構成11係如構成1至10中任一反射型遮罩基底,其中該吸收體膜上係具有蝕刻遮罩膜;該蝕刻遮罩膜係由包含有含鉻(Cr)材料或含矽(Si)材料之材料所構成。
(構成12)
本發明之構成12為一種反射型遮罩,係具有如構成1至11中任一反射型遮罩基底中的該吸收體膜被圖案化後的吸收體圖案。
(構成13)
本發明之構成13為一種反射型遮罩之製造方法,係藉由使用氯系氣體之乾蝕刻,來將如構成1至11中任一反射型遮罩基底的該吸收體膜予以圖案化而形成吸收體圖案。
(構成14)
本發明之構成14為一種反射型遮罩之製造方法,係藉由使用第一氯系氣體與不同於該第一氯系氣體的第二氯系氣體之乾蝕刻,來將如構成1至11中任一反射型遮罩基底的該吸收體膜予以圖案化而形成吸收體圖案。
(構成15)
本發明之構成15為一種半導體裝置之製造方法,具有以下工序:將如構成12之反射型遮罩安裝在具有會發出EUV光的曝光光源之曝光裝置,來將轉印圖案轉印在被轉印基板上所形成的阻劑膜。
依據本發明,便可提供一種能夠降低反射型遮罩的陰影效應,並形成微細且高精確度的吸收體圖案之反射型遮罩基底。具體而言,依據本發明,便可提供一種在形成反射型遮罩的吸收體圖案之際,能夠抑制吸收體圖案的剖面形狀變成錐狀之反射型遮罩基底。又,依據本發明,便可提供一種能夠降低陰影效應,且能夠抑制吸收體圖案的剖面形狀變成錐狀之反射型遮罩及其製造方法。又,可提供一種使用該反射型遮罩之半導體裝置的製造方法。
1:基板
2:多層反射膜
3:保護膜
4:吸收體膜
4a:吸收體圖案
5:內面導電膜
6:蝕刻遮罩膜
7:蝕刻停止膜
11:阻劑膜
11a:阻劑圖案
42:下層
44:上層
46:下面區域
47:中間區域
48:上面區域
100:反射型遮罩基底
200:反射型遮罩
圖1係用以說明本發明之反射型遮罩基底一實施型態的構成之示意圖,且為針對吸收體膜的構造來加以說明之主要部分剖面示意圖。
圖2係用以說明本發明之反射型遮罩基底的其他實施型態之主要部份剖面示意圖。
圖3係以主要部份剖面示意圖來顯示由反射型遮罩基底來製作反射型遮罩的工序之工序圖。
圖4係顯示本發明之反射型遮罩基底的其他實施型態一範例之主要部份剖面示意圖。
圖5係顯示本發明之反射型遮罩基底的另一其他實施型態一範例之主要部份剖面示意圖。
圖6係用以說明吸收體圖案的錐角θ之剖面示意圖。
以下,便針對本發明之實施型態,參見圖式來具體地說明。此外,以下之實施型態僅為將本發明具體化時的一型態,而非將本發明限定在其範圍內。此外,圖式中會有針對相同或相當的部分則賦予相同符號而簡化或省略其說明之情況。
<反射型遮罩基底100的構成及其製造方法>
圖1係用以說明本實施型態之反射型遮罩基底100的實施型態之主要部份剖面示意圖。如圖1所示,本實施型態中,反射型遮罩基底100係於基板1上依序具有多層反射膜2與吸收體膜4。多層反射膜2係形成於基板1的第1主面(表面)側,會反射作為曝光光線之EUV光。吸收體膜4會吸收EUV光。本說明書中係將吸收體膜4中包含有基板1側的表面之區域稱作下面區域46。又,本說明書中係將吸收體膜4中包含有與基板1為相反側的表面之區域稱作上面區域48。又,本說明書中係將相對於特定EUV曝光光線(例如波長13.5nm的EUV光)而吸收係數(消光係數)較高的元素稱作高吸收係數元素。本實施型態係具有上面區域48之高吸收係數元素的濃度(原子%)會高於下面區域46之高吸收係數元素的濃度(原子%)之特徵。
圖1所示實施型態的反射型遮罩基底100係在多層反射膜2與吸收體膜4間另具有保護膜3。保護膜3係由相對於吸收體膜4之圖案化時的蝕刻劑,以及洗淨液而具有耐受性之材料所形成。圖1所示實施型態的反射型遮罩基底100係於基板1的第2主面(內面)側具有靜電夾具用的內面導電膜5。
圖4係顯示本實施型態之反射型遮罩基底100的其他實施型態之主要部份剖面示意圖。反射型遮罩基底100係與圖1所示之反射型遮罩基底100同樣地具有基板1、多層反射膜2、保護膜3、吸收體膜4及內面導電膜5。圖4所示之反射型遮罩基底100係於吸收體膜4上另具有在蝕刻吸收體膜4時會成為吸收體膜4的蝕刻遮罩之蝕刻遮罩膜6。此外,在使用具有蝕刻遮罩膜6之反射型遮罩基底100的情況,如後述般,亦可於吸收體膜4形成轉印圖案後才將蝕刻遮罩膜6剝離。
圖5係顯示本實施型態之反射型遮罩基底100的另一其他實施型態之主要部份剖面示意圖。反射型遮罩基底100係與圖4所示之反射型遮罩基底100同樣地具有基板1、多層反射膜2、保護膜3、吸收體膜4、蝕刻遮罩膜6及內面導電膜5。圖5所示之反射型遮罩基底100係在保護膜3與吸收體膜4之間另具有在蝕刻吸收體膜4時會讓蝕刻停止之蝕刻停止膜7。此外,在使用具有蝕刻遮罩膜6及蝕刻停止膜7之反射型遮罩基底100的情況,如後述般,亦可於吸收體膜4形成轉印圖案後才將蝕刻遮罩膜6及蝕刻停止膜7剝離。
又,反射型遮罩基底100係包含有未形成有內面導電膜5之構成。進一步地,反射型遮罩基底100係包含有於吸收體膜4或蝕刻遮罩膜6上形成有阻劑膜11之附阻劑膜的遮罩基底之構成。
本說明書中,例如「形成於基板1的主表面上之多層反射膜2」之記載係意指除了多層反射膜2是相接於基板1的表面來加以配置之情況以外,亦包含有在基板1與多層反射膜2間具有其他膜之情況。關於其他膜亦相同。又,本說明書中,例如「膜A係相接於膜B上來加以配置」係意指膜A與膜B之間未介設有其他膜,膜A與膜B為直接相接般地配置之情況。
以下,便針對反射型遮罩基底100的各構成來具體地說明。
<<基板1>>
為了防止因EUV光之曝光時的熱而導致吸收體圖案4a變形,基板1較佳宜使用具有0±5ppb/℃範圍內的低熱膨脹係數者。具有此範圍的低熱膨脹係數之材料可使用例如SiO2-TiO2系玻璃或多成分系玻璃陶瓷等。
基板1中,形成有轉印圖案(後述吸收體膜4會構成此轉印圖案)一側的第1主面由至少獲得圖案轉印精確度、位置精確度之觀點來看,係經表面加工來成為高平坦度。EUV曝光的情況,基板1中,形成有轉印圖案一側的主表面之132mm×132mm的區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。與形成有吸收體膜4一側為相反側的第2主面在安裝在曝光裝置時為被靜電夾持之面(內面)。內面之132mm×132mm的區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。此外,反射型遮罩基底100之142mm×142mm的區域中之第2主面側(內面)的平坦度較佳為1μm以下,更佳為0.5μm以下,特佳為0.3μm以下。
又,基板1的表面平滑度程度亦為極重要之項目。形成有吸收體圖案4a之基板1之第1主面的表面粗糙度以均方根粗糙度(RMS)來說較佳為0.1nm以下。此外,表面平滑度可以原子力顯微鏡來做測定。
進一步地,基板1為了防止其上所形成之膜(多層反射膜2等)因膜應力而變形,較佳為具有高硬度者。尤其是具有65GPa以上的高楊氏係數者為佳。
<<多層反射膜2>>
反射型遮罩200的多層反射膜2係具有會反射EUV光之功能。反射型遮罩200係構成為多層膜,該多層膜係週期性地層積有以折射率不同的元素來作為主成分之各層。
一般來說,係使用交互地層積有40~60週期左右為高折射率材料之輕元素或其化合物的薄膜(高折射率層)與為低折射率材料之重元素或其化合物的薄膜(低折射率層)之多層膜來作為多層反射膜2。多層膜亦可以從基板1側依序層積有高折射率層與低折射率層之高折射率層/低折射率層的層積構造來作為1週期,並層積有複數週期。又,多層膜係亦可以從基板1側依序層積有低折射率層與高折射率層之低折射率層/高折射率層的層積構造來作為1週期,並層積有複數週期。此外,多層反射膜2最表面的層,即多層反射膜2之與基板1為相反側的表面層較佳為高折射率層。上述多層膜中,當以從基板1依序層積有高折射率層與低折射率層之高折射率層/低 折射率層的層積構造來作為1週期並層積有複數週期之情況,則最上層便會成為低折射率層。最上層為低折射率層的情況,若低折射率層構成多層反射膜2的最表面,則會容易被氧化而導致反射型遮罩200的反射率減少。因此,較佳宜在最上層的低折射率層上另形成有高折射率層來作為多層反射膜2。另一方面,上述多層膜中,當以從基板1側依序層積有低折射率層與高折射率層之低折射率層/高折射率層的層積構造來作為1週期並層積有複數週期之情況,由於最上層會成為高折射率層,故保持現狀即可。
本實施型態中,高折射率層係採用含有矽(Si)之層。含有Si之材料除了Si單體以外,亦可為於Si含有硼(B)、碳(C)、氮(N)及氧(O)之Si化合物。藉由使用含有Si之層來作為高折射率層,便可獲得EUV光的反射率高之多層反射膜2。本實施型態中,較佳宜使用玻璃基板來作為基板1。其係因為Si與玻璃基板的密著性優異。低折射率層係使用選自鉬(Mo)、釕(Ru)、銠(Rh)及鉑(Pt)之金屬單體,或該的等合金。作為相對於例如波長13nm~14nm的EUV光之多層反射膜2,較佳宜使用交互地層積有40~60週期左右的Mo膜與Si膜之Mo/Si週期層積膜。此外,亦可以矽(Si)來形成為多層反射膜2的最上層之高折射率層,並在此最上層(Si層)與Ru系保護膜3間形成包含有矽與氧之矽氧化物層。藉由使最上層的上方含有矽氧化物層,便可提高遮罩洗淨耐受性。
上述般多層反射膜2單獨的反射率通常為65%以上,上限通常為73%。此外,多層反射膜2之各構成層的厚度、週期依曝光波長來適當地選擇即可,係選擇會滿足布拉格反射定律。多層反射膜2中雖分別存在有複數高折射率層及低折射率層,但高折射率層彼此及低折射率層彼此的厚度亦可不相同。又,多層反射膜2最表面之Si層的膜厚可在不會導致反射率降低之範圍來做調整。最表面之Si(高折射率層)的膜厚可為3nm~10nm。
多層反射膜2的形成方法在該技術領域中為公知。可藉由例如離子束濺射法來成膜出多層反射膜2的各層而形成。上述Mo/Si週期多層膜的情況,係藉由例如離子束濺射法,首先,使用Si靶材來於基板1上成膜出厚度4nm左右的Si膜後,使用Mo靶材來成膜出厚度3nm左右的Mo膜,並以其為1週期而層積40~60週期來形成多層反射膜2(使最表面的層為Si層)。 使多層反射膜2的週期為60週期之情況,工序數雖會多於40週期,但可提高相對於EUV光的反射率。又,在成膜多層反射膜2之際,較佳宜從離子源供應氪(Kr)離子粒子來進行離子束濺射,藉以形成多層反射膜2。
<<保護膜3>>
本實施型態之反射型遮罩基底100較佳宜在多層反射膜2與吸收體膜4間具有保護膜3。藉由於多層反射膜2與吸收體膜4之間具有保護膜3,便可抑制在使用反射型遮罩基底100來製造反射型遮罩200之際對於多層反射膜2表面的損傷。於是,便可使反射型遮罩200相對於EUV光的反射特性變得良好。
保護膜3係為了自後述反射型遮罩200之製造工序中的乾蝕刻及洗淨來保護多層反射膜2,而被形成於多層反射膜2上。又,亦兼具在使用電子線(EB)來修正吸收體圖案4a的黑缺陷時會保護多層反射膜2之功能。此處,圖1中雖係顯示保護膜3為1層的情況,但亦可為3層以上的層積構造。例如,使最下層與最上層為含有上述Ru之物質所構成的層,並使Ru以外的金屬或合金介設在最下層與最上層間來構成保護膜3亦無妨。例如,亦可使保護膜3由含有以釕為主成分的材料所構成。亦即,保護膜3的材料可為Ru金屬單體,或是於Ru包含有選自鈦(Ti)、鈮(Nb)、鉬(Mo)、鋯(Zr)、釔(Y)、硼(B)、鑭(La)、鈷(Co)及錸(Re)等至少1種金屬之Ru合金。又,保護膜3的材料可為於Ru或Ru合金另含有氮之材料。上述般材料的保護膜3對於以氯系氣體(Cl系氣體)的乾蝕刻來將吸收體膜4圖案化之情況來說特別有效。保護膜3較佳宜由在使用氯系氣體之乾蝕刻中,吸收體膜4相對於保護膜3的蝕刻選擇比(吸收體膜4的蝕刻速度/保護膜3的蝕刻速度)為1.5以上,較佳為3以上之材料所形成。
當保護膜3為Ru合金的情況,則Ru合金的Ru含量為50原子%以上但小於100原子%,較佳為80原子%以上但小於100原子%,更佳為95原子%以上但小於100原子%。尤其是當Ru合金之Ru含量為95原子%以上但小於100原子%的情況,便可抑制構成多層反射膜2之元素(例如矽)朝保護膜3擴散,同時充分確保EUV光的反射率,而兼具遮罩洗淨耐受性、蝕 刻加工吸收體膜4時的蝕刻停止功能、以及防止多層反射膜2的與時變化而作為保護膜3的功能。
在EUV微影中由於相對於曝光光線為透明的物質較少,故能夠防止異物附著在遮罩圖案面之EUV護膜在技術上並不容易。因此,未使用護膜之無護膜的運用便成為主流。又,在EUV微影中,會發生因EUV曝光而於遮罩沉積有碳膜或成長有氧化膜之曝光污染。於是,在將EUV微影用反射型遮罩200使用於半導體裝置的製造之階段中,便必須每次都要進行洗淨來去除遮罩上的異物及污染。因此,反射型遮罩200相較於光微影用穿透型遮罩便被要求層次不同的遮罩洗淨耐受性。藉由使用含有Ti之Ru系的保護膜3,則可特別提高對於硫酸、硫酸+過氧化氫混合物(SPM)、氨、氫氧化銨+過氧化氫+去離子水混合物(APM)、OH自由基洗淨水、或濃度為10ppm以下的臭氧水等洗淨液的洗淨耐受性。於是,便可滿足遮罩洗淨耐受性的要求。
保護膜3的厚度只要是能夠達成其作為保護膜3之功能則未被特別限制。由EUV光之反射率的觀點來看,保護膜3的厚度較佳為1.0nm~8.0nm,更佳為1.5nm~6.0nm。
保護膜3的形成方法並未特別限制,可採用與公知的成膜方法相同者。具體例舉例有濺射法及離子束濺射法。
<<吸收體膜4>>
保護膜3上係形成有會吸收EUV光之吸收體膜4。吸收體膜4係具有會吸收EUV光之功能。藉由乾蝕刻來將吸收體膜4加工成特定圖案,藉此便可獲得吸收體圖案4a。
本實施型態之吸收體膜4可藉由使用相對於EUV光(例如波長13.5nm)的消光係數k較高(吸收係數高)之金屬材料來使其薄膜化。本說明書中係將消光係數k較高(吸收係數高)的金屬元素稱作「高吸收係數元素」。具體而言,高吸收係數元素過去係意指某種元素,其消光係數係較Ta(被使用來作為反射型遮罩之吸收體膜4的材料)之相對於波長13.5nm的EUV光之消光係數要來得大。可使用選自鈷(Co)及鎳(Ni)所構成的群之至少1者來作為可被用作為本實施型態的吸收體膜4之高吸收係數元素。
本說明書中,特定材料之折射率n及消光係數k的數值係意指相對於EUV光(波長13.5nm)之折射率n及消光係數k。
過去,由於鉭(Ta)的加工性良好,故經常被使用來作為反射型遮罩基底100的吸收體膜4。鉭(Ta)的折射率n及消光係數k為n=0.943及k=0.041。相對於此,鈷(Co)的折射率n及消光係數k則為n=0.933及k=0.066。又,鎳(Ni)的折射率n及消光係數k為n=0.948及k=0.073。因此,鈷及鎳的消光係數k係大於鉭。於是,藉由使用選自鈷(Co)及鎳(Ni)所構成的群之至少1者之高吸收係數元素來作為吸收體膜4的材料,便可使吸收體膜4薄膜化。其結果,便可降低反射型遮罩200的陰影效應。
另一方面,鈷(Co)及鎳(Ni)為不易進行蝕刻之材料。若蝕刻時間變長,會因吸收體膜4之圖案4a上部的側壁被蝕刻,而有吸收體膜4之圖案4a的剖面形狀變成錐(taper)狀之虞。若使用吸收體膜4之圖案的剖面形狀為錐狀之反射型遮罩200的情況,則會發生被轉印基板1上所形成之轉印圖案的精確度降低之問題。
因此,本案發明人發現在吸收體膜4的蝕刻之際,藉由較蝕刻初期而更加快蝕刻末期的蝕刻速度,便可降低吸收體膜4圖案的剖面形狀變成錐狀。進一步地,本案發明人發現為了加快蝕刻末期的蝕刻速度,可使吸收體膜4中包含有與基板1為相反側的表面之區域(上面區域48)的高吸收係數元素濃度(原子%)較吸收體膜4之基板1側區域(下面區域46)的高吸收係數元素濃度(原子%)要來得高,而完成本實施型態。此外,亦可使下面區域46未含有高吸收係數元素。亦即,可使下面區域46之高吸收係數元素的濃度(原子%)為零。
此外,下面區域46會含有高吸收係數元素以外的元素。為了加快蝕刻末期的蝕刻速度,下面區域46較佳宜含有會加快乾蝕刻速度的元素。會加快乾蝕刻速度之元素係意指當為了蝕刻高吸收係數元素而使用特定蝕刻氣體的情況,該特定蝕刻氣體所致之蝕刻速度會較蝕刻高吸收係數元素之情況要來得快之元素。
針對吸收體膜4的下面區域46及上面區域48來進一地說明。
如圖1所示,吸收體膜4係包含有下面區域46及上面區域48。下面區域46為包含有吸收體膜4之二個表面(界面)當中的基板1側表面之區域。圖1所示之範例中,下面區域46係包含有吸收體膜4的表面(界面)當中與保護膜3相接之表面(本說明書中稱作「下面」。),且為其表面附近的區域。又,上面區域48為包含有吸收體膜4的二個表面(界面)當中與基板1為相反側的表面(本說明書中稱作「上面」。)之區域。圖1所示之範例中,上面區域48係包含有會成為反射型遮罩基底100的最表面之吸收體膜4的表面,且為其表面附近的區域。下面區域46及上面區域48皆為下面及上面附近的區域,且可為自下面或上面具有吸收體膜4之膜厚的10%,較佳為5%的深度之區域。下面區域46及上面區域48為用以顯示吸收體膜4中之高吸收係數元素的濃度(原子%)以及會加快乾蝕刻速度之元素的濃度(原子%)分佈之假想區域。下面區域46及上面區域48中之特定元素的濃度分佈不需是均勻的。下面區域46及上面區域48中之特定元素的濃度可為各區域內之特定元素的濃度平均值。
下面區域46與上面區域48間之區域(本說明書中稱作「中間區域47」。)之特定元素的濃度分佈為任意。中間區域47之特定元素的濃度分佈較佳為在深度方向上單純減少或單純增加之分佈。具體而言,中間區域47中之高吸收係數元素的濃度較佳為在吸收體膜4的深度方向上會從上面區域48朝向下面區域46而單純減少。又,中間區域47中會加快乾蝕刻速度之元素的濃度較佳為在吸收體膜4的深度方向上會從上面區域48朝向下面區域46而單純增加。特定元素的濃度在深度方向上的濃度變化可為傾斜,又,亦可階梯狀地變化(增加或減少)。本說明書中,元素濃度單純減少係包含元素濃度階梯狀地減少之情況。本說明書中,元素濃度單純增加係包含元素濃度階梯狀地增加之情況。
本實施型態之吸收體膜4中,下面區域46之高吸收係數元素的濃度(原子%)係低於上面區域48之高吸收係數元素的濃度(原子%)。於是,在蝕刻吸收體膜4之際,便可加快為蝕刻末期之下面區域46的蝕刻速度。具體而言,下面區域46的蝕刻速度較佳為上面區域48之蝕刻速度的1.5倍以上,更佳為3倍以上。又,下面區域46的蝕刻速度較佳為上面區域48之蝕刻速 度的10倍以下,更佳為8倍以下。藉由調節下面區域46之高吸收係數元素的濃度來使下面區域46及上面區域48的材料成為上述般的蝕刻速度,便可抑制吸收體圖案4a的剖面形狀變成錐狀。若使用本實施型態之反射型遮罩基底,由於可抑制剖面形狀變成錐狀,故可製造出具有微細且高精確度的吸收體圖案4a之反射型遮罩200。
本實施型態之反射型遮罩基底100中,下面區域46之會加快乾蝕刻速度的元素濃度(原子%)較佳宜高於上面區域48之會加快乾蝕刻速度的元素濃度(原子%)。會加快乾蝕刻速度之元素較佳為選自鉭(Ta)、鎢(W)及錫(Sn)所構成的群之至少1種元素。又,會加快乾蝕刻速度之元素除了特定的金屬元素以外,可含有氮。藉由使下面區域46包含有更多會加快乾蝕刻速度的元素,便可加快吸收體膜4之蝕刻末期的蝕刻速度。其結果,便可更確實地抑制吸收體圖案4a的剖面形狀變成錐狀。
如圖2所示,可使其他實施型態之反射型遮罩基底100的吸收體膜4為包含有含有下面區域46的下層42與含有上面區域48的上層44之層積膜。
如圖2所示,吸收體膜4可包含有含有下面區域46之下層42與含有上面區域48之上層44。圖2所示之範例中,吸收體膜4為下層42及上層44所構成的層積膜。下層42及上層44之各特定元素的濃度分佈較佳為略均勻。又,當吸收體膜4是由下層42及上層44所構成的層積膜之情況,則下面區域46及下層42之特定元素的濃度為相同,且上面區域48及上層44之特定元素的濃度為相同。
圖2所示之範例中,吸收體膜4的層積膜為下層42及上層44之2層。本實施型態中,亦可使吸收體膜4為3層以上的層積膜。由可簡化吸收體膜4的成膜工序且降低製造成本之觀點來看,本實施型態之反射型遮罩基底100的吸收體膜4較佳為下層42及上層44之2層的層積膜。
圖2所示實施型態之反射型遮罩基底100的吸收體膜4中,當使下層42的材料所含高吸收係數元素的濃度(原子%)為C1lower,且使上層44的材料所含高吸收係數元素的濃度(原子%)為C1upper時,係滿足下述(式1)的關係。
式1:C1upper>C1lower≧0
依據圖2所示實施型態的反射型遮罩基底100,藉由使吸收體膜4為包含有具有特定高吸收係數元素的濃度之下層42及上層44之層積膜,則相較於上層44的蝕刻速度,便可加快吸收體膜4之下層42的蝕刻速度。於是,在形成反射型遮罩200的吸收體圖案4a之際,便可抑制圖案的剖面形狀變成錐狀。
圖2所示實施型態的反射型遮罩基底100當使下層42的材料所含會加快乾蝕刻速度之元素的濃度(原子%)為C2lower,且使上層44的材料所含會加快乾蝕刻速度之元素的濃度(原子%)為C2upper時,較佳宜滿足下述(式2)的關係。
式2:C2lower>C2upper≧0
藉由使吸收體膜4的下層42及上層44當中會加快乾蝕刻速度之元素的濃度(原子%)為特定關係,則相較於上層44的蝕刻速度,便可確實地加快吸收體膜4之下層42的蝕刻速度。其結果,在形成反射型遮罩200的吸收體圖案4a之際,便可更確實地抑制吸收體圖案4a的剖面形狀變成錐狀。
上層44的材料可使用於鈷(Co)及鎳(Ni)當中之至少1種以上的元素添加有鎢(W)、鈮(Nb)、鉭(Ta)、鈦(Ti)、鋯(Zr)、鉿(Hf)、釔(Y)、磷(P)及錫(Sn)當中之至少1種以上的添加元素(X)之Co-X合金、Ni-X合金或CoNi-X合金。添加元素(X)較佳為包含有鎢(W)、鉭(Ta)及/或錫(Sn),更佳為包含有鉭(Ta)。藉由使上層44的材料包含有適當的添加元素(X),便可使上層44維持在高消光係數(吸收係數),同時控制在適當的蝕刻速度。
上層44的材料具體而言,較佳可使用Co單體、Ni單體、CoTa3、CoTa、Co3Ta、NiTa3、NiTa或NiTa3
上層44的材料中,鈷(Co)及鎳(Ni)的總濃度較佳為10原子%以上,更佳為20原子%以上。又,鈷(Co)及鎳(Ni)的總濃度較佳為90原子%以下,更佳為85原子%以下。
當上層44的材料為含有鈷(Co)之情況,則鈷(Co)的濃度較佳為10原子%以上,更佳為20原子%以上。又,鈷(Co)的濃度較佳為90原子%以下,更佳為85原子%以下。
當上層44的材料為含有鎳(Ni)之情況,則鎳(Ni)的濃度較佳為10原子%以上,更佳為20原子%以上。又,鎳(Ni)的濃度較佳為90原子%以下,更佳為85原子%以下。
當添加元素(X)為鉭(Ta)、鎢(W)或錫(Sn)之情況,則鉭(Ta)、鎢(W)或錫(Sn)的濃度較佳為10原子%以上,更佳為15原子%以上。又,鉭(Ta)、鎢(W)或錫(Sn)的濃度較佳為90原子%以下,更佳為80原子%以下。
當Co-X合金的添加元素(X)為Ta之情況,則Co與Ta的組成比(Co:Ta)較佳為9:1~1:9,更佳為4:1~1:4。使用X射線繞射裝置(XRD)來對Co與Ta的組成比為3:1、1:1及1:3時的各試料進行分析及剖面TEM觀察後,在所有的試料中,來自Co及Ta的波峰會變得平緩而成為非晶質構造。
又,當Ni-X合金的添加元素(X)為Ta之情況,則Ni與Ta的組成比(Ni:Ta)較佳為9:1~1:9,更佳為4:1~1:4。使用X射線繞射裝置(XRD)來對Ni與Ta的組成比為3:1、1:1及1:3時之各試料進行分析及剖面TEM觀察後,在所有的試料中,來自Ni及Ta的波峰會變得平緩而成為非晶質構造。
又,當CoNi-X合金的添加元素(X)為Ta之情況,則CoNi與Ta的組成比(CoNi:Ta)較佳為9:1~1:9,更佳為4:1~1:4。
又,Co-X合金、Ni-X合金或CoNi-X合金除了上述添加元素(X)以外,亦可在不會對折射率及消光係數造成很大影響之範圍內而含有氮(N)、氧(O)、碳(C)及/或硼(B)等其他元素。
上層44之材料的消光係數k較佳為0.035以上,更佳為0.040以上,再更佳為0.045以上。
下層42的材料較佳為含有鉭(Ta)、鎢(W)及/或錫(Sn)之材料。下層42的材料可使用於鉭(Ta)、鎢(W)及錫(Sn)當中之至少1種以上的元素添加有上層44的材料之材料。又,為了更加快蝕刻速度,下層42的材料可使用於鉭(Ta)、鎢(W)及錫(Sn)當中之至少1種以上的元素添加有氮(N)之材料。
當下層42的材料為含有Ta、W及Sn的任一者之情況,則Ta、W或Sn的濃度較佳為50原子%以上,更佳為70原子%以上。又,當下層42的 材料為含有選自Ta、W及Sn的複數材料之情況,則Ta、W及Sn的總濃度較佳為50原子%以上,更佳為70原子%以上。
當下層42的材料為含有Ta、W或Sn與N之情況,則Ta、W或Sn與N的總濃度較佳為60原子%以上,更佳為80原子%以上。
當下層42的材料為含有Co之情況,則Co的含量較佳為50原子%以下,更佳為35原子%以下。又,當下層42的材料為含有Ni之情況,則Ni的含量較佳為50原子%以下,更佳為35原子%以下。
又,下層42的材料亦可在不會對蝕刻速度、折射率及消光係數造成很大影響之範圍內而含有氧(O)、碳(C)或硼(B)等其他元素。
圖2所示實施型態的反射型遮罩基底100中,上層44的材料較佳為含有鈷(Co)及鉭(Ta),下層42的材料較佳為含有鉭(Ta)。又,上層44的材料較佳為含有鎳(Ni)及鉭(Ta),下層42的材料較佳為含有鉭(Ta)。鈷(Co)及鎳(Ni)為高吸收係數元素,鉭(Ta)則為會加快乾蝕刻速度之元素。
由於可藉由使上層44的材料除了鉭(Ta)以外亦含有鈷(Co)或鎳(Ni)來提高消光係數k,故可使吸收體膜4薄膜化。
含有鈷(Co)及鉭(Ta)之上層44的材料具體而言,較佳可使用CoTa3、CoTa或Co3Ta。含有鎳(Ni)及鉭(Ta)之上層44的材料具體而言,較佳可使用NiTa3、NiTa或Ni3Ta。
藉由使下層42的材料含有鉭(Ta),則相較於上層44,便可加快下層42的蝕刻速度,且可加快吸收體膜4之蝕刻末期的蝕刻速度。其結果,便可更確實地抑制吸收體圖案4a的剖面形狀變成錐狀。
含有鉭(Ta)之下層42的材料具體而言除了Ta單體以外,較佳可使用TaN、TaBN、CoTa3或NiTa3
圖2所示實施型態之反射型遮罩基底100的上層44較佳宜由含有第一氯系氣體且可藉由乾蝕刻氣體來進行蝕刻之材料所構成,下層42較佳宜由含有與第一氯系氣體不同的第二氯系氣體且可藉由乾蝕刻氣體來進行蝕刻之材料所構成。
用以蝕刻上層44之第一氯系氣體可使用Cl2、SiCl4、CHCl3、CCl4及BCl3等氯系氣體;選自該等氯系氣體之2種以上的混合氣體;以特定比率 含有氯系氣體與He之混合氣體;或是選自以特定比率含有氯系氣體與Ar之混合氣體所構成的群之至少一者或選自其以上之氣體。較佳宜使用Cl2或BCl3來作為第一氯系氣體。特別是當上層44的材料為Co單體、Ni單體、CoTa3、CoTa、Co3Ta、NiTa3、NiTa或NiTa3之情況,則較佳宜使用BCl3來作為第一氯系氣體。
用以蝕刻下層42之蝕刻氣體可使用Cl2、SiCl4、CHCl3、CCl4及BCl3等氯系氣體;選自該等氯系氣體之2種以上的混合氣體;以特定比率含有氯系氣體與He之混合氣體;以特定比率含有氯系氣體與Ar之混合氣體;包含有選自氟氣、氯氣、溴氣及碘氣中的至少一者之鹵素氣體;以及選自鹵化氫氣體所構成的群之至少一者或選自其以上之氣體。作為其他蝕刻氣體,可使用CF4、CHF3、C2F6、C3F6、C4F6、C4F8、CH2F2、CH3F、C3F8、SF6及F2等氟系氣體,以及選自以特定比率含有氟系氣體與O2之混合氣體等之氣體。作為用以蝕刻下層42之第二氯系氣體,可使用Cl2、SiCl4、CHCl3、CCl4及BCl3等氯系氣體;選自該等氯系氣體之2種以上的混合氣體;以特定比率含有氯系氣體與He之混合氣體;或是選自以特定比率含有氯系氣體與Ar之混合氣體所構成的群之至少一種或選自其以上之氣體。較佳宜使用Cl2或BCl3來作為第二氯系氣體。特別是當下層42的材料為TaN或TaBN之情況,則較佳宜使用Cl2來作為第二氯系氣體。又,當下層42的材料為CoTa3或NiTa3之情況,則較佳宜使用BCl3來作為第二氯系氣體。
下層42之蝕刻速度較佳為上層44之蝕刻速度的1.5倍以上,更佳為3倍以上。又,下層42之蝕刻速度較佳為上層44之蝕刻速度的10倍以下,更佳為8倍以下。例如,可依據後述表2所記載蝕刻速度的比值來選擇上層44及下層42的材料及蝕刻氣體。上層44及下層42亦可以相同的蝕刻氣體來進行蝕刻。
依據本實施型態,藉由使上層44及下層42為可藉由特定乾蝕刻氣體來進行蝕刻之材料所構成,便可適當地調節蝕刻速度。於是,便可更確實地抑制反射型遮罩200所形成之圖案的剖面形狀變成錐狀。
本實施型態之吸收體膜4可藉由公知的方法,例如DC濺射法及RF濺射法等之磁控濺射法來形成。又,靶材可使用特定的吸收體膜4相對應之 合金的靶材。又,亦可為共濺射,其係使用構成特定吸收體膜4之複數種金屬相對應的複數種單體金屬或合金靶材。
吸收體膜4可為二元式反射型遮罩基底100中目的在於EUV光的吸收之吸收體膜4。又,吸收體膜4可為相位轉移型反射型遮罩基底100中具有亦考慮了EUV光的相位差之相位轉移功能之吸收體膜4。
目的在於EUV光的吸收之吸收體膜4的情況,係將膜厚設定為EUV光相對於吸收體膜4之反射率為2%以下,較佳為1%以下。又,為了抑制陰影效應,吸收體膜4的膜厚(總膜厚)被要求須小於60nm,較佳為50nm以下。
上層44的膜厚相對於吸收體膜4的膜厚較佳為25%以上,更佳為50%以上。又,上層44的膜厚相對於吸收體膜4的膜厚較佳為98%以下,更佳為90%以下。
具有相位轉移功能之吸收體膜4的情況,在形成有吸收體膜4之部分,係以會吸收並減少EUV光,同時以不會對圖案轉印造成不良影響的程度來讓部分光線反射,並形成介隔著保護膜3而從多層反射膜2反射而來之來自場部的反射光與所需的相位差。吸收體膜4係形成為來自吸收體膜4的反射光與來自多層反射膜2的反射光之相位差會成為160度~200度。在180度附近反轉之相位差的光,彼此會因在圖案邊緣部互相干涉而提高投影光學像的像對比。解析度會隨著該像對比的提升而提高,且曝光量裕度、焦點裕度等曝光相關的各種裕度亦會變大。雖依圖案形狀及曝光條件而異,一般來說為了充分獲得上述相位轉移效果,反射率的基準以絕對反射率來說為1%以上,對於多層反射膜2(具有保護膜3)之反射比為2%以上。
吸收體膜4為多層膜的情況,可於上層44上形成抗反射膜。藉由抗反射膜來抑制表面反射對於使用例如DUV光之遮罩圖案檢查時為有用的。因此,抗反射膜較佳宜適當地設定其光學常數與膜厚,俾能夠相對於DUV光而具有抗反射功能。又,亦可使上層44為具有抗反射功能之構成。本實施型態之反射型遮罩基底100藉由具有抗反射膜,便可提高使用DUV光等光線之遮罩圖案檢查時的檢查感度。
又,可藉由使吸收體膜4為多層膜來對該吸收體膜4附加各種功能。當吸收體膜4為具有相位轉移功能之吸收體膜4的情況,藉由使其為多層膜,則光學面的調整範圍會變廣,且容易獲得所需反射率。
又,亦可於吸收體膜4的表面形成氧化層。藉由於吸收體膜4的表面形成氧化層,便可提高所獲得之反射型遮罩200之吸收體圖案4a的洗淨耐受性。氧化層的厚度較佳為1.0nm以上,更佳為1.5nm以上。又,氧化層的厚度較佳為5nm以下,更佳為3nm以下。若氧化層的厚度小於1.0nm之情況,則會過薄而無法期待效果。又,若氧化層的厚度超過5nm,則對相對於遮罩檢查光之表面反射率造成的影響會變大,而難以進行用以獲得特定的表面反射率之控制。
氧化層的形成方法舉例有對成膜有吸收體膜4後的遮罩基底進行溫水處理、臭氧水處理、在含氧氣體中之加熱處理、在含氧氣體中之紫外線照射處理以及O2電漿處理等。又,在成膜出吸收體膜4後將吸收體膜4的表面曝露在大氣中之情況,會有因自然氧化而於表層形成有氧化層的情況。尤其是含有容易被氧化的Ta之CoTa合金、NiTa合金或CoNiTa合金的情況,會形成有膜厚1~2nm的氧化層。
又,如上述說明,2層構造之吸收體膜4的情況,可使用Cl2、SiCl4、CHCl3、CCl4及BCl3等氯系氣體,選自該等氯系氣體之2種以上的混合氣體,以特定比率含有氯系氣體與He之混合氣體,以及選自以特定比率含有氯系氣體與Ar的混合氣體之氣體來蝕刻上層44及下層42。又,可使用氯系之不同的蝕刻氣體來蝕刻上層44及下層42。可使第1蝕刻氣體為包含有BCl3氣體之氯系氣體,並使第2蝕刻氣體為與第1蝕刻氣體不同且包含有Cl2氣體等之氯系氣體或氟系氣體。藉此,便可容易地去除氧化層,且縮短吸收體膜4的蝕刻時間。
此外,蝕刻氣體若在吸收體膜4之蝕刻的最後階段含有氧,則Ru系保護膜3的表面便會產生皺裂。於是,較佳宜在Ru系保護膜3被曝露於蝕刻之過蝕刻階段中使用不含氧的蝕刻氣體。
<<蝕刻遮罩膜6>>
如圖4所示,本實施型態之反射型遮罩基底100較佳宜於吸收體膜4上(當吸收體膜4具有上層44的情況則為上層44上)具有蝕刻遮罩膜6。又,蝕刻遮罩膜6較佳宜由包含有含鉻(Cr)材料或含矽(Si)材料之材料所構成。本實施型態之反射型遮罩基底100藉由具有特定的蝕刻遮罩膜6,便可高精確度地於吸收體膜4形成轉印圖案。
蝕刻遮罩膜6的材料係使用吸收體膜4(當吸收體膜4具有上層44的情況則為上層44)相對於蝕刻遮罩膜6的蝕刻選擇比較高之材料。此處,「B相對於A的蝕刻選擇比」係指不欲進行蝕刻之層(成為遮罩之層,即A)與欲進行蝕刻之層(即B)的蝕刻率之比值。具體來說,係藉由「B相對於A的蝕刻選擇比=B的蝕刻速度/A的蝕刻速度」之算式而被特定出。又,「選擇比較高」係指上述定義之選擇比的數值較比較對象要來得大。吸收體膜4相對於蝕刻遮罩膜6(上層44)的蝕刻選擇比較佳為1.5以上,更佳為3以上。
吸收體膜4相對於蝕刻遮罩膜6(上層44)的蝕刻選擇比較高之材料舉例有鉻及鉻化合物的材料。此情況下,吸收體膜4可藉由氯系氣體而被蝕刻。鉻化合物舉例有Cr與含有選自N、O、C、H中的至少一種元素之材料。鉻化合物舉例有CrN、CrON、CrCN、CrCO、CrCON、CrBN、CrBON、CrBCN及CrBOCN等。為了提高在氯系氣體中的蝕刻選擇比,較佳為實質地不含氧之材料。實質地不含氧之鉻化合物舉例有CrN、CrCN、CrBN及CrBCN等。鉻化合物的Cr含量較佳為50原子%以上但小於100原子%,更佳為80原子%以上但小於100原子%。又,「實質地不含氧」係指鉻化合物中的氧含量為10原子%以下,較佳為5原子%以下者便符合。此外,上述材料可在能夠獲得本實施型態之效果的範圍內而含有鉻以外的金屬。
又,以實質地不含氧之氯系氣體來蝕刻吸收體膜4(上層44)之情況,可使用矽或矽化合物的材料。矽化合物舉例有包含有Si與選自N、O、C及H中的至少一種元素之材料,以及於矽或矽化合物含有金屬之金屬矽(金屬矽化物)或金屬矽化合物(金屬矽化合物)等材料。含有矽之材料具體而言可舉出SiO、SiN、SiON、SiC、SiCO、SiCN、SiCON、MoSi、MoSiO、MoSiN及MoSiON等。此外,上述材料可在能夠獲得本實施型態之效果的範圍內而含有矽以外的類金屬或金屬。
蝕刻遮罩膜6的膜厚從高精確度地於吸收體膜4(上層44)形成轉印圖案而作為蝕刻遮罩的功能之觀點來看,最好為3nm以上。又,蝕刻遮罩膜6的膜厚從使得阻劑膜的膜厚較薄之觀點來看,最好為15nm以下,更佳為10nm以下。
<<蝕刻停止膜7>>
如圖5所示,本實施型態之反射型遮罩基底100較佳宜於保護膜3與吸收體膜4(當吸收體膜4具有下層42的情況則為下層42)之間具有蝕刻停止膜7。又,蝕刻停止膜7較佳宜由含鉻(Cr)材料或含矽(Si)材料所構成。本實施型態之反射型遮罩基底100可藉由具有特定的蝕刻停止膜7,來抑制吸收體膜4之蝕刻時對保護膜3及多層反射膜2造成的損傷。
蝕刻停止膜7的材料較佳宜使用在使用氯系氣體之乾蝕刻中,吸收體膜4相對於蝕刻停止膜7之蝕刻選擇比(吸收體膜4(下層42)的蝕刻速度/蝕刻停止膜7的蝕刻速度)較高之材料。上述般之材料舉例有鉻及鉻化合物的材料。鉻化合物舉例有包含有Cr與選自N、O、C及H中的至少一種元素之材料。鉻化合物舉例有CrN、CrON、CrCN、CrCO、CrCON、CrBN、CrBON、CrBCN及CrBOCN等。為了提高在氯系氣體中的蝕刻選擇比,較佳為實質地不含氧之材料。實質地不含氧之鉻化合物舉例有CrN、CrCN、CrBN及CrBCN等。鉻化合物的Cr含量較佳為50原子%以上但小於100原子%,更佳為80原子%以上但小於100原子%。此外,蝕刻停止膜7的材料可在能夠獲得本實施型態之效果的範圍內而含有鉻以外的金屬。
又,以氯系氣體來蝕刻吸收體膜4(下層42)的情況,蝕刻停止膜7可使用矽或矽化合物的材料。矽化合物舉例有包含有Si與選自N、O、C及H中的至少一種元素之材料,以及於矽或矽化合物含有金屬之金屬矽(金屬矽化物)或金屬矽化合物(金屬矽化合物)等材料。含有矽之材料具體而言可舉出SiO、SiN、SiON、SiC、SiCO、SiCN、SiCON、MoSi、MoSiO、MoSiN、及MoSiON等。此外,上述材料可在能夠獲得本實施型態之效果的範圍內而含有矽以外的類金屬或金屬。
又,蝕刻停止膜7較佳宜由與上述蝕刻遮罩膜6相同的材料所形成。其結果,便可在將蝕刻停止膜7圖案化時同時去除上述蝕刻遮罩膜6。又, 亦可以鉻化合物或矽化合物來形成蝕刻停止膜7與蝕刻遮罩膜6,並使蝕刻停止膜7與蝕刻遮罩膜6的組成比相異。
蝕刻停止膜7的膜厚從抑制吸收體膜4(下層42)之蝕刻時對保護膜3造成損傷而導致光學特性改變之觀點來看,最好為2nm以上。又,蝕刻停止膜7的膜厚從使吸收體膜4與蝕刻停止膜7的總膜厚較薄,亦即降低吸收體圖案4a及蝕刻停止圖案所構成之圖案的高度之觀點來看,最好為7nm以下,更佳為5nm以下。
又,同時蝕刻蝕刻停止膜7及蝕刻遮罩膜6的情況,蝕刻停止膜7的膜厚較佳為與蝕刻遮罩膜6的膜厚相同或較薄。進一步地,當(蝕刻停止膜7的膜厚)≦(蝕刻遮罩膜6的膜厚)之情況,較佳宜滿足(蝕刻停止膜7的蝕刻速度)≦(蝕刻遮罩膜6的蝕刻速度)之關係。
<<內面導電膜5>>
基板1的第2主面(內面)側(多層反射膜2形成面的相反側)一般來說係形成有靜電夾具用的內面導電膜5。靜電夾具用的內面導電膜5所要求之電性特性(片電阻)通常為100Ω/□(Ω/Square)以下。內面導電膜5的形成方法可藉由例如磁控濺射法或離子束濺射法,並使用鉻、鉭等金屬或合金的靶材來形成。
作為內面導電膜5的含鉻(Cr)材料,較佳為於Cr含有選自硼、氮、氧及碳中的至少一者之Cr化合物。Cr化合物可舉出例如CrN、CrON、CrCN、CrCO、CrCON、CrBN、CrBON、CrBCN及CrBOCN等。
作為內面導電膜5的含鉭(Ta)材料,較佳宜使用Ta(鉭);含有Ta之合金;或是於該等任一者含有硼、氮、氧及碳中的至少一者之Ta化合物。Ta化合物可舉出例如TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON及TaSiCON等。
作為含有鉭(Ta)或鉻(Cr)材料,較佳為其表層所存在的氮(N)較少。具體而言,含有鉭(Ta)或鉻(Cr)之材料之內面導電膜5表層的氮含量較佳為小於5原子%,更佳為表層實質地不含氮。其係因為含有鉭(Ta)或鉻(Cr)之材料的內面導電膜5中,表層的氮含量較少者其耐磨耗性會變高之緣故。
內面導電膜5較佳宜由含有鉭及硼之材料所構成。藉由使內面導電膜5由含有鉭及硼之材料所構成,便可獲得具有耐磨耗性及藥液耐受性的導電膜23。當內面導電膜5含有鉭(Ta)及硼(B)之情況,則B含量較佳為5~30原子%。內面導電膜5的成膜所使用之濺射靶中的Ta與B比率(Ta:B)較佳為95:5~70:30。
內面導電膜5的厚度只要是能夠滿足作為靜電夾具用之功能則未特別限定,但通常為10nm200nm。又,該內面導電膜5亦兼具遮罩基底100之第2主面側的應力調整功能,係被調整為可與來自第1主面側所形成之各種膜的應力取得平衡,來獲得平坦的反射型遮罩基底100。
<反射型遮罩200及其製造方法>
本實施型態之反射型遮罩200係具有上述實施型態之反射型遮罩基底100的吸收體膜4被圖案化後的吸收體圖案4a。
使用本實施型態之反射型遮罩基底100來製造反射型遮罩200。此處僅進行概要說明,在之後的實施例中會一邊參見圖式(圖3)來詳細地說明。
準備反射型遮罩基底100,並於其第1主面側的吸收體膜4上形成阻劑膜11(當反射型遮罩基底100係具有阻劑膜11的情況則不需要),再將所需圖案描繪(曝光)在阻劑膜11,並進一步地藉由顯影、沖洗來形成特定的阻劑圖案11a。
反射型遮罩基底100的情況,係以該阻劑圖案11a作為遮罩來蝕刻吸收體膜4而形成吸收體圖案4a,並藉由灰化或阻劑剝離液等來去除阻劑圖案11a,藉此形成吸收體圖案4a。最後,使用酸性或鹼性的水溶液來進行濕式洗淨。
本實施型態之反射型遮罩200的製造方法中,較佳宜藉由使用氯系氣體之乾蝕刻來將反射型遮罩基底100的吸收體膜4圖案化而形成吸收體圖案4a。具體而言係使用Cl2、SiCl4、CHCl3、CCl4及BCl3等氯系氣體;以特定比率含有氯系氣體及He之混合氣體;或以特定比率含有氯系氣體及Ar之混合氣體等來作為吸收體膜4的蝕刻氣體。在吸收體膜4之蝕刻中,由於蝕刻氣體實質地不含氧,故不會有Ru系保護膜3的表面產生皺裂之情況。氣體中的氧含量為5原子%以下者係符合上述實質地不含氧之氣體。
本實施型態之反射型遮罩200的製造方法中,較佳宜藉由使用第一氯系氣體與不同於第一氯系氣體的第二氯系氣體之乾蝕刻來將上述實施型態之反射型遮罩基底100的吸收體膜4圖案化而形成吸收體圖案4a。第一氯系氣體及第二氯系氣體係如上述說明。
本實施型態之反射型遮罩200的製造方法中,在形成反射型遮罩200的吸收體圖案4a之際,可確實地抑制圖案的剖面形狀變成錐狀。又,該反射型遮罩200由於可使用消光係數k高的金屬材料來作為吸收體膜4,故可使吸收體膜4的膜厚較薄。其結果,便可確實地降低反射型遮罩200的陰影效應,且獲得具有微細且高精確度的吸收體圖案4a之反射型遮罩200。
<半導體裝置之製造方法>
藉由使用本實施型態之反射型遮罩200來進行EUV曝光(微影工序),便可將基於反射型遮罩200的吸收體圖案4之所需轉印圖案轉印在半導體基板(被轉印基板)上所形成的阻劑膜11。微影工序係使用具有會發出EUV光的曝光光源之EUV曝光裝置。除了此微影工序以外,經由被加工膜的蝕刻、絕緣膜及導電膜的形成、摻雜物的導入及退火等各種工序,藉此便可製造出形成有所需的電子電路之半導體裝置。
本實施型態之反射型遮罩200可抑制吸收體圖案4a的剖面形狀變成錐狀。又,由於可使用消光係數k高的金屬材料來作為吸收體膜4,故可使吸收體膜4的膜厚較薄。其結果,由於在製造半導體裝置之際,可降低反射型遮罩200造成的陰影效應,故可製造出具有微細且高精確度的轉印圖案之半導體裝置。
更詳細地說明,EUV曝光裝置係由會產生EUV光之雷射電漿光源、照明光學系統、遮罩台系統、縮小投影光學系統、晶圓台系統及真空設備等所構成。光源係具備碎光捕集(DEBRIS TRAP)功能、會濾除曝光光線以外的長波長光線之濾光器以及真空差動排氣用的設備等。照明光學系統與縮小投影光學系統係由反射型鏡片所構成。EUV曝光用的反射型遮罩200會因其第2主面所形成之導電膜而被靜電吸附並載置於遮罩台。
EUV光源的光線係透過照明光學系統而相對於反射型遮罩200的垂直面,會以6度~8度的傾斜角照射在反射型遮罩200。來自反射型遮罩200 的反射光相對於此入射光則是相反於入射方向且以和入射角度相同的角度反射(正反射),並被導向通常具有1/4的縮小比之反射型投影光學系統,來對晶圓台座上所載置之晶圓(半導體基板)上的阻劑進行曝光。在這期間,至少EUV光通過的地方會被真空排氣。又,關於此曝光,以對應於縮小投影光學系統的縮小比之速度來使遮罩台與晶圓台座同步而進行掃描,並透過狹縫來進行曝光之掃描曝光係成為主流。藉由將被曝光後的該阻劑膜顯影,便可於半導體基板上形成阻劑圖案。本實施型態中係使用具有陰影效應較小且膜厚較薄的吸收體圖案4a之反射型遮罩200。因此,半導體基板上所形成的阻劑圖案便會成為具有高尺寸精確度之所需圖案。然後,將此阻劑圖案使用來作為遮罩而實施蝕刻等,藉此,便可於例如半導體基板上形成特定的配線圖案。經由上述般之曝光工序、被加工膜加工工序、絕緣膜及/或導電膜的形成工序、摻雜物導入工序及退火工序等其他必要的工序,藉此製造出半導體裝置。
【實施例】
以下,參見圖式來針對實施例加以說明。本發明並未限定於該等實施例。
圖1係顯示實施例1~15之反射型遮罩基底100的構造。實施例之反射型遮罩基底100係具有內面導電膜5、基板1、多層反射膜2、保護膜3及吸收體膜4。表1係顯示實施例之反射型遮罩基底100的吸收體膜4的材料及膜厚。如表1所示,實施例1~15之吸收體膜4係由下層42及上層44的2層所構成。此外,係製造出參考例1及2的反射型遮罩基底100來作為實施例的比較對象。如表1所示,參考例1及2之吸收體膜4係僅由單一的層(上層44)所構成。
針對實施例及參考例的反射型遮罩基底100來具體地說明。
首先,為了製造出實施例及參考例的反射型遮罩基底100,而如下述般地準備基板1。亦即,準備第1主面及第2主面的兩主表面經研磨後之6025尺寸(約152mm×152mm×6.35mm)的低熱膨脹玻璃基板,即SiO2-TiO2系玻璃基板。進行粗研磨加工工序、精密研磨加工工序、局部加工工序及接觸 研磨加工工序所構成的研磨來使SiO2-TiO2系玻璃基板的表面成為平坦且平滑的主表面。如此般地準備SiO2-TiO2系玻璃基板所構成的基板1。
接下來,藉由磁控濺射(反應性濺射)法且以下述條件來於基板1的第2主面(內面)形成CrN膜所構成的內面導電膜5。
內面導電膜形成條件:Cr靶材,Ar與N2的混合氣體氛圍(Ar:90%,N:10%),膜厚20nm。
接下來,在與形成有內面導電膜5一側為相反側之基板1的主表面(第1主面)上形成多層反射膜2。為了使基板1上所形成之多層反射膜2成為適合波長13.5nm的EUV光之多層反射膜2,而使其為Mo與Si所構成的週期多層反射膜。多層反射膜2係使用Mo靶材與Si靶材,並在Ar氣體氛圍中藉由離子束濺射法來於基板1上交互地層積形成Mo層及Si層。首先成膜出厚度4.2nm的Si膜,接著成膜出厚度2.8nm的Mo膜。以此為1週期,而同樣地層積40週期,最後,便會成膜出厚度4.0nm的Si膜而形成多層反射膜2。
接著,在Ar氣體氛圍中,藉由使用Ru靶材之離子束濺射法來成膜出Ru膜所構成之厚度2.5nm的保護膜3。
接下來,藉由DC磁控濺射法而相接於保護膜3上,來將表1所示材料之下層42及上層44所構成的吸收體膜4或僅由上層44所構成的吸收體膜4形成為表1所示之膜厚。所形成之吸收體膜4相對於EUV光的反射率為2%。
表1所示下層42及上層44之材料當中的CoTa3層、CoTa層、Co3Ta層、NiTa3層、NiTa層及Ni3Ta層係藉由DC磁控濺射法來使Co、Ni及Ta的原子比成為化學計量比(原子比)。具體而言,係使用特定靶材(例如當形成CoTa3層之情況為CoTa3合金的靶材),並在Ar氣體氛圍下藉由DC磁控濺射法來成膜為所獲得之層(膜)的組成會成為化學計量比(原子比)。
CoTa3層的組成(原子比)為Co:Ta=25:75,CoTa層的組成(原子比)為Co:Ta=50:50,Co3Ta層的組成(原子比)為Co:Ta=75:25。又,NiTa3層的組成(原子比)為Ni:Ta=25:75,NiTa層的組成(原子比)為Ni:Ta=50:50,Ni3Ta層的組成(原子比)為Ni:Ta=75:25。
表1所示下層42之材料當中的TaBN膜(膜)係使用TaB混合燒結靶材(Ta:B=80:20,原子比),且在Ar氣體及N2氣體的混合氣體氛圍中藉由反應性濺射所形成。TaBN膜的組成(原子比)為Ta:B:N=75:12:13。此外,Ta及N為會加快乾蝕刻速度之元素。
表2係顯示所獲得之層(膜)的折射率n及吸收係數k之測定結果。相同材料之層(膜)係以相同條件來進行成膜。因此,相同材料之層(膜)的含有率(原子比)、折射率n及吸收係數k即便是不同的試料亦是相同。
又,藉由X射線繞射裝置(XRD)來測定上述方式所形成之層(膜)的結晶構造後,確認了所形成之層(膜)皆為非晶質構造。
依上述方式來製造出實施例及參考例的反射型遮罩基底100。
接下來,如圖3所示,使用上述實施例及參考例的反射型遮罩基底100來製造反射型遮罩200。此外,圖3之吸收體膜4係省略下層42及上層44的記載而僅記載為吸收體膜4。
首先,於反射型遮罩基底100的吸收體膜4上形成厚度150nm的阻劑膜11(圖3(a))。然後,於此阻劑膜11描繪(曝光)所需圖案,並進一步地藉由顯影、沖洗來形成特定的阻劑圖案11a(圖3(b))。接下來,以阻劑圖案11a作為遮罩,並使用表1所示之蝕刻氣體(BCl3或Cl2)來進行吸收體膜4之上層44及下層42的乾蝕刻,藉此來形成吸收體圖案4a(圖3(c))。
實施例中,實施例5、6、8、12、13及15中,在蝕刻吸收體膜4時,係使用相同的蝕刻氣體來對上層44及下層42兩者的層進行乾蝕刻。關於其以外的實施例,則是使用不同的蝕刻氣體來分別對上層44及下層42進行乾蝕刻。以不同蝕刻氣體來蝕刻上層44及下層42之情況,除了在上層44的蝕刻結束後會切換蝕刻氣體之外,係以相同蝕刻條件來連續地蝕刻上層44及下層42。由於參考例1及2之吸收體膜4為單層的吸收體膜4,故係使用表1所示之1種蝕刻氣體來進行乾蝕刻。
表2係顯示以BCl3或Cl2的蝕刻氣體來乾蝕刻被使用來作為吸收體膜4之材料時的相對蝕刻速度。此外,相對蝕刻速度係指將以BCl3來乾蝕刻CoTa3層時的蝕刻速度(nm/分鐘)作為1時的蝕刻速度比。由表1及表2可明 白得知在實施例1~15之吸收體膜4的乾蝕刻中,包含有下面區域46之下層42的蝕刻速度係較包含有上面區域48之上層44的蝕刻速度要來得快。
之後,以灰化或阻劑剝離液等來去除阻劑圖案11a。最後使用純水(DIW)來進行濕式洗淨,便製造出反射型遮罩200(圖3(d))。此外,可依需要而在濕式洗淨後進行遮罩缺陷檢查,並適當地進行遮罩缺陷修正。如此般地製造出具有吸收體圖案4a之實施例及參考例的反射型遮罩200。
接下來,以SEM來觀察實施例及參考例之反射型遮罩200的剖面,藉此評估吸收體圖案4a的形狀。具體而言,如圖6所示,係測量吸收體圖案4a之邊緣部分的錐狀角度(錐角θ)。錐角θ為平行於基板1之面與吸收體圖案4a的側面之角度。當錐角θ為90度的情況,吸收體圖案4a的側面係相對於和基板1呈平行之面而呈垂直(參見圖6的1點鏈線)。表2係顯示錐角θ的測定結果。一般來說,錐角θ為90度以下的角度。若錐角θ愈小,由於吸收體圖案4a的邊緣部分會變成錐狀,故在轉印微細圖案之際便會發生問題。
由表1可明白得知相對於具有單層的吸收體膜4之參考例1及2的錐角為70度,而實施例1~15的錐角θ則為75度以上。因此,可謂言實施例1~15的反射型遮罩200所形成之吸收體圖案4a的剖面形狀會被抑制變成錐狀。
將實施例1~15所製作之反射型遮罩200安裝在EUV掃描器,來對於半導體基板上形成有被加工膜與阻劑膜之晶圓進行EUV曝光。然後,藉由將此曝光後的阻劑膜顯影,來於形成有被加工膜之半導體基板上形成阻劑圖案。
藉由蝕刻來將該阻劑圖案轉印在被加工膜,又,經由絕緣膜及導電膜的形成、摻雜物的導入以及退火等各種工序,藉此便可製造出具有所需特性的半導體裝置。
Figure 108130563-A0202-12-0031-1
Figure 108130563-A0202-12-0031-3
1:基板
2:多層反射膜
3:保護膜
4:吸收體膜
5:內面導電膜
46:下面區域
47:中間區域
48:上面區域
100:反射型遮罩基底

Claims (15)

  1. 一種反射型遮罩基底,係具有基板、設置於該基板上之多層反射膜、以及設置於該多層反射膜上之吸收體膜;
    該吸收體膜係於該吸收體膜的至少一部分包含有選自鈷(Co)及鎳(Ni)所構成的群之至少1種高吸收係數元素,以及會加快乾蝕刻速度之元素;
    該吸收體膜係包含有含有基板側的表面之下面區域,以及含有與基板為相反側的表面之上面區域;
    該上面區域之該高吸收係數元素的濃度(原子%)係高於該下面區域之該高吸收係數元素的濃度(原子%)。
  2. 如申請專利範圍第1項之反射型遮罩基底,其中該下面區域之該會加快乾蝕刻速度之元素的濃度(原子%)係高於該上面區域之該會加快乾蝕刻速度之元素的濃度(原子%)。
  3. 如申請專利範圍第1或2項之反射型遮罩基底,其中該會加快乾蝕刻速度之元素為選自鉭(Ta)、鎢(W)及錫(Sn)所構成的群之至少1種元素。
  4. 如申請專利範圍第1至3項中任一項之反射型遮罩基底,其中該吸收體膜為包含有含有該下面區域的下層與含有該上面區域的上層之層積膜;
    使該下層的材料所含該高吸收係數元素的濃度(原子%)為C1lower,並使該上層的材料所含該高吸收係數元素的濃度(原子%)為C1upper時,係滿足以下式1的關係式:
    式1:C1upper>C1lower≧0。
  5. 如申請專利範圍第4項之反射型遮罩基底,其中使該下層的材料所含該會加快乾蝕刻速度之元素的濃度(原子%)為C2lower,並使該上層的材料所含該會加快乾蝕刻速度之元素的濃度(原子%)為C2upper時,係滿足以下式2的關係式:
    式2:C2lower>C2upper≧0。
  6. 如申請專利範圍第4或5項之反射型遮罩基底,其中該上層的材料係含有鈷(Co)及鉭(Ta),該下層的材料係含有鉭(Ta)。
  7. 如申請專利範圍第4或5項之反射型遮罩基底,其中該上層的材料係含有鎳(Ni)及鉭(Ta),該下層的材料係含有鉭(Ta)。
  8. 如申請專利範圍第4至7項中任一項之反射型遮罩基底,其中該上層係由可藉由含有第一氯系氣體的乾蝕刻氣體來進行蝕刻之材料所構成,該下層係由含有可藉由不同於該第一氯系氣體的第二氯系氣體之乾蝕刻氣體來進行蝕刻之材料所構成。
  9. 如申請專利範圍第1至8項中任一項之反射型遮罩基底,其中該多層反射膜與該吸收體膜間係具有保護膜。
  10. 如申請專利範圍第9項之反射型遮罩基底,其中該保護膜與該吸收體膜間係具有蝕刻停止膜;
    該蝕刻停止膜係由含鉻(Cr)材料或含矽(Si)材料所構成。
  11. 如申請專利範圍第1至10項中任一項之反射型遮罩基底,其中該吸收體膜上係具有蝕刻遮罩膜;
    該蝕刻遮罩膜係由包含有含鉻(Cr)材料或含矽(Si)材料之材料所構成。
  12. 一種反射型遮罩,係具有如申請專利範圍第1至11項中任一項之反射型遮罩基底中的該吸收體膜被圖案化後的吸收體圖案。
  13. 一種反射型遮罩之製造方法,係藉由使用氯系氣體之乾蝕刻,來將如申請專利範圍第1至11項中任一項之反射型遮罩基底的該吸收體膜予以圖案化而形成吸收體圖案。
  14. 一種反射型遮罩之製造方法,係藉由使用第一氯系氣體與不同於該第一氯系氣體的第二氯系氣體之乾蝕刻,來將如申請專利範圍第1至11項中任一項之反射型遮罩基底的該吸收體膜予以圖案化而形成吸收體圖案。
  15. 一種半導體裝置之製造方法,具有以下工序:將如申請專利範圍第12項之反射型遮罩安裝在具有會發出EUV光的曝光光源之曝光裝置,來將轉印圖案轉印在被轉印基板上所形成的阻劑膜。
TW108130563A 2018-08-29 2019-08-27 反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法 TW202027130A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018159970A JP2020034666A (ja) 2018-08-29 2018-08-29 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2018-159970 2018-08-29

Publications (1)

Publication Number Publication Date
TW202027130A true TW202027130A (zh) 2020-07-16

Family

ID=69644897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108130563A TW202027130A (zh) 2018-08-29 2019-08-27 反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法

Country Status (6)

Country Link
US (1) US11892768B2 (zh)
JP (1) JP2020034666A (zh)
KR (1) KR20210043563A (zh)
SG (1) SG11202101338UA (zh)
TW (1) TW202027130A (zh)
WO (1) WO2020045029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810819B (zh) * 2021-11-25 2023-08-01 日商Hoya股份有限公司 光罩基底、轉印用光罩、光罩基底之製造方法、轉印用光罩之製造方法、及顯示裝置之製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285099B1 (ko) * 2020-01-08 2021-08-04 주식회사 에스앤에스텍 극자외선용 반사형 블랭크 마스크 및 포토마스크
JP2023000073A (ja) * 2021-06-17 2023-01-04 株式会社トッパンフォトマスク 反射型フォトマスク及び反射型フォトマスクの製造方法
CN118302719A (zh) * 2021-11-24 2024-07-05 凸版光掩模有限公司 反射型光掩模坯以及反射型光掩模
US20230280644A1 (en) * 2022-03-03 2023-09-07 International Business Machines Corporation Method of making euv mask with an absorber layer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909317B2 (ja) * 1992-08-20 1999-06-23 三菱電機株式会社 フォトマスク
US6656643B2 (en) * 2001-02-20 2003-12-02 Chartered Semiconductor Manufacturing Ltd. Method of extreme ultraviolet mask engineering
JP2002299227A (ja) * 2001-04-03 2002-10-11 Nikon Corp 反射マスクとその製造方法及び露光装置
EP2189842B1 (en) * 2002-04-11 2017-08-23 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
JP4212025B2 (ja) 2002-07-04 2009-01-21 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに反射型マスクの製造方法
JP2004207593A (ja) 2002-12-26 2004-07-22 Toppan Printing Co Ltd 極限紫外線露光用マスク及びブランク並びにパターン転写方法
US7049035B2 (en) * 2003-11-17 2006-05-23 International Business Machines Corporation Method for controlling linewidth in advanced lithography masks using electrochemistry
US20060222961A1 (en) 2005-03-31 2006-10-05 Pei-Yang Yan Leaky absorber for extreme ultraviolet mask
JP4465405B2 (ja) * 2008-02-27 2010-05-19 Hoya株式会社 フォトマスクブランクおよびフォトマスク並びにこれらの製造方法
JP5282507B2 (ja) 2008-09-25 2013-09-04 凸版印刷株式会社 ハーフトーン型euvマスク、ハーフトーン型euvマスクの製造方法、ハーフトーン型euvマスクブランク及びパターン転写方法
US8765331B2 (en) * 2012-08-17 2014-07-01 International Business Machines Corporation Reducing edge die reflectivity in extreme ultraviolet lithography
JP6661262B2 (ja) * 2014-05-29 2020-03-11 Hoya株式会社 位相シフトマスクブランク及びその製造方法、並びに位相シフトマスクの製造方法
US9436078B2 (en) * 2015-01-30 2016-09-06 Globalfoundries Inc. Method for a low profile etchable EUV absorber layer with embedded particles in a photolithography mask
KR101772943B1 (ko) * 2015-08-17 2017-09-12 주식회사 에스앤에스텍 극자외선용 블랭크 마스크 및 이를 이용한 포토마스크
TWI763686B (zh) * 2016-07-27 2022-05-11 美商應用材料股份有限公司 具有合金吸收劑的極紫外線遮罩坯料、製造極紫外線遮罩坯料的方法以及極紫外線遮罩坯料生產系統
WO2018074512A1 (ja) * 2016-10-21 2018-04-26 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
WO2018135468A1 (ja) * 2017-01-17 2018-07-26 Hoya株式会社 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
WO2018159785A1 (ja) * 2017-03-02 2018-09-07 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810819B (zh) * 2021-11-25 2023-08-01 日商Hoya股份有限公司 光罩基底、轉印用光罩、光罩基底之製造方法、轉印用光罩之製造方法、及顯示裝置之製造方法

Also Published As

Publication number Publication date
US20210311382A1 (en) 2021-10-07
US11892768B2 (en) 2024-02-06
KR20210043563A (ko) 2021-04-21
SG11202101338UA (en) 2021-03-30
JP2020034666A (ja) 2020-03-05
WO2020045029A1 (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI810176B (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
US12111566B2 (en) Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
TWI732801B (zh) 遮罩基底用基板、具多層反射膜之基板、反射型遮罩基底及反射型遮罩以及半導體裝置之製造方法
TW201842395A (zh) 附導電膜之基板、附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法
JP2022009220A (ja) 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
TW202125090A (zh) 反射型光罩基底及反射型光罩、以及半導體裝置之製造方法
TW202041964A (zh) 反射型遮罩基底、反射型遮罩以及半導體裝置之製造方法
TW202027130A (zh) 反射型遮罩基底、反射型遮罩及其製造方法、以及半導體裝置之製造方法
WO2022138360A1 (ja) 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP7401356B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2020184473A1 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
TWI823946B (zh) 反射型光罩基底、反射型光罩及反射型光罩基底之製造方法
TW202141164A (zh) 反射型光罩基底及反射型光罩、與半導體裝置之製造方法
JP7268211B2 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2020034666A5 (zh)
JP2019070854A (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2021161792A1 (ja) 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
TWI833025B (zh) 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法
JP2020160354A (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
TWI857078B (zh) 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法
TW202113102A (zh) 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法
TW202115483A (zh) 附薄膜之基板、附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法