TWI833025B - 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法 - Google Patents

反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法 Download PDF

Info

Publication number
TWI833025B
TWI833025B TW109120529A TW109120529A TWI833025B TW I833025 B TWI833025 B TW I833025B TW 109120529 A TW109120529 A TW 109120529A TW 109120529 A TW109120529 A TW 109120529A TW I833025 B TWI833025 B TW I833025B
Authority
TW
Taiwan
Prior art keywords
film
reflective mask
layer
substrate
absorber
Prior art date
Application number
TW109120529A
Other languages
English (en)
Other versions
TW202113462A (zh
Inventor
中川真德
笑喜勉
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202113462A publication Critical patent/TW202113462A/zh
Application granted granted Critical
Publication of TWI833025B publication Critical patent/TWI833025B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light

Abstract

本發明係提供一種用以製造反射型遮罩之反射型遮罩基底,該反射型遮罩在以含有氫氣的環境氣體來進行EUV曝光之情況下,能夠抑制吸收體膜變厚,且抑制吸收體圖案剝落。
一種反射型遮罩基底,係具有基板、基板上的多層反射膜、以及多層反射膜上的吸收體膜,該吸收體膜係包含吸收層及反射率調整層,該吸收層係含有鉭(Ta)及氮(N),以及選自氫(H)及重氫(D)之至少1種添加元素;該吸收層係包含下面區域與上面區域,該下面區域係包含有該基板側的表面,該上面區域係包含有與該基板為相反側的表面;該下面區域之該添加元素的濃度(原子%)與該上面區域之該添加元素的濃度(原子%)係不相同。

Description

反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體 裝置之製造方法
本發明係關於一種半導體裝置的製造等所使用之反射型遮罩,以及為了製造反射型遮罩所使用之反射型遮罩基底。又,本發明係關於一種使用上述反射型遮罩之半導體裝置的製造方法。
半導體裝置製造中之曝光裝置的光源種類從波長436nm的g線慢慢地波長縮短而進化成同365nm的i線、同248nm的KrF雷射、同193nm的ArF雷射。為實現更微細的圖案轉印,已開發出一種使用波長為13.5nm附近的極紫外線(EUV:Extreme Ultra Violet)之EUV微影。EUV微影中,由於相對於EUV光為透明的材料較少,故是使用反射型的遮罩。該反射型遮罩係以具有低熱膨脹基板、多層反射膜、保護膜及轉印用圖案之遮罩構造作為基本構造。低熱膨脹基板上係形成有會反射曝光光線之多層反射膜。多層反射膜上係形成有用以保護多層反射膜之保護膜。保護膜上係形成有所需的轉印用圖案。又,作為轉印用圖案的代表性者,有二元式反射遮罩及相移型反射遮罩(半調式相移型反射遮罩),該二元式反射遮罩係由會充分吸收EUV光之較厚的吸收體圖案所構成,該相移型反射遮罩則是藉由光吸收來讓EUV光減弱,且會相對於來自多層反射膜的反射光而幾乎讓相位反轉(約180°的相位反轉),並由會產生反射光之較薄的吸收體圖案所構成。該相移型反射遮罩係與透光型光相移遮罩同樣地可藉由相位轉移效果來獲得高轉印光學像對比。於是,相移型反射遮罩便會具有解析度提升效果。又,由於相移型反射遮罩之吸收體圖案(相移圖案)的膜厚較薄,故可高精度地形成微細的相移圖案。
上述般之EUV微影用反射型遮罩及用以製作其之遮罩基底相關的技術已被揭示於專利文獻1及2。
專利文獻1中記載一種於基板上依序地至少形成有會反射EUV光的反射層及會吸收EUV光的吸收體層之EUV微影用反射型遮罩基底。具體而言係記載專利文獻1之反射型遮罩基底中,該吸收體層係含有鉭(Ta)、氮(N)及氫(H),該吸收體層中之Ta及N的總含有率為50~99.9at%,H的含有率為0.1~50at%。專利文獻1中記載有專利文獻1之反射型遮罩基底中,吸收體層的膜結晶狀態會成為非晶質,且應力及表面粗糙度亦降低。
又,專利文獻2中記載一種於基板上依序形成有會反射EUV光的反射層及會吸收EUV光的吸收體層之EUV微影用反射型遮罩基底。具體而言係記載專利文獻2之反射型遮罩基底中,該吸收體層係至少含有鉭(Ta)、硼(B)、氮(N)及氫(H),該吸收體層中的B含有率為1at%以上但未達5at%,H含有率為0.1~5at%,Ta及N的總含有率為90~98.9at%,Ta與N的組成比(Ta:N)為8:1~1:1。其結果,記載有專利文獻2之反射型遮罩基底中,吸收體層的膜結晶狀態會成為非晶質,且應力及表面粗糙度亦降低。又,專利文獻2中記載有專利文獻2之反射型遮罩基底由於吸收體層中的B含有率較低(未達5at%),故在成膜出吸收體層之際,便沒有成膜速度降低,或是因成膜時放電變得不穩定而產生的問題。具體而言,專利文獻2係記載不會有發生膜組成或膜厚產生差異,甚者發生變得無法成膜的問題之虞。
專利文獻1:國際公開第2009/116348號
專利文獻2:國際公開第2010/050518號
已知EUV微影中,會發生因EUV曝光而有碳膜沉積在反射型遮罩之曝光污染。為了抑制上述現象,近年來已導入一種將氫氣導入至曝光中的環境氣體之技術。
如專利文獻1及2所揭示般,過去係使用鉭(Ta)來作為用以形成反射型遮罩基底的吸收體膜之材料。然而,以上述含有氫氣的環境氣體來進行EUV曝光時,會有發生吸收體圖案剝落的問題之情況。發生上述般問題的理由被認為如下所述。亦即,在EUV曝光之際,含有氫氣之曝光環境氣體中的氫氣會作為原子狀氫(H)而被吸收體圖案吸收,因而導致吸收體圖案的體積膨脹,且壓縮應力增大。藉此,則較吸收體圖案要配置於基板側之薄膜(例如保護膜等)中,便會在密著性弱的界面處產生裂縫。當吸收體圖案的基板側配置有保護膜之情況,會有氫亦侵入至保護膜的情況。若氫侵入至保護膜的情況,便會有在保護膜與多層反射膜的界面處產生很多裂縫之情況。被認為會因原子狀氫(H)聚集在所產生之裂縫的空間內而成為氫氣,則空間便會膨脹而將吸收體圖案剝除。
此外,當藉由改變吸收體膜的材料等來解決吸收體圖案剝落之問題的情況,則必須使吸收體膜的消光係數k不會變得過低。若吸收體膜的消光係數k變低,為了確保吸收體膜所致之特定EUV光的吸收,便必須使吸收體膜的膜厚變厚。當吸收體膜的膜厚變厚,會因反射型遮罩的陰影效應而產生無法形成微細圖案之其他問題。
因此,本發明之目的為提供一種在以含有氫氣的環境氣體來進行EUV曝光之情況下能夠抑制吸收體圖案剝落之反射型遮罩。又,本發明之目的為提供一種用以製造能夠抑制吸收體圖案剝落的反射型遮罩之反射型遮罩基底。
本案發明人發現藉由使吸收體膜預先含有氫,以避免新的原子狀氫(H)進入吸收體膜,便可抑制吸收體圖案剝落。更具體而言,係發現可抑制吸收體圖案因氫侵入所致之膜應力變化,從而可抑制吸收體圖案成為容易剝落之狀態,或吸收體圖案實際地成為剝離狀態。若吸收體膜含有氫的情況,由於吸收體膜的膜密度會降低,故消光係數k便會變低。於是,便會有吸收體膜的膜厚變厚之其他問題產生。因此,本案發明人發現藉由在膜厚方向上改變吸收體膜的氫含量,便能夠抑制吸收體膜變厚,且防止吸收體圖案的膜剝落,而完成本發明。
為解決上述課題,本發明係具有以下的構成。
(構成1)
本發明之構成1為一種反射型遮罩基底,係具有基板、該基板上的多層反射膜、以及該多層反射膜上的吸收體膜;該吸收體膜係包含吸收層及反射率調整層;該吸收層係含有鉭(Ta)及氮(N),以及選自氫(H)及重氫(D)之至少1種添加元素;該吸收層係包含下面區域與上面區域,該下面區域係包含有該基板側的表面,該上面區域係包含有與該基板為相反側的表面;該下面區域之該添加元素的濃度(原子%)與該上面區域之該添加元素的濃度(原子%)係不相同。
(構成2)
本發明之構成2係如構成1之反射型遮罩基底,其中該下面區域之該添加元素的濃度(原子%)係高於該上面區域之該添加元素的濃度(原子%)。
(構成3)
本發明之構成3係如構成1之反射型遮罩基底,其中該上面區域之該添加元素的濃度(原子%)係高於該下面區域之該添加元素的濃度(原子%)。
(構成4)
本發明之構成4係如構成1至3之任一反射型遮罩基底,其中該吸收層中之該添加元素的含量為0.1原子%以上,30原子%以下。
(構成5)
本發明之構成5係如構成1至4之任一反射型遮罩基底,其中該反射率調整層係含有鉭(Ta)及氧(O),以及選自氫(H)及重氫(D)之至少1種添加元素。
(構成6)
本發明之構成6係如構成1至5之任一反射型遮罩基底,其中該多層反射膜與該吸收體膜之間係包含有保護膜; 該保護膜係含有釕(Ru),以及選自氫(H)及重氫(D)之至少1種添加元素。
(構成7)
本發明之構成7為一種反射型遮罩,係具有如構成1至6之任一反射型遮罩基底中的該吸收體膜被圖案化後之吸收體圖案。
(構成8)
本發明之構成8為一種反射型遮罩之製造方法,係將如構成1至6之任一反射型遮罩基底的該吸收體膜加以圖案化來形成吸收體圖案。
(構成9)
本發明之構成9為一種半導體裝置之製造方法,係具有將如構成7之反射型遮罩安裝在具有會發出EUV光的曝光光線源之曝光裝置,來將轉印圖案轉印在被轉印基板上所形成的阻膜之工序。
藉由本發明,便可提供一種在以含有氫氣的環境氣體來進行EUV曝光之情況下,能夠抑制吸收體膜變厚,且抑制吸收體圖案剝落之反射型遮罩。又,藉由本發明,可提供一種用以製造能夠抑制吸收體圖案剝落的反射型遮罩之反射型遮罩基底。
1:基板
2:多層反射膜
3:保護膜
4:吸收體膜
4a:吸收體圖案
5:內面導電膜
6:蝕刻遮罩膜
6a:蝕刻遮罩圖案
11:阻膜
11a:阻劑圖案
42:吸收層
42a:吸收層圖案
44:反射率調整層
44a:反射率調整層圖案
46:下面區域
48:上面區域
100:反射型遮罩基底
200:反射型遮罩
圖1係用以說明本發明之反射型遮罩基底之實施型態的概略構成之主要部分剖面示意圖。
圖2係用以說明本發明之反射型遮罩基底之其他實施型態的概略構成之主要部分剖面示意圖。
圖3A-E係以主要部分剖面示意圖來顯示由反射型遮罩基底製作反射型遮罩的工序之工序圖一範例。
圖4A-E係以主要部分剖面示意圖來顯示由反射型遮罩基底製作反射型遮罩的工序之工序圖其他範例。
以下,便針對本發明之實施型態來一邊參照圖式一邊具體地說明。此外,以下的實施型態係將本發明具體化之際的一型態,而非將本發明限定在其範圍內。此外,圖式中針對相同或相當的部分,會有賦予相同的符號而簡化或省略其說明之情況。
<反射型遮罩基底100的構成及其製造方法>
圖1係用以說明本發明之實施型態之反射型遮罩基底100的構成之主要部分剖面示意圖。如圖1所示,本實施型態之反射型遮罩基底100係依序地層積具有基板1、形成於第1主面(表面)側且會反射曝光光線(即EUV光)之多層反射膜2、以及形成於多層反射膜2上且會吸收EUV光之吸收體膜4。本實施型態之反射型遮罩基底100中,吸收體膜4係具有吸收層42,以及設置於吸收層42上之反射率調整層44。吸收層42係具有包含有基板1側的表面之下面區域46,以及包含有與基板1為相反側的表面之上面區域48。又,如圖1所示之本實施型態之反射型遮罩基底100可在多層反射膜2與吸收體膜4之間另具有為了保護多層反射膜2而設置的保護膜3。又,可將靜電夾具用的內面導電膜5形成在基板1的第2主面(內面)側。
圖2係顯示其他實施型態之反射型遮罩基底100。如圖2所示,本實施型態之反射型遮罩基底100可另具有形成於吸收體膜4上之蝕刻遮罩膜6。
又,其他實施型態之反射型遮罩基底100係包含未形成有內面導電膜5之構成。進一步地,上述反射型遮罩基底100係包含於蝕刻遮罩膜6上形成有阻膜11之附阻膜的遮罩基底之構成。
本說明書中,例如,「形成於基板1上的多層反射膜2」或「基板1上的多層反射膜2」之記載除了意指多層反射膜2係相接地配置在基板1的表面之情況以外,亦包含有意指基板1與多層反射膜2之間係具有其他膜之情況。關於其他膜亦是相同。又,本說明書中,例如「膜A係相接地配置在膜B上」係意指膜A與膜B之間並未介設有其他膜,而是膜A與膜B係配置為會直接地相接之情況。
本說明書中,將本實施型態之反射型遮罩基底100的吸收體膜4等薄膜所包含之氫(H)及/或重氫(D)稱作「添加元素」。又,由於氫(H)及重氫(D)係顯示相同的性質,故只要是未特別說明,則可以重氫(D)來置換會構成特定薄膜之氫(H)的一部分或全部。
以下,針對反射型遮罩基底100的各構成來具體地說明。
<<基板1>>
為了防止基板1因EUV光之曝光時的熱而導致吸收體圖案4a的扭曲,較佳宜使用具有0±5ppb/℃之範圍內的低熱膨脹係數者。可使用例如SiO2-TiO2系玻璃、多成分系玻璃陶瓷等來作為具有此範圍的低熱膨脹係數之材料。
基板1之形成有轉印圖案(後述吸收體膜4經圖案化的圖案會構成此)之側的第1主面由至少會獲得圖案轉印精確度、位置精確度之觀點來看,係被表面加工成高平坦度。EUV曝光的情況,基板1形成有轉印圖案之側的主表面之132mm×132mm區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。又,與形成有吸收體膜4之側為相反側的第2主面為安裝於曝光裝置時被靜電夾持之面,142mm×142mm區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。
又,基板1的高表面平滑度亦為極重要之項目。形成有轉印用吸收體圖案4a之基板1之第1主面的表面粗糙度以均方根粗糙度(RMS)來說,較佳為0.1nm以下。此外,表面平滑度可藉由原子力顯微鏡來測定。
進一步地,為了防止基板1因其上所形成之膜(多層反射膜2等)的膜應力所致之變形,較佳為具有高剛性者。特別是,較佳為具有65GPa以上的高楊氏係數者。
<<多層反射膜2>>
多層反射膜2係在反射型遮罩200中賦予會反射EUV光之功能。多層反射膜2為週期性地層積有以折射率不同之元素來作為主成分的各層之多層膜。
一般來說,係使用交互地層積有40~60週期左右之為高折射率材料的輕元素或其化合物的薄膜(高折射率層)與為低折射率材料的重元素或其化合物的薄膜(低折射率層)之多層膜來作為多層反射膜2。多層膜可以從基板1側依序層積有高折射率層與低折射率層的高折射率層/低折射率層之層積構造作為1週期而層積複數週期,亦可以從基板1側依序層積有低折射率層與高折射率層的低折射率層/高折射率層之層積構造作為1週期而層積複數週期。此外,多層反射膜2之最表面的層,亦即多層反射膜2之與基板1為相反側的表面層較佳為高折射率層。上述多層膜中,以從基板1依序層積有高折射率層與低折射率層的高折射率層/低折射率層之層積構造作為1週期而層積複數週期的情況,則最上層便會成為低折射率層。此情況下,若是低折射率層構成了多層反射膜2的最表面,便會容易被氧化而導致反射型遮罩200的反射率減少。因此,較佳為在最上層的低折射率層上另形成高折射率層來作為多層反射膜2。另一方面,上述多層膜中,以從基板1側依序層積有低折射率層與高折射率層的低折射率層/高折射率層之層積構造作為1週期而層積複數週期的情況,由於最上層會成為高折射率層,故保持現狀即可。
本實施型態中,係採用含有矽(Si)之層來作為高折射率層。作為含有Si之材料,除了Si單體以外,亦可為於S含有硼(B)、碳(C)、氮(N)及氧(O)之Si化合物。藉由使用含有Si之層來作為高折射率層,便可獲得EUV光的反射率優異之EUV微影用反射型遮罩200。又,本實施型態中,較佳宜使用玻璃基板來作為基板1。Si在與玻璃基板之密著性這點上亦非常優異。又,使用選自鉬(Mo)、釕(Ru)、銠(Rh)及鉑(Pt)之金屬單體或該等的合金來作為低折射率層。作為相對於例如波長13nm~14nm的EUV光之多層反射膜2,較佳宜使用交互地層積有40~60週期左右的Mo膜與Si膜之Mo/Si週期層積膜。此外,亦可以矽(Si)來形成為多層反射膜2的最上層之高折射率層,並於該最上層(Si)與Ru系保護膜3之間形成包含有矽與氧的矽氧化物層。藉此,便可提高遮罩洗淨耐受性。
上述般之多層反射膜2單獨的反射率通常為65%以上,上限通常為73%。此外,多層反射膜2之各構成層的厚度及週期依曝光波長來適當地選擇即可,係選擇會滿足布拉格反射的定律。多層反射膜2中雖分別存在有複數高折射率層及低折射率層,但高折射率層彼此及低折射率層彼此的厚度亦可不同。又,多層反射膜2之最表面的Si層之膜厚可在不會讓反射率降低之範圍來做調整。最表面之Si(高折射率層)的膜厚可為3nm~10nm。
多層反射膜2的形成方法在該技術領域中為公知。例如可藉由離子束濺射法來成膜出多層反射膜2的各層而形成。上述Mo/Si週期多層膜的情況,例如係藉由離子束濺射法,首先使用Si靶材來於基板1上成膜出厚度4nm左右的Si膜,之後使用Mo靶材來成膜出厚度3nm左右的Mo膜。以如此般地成膜後之Si膜及Mo膜作為1週期,而層積40~60週期以形成多層反射膜2(最表面的層為Si層)。又,在多層反射膜2的成膜之際,較佳宜從離子源供應氪(Kr)離子粒子,並進行離子束濺射來形成多層反射膜2。
<<保護膜3>>
本實施型態之反射型遮罩基底100較佳宜於多層反射膜2與吸收體膜4之間具有保護膜3。藉由於多層反射膜2上形成有保護膜3,便可抑制在使用反射型遮罩基底100來製造反射型遮罩200(EUV遮罩)之際對多層反射膜2表面造成的損傷。於是,相對於EUV光之反射率特性便會變得良好。
保護膜3係為了自後述反射型遮罩200的製程中之乾蝕刻及洗淨來保護多層反射膜2而被形成於多層反射膜2上。又,保護膜3在使用電子線(EB)之吸收體圖案4a的黑色缺陷修正之際亦兼會保護多層反射膜2。保護膜3係由相對於蝕刻劑及洗淨液等會具有耐受性之材料所形成。此處,圖1中雖係顯示保護膜3為1層的情況,但亦可為3層以上的層積構造。例如,使得保護膜3成為最下層與最上層是上述含有Ru之物質所構成的層,且於最下層與最上層之間介設有Ru以外的金屬或合金亦無妨。例如,保護膜3亦可由含有釕來作為主成分之材料所構成。亦即,保護膜3的材料可為Ru金屬單體,抑或於Ru包含有選自鈦(Ti)、鈮(Nb)、鉬(Mo)、鋯(Zr)、釔(Y)、硼(B)、鑭(La)、鈷(Co)及錸(Re)等至少1種金屬之Ru合金,包含有氮亦無妨。上述般之保護 膜3對於以氯系氣體(Cl系氣體)的乾蝕刻來將吸收體膜4中的吸收層42圖案化之情況來說特別有效。保護膜3較佳宜由在使用氯系氣體之乾蝕刻中,吸收體膜4相對於保護膜3的蝕刻選擇比(吸收體膜4的蝕刻速度/保護膜3的蝕刻速度)為1.5以上,較佳為3以上之材料所形成。
該Ru合金的Ru含量為50原子%以上但未達100原子%,較佳為80原子%以上但未達100原子%,更佳為95原子%以上但未達100原子%。特別是Ru合金的Ru含量為95原子%以上但未達100原子%之情況,便可抑制構成多層反射膜2之元素(矽)朝保護膜3擴散,同時充分確保EUV光的反射率,且兼具遮罩洗淨耐受性、在蝕刻加工吸收體膜4時之蝕刻停止功能、以及多層反射膜2之依時變化防止的保護膜功能。
本實施型態之反射型遮罩基底100的保護膜3較佳宜包含有釕(Ru),以及選自氫(H)及重氫(D)之至少1種添加元素。若保護膜3含有添加元素(氫(H)及/或重氫(D))的情況,則添加元素的合計含量較佳為超過5原子%,更佳為10原子%以上。藉由於多層反射膜2與吸收體膜4之間具有保護膜3,便可抑制使用反射型遮罩基底100來製造反射型遮罩200之際對多層反射膜2表面的損傷。又,藉由使用特定材料來作為保護膜3的材料,則可更加提高多層反射膜2與吸收體膜4之間的密著性。於是,便可更確實地抑制保護膜3與吸收體圖案4a剝落。進一步地,藉由保護膜3係包含有選自氫(H)及重氫(D)之至少1種添加元素,則可抑制保護膜3的界面所發生之膜剝落。
此外,當保護膜3中之添加元素(氫(H)及/或重氫(D))的合計含量多於吸收層42中之添加元素的合計含量之情況,則保護膜3中之氫(H)或重氫(D)的合計含量不一定要超過5原子%,可為5原子%以下。
此外,依本案發明人的見解,當保護膜3之添加元素(氫(H)及/或重氫(D))的合計含量超過5原子%之情況,便會有可充分防止保護膜3的界面所發生之膜剝落之可能性。該情況下會有不一定要讓吸收體膜4含有添加元素或低濃度的添加元素即可之情況。
亦即,該情況之實施型態的反射型遮罩基底100係於基板1上依序具有多層反射膜2、保護膜3及吸收體膜4之反射型遮罩基底100。該反射型遮罩基底100的吸收體膜4係含有鉭(Ta),以及選自氫(H)及重氫(D)之至少1種添加元素。該反射型遮罩基底100的保護膜3係含有釕(Ru),以及選自氫(H)及重氫(D)之至少1種添加元素。該反射型遮罩基底100的保護膜3之添加元素的含量為超過5原子%。藉由使用上述般之反射型遮罩基底100,亦可抑制反射型遮罩200之吸收體圖案4a的膜剝落。
EUV微影中,由於相對於曝光光線為透明的物質較少,故防止異物附著在遮罩圖案面之EUV護膜在技術上並不容易。因此,未使用護膜之無護膜運用便成為主流。又,EUV微影中,會因EUV曝光而發生碳膜沉積在遮罩或氧化膜成長之曝光污染。於是,將EUV反射型遮罩200使用於半導體裝置的製造之階段中,便必須每次皆進行洗淨來去除遮罩上的異物或污染。於是,EUV反射型遮罩200中,已被要求相較於光微影用透光型遮罩需具有級數差異的遮罩洗淨耐受性。若使用含有Ti之Ru系保護膜3,則相對於硫酸、硫酸+過氧化氫混合物(SPM)、氨水、過水氫氧化銨+過氧化氫+去離子水混合物(APM)、OH自由基洗淨水、或濃度為10ppm以下的臭氧水等洗淨液之洗淨耐受性便會特別地高,可滿足遮罩洗淨耐受性之要求。
由上述般之Ru或其合金等所構成之保護膜3的厚度只要是可達成作為該保護膜3之功能,則未特別限制。由EUV光的反射率之觀點來看,保護膜3的厚度較佳為1.0nm~8.0nm,更佳為1.5nm~6.0nm。
保護膜3的形成方法並未特別限制,可採用與公知的膜形成方法相同者。具體範例舉例有濺射法及離子束濺射法。
<<吸收體膜4>>
本實施型態之反射型遮罩基底100中,係於多層反射膜2上(當形成有保護膜3的情況則是保護膜3上)形成有會吸收EUV光之吸收體膜4。吸收體膜4係具有會吸收EUV光之功能。本實施型態之吸收體膜4係具有吸收層42,以及設置於吸收層42上(在吸收層42的2個表面當中與基板1為相反側之表面上)之反射率調整層44。
本實施型態之吸收體膜4係具有吸收層42。吸收層42係包含有鉭(Ta)與氮(N),以及選自氫(H)及重氫(D)之至少1種添加元素。藉由使吸收體膜4預先含有氫等添加元素,則在以含有氫氣的環境氣體來進行EUV曝光之情況下,便可避免新的原子狀氫(H)進入吸收體膜,從而可獲得能夠抑制吸收體圖案4a剝落之反射型遮罩200。
如圖1及圖2所示,本實施型態之反射型遮罩基底100的吸收層42係包含有包含了基板1側的表面之下面區域46,以及包含了與基板1為相反側的表面之上面區域48。本實施型態中,吸收層42的下面區域46之添加元素的濃度(原子%)與上面區域48之添加元素的濃度(原子%)係相異。由於藉由以更高濃度來將添加元素添加在吸收體膜的必要部分(下面區域46或上面區域48),便可防止吸收體膜的膜密度降低,故可抑制吸收體膜的膜厚變厚。於是,藉由在膜厚方向上改變吸收體膜4的氫含量,便可抑制吸收體膜4的膜厚變厚,且以含有氫氣之環境氣體來進行EUV曝光的情況下,便可獲得能夠抑制吸收體圖案4a剝落之反射型遮罩200。
此外,本說明書中,有將吸收層42中包含有下面區域46的層稱作下層之情況。同樣地,有將包含有上面區域48的層稱作上層之情況。又,可於下層與上層之間包含有中間區域。此外,圖1及圖2之範例中係顯示下層與下面區域46相同,上層與上面區域48相同,且不具有中間區域之情況。
下面區域46為包含有吸收體膜4的吸收層42中之基板1側的表面之區域。圖1及圖2所示之範例中,下面區域46為包含有吸收體膜4的吸收層42的表面(界面)中之與保護膜3相接的表面(本說明書中稱作「下面」。),且為其表面附近的區域。又,上面區域48為包含有吸收體膜4之吸收層42的二個表面(界面)中之與基板1為相反側之表面(本說明書中稱作「上面」。)之區域。圖1及圖2所示之範例中,上面區域48為包含有與吸收體膜4的反射率調整層44相接之表面,且包含有其表面附近之區域。吸收層42可僅具有下面區域46及上面區域48之二個區域。此情況下,下面區域46係相當於下層,上面區域48係相當於上層。又,吸收 層42可於下面區域46及上面區域48之間包含有中間區域(圖中未顯示)。下面區域46及上面區域48之添加元素的濃度為相異。但添加元素以外的元素,尤其是鉭(Ta)及氮(N)之2種元素的濃度比率基本上可為相同。此外,下面區域46及上面區域48中之特定元素的濃度分佈不須為均勻。下面區域46及上面區域48中之特定元素的濃度可為各區域內之特定元素的濃度之平均值。
本實施型態中,可使下面區域46之添加元素的濃度(原子%)高於上面區域48之添加元素的濃度(原子%)。藉由相較於上面區域48而提高下面區域46之添加元素的濃度,則即便是氫欲從吸收體圖案4a的側壁侵入之情況,仍可抑制氫從下面區域46朝向吸收層42與其下的層之界面侵入。於是,便可更確實地抑制保護膜3與吸收體圖案4a剝落。又,由於上面區域48之添加元素的濃度較低,故可防止上面區域48的膜密度降低。於是,便可抑制吸收體膜4的膜厚變厚。下面區域46的膜厚相對於吸收層42的膜厚之比率(下面區域46的膜厚/吸收層42的膜厚)較佳為0.1以上,更佳為0.2以上。
本實施型態中,上面區域48之添加元素的濃度(原子%)可高於下面區域46之添加元素的濃度(原子%)。藉由相較於下面區域46而提高上面區域48之添加元素的濃度,便可抑制氫從吸收體圖案4a的表面侵入。於是,便可更確實地抑制保護膜3與吸收體圖案4a剝落。又,由於下面區域46之添加元素的濃度較低,故可防止下面區域46的膜密度降低。於是,便可抑制吸收體膜4的膜厚變厚。上面區域48的膜厚相對於吸收層42的膜厚之比率(上面區域48的膜厚/吸收層42的膜厚)較佳為0.1以上,更佳為0.2以上。
下面區域46之添加元素(氫(H)及/或重氫(D))的含量可遍布下面區域46整體而為均勻或實質地均勻。又,上面區域48之添加元素(氫(H)及/或重氫(D))的含量可遍布上面區域48整體而為均勻或實質地均勻。又,下面區域46及/或上面區域48之添加元素的含量可具有特定的濃度分佈。藉由將添加元素添加在吸收層42,則吸收體膜4的膜密度便會容易降低。因此,朝吸收層42之添加元素的添加較佳宜僅在必要的區域才進行。於是,如上述般地,便必須使上面區域48及下面區域46中的一者之添加元素的濃度較另一者的濃度要來得高。上面區域48及下面區域46的濃度可考慮曝光環境氣體的氫氣濃 度等,而評估氫容易從上面區域48及下面區域46哪一方侵入後,再決定決定使哪一者為高濃度。
吸收層42的下面區域46與上面區域48之間可具有中間區域。中間區域之添加元素的濃度分佈為任意。吸收層42(包含有下面區域46及上面區域48,以及中間區域的情況則為中間區域)之添加元素的濃度分佈可為在深度方向上為單純減少或單純增加之分佈。當下面區域46之添加元素的濃度低於上面區域48之添加元素的濃度之情況,則吸收層42之添加元素的濃度可在吸收層42的深度方向上而從上面區域48朝下面區域46為單純減少。又,當下面區域46之添加元素的濃度高於上面區域48之添加元素的濃度之情況,則吸收層42之添加元素的濃度可在吸收層42的深度方向上而從上面區域48朝下面區域46為單純增加。即便是在上面區域48內,添加元素的濃度可在深度方向上為單純減少或單純增加。同樣地,即便是在下面區域46內,添加元素的濃度可在深度方向上為單純減少或單純增加。添加元素之濃度在深度方向上的濃度變化可一樣地傾斜變化,又,亦可為階梯狀地變化(增加或減少)。本說明書中,元素之濃度的單純減少係包含有元素之濃度為階梯狀地減少之情況。本說明書中,元素之濃度的單純增加係包含有元素的濃度為階梯狀地增加之情況。
包含有下面區域46及上面區域48之吸收層42中的鉭含量較佳為40原子%以上,更佳為50原子%以上,再更佳為60原子%以上。吸收層42中的鉭含量較佳為95原子%以下。吸收層42中之氮含量的上限較佳為50原子%以下,更佳為30原子%以下。
包含有下面區域46及上面區域48之吸收層42之添加元素(氫(H)及/或重氫(D))的含量(當包含有氫(H)及重氫(D)兩者的情況,則為兩者的合計含量)為0.1原子%以上且30原子%以下,較佳為5原子%以上,更佳為10原子%以上,再更佳為超過15原子%。藉由吸收層42係含有氫(H)及/或重氫(D)來作為添加元素,則在含有氫氣之曝光環境氣體中的EUV曝光之際,便可防止新的原子狀氫(H)進入吸收體膜4。於是,藉由使用本實施型態之反射型遮罩基底100, 便可抑制反射型遮罩200的吸收體圖案4a剝落。又,當添加元素的含量超過30原子%之情況,則吸收層42的膜密度便會降低且消光係數k變小,而變得難以具有會吸收EUV光之功能。
在含有氫氣之曝光環境氣體中的EUV曝光之際,在降低原子狀氫(H)朝吸收層42侵入這一點中,即便是使用氫(H)及重氫(D)任一添加元素之情況,仍可獲得相同的效果。但與氫(H)相比較,由於重氫(D)在吸收層42中與其他元素的鍵結較強,故可在吸收層42中穩定地存在。因此,較佳宜使用重氫(D)來作為吸收層42的添加元素。
吸收層42可含有硼(B)。吸收層42的硼(B)含量為超過5原子%,較佳為10原子%以上,但30原子%以下。藉由吸收體膜4係含有硼(B),便可使結晶構造容易非晶質化,而成為平滑性優異的吸收體膜4。又,本實施型態中,為了抑制吸收體圖案4a剝落,而使吸收體膜4含有氫。當吸收體膜4含有氫的情況,則吸收體膜4的膜密度便會容易降低。藉由使本實施型態之吸收體膜4含有硼,便可獲得膜密度降低已受到抑制之非晶質構造的吸收體膜4。
此外,當吸收層42含有硼(B)的情況,氮含量較佳宜少於硼含量。這是因為氮含量較少者在氯氣下的蝕刻速度會變得較快,而容易去除吸收層42的緣故。
又,當吸收層42含有硼(B)的情況,可使得僅有下面區域46(下層)及上面區域48(上層)其中一者含有硼(B)。又,可使得下面區域46(下層)及上面區域48(上層)兩者皆含有硼(B)。
吸收體膜4中,包含有下面區域46之下層的材料若含有添加元素的情況,則較佳為TaNH膜或TaBNH膜,若不含添加元素的情況,則較佳為TaN膜或TaBN膜。吸收體膜4中,包含有上面區域48之上層的材料係與下層同樣地,若含有添加元素的情況,則較佳為TaNH膜或TaBNH膜,若不含添加元素的情況,則較佳為TaN膜或TaBN膜。為了獲得平滑性優異的吸收體膜4,更佳宜使吸收體膜4的下面區域46(下層)及上面區域48(上層)的材料皆含有硼(B)。此外,上述材料中,可將(H)置換為重氫(D)。
上述材料所構成的吸收層42係可藉由DC濺射法及RF濺射法等磁控濺射法來形成。例如,吸收層42可藉由使用鉭所構成的靶材,且使用添加有氮氣及添加元素氣體(氫(H)氣及/或重氫(D)氣體)之氬(Ar)氣、氪(Kr)氣及/或氙(Xe)氣等稀有氣體之反應性濺射法來成膜。此外,若下面區域46及上面區域48的其中一者未含有添加元素之情況的成膜,則可藉由使用不含添加元素氣體但添加有氮氣的稀有氣體之反應性濺射法來進行成膜。又,當吸收層42含有硼(B)的情況,則可使用含有鉭及硼之靶材來進行成膜。
此外,為了讓吸收層42中含有氫,較佳為降低藉由磁控濺射法來成膜之際的功率。另一方面,若降低成膜之際的功率,則會有所成膜之薄膜中的拉伸應力增大,而導致基板1的變形量變大之其他問題產生的情況。本案發明人發現藉由限定吸收層42中之氫與氮的組成比,則可降低吸收體膜4的膜應力,且防止吸收體圖案4a的膜剝落。亦即,藉由使得吸收層42的組成中之氮(N)含量為0.1原子%以上,40原子%以下,添加元素的含量為0.1原子%以上,30原子%以下,且添加元素與氮(N)的組成比(添加元素:氮)為5:95~50:50,較佳為15:85~40:60,便可抑制所成膜之吸收層42的薄膜中之拉伸應力增大,而導致基板1的變形量變大之其他問題。
吸收層42的膜厚較佳為30nm以上,更佳為40nm以上。又,吸收層42的膜厚較佳為80nm以下,更佳為70nm以下。
圖1及如圖2所示,本實施型態之吸收體膜4係於吸收層42上(與基板1為相反側)具有反射率調整層44。
藉由使得吸收體膜4為於吸收層42上具有反射率調整層44之層積膜,且使反射率調整層44的膜厚為特定膜厚,則在使用例如DUV光等檢查光的遮罩圖案缺陷檢查之際,則此反射率調整層44便會成為會調整反射率之膜。於是,便可提高遮罩圖案缺陷檢查之際的檢查感度。例如,當反射率調整層44的材料為TaBO之情況,藉由使得膜厚為大約14nm, 便會有效地作為會調整遮罩圖案缺陷檢查之際的反射率之膜而發揮功能。
反射率調整層44較佳宜包含有鉭(Ta)及氧(O),以及選自氫(H)及重氫(D)之至少1種添加元素。與吸收層42同樣地,藉由反射率調整層44係包含有特定的添加元素,則在以含有氫氣的環境氣體來進行EUV曝光之情況下,便可抑制原子狀氫(H)從反射率調整層44侵入。於是,便可獲得能夠抑制吸收體圖案4a剝落之反射型遮罩200。
當反射率調整層44係含有特定的添加元素之情況,則反射率調整層44中之添加元素的含量較佳為0.1原子%以上,30原子%以下,更佳為超過15原子%且30原子%以下。又,反射率調整層44中之添加元素的含量相較於吸收層42中之添加元素的含量,較佳為高至10原子%以上。藉由反射率調整層44中之添加元素的含量為特定範圍,便可更確實地獲得能夠抑制吸收體圖案4a剝落之反射型遮罩200。
反射率調整層44較佳宜另含有硼(B)。藉由反射率調整層44係含有硼(B),便可使結晶構造容易非晶質化,而成為平滑性優異的吸收體膜4。為了使非晶質化能夠確實,反射率調整層44中的硼(B)含量較佳為超過5原子%,更佳為10原子%以上,30原子%以下。
如上所述,反射率調整層44的材料係含有鉭(Ta)及氧(O),以及依需要而含有特定的添加元素(氫(H)及/或重氫(D))及/或硼(B)。反射率調整層44較佳為TaO膜或TaBO膜。當反射率調整層44含有添加元素之情況,則較佳宜使用TaOH膜(或TaOD膜)及TaBOH膜(或TaBOD膜)。
上述材料所構成的反射率調整層44可藉由DC濺射法及RF濺射法等磁控濺射法來形成。例如,包含有特定的添加元素及硼(B)之反射率調整層44可藉由使用含有鉭及硼之靶材,且使用添加有氧氣及添加元素氣體(氫(H)氣及/或重氫(D)氣體)的氬(Ar)氣、氪(Kr)氣及/或氙(Xe)氣等稀有氣體之反應性濺射法來成膜。又,例如,若反射率調整層44未含有特定的添加元素之情況,則可藉由使用含有鉭及硼之靶材,且使用添加有氧氣的稀有氣體之反應性濺射法來成膜出反射率調整層44。若反射率調整層44未含有硼(B)的情況,則可使用鉭所構成的靶材來成膜出反射率調整層44。
反射率調整層44的膜厚較佳為15nm以下,更佳為8nm以下。又,吸收體膜4的膜厚較佳為90nm以下,更佳為80nm以下。又,吸收體膜4表面的表面粗糙度(RMS)較佳為0.5nm以下。
本實施型態之吸收體膜4的材料(即Ta)其EUV光的吸收係數(消光係數)較大,為一種可容易藉由氯系氣體及/或氟系氣體來乾蝕刻之材料。因此,Ta可說是一種加工性優異之吸收體膜4的材料。再者,藉由於Ta添加B(進一步地添加Si及/或Ge等),便可容易獲得非晶質狀的材料。其結果,便可提高吸收體膜4的平滑性。又,若於Ta添加N及/或O,則吸收體膜4對於氧化的耐受性會提高,故可獲得能夠提高依時穩定性之效果。
為了蝕刻本實施型態之吸收體膜4,可使用CF4、CHF3、C2F6、C3F6、C4F6、C4F8、CH2F2、CH3F、C3F8、SF6及F2等來作為氟系氣體。可使用Cl2、SiCl4、CHCl3、CCl4及BCl3等來作為氯系氣體。又,該等蝕刻氣體可依需要而進一步地包含有He及/或Ar等非活性氣體。
本實施型態之反射型遮罩基底100中,藉由使用上述吸收體膜4,則在以含有氫氣的環境氣體來進行EUV曝光之情況下,便可獲得能夠抑制吸收體膜4的膜厚變厚,且抑制吸收體圖案4a剝落之反射型遮罩200。
本實施型態之吸收體膜4可為亦考慮了EUV光的相位差而具有相位轉移功能之吸收體膜4。具有相位轉移功能之吸收體膜4係指會吸收EUV光且會使一部分反射來讓相位偏移者。亦即,在具有相位轉移功能的吸收體膜4被圖案化後之反射型遮罩200中,在形成有吸收體膜4的部分,係以會吸收EUV光而讓光線減弱且不會對圖案轉印造成不良影響之程度來讓一部分的光線反射。又,在未形成有吸收體膜4之區域(場域部)處,EUV光則是會透過保護膜3而自多層反射膜2反射。於是,來自具有相位轉移功能的吸收體膜4之反射光與來自場域部之反射光之間便會具有所需的相位差。具有相位轉移功能的吸收體膜4係形成為來自吸收體膜4之反射光與來自多層反射膜2之反射光的相位差會成為170度~190度。相位差反轉了180度左右之光線彼此會在圖案邊緣部互相干擾, 因此而提高投影光學像的像對比。解析度會隨著該像對比的提升而上升,便可增大曝光量裕度、焦點裕度等曝光相關的各種裕度。
<<蝕刻遮罩膜6>>
本實施型態之反射型遮罩基底100可於吸收體膜4上具備蝕刻遮罩膜6。
作為吸收體膜4(特別是反射率調整層44)相對於蝕刻遮罩膜6的蝕刻選擇比較高之蝕刻遮罩膜6的材料,舉例有鉻及鉻化合物的材料。此情況下,吸收體膜4可藉由氟系氣體或氯系氣體來加以蝕刻。鉻化合物舉例有包含有鉻(Cr)與選自氮(N)、氧(O)、碳(C)及硼(B)的至少一種元素之材料。鉻化合物舉例有CrN、CrC、CrO、CrON、CrOC、CrCN、CrCON、CrBN、CrBC、CrBO、CrBON、CrBCN及CrBOCN。又,舉例有於該等的鉻化合物添加有氫(H)及/或重氫(D)之材料。為了提高在氯系氣體中的蝕刻選擇比,較佳宜使蝕刻遮罩膜6為實質地不含氧之材料。實質地不含氧之鉻化合物舉例有CrN、CrC、CrCN、CrBN、CrBC及CrBCN,或於該等的鉻化合物添加有H及/或D之材料。蝕刻遮罩膜6之鉻化合物的Cr含量較佳為50原子%以上但未達100原子%,更佳為80原子%以上但未達100原子%。又,「實質地不含氧」係指鉻化合物中的氧含量為10原子%以下,較佳為5原子%以下者會符合。此外,前述材料可在能夠獲得本發明之實施型態的效果之範圍內,而含有鉻以外的金屬。
在形成蝕刻遮罩膜6的情況,則可使阻膜11的膜厚較薄,對於圖案的微細化來說為有利的。蝕刻遮罩膜6的膜厚由高精確度地將轉印圖案形成於吸收體膜4而獲得作為蝕刻遮罩之功能的觀點來看,最好是3nm以上。又,蝕刻遮罩膜6的膜厚由使得阻膜11的膜厚較薄之觀點來看,最好是15nm以下,更佳為10nm以下。
<<阻膜11>>
本實施型態之反射型遮罩基底100可於吸收體膜4上(當形成有蝕刻遮罩膜6的情況則為蝕刻遮罩膜6上)具有阻膜11。本實施型態之反射型遮罩基底100亦包含有具有阻膜11之型態。本實施型態之反射型遮罩基底100中,亦 可藉由選擇適當材料及/或適當膜厚的吸收體膜4(吸收層42及反射率調整層44)及蝕刻氣體,來進行阻膜11的薄膜化。
可使用例如化學增幅型阻劑(CAR:chemically-amplified resist)來作為阻膜11的材料。藉由將阻膜11予以圖案化,且蝕刻吸收體膜4(吸收層42及反射率調整層44),便可製造出具有特定的轉印圖案之反射型遮罩200。
<<內面導電膜5>>
基板1的第2主面(內面)側(多層反射膜2形成面的相反側)一般來說係形成有靜電夾具用的內面導電膜5。靜電夾具用的內面導電膜5所要求之電性特性(片電阻)通常為100Ω/□(Ω/Square)以下。內面導電膜5的形成方法可藉由例如磁控濺射法或藉由離子束濺射法,並使用鉻、鉭等金屬或合金的靶材來形成。
內面導電膜5之含有鉻(Cr)的材料較佳為於Cr包含有選自硼、氮、氧及碳至少一者之Cr化合物。Cr化合物可舉出例如CrN、CrON、CrCN、CrCON、CrBN、CrBON、CrBCN及CrBOCN等。
作為內面導電膜5之含有鉭(Ta)的材料,較佳宜使用Ta(鉭)、包含有Ta之合金、或於該等任一者包含有硼、氮、氧及碳至少一者之Ta化合物。作為Ta化合物,可舉出例如TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON及TaSiCON等。
作為含有鉭(Ta)或鉻(Cr)之材料,較佳為其表層所存在的氮(N)較少。具體而言,含有鉭(Ta)或鉻(Cr)之材料的內面導電膜5之表層的氮含量較佳為未達5原子%,更佳為表層實質地不含氮。這是因為在含有鉭(Ta)或鉻(Cr)之材料的內面導電膜5中,表層的氮含量較少者則耐磨耗性會變高之緣故。
內面導電膜5較佳宜由含有鉭及硼之材料所構成。藉由內面導電膜5係由含有鉭及硼之材料所構成,便可獲得具有耐磨耗性及藥液耐受性的內面導電膜5。當內面導電膜5係包含有鉭(Ta)及硼(B)之情況,則B含 量較佳為5~30原子%。內面導電膜5的成膜所使用之濺設靶材中之Ta及B的比率(Ta:B)較佳為95:5~70:30。
內面導電膜5的厚度只要是會滿足作為靜電夾具用之功能則未特別限制。內面導電膜5的厚度通常為10nm~200nm。又,該內面導電膜5亦兼具遮罩基底100之第2主面側的應力調整之功能。內面導電膜5係被調整為可與來自第1主面側所形成的各種膜之應力取得平衡,來獲得平坦的反射型遮罩基底100。
<反射型遮罩200及其製造方法>
本實施型態之反射型遮罩200係具有上述反射型遮罩基底100中的吸收體膜4被圖案化後之吸收體圖案4a。
由於反射型遮罩200的吸收體圖案4a可吸收EUV光,且以吸收體圖案4a的開口部來反射EUV光,故藉由使用特定的光學系統來將EUV光照射在反射型遮罩200,便可將特定的微細轉印圖案轉印在被轉印物。
使用本實施型態之反射型遮罩基底100來製造反射型遮罩200。此處僅進行概要說明,之後會在實施例中再詳細地說明。又,此處係如圖3A~圖3E所示般地針對反射型遮罩基底100乃具有蝕刻遮罩膜6之情況來加以說明。
準備反射型遮罩基底100,並於該第1主面的吸收體膜4上所形成之蝕刻遮罩膜6上形成阻膜11(參照圖3A,若反射型遮罩基底100已具有阻膜11之情況則不需要),再將所需圖案描繪(曝光)在該阻膜11,並進一步地藉由顯影、沖洗來形成特定的阻劑圖案11a(參照圖3B)。
反射型遮罩基底100的情況,係以該阻劑圖案11a作為遮罩來蝕刻蝕刻遮罩膜6而形成蝕刻遮罩圖案6a(參照圖3C)。以氧灰化或熱硫酸等濕式處理來將阻劑圖案11a剝離。接著,以蝕刻遮罩圖案6a作為遮罩來蝕刻吸收體膜4(反射率調整層44及吸收層42),藉此便會形成有吸收體圖案4a(反射率調整層圖案44a及吸收層圖案42a)(參照圖3D)。去除蝕刻遮罩圖案6a而形成吸收體圖案4a(反射率調整層圖案44a及吸收層圖案42a)(參照圖3E)。最後,藉由進行使用酸性或鹼性的水溶液之濕式洗淨,便可製造出反射型遮罩200。
此外,蝕刻遮罩圖案6a的去除亦可在吸收層42的圖案化之際,與吸收層42同時地蝕刻來加以去除。
本實施型態之反射型遮罩200中,可不去除蝕刻遮罩圖案6a而是讓其殘留在吸收體圖案4a上。但此情況下,便必須使得蝕刻遮罩圖案6a為均勻的薄膜而殘留。由避免蝕刻遮罩圖案6a之作為薄膜的不均勻性之觀點來看,則本實施型態之反射型遮罩200中,較佳為不配置蝕刻遮罩圖案6a而是加以去除。
本實施型態之反射型遮罩200的製造方法較佳宜藉由包含有氯系氣體與氧氣之乾蝕刻氣體來將上述本實施型態之反射型遮罩基底100的蝕刻遮罩膜6加以圖案化。若是含有鉻(Cr)之蝕刻遮罩膜6的情況,則可使用氯系氣體及氧氣來適當地乾蝕刻。又,較佳宜藉由包含有氟系氣體之乾蝕刻氣體來將反射率調整層44加以圖案化。若是含有鉭(Ta)及氧(O)之材料所構成的反射率調整層44的情況,則可使用氟系氣體來適當地乾蝕刻。較佳宜藉由氟系氣體或包含有不含氧的氯系氣體之乾蝕刻氣體來將吸收層42加以圖案化。若是含有鉭(Ta)及氮(N)之材料所構成的吸收層42之情況,則可使用氟系氣體或不含氧的氯系氣體來適當地乾蝕刻。如此般地,便可形成反射型遮罩200的吸收體圖案4a。
藉由以上的工序,則在以含有氫氣的環境氣體來進行EUV曝光之情況下,便可獲得能夠抑制吸收體圖案4a剝落之反射型遮罩200。
<半導體裝置之製造方法>
本實施型態之半導體裝置的製造方法係具有將本實施型態之反射型遮罩200安裝在具有會發出EUV光的曝光光源之曝光裝置,來將轉印圖案轉印在被轉印基板上所形成的阻膜之工序。
本實施型態之半導體裝置之製造方法中,由於係使用上述反射型遮罩基底100而被製造,故在使用本實施型態之反射型遮罩200且於以含有氫氣的環境氣體來進行EUV曝光之情況下,便可抑制吸收體圖案4a剝落。於是,在半導體裝置的製造之際,便可以高良率來製造出具有微細且高精度的轉印圖案之半導體裝置。
藉由使用上述本實施型態之反射型遮罩200來進行EUV曝光,便可於半導體基板上形成基於反射型遮罩200上的吸收體圖案4a之所需的轉印圖案。除了該微影工序以外,藉由經過被加工膜的蝕刻、絕緣膜及導電膜的形成、摻雜物的導入及退火等各種工序,便可製造出已形成有所需的電子電路之半導體裝置。
更詳細地說明,EUV曝光裝置係由會產生EUV光之雷射電漿光源、照明光學系統、遮罩台系統、縮小投影光學系統、晶圓台系統及真空設備等所構成。光源係具備有碎光捕集(debris trap)功能與會濾除曝光光線以外的長波長光線之濾光片及真空差動排氣用的設備等。照明光學系統與縮小投影光學系統係由反射型鏡所構成。EUV曝光用反射型遮罩200係藉由其第2主面所形成之導電膜而被靜電吸附且被載置於遮罩台。
EUV光源的光線係透過照明光學系統而相對於反射型遮罩200的垂直面以6°~8°的傾斜角度被照射在反射型遮罩200。相對於該入射光之來自反射型遮罩200的反射光會朝向和入射相反的方向且以和入射角度相同的角度反射(正反射),並被引導至通常具有1/4的縮小比例之反射型投影光學系統,來朝晶圓台上所載置之晶圓(半導體基板)上的阻劑進行曝光。在這期間,至少EUV光通過的地點會被真空排氣。此外,為了防止曝光污染,係將氫氣導入至曝光中的環境氣體。又,在此曝光時,以對應於縮小投影光學系統的縮小比例之速度來讓遮罩台與晶圓台同步而進行掃描,且透過槽縫來進行曝光之掃描曝光則係成為主流。然後,藉由將該已曝光的阻膜顯影,便可於半導體基板上形成阻劑圖案。本實施型態中,係使用在以含有氫氣的環境氣體來進行EUV曝光之情況下能夠抑制吸收體圖案4a剝落之反射型遮罩200。因此,即便是將本實施型態之反射型遮罩200重複使用於EUV曝光,半導體基板上所形成之阻劑圖案仍會成為具有高尺寸精確度之所需圖案。然後,藉由使用該阻劑圖案來作為遮罩並實施蝕刻等,便可於例如半導體基板上形成特定的配線圖案。藉由經過上述般之曝光工序或被加工膜加工工序、絕緣膜或導電膜的形成工序、摻雜物導入工序或退火工序等其他必要的工序,來製造半導體裝置。
<實施例>
以下,針對實施例,參照圖式來加以說明。此外,關於實施例中相同的構成要素,係使用相同的符號來簡化或省略說明。
下述說明中,所成膜之薄膜的Ta、B、N及O之元素組成係藉由X射線光電子光譜法(XPS)來加以測定,H的元素組成係藉由彈性反衝探測分析法(ERDA)來加以測定。
[實施例1]
針對實施例1之反射型遮罩基底100來加以說明。如圖2所示,實施例1之反射型遮罩基底100係具有內面導電膜5、基板1、多層反射膜2、保護膜3及吸收體膜4。吸收體膜4係由吸收層42及反射率調整層44所構成。吸收層42係由為下層之下面區域46以及為上層之上面區域48所構成。然後,如圖4A所示,於吸收體膜4上形成阻膜11。圖4A~圖4E係顯示由反射型遮罩基底100來製作反射型遮罩200的工序之主要部分剖面示意圖。
實施例1所使用之基板1的製作係依下述方式進行。亦即,準備第1主面及第2主面的兩主表面經研磨後之6025尺寸(約152mm×152mm×6.35mm)的低熱膨脹玻璃基板(即SiO2-TiO2系玻璃基板)來作為基板1。進行由粗研磨加工工序、精密研磨加工工序、局部加工工序及接觸研磨加工工序所構成的研磨,而成為平坦且平滑的主表面。
於SiO2-TiO2系玻璃基板1的第2主面(內面),藉由磁控濺射(反應性濺射)法並以下述條件來形成CrN膜所構成的內面導電膜5。
內面導電膜5之形成條件:Cr靶材,Ar與N2的混合氣體氛圍(Ar:90%,N:10%),膜厚20nm。
接下來,於和形成有內面導電膜5之側為相反側之基板1的主表面(第1主面)上形成多層反射膜2。為了讓基板1上所形成之多層反射膜2成為適合波長13.5nm的EUV光之多層反射膜2,而使其為Mo與Si所構成的週期多層反射膜2。多層反射膜2係使用Mo靶材與Si靶材,並在Ar氣體氛圍中藉由離子束濺射法來於基板1上交互地層積形成Mo層及Si層。首先,以4.2nm的厚度來成膜出Si膜,接著,以2.8nm的厚度 來成膜出Mo膜。以此為1週期而同樣地層積40週期,最後,以4.0nm的厚度來成膜出Si膜而形成多層反射膜2。此處雖為40週期,但並未侷限於此,亦可為例如60週期。為60週期的情況,工序數雖會較40週期增加,但可提高相對於EUV光之反射率。
接著,在Ar氣體氛圍中,藉由使用RuNb靶材之離子束濺射法並以2.5nm的膜厚來成膜出RuNb膜所構成的保護膜3。
接下來,於保護膜3上形成吸收層42(為下層之下面區域46以及為上層之上面區域48)及反射率調整層44所構成的吸收體膜4。此外,表1係顯示實施例1之保護膜3、吸收層42(下層及上層)及反射率調整層44的材料、膜厚、成膜(濺射)之際所使用之靶材及成膜氣體的種類、氫(H)含量、硼(B)含量、以及材料的組成比。表1中,材料的含量及組成比之「at%」係指原子%(atomic%)。表1中,「RMS(nm)」係表示形成吸收體膜4後之遮罩基底的均方根粗糙度(RMS)。
具體而言,首先,藉由DC磁控濺射法來形成TaBNH膜所構成之吸收層42的下層(下面區域46)。TaBNH膜係使用TaB混合燒結靶材,並在Xe氣體、N2氣體及H2氣體的混合氣體氛圍下,藉由反應性濺射並以表1所示之膜厚所成膜。
接下來,藉由DC磁控濺射法來形成TaBN膜所構成之吸收層42的上層(上面區域48)。TaBN膜係使用TaB混合燒結靶材,並在Xe氣體及N2氣體的混合氣體氛圍下以反應性濺射並以表1所示之膜厚來進行成膜。
表1係顯示實施例1之TaBNH膜(為下層之下面區域46)及TaBN膜(為上層之上面區域48)的元素比率。
接下來,藉由磁控濺射法來形成TaBO膜所構成的反射率調整層44。TaBO膜係使用TaB混合燒結靶材,並在Ar氣體與O2氣體的混合氣體氛圍下,藉由反應性濺射並以表1所示之膜厚所成膜。
表1係顯示實施例1之TaBO膜(反射率調整層44)的元素比率。又,表1係顯示TaBO膜(反射率調整層44)之形成後的均方根粗糙度RMS。
依上述方式來製造出實施例1之反射型遮罩基底100。
接著,使用上述實施例1之反射型遮罩基底100來製造出實施例1之反射型遮罩200。
於反射型遮罩基底100的吸收體膜4上,以150nm的厚度來形成阻膜11(圖4A)。阻膜11的形成係使用化學增幅型阻劑(CAR)。將所需圖案描繪(曝光)在該阻膜11,並進一步地進行顯影、沖洗來形成特定的阻劑圖案11a(圖4B)。接下來,以阻劑圖案11a作為遮罩,並使用CF4氣體來進行TaBO膜(反射率調整層44)的乾蝕刻,藉此形成反射率調整層圖案44a(圖4C)。之後,藉由使用Cl2氣體之乾蝕刻,來將TaBN膜(為上層之上面區域48)及TaBNH膜(為下層之下面區域46)圖案化而形成吸收層圖案42a(圖4D)。
之後,以氧灰化來將阻劑圖案11a剝離(圖4E)。最後使用純水(DIW)來進行濕式洗淨而製造出實施例1之反射型遮罩200。
此外,依需要而進行濕式洗淨後遮罩缺陷檢查,便可適當地進行遮罩缺陷修正。
將實施例1所製作之反射型遮罩200安裝在EUV掃描器,來對於半導體基板上形成有被加工膜與阻膜之晶圓進行EUV曝光。為了防止曝光污染,在EUV曝光之際,係將氫氣導入至曝光中的環境氣體。然後,藉由將該已曝光的阻膜顯影,來於形成有被加工膜之半導體基板上形成阻劑圖案。
藉由蝕刻來將該阻劑圖案轉印在被加工膜,又,藉由經過絕緣膜及導電膜的形成、摻雜物的導入及退火等各種工序,便可製造出具有所需的特性之半導體裝置。
使用實施例1之反射型遮罩200來重複1000次曝光,並將氫氣導入至曝光中的環境氣體以進行EUV曝光。在1000次曝光後,當評估實施例1之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到並未發生膜剝落。
[實施例2]
針對實施例2之反射型遮罩基底100來加以說明。實施例2之反射型遮罩基底100除了吸收層42之下層(下面區域46)的氫含量及膜厚與實施例1與不同以外,其他皆與實施例1之反射型遮罩基底100相同。表1係顯示實施例2之吸收層42(下層及上層)的組成。亦即,實施例2之反射型遮罩基底100在吸收層42的成膜之際,係以會成為表1所示為下層之下面區域46的組成之方式,而改變反應性濺射之際的混合氣體中之H2氣體的流量及成膜時間。
表1係顯示實施例2之TaBNH膜(為下層之下面區域46)的元素比率。此外,實施例2之TaBO膜(反射率調整層44)及TaBN膜(為上層之上面區域48)的元素比率係與實施例1相同。
依上述方式來製造出實施例2之反射型遮罩基底100。
接下來,使用上述實施例2之反射型遮罩基底100,而與實施例1同樣地來製造出實施例2之反射型遮罩200。與實施例1同樣地,當評估實施例2之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到並未發生膜剝落。
[實施例3]
針對實施例3之反射型遮罩基底100來加以說明。實施例3之反射型遮罩基底100除了吸收層42(下層及上層)及反射率調整層44未含有硼(B)這點與實施例1不同以外,其他皆與實施例1之反射型遮罩基底100相同。表1係顯示實施例3之吸收層42(下層及上層)及反射率調整層44的組成。亦即,實施例3之反射型遮罩基底100在吸收層42(下層及上層)及反射率調整層44的成膜之際,係以會成為表1所示之反射率調整層44的組成之方式,而使用不含硼(B)的Ta靶材來作為反應性濺射之際的靶材。此外,反應性濺射之際的混合氣體係與實施例1之情況相同。
表1係顯示實施例3之TaNH膜(為下層之下面區域46)、TaN膜(為上層之上面區域48)及TaO膜(反射率調整層44)的元素比率。
依上述方式來製造出實施例3之反射型遮罩基底100。
接下來,使用上述實施例3之反射型遮罩基底100,而與實施例1同樣地來製造出實施例3之反射型遮罩200。與實施例1同樣地,當評估實施例3之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到並未發生膜剝落。
[實施例4]
針對實施例4之反射型遮罩基底100來加以說明。實施例4之反射型遮罩基底100除了吸收層42之為下面區域46的下層未含有氫(H),為上面區域48的上層則是含有氫(H)這點與實施例1不同以外,其他皆與實施例1之反射型遮罩基底100相同。表1係顯示實施例4之吸收層42(為下層之下面區域46以及為上層之上面區域48)的組成。亦即,實施例4之反射型遮罩基底100在為下面區域46之下層的成膜之際,係以會成為表1所示下層之TaBN膜的組成之方式,不使用H2氣體而是使用Xe氣體及N2氣體的混合氣體來作為反應性濺射之際的混合氣體。又,在為上面區域48之上層的成膜之際,係以會成為表1所示上層之TaBNH膜的組成之方式,而使用Xe氣體、N2氣體及H2氣體的混合氣體來作為反應性濺射之際的混合氣體。
表1係顯示實施例4之TaBN膜(為下層之下面區域46)及TaBNH膜(為上層之上面區域48)的元素比率。此外,實施例4之TaBO膜(反射率調整層44)的元素比率係與實施例1相同。
依上述方式,來製造出實施例4之反射型遮罩基底100。
接下來,使用上述實施例4之反射型遮罩基底100,而與實施例1同樣地來製造出實施例4之反射型遮罩200。此時,係形成有圖案較疏的區域及較密的區域來作為吸收體圖案4a。與實施例1同樣地,當評估實施例4之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到圖案較疏的區域中雖發生膜剝落,但圖案較密的區域中則未發生膜剝落。
[實施例5]
針對實施例5之反射型遮罩基底100來加以說明。實施例5之反射型遮罩基底100除了吸收層42之為下面區域46的下層、為上面區域48之上層以及反射率調整層44係含有氫(H)這點與實施例1不同以外,其他皆與實施例1之反射型遮罩基底100相同。表1係顯示實施例5之吸收層42(為下層之下面區域46以及為上層之上面區域48)及反射率調整層44的組成。亦即,實施例5之反射型遮罩基底100係以會成為表1所示下層及上層之TaNH膜的組成之方式,而使用Xe氣體、N2氣體及H2氣體的混合氣體來作為反應性濺射之際 的混合氣體。又,在反射率調整層44的成膜之際,係以會成為表1所示之TaOH膜的組成之方式,而使用Ar氣體,O2氣體及H2氣體的混合氣體來作為反應性濺射之際的混合氣體。
表1係顯示實施例5之TaNH膜(為下層之下面區域46)、TaNH膜(為上層之上面區域48)、及TaOH膜(反射率調整層44)的元素比率。
依上述方式來製造出實施例5之反射型遮罩基底100。
接下來,使用上述實施例5之反射型遮罩基底100,而與實施例1同樣地來製造出實施例5之反射型遮罩200。此時,係形成有圖案較疏的區域及較密的區域來作為吸收體圖案4a。與實施例1同樣地,當評估實施例5之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到圖案較疏的區域及較密的區域任一者皆未發生膜剝落。
[實施例6]
針對實施例6之反射型遮罩基底100來加以說明。實施例6之反射型遮罩基底100除了吸收層42係含有重氫(D)(非為氫(H))這一點與實施例1不同以外,其他皆與實施例1之反射型遮罩基底100相同。表1係顯示實施例6之TaBND膜(為下層之下面區域46)及TaBN膜(為上層之上面區域48)的組成。亦即,實施例6之反射型遮罩基底100在吸收層42的成膜之際,係以會成為表1所示之TaBND膜(為下層之下面區域46)的組成之方式,而在反應性濺射之際的混合氣體中,取代H2氣體而使用D2氣體來成膜出TaBND膜。
表1係顯示實施例6之TaBND膜(為下層之下面區域46)及TaBN膜(為上層之上面區域48)的元素比率。此外,實施例6之TaBO膜(反射率調整層44)的元素比率係與實施例1相同。
依上述方式來製造出實施例6之反射型遮罩基底100。
接下來,使用上述實施例6之反射型遮罩基底100,而與實施例1同樣地來製造出實施例6之反射型遮罩200。與實施例1同樣地,當評估實施例6之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到並未發生膜剝落。
[比較例1]
製造出以TaBN膜作為吸收層42之遮罩基底來作為比較例1。比較例1除了使得吸收層42為TaBN膜(單層膜)以外,基本上皆與實施例1相同。吸收層42之TaBN膜的成膜係與實施例1之吸收層42上層的TaBN膜同樣地進行。
接下來,使用上述比較例1之反射型遮罩基底100,並與實施例1之情況同樣地來製造出比較例1之反射型遮罩200。
將比較例1所製作之反射型遮罩200安裝在EUV掃描器,來對於半導體基板上形成有被加工膜與阻膜之晶圓進行EUV曝光。為了防止曝光污染,在EUV曝光之際,係將氫氣導入至曝光中的環境氣體。然後,藉由將該已曝光的阻膜顯影,來於形成有被加工膜之半導體基板上形成阻劑圖案。
使用比較例1之反射型遮罩200來重複1000次曝光,並將氫氣導入至曝光中的環境氣體以進行EUV曝光。在1000次曝光後,當評估比較例1之反射型遮罩200的吸收體圖案4a之膜剝落後,可確認到有發生膜剝落。
Figure 109120529-A0305-02-0033-1
1:基板
2:多層反射膜
3:保護膜
4:吸收體膜
5:內面導電膜
42:吸收層
44:反射率調整層
46:下面區域
48:上面區域

Claims (9)

  1. 一種反射型遮罩基底,係具有基板、該基板上的多層反射膜、以及該多層反射膜上的吸收體膜;該吸收體膜係包含吸收層及反射率調整層;該吸收層係含有鉭(Ta)及氮(N),以及選自氫(H)及重氫(D)之至少1種添加元素;該吸收層係包含下面區域與上面區域,該下面區域係包含有該基板側的表面,該上面區域係包含有與該基板為相反側的表面;該下面區域之該添加元素的濃度(原子%)與該上面區域之該添加元素的濃度(原子%)係不相同。
  2. 如申請專利範圍第1項之反射型遮罩基底,其中該下面區域之該添加元素的濃度(原子%)係高於該上面區域之該添加元素的濃度(原子%)。
  3. 如申請專利範圍第1項之反射型遮罩基底,其中該上面區域之該添加元素的濃度(原子%)係高於該下面區域之該添加元素的濃度(原子%)。
  4. 如申請專利範圍第1至3中任一項之反射型遮罩基底,其中該吸收層中之該添加元素的含量為0.1原子%以上,30原子%以下。
  5. 如申請專利範圍第1至3中任一項之反射型遮罩基底,其中該反射率調整層係含有鉭(Ta)及氧(O),以及選自氫(H)及重氫(D)之至少1種添加元素。
  6. 如申請專利範圍第1至3中任一項之反射型遮罩基底,其中該多層反射膜與該吸收體膜之間係包含有保護膜;該保護膜係含有釕(Ru),以及選自氫(H)及重氫(D)之至少1種添加元素。
  7. 一種反射型遮罩,係具有如申請專利範圍第1至6中任一項之反射型遮罩基底中的該吸收體膜被圖案化後之吸收體圖案。
  8. 一種反射型遮罩之製造方法,係將如申請專利範圍第1至6中任一項之反射型遮罩基底的該吸收體膜加以圖案化來形成吸收體圖案。
  9. 一種半導體裝置之製造方法,係具有將如申請專利範圍第7項之反射型遮罩安裝在具有會發出EUV光的曝光光源之曝光裝置,來將轉印圖案轉印在被轉印基板上所形成的阻膜之工序。
TW109120529A 2019-06-20 2020-06-18 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法 TWI833025B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019114770 2019-06-20
JP2019-114770 2019-06-20

Publications (2)

Publication Number Publication Date
TW202113462A TW202113462A (zh) 2021-04-01
TWI833025B true TWI833025B (zh) 2024-02-21

Family

ID=74040846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120529A TWI833025B (zh) 2019-06-20 2020-06-18 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法

Country Status (5)

Country Link
US (1) US20220229357A1 (zh)
JP (1) JPWO2020256064A1 (zh)
KR (1) KR20220022474A (zh)
TW (1) TWI833025B (zh)
WO (1) WO2020256064A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074770A1 (ja) * 2021-10-28 2023-05-04 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2024085026A1 (ja) * 2022-10-21 2024-04-25 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに反射型マスク及び半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321888A (zh) * 2011-09-28 2013-06-01 Toppan Printing Co Ltd 反射型曝光用空白光罩及反射型曝光用光罩
US20190049836A1 (en) * 2017-08-10 2019-02-14 AGC Inc. Reflective mask blank and reflective mask
CN109426065A (zh) * 2017-08-22 2019-03-05 台湾积体电路制造股份有限公司 反射式光掩模及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349716A (ja) * 1993-06-03 1994-12-22 Fujitsu Ltd X線マスクの製造方法
DE102007028800B4 (de) * 2007-06-22 2016-11-03 Advanced Mask Technology Center Gmbh & Co. Kg Maskensubstrat, Photomaske und Verfahren zur Herstellung einer Photomaske
JP5348127B2 (ja) 2008-03-18 2013-11-20 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
KR20110090887A (ko) * 2008-10-30 2011-08-10 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
JP2010192503A (ja) * 2009-02-16 2010-09-02 Seiko Epson Corp フォトマスクおよびフォトマスクの製造方法
JP6157874B2 (ja) * 2012-03-19 2017-07-05 Hoya株式会社 Euvリソグラフィー用多層反射膜付き基板及びeuvリソグラフィー用反射型マスクブランク、並びにeuvリソグラフィー用反射型マスク及び半導体装置の製造方法
DE102013102670A1 (de) * 2013-03-15 2014-10-02 Asml Netherlands B.V. Optisches Element und optisches System für die EUV-Lithographie sowie Verfahren zur Behandlung eines solchen optischen Elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321888A (zh) * 2011-09-28 2013-06-01 Toppan Printing Co Ltd 反射型曝光用空白光罩及反射型曝光用光罩
US20190049836A1 (en) * 2017-08-10 2019-02-14 AGC Inc. Reflective mask blank and reflective mask
CN109426065A (zh) * 2017-08-22 2019-03-05 台湾积体电路制造股份有限公司 反射式光掩模及其制作方法

Also Published As

Publication number Publication date
WO2020256064A1 (ja) 2020-12-24
US20220229357A1 (en) 2022-07-21
TW202113462A (zh) 2021-04-01
JPWO2020256064A1 (zh) 2020-12-24
KR20220022474A (ko) 2022-02-25

Similar Documents

Publication Publication Date Title
TWI810176B (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
TWI764948B (zh) 反射型光罩基底、反射型光罩之製造方法及半導體裝置之製造方法
US20190369483A1 (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask and method for manufacturing semiconductor device
JP7268211B2 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP6931729B1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
KR102002441B1 (ko) 반사형 마스크 블랭크, 반사형 마스크 및 그 제조 방법, 및 반도체 장치의 제조 방법
TWI833025B (zh) 反射型遮罩基底、反射型遮罩、以及反射型遮罩及半導體裝置之製造方法
KR20210043563A (ko) 반사형 마스크 블랭크, 반사형 마스크 및 그 제조 방법, 그리고 반도체 장치의 제조 방법
WO2021161792A1 (ja) 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
WO2020184473A1 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2020256062A1 (ja) 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法
JP7271760B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
TW202115483A (zh) 附薄膜之基板、附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法