TW201900552A - 矽烷醇化合物及氫的製造方法 - Google Patents

矽烷醇化合物及氫的製造方法 Download PDF

Info

Publication number
TW201900552A
TW201900552A TW106131217A TW106131217A TW201900552A TW 201900552 A TW201900552 A TW 201900552A TW 106131217 A TW106131217 A TW 106131217A TW 106131217 A TW106131217 A TW 106131217A TW 201900552 A TW201900552 A TW 201900552A
Authority
TW
Taiwan
Prior art keywords
hydrogen
compound
producing
solid catalyst
reaction
Prior art date
Application number
TW106131217A
Other languages
English (en)
Other versions
TWI736671B (zh
Inventor
金田清臣
満留敬人
梶川泰照
平井雄一郎
小野圭輔
Original Assignee
國立大學法人大阪大學
日商大賽璐股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人大阪大學, 日商大賽璐股份有限公司 filed Critical 國立大學法人大阪大學
Publication of TW201900552A publication Critical patent/TW201900552A/zh
Application granted granted Critical
Publication of TWI736671B publication Critical patent/TWI736671B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0801General processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0836Compounds with one or more Si-OH or Si-O-metal linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本發明提供一種能使用能以安全且低成本儲存、搬運之氫儲存物質而以期望之速度生成氫之方法。
本發明之矽烷醇化合物及氫的製造方法,係以平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑的存在下,使氫矽烷(hydrosilane)化合物與水反應而獲得矽烷醇化合物及氫。本發明之矽烷醇化合物及氫的製造方法,以在空氣環境下進行反應為佳。本發明之矽烷醇化合物及氫的製造方法,係能以實質上未進行加熱且不照射活性能量線之方式進行反應。

Description

矽烷醇化合物及氫的製造方法
本發明係關於一種使氫矽烷化合物及水在溫和之條件下反應,以獲得矽烷醇化合物及氫的方法。該方法所得之氫可作為清淨之能源使用。本專利申請案,對2017年5月15日,於日本提出申請之特願2017-096381號主張優先權,本申請案中並援用其內容。
由於氫即使燃燒亦不會產生二氧化碳,故其作為下一代能源而受到矚目。然而,由於氫在常溫、常壓下為氣體因而體積龐大,且反應性高而有爆炸的危險,因此儲存及搬運上困難。又,雖考慮通過液化降低體積以進行搬運,但液化時須冷卻至-253℃,因此又有需要龐大能量的問題。此外,雖然亦考慮藉由壓縮以降低體積,但亦有壓縮仍然需要能量、及會提高爆炸的風險之問題。
解決此類問題的方法,係向儲存/釋放氫的材料(=氫儲存物質)的方向發展。前述之氫儲存物質方面,已知有氫化鈣及氫化鋁鋰等金屬氫化物、及甲酸(專利文獻1)。然而,金屬氫化物不安定而保存不易,而且,與水會 激烈反應而產生氫氣,因此會有無法控制氫的生成速度之問題。此外,有下列問題:從甲酸取出氫時有加溫之需要,以及會副產二氧化碳及一氧化碳因此需要使此等與氫分離之步驟。
[先前技術文獻] [專利文獻]
專利文獻1:日本特開2017-24958號公報
因此,本發明之目的係在提供一種使用能以安全且低成本儲存、搬運之氫儲存物質而以期望之速度生成氫之方法。
本發明之其他之目的在於提供一種製造氫以及矽烷樹脂或偶合反應中為有用之矽烷醇化合物的方法。
本發明之另外之目的在於提供一種利用前述氫之生成方法的氫產生裝置及燃料電池。
本發明人等,為解決上述問題而專心致志進行檢討之結果,發現:屬於低廉且安全之化合物的氫矽烷化合物可作為氫儲存物質使用;如使用平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成的固體催化劑時,在溫和之條件下,可由作為反應基質之氫矽烷化合物及水,有效地獲得氫及矽烷醇化合物;且可藉由控制前述 固體催化劑與反應基質之接觸/不接觸,容易地控制氫及矽烷醇化合物之生成速度。基於該等發現而完成本發明。
亦即,本發明係提供一種矽烷醇化合物及氫之製造方法,其係在平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑的存在下,使氫矽烷化合物與水反應,獲得矽烷醇化合物及氫。
本發明亦提供一種前述矽烷醇化合物及氫的製造方法,其係在空氣環境下進行反應。
本發明又提供一種前述矽烷醇化合物及氫的製造方法,其實質上未加熱且不照射活性能量線而進行反應。
本發明又提供一種前述矽烷醇化合物及氫的製造方法,其中氫矽烷化合物為下述式(1)所示之化合物。
(式中,R1至R4可相同亦可不同,表示氫原子、可具有取代基之烴基、或[-Si(R5)3]基(R5可相同亦可不同,表示氫原子、或烴基)。n表示0以上之整數。此外,n為2以上之整數時,R4可相同亦可不同)
本發明又提供一種氫產生裝置,其係具備有利用前述矽烷醇化合物及氫的製造方法以產生氫之系統。
本發明又提供前述之氫產生裝置,其中具 備開/關切換功能,該開/關切換功能係使固體催化劑與反應基質接觸以產生氫、阻斷固體催化劑與反應基質之接觸以抑制氫的產生。
本發明又提供一種燃料電池,其係具備前述之氫產生裝置。
氫矽烷化合物係亦含在工業廢棄物中之化合物,因此可低廉、且安定地取得。而且,安全性、安定性佳,儲存及搬運容易,亦可抑制經時劣化。本申請案之發明係使用前述氫矽烷化合物作為氫儲存物質,在溫和條件下,無須來自外部之能量,即可有效地製造氫及矽烷醇化合物。同時,反應生成物中之氫可容易地分離/回收。並且,亦可通過反應之進行速度及以開關切換固體催化劑與反應基質之接觸狀態(例如接觸/不接觸)而調整,因此可在需要時只製造需要的部分之氫及矽烷醇化合物。
因此利用具有上述特性之本發明的氫產生裝置,可較先前之電池及電瓶有優異之劣化防止性,而可長期保管。因此,可利用於災難時等作為緊急用攜帶電源。而且,由於可因應小型化、輕巧化,因此可應用在燃料電池(例如使用於智慧型手機之充電等之袖珍型燃料電池)。
而且,本發明中所得之氫可作為燃料電池之燃料使用,因此以該氫在空氣中燃燒即可產生電力。同時,只副產水,而不產生被認為係地球溫暖化之原因之一之二氧化碳,因此為綠色能源。因此,本發明對地球環境之負擔少 而能對實現低碳社會大有貢獻。
第1圖(a)為調製例1中所得之固體催化劑之TEM顯微照相,(b)為調製例2中所得之固體催化劑之TEM顯微照相,(c)為調製例3中所得之固體催化劑之TEM顯微照相。
[矽烷醇化合物及氫的製造方法]
本發明之矽烷醇化合物及氫的製造方法,其特徵為在平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑的存在下,使氫矽烷化合物與水反應而獲得矽烷醇化合物及氫。
(固體催化劑)
本發明中之固體催化劑,係平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成者。
前述固體催化劑之平均粒徑(以穿透型電子顯微鏡(TEM)直接觀察),可為例如0.1至50μm,而以0.1至20μm為佳,特別以0.1至0.5μm更佳。粒度分佈之標準偏差(σ),可為例如0.05至0.5,而以0.1至0.3為佳。
被擔載於羥磷灰石而成之金粒子的平均粒徑為2.5nm以下(以2.0nm以下為佳。又,平均粒徑之下限, 為如1.5nm。)。又,本發明中之金粒子的平均粒徑之測定,能以穿透型電子顯微鏡(TEM)直接進行觀察。金粒子之平均粒徑對固體催化劑之催化活性之影響大,因此平均粒徑超過上述範圍時,會使催化劑活性劇烈降低因此不佳。
羥磷灰石之比表面積(以BET法),可為例如10至1000m2/g,而以50至800m2/g為佳,特別以100至700m2/g更佳,以100至500m2/g最佳,尤以100至300m2/g為特佳。
羥磷灰石之平均粒徑(以穿透型電子顯微鏡(TEM)直接進行觀察),可為例如0.1至50μm,而以0.1至20μm為佳,特別以0.1至0.5μm更佳。粒度分佈之標準偏差(σ),可為例如0.05至0.5,而以0.1至0.3為佳。
被擔載於羥磷灰石而成之金粒子的態樣並無特別限定,可例舉如:金單體、金鹽、金氧化物、金氫氧化物、或金錯合物等。本發明中,其中之金單體,在催化活性特別優異之點上尤佳。
本發明之固體催化劑係如上述由於擔載平均粒徑極小之金粒子,因此與金粒子的平均粒徑大之情形(例如平均粒徑為3nm以上之情形)相比即使減少擔載量時,亦可發揮同等或其以上之優良之催化效果,因此金粒子的擔載量(換算為金屬),可為羥磷灰石之例如0.05至10重量%左右,而以0.1至5.0重量%為佳,以0.1至3.0重量%更佳,特別以0.1重量%以上又更佳,且未達2.0重量%,以0.1至1.5重量%最佳,尤以0.1至1.0重量%為特佳。
上述羥磷灰石可為例如下述式(2)所示之化合物。
Ca10-Z(HPO4)Z(PO4)6-Z(OH)2-Z‧mH2O (2)(式中,Z表示滿足0≦Z≦1之數值,m表示0至2.5之數值)
羥磷灰石係可通過例如濕式合成法調製。前述之濕式合成法,係將鈣溶液及磷酸溶液,以鈣溶液與磷酸溶液成為10:6(莫耳比)之比例,經過長時間滴入pH為7.4以上之緩衝溶液中,以在上述緩衝溶液中析出羥磷灰石,再收集所析出之羥磷灰石的方法。
羥磷灰石方面,亦可使用例如商品名為「磷酸三鈣」(和光純藥工業(股)製造)等之市售品。
使羥磷灰石表面擔載金粒子(以金單體為佳)的方法,係可列舉例如在金化合物之溶液中添加還原劑以使金單體析出,再將析出之金單體吸附在羥磷灰石表面之方法等。金化合物方面,可使用:金鹵化物(例如HAuCl4等金氯化物、金溴化物、金碘化物等)、金鹽(例如碳酸鹽、硝酸鹽、硫酸鹽、磷酸鹽等)、其他之金錯合物等。
金化合物之溶液中所含之溶劑,只要可溶解金化合物即可,可列舉例如:水、丙酮等酮類、甲醇等醇類等。溶液中之金化合物之濃度並無特別限定,可自例如0.1至1000mM之範圍適當地選擇。
又,本發明中,在抑制析出之金單體凝聚、控制金粒子之大小之目的方面,以在金化合物之溶液中添 加包覆劑(capping agent)為佳,包覆劑方面以添加麩胱甘肽為佳。包覆劑之添加量,相對金化合物1莫耳係例如1至10莫耳左右。
金化合物之還原劑方面,可例舉如:氫硼化鈉(NaBH4)、氫硼化鋰(LiBH4)或氫硼化鉀(KBH4)等氫硼錯合物、聯胺、氫(H2)、三甲基矽烷等矽烷化合物、羥基化合物等。羥基化合物方面包括1級醇、2級醇等醇化合物。又,羥基化合物可為一元醇、二元醇、多元醇等之任一者。
以添加還原劑使析出之金單體吸附在羥磷灰石表面的方法方面,可列舉如在含金單體之溶液中添加羥磷灰石,再加以攪拌的方法。
攪拌時之溫度,可自例如20至150℃之範圍選擇,而以在室溫下進行為佳。攪拌時間係依照溫度而不同,例如為0.5至10小時左右。
而且,例如調整羥磷灰石之添加量,即可控制固體催化劑所擔載之金粒子的平均粒徑。羥磷灰石之添加量方面,例如每1mmol之金化合物係以7g以上(例如7至50g,而以0至50g為佳,特別以10至45g更佳)為佳。
吸附在羥磷灰石之後,沉澱物視需要藉由以水及有機溶劑等清洗、過濾、離心等物理分離方式分離,將分離之沉澱物乾燥,再加以燒製,即可製造本發明之固體催化劑。
(氫矽烷化合物)
本發明中之氫矽烷化合物,係分子內含矽-氫鍵之化合物,可列舉例如下述式(1)所示之化合物。
(式中,R1至R4可相同亦可不同,表示氫原子、可具有取代基之烴基、或[-Si(R5)3](R5可相同亦可不同,表示氫原子、或烴基)。n表示0以上之整數。同時,n為2以上之整數時,R4可相同亦可不同)
R1至R5之烴基中,亦可含脂肪族烴基、脂環式烴基、芳香族烴基、及該等鍵結之基。
脂肪族烴基方面,以碳數1至20之脂肪族烴基為佳,例如:甲基、乙基、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基、己基、癸基、十二碳烷基等碳數1至20(以1至10為佳,特別以1至3更佳)左右之烷基;乙烯基、烯丙基、1-丁烯基等碳數2至20(以2至10為佳,特別以2至3更佳)左右之烯基;乙炔基、丙炔基等碳數為2至20(以2至10為佳,特別以2至3更佳)左右之炔基等。
脂環式烴基方面,以C3-20之脂環式烴基為佳,例如:環丙基、環丁基、環戊基、環己基、環辛基等3至20員(以3至15員為佳,特別以5至8員更佳)左右之環烷基;環戊烯基、環己烯基等3至20員(以3至15員為 佳,特別以5至8員更佳)左右之環烯基;全氫萘-1-基、降冰片基、金剛烷基、三環[5.2.1.02,6]癸烷-8-基、四環[4.4.0.12,5.17,10]十二烷-3-基等橋接環式烴基等。
芳香族烴基方面,以C6-14(特別是C6-10)芳香族烴基為佳,可列舉例如:苯基、萘基等。
脂肪族烴基與脂環式烴基鍵結之烴基中,包含:環戊基甲基、環己基甲基、2-環己基乙基等環烷基取代之烷基(例如C3-20環烷基取代之C1-4烷基等)等。又,脂肪族烴基與芳香族烴基鍵結之烴基中,包含:芳烷基(例如苯甲基等C7-18芳烷基)、烷基取代之芳基(例如1至4個左右之C1-4烷基取代之苯基或萘基)等。
R1至R4中,可具有烴基之取代基方面,可列舉例如:鹵素原子、取代之氧基(例如C1-5烷氧基、C6-10芳氧基、C7-11芳烷氧基、C1-5醯氧基等)、[-Si(R5)3]基(R5可相同亦可不同,表示氫原子、或烴基)等。
前述之氫矽烷化合物方面,可列舉例如:四甲基二矽氧烷、聚甲基氫矽氧烷、三乙基矽烷、二甲基-第三丁基矽烷、三丁基矽烷、三己基矽烷、三異丁基矽烷、三異丙基矽烷、三(正丙基)矽烷、二甲基乙烯基矽烷、二甲基環己基矽烷、二甲基苯甲基矽烷、二甲基苯基矽烷、甲基二苯基矽烷、三苯基矽烷、二苯基二矽烷、1,4-二(二甲基矽基)苯、4-二甲基矽基甲苯、1-甲氧基-4-二甲基矽基苯、1-氯-4-二甲基矽基苯等。此等可單獨使用1種,或組合2種以上使用。
例如將二甲基苯基矽烷等鍵結在Si之烴基之至少1個為芳香族烴基之氫矽烷化合物(例如,上述式(1)中之R1至R4之至少1個為芳香族烴基之化合物)為基質時,在使用平均粒徑超過3nm之金粒子被擔載於羥磷灰石而成之固體催化劑時,並無法有效率地進行反應,矽烷醇化合物之產率未達40%,而本發明中由於使用平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑,即使將前述化合物作為基質亦可有效地進行反應,可有效地製造氫與對應之矽烷醇化合物。
[矽烷醇化合物及氫的製造方法]
本發明之矽烷醇化合物及氫的製造方法,其特徵為在上述固體催化劑的存在下,使氫矽烷化合物與水反應而可獲得矽烷醇化合物及氫(以氫矽烷化合物與水之氧化反應而獲得矽烷醇化合物及氫為佳)。
固體催化劑之使用量(換算固體催化劑中所含之金),可為上述氫矽烷化合物之例如0.001至10莫耳%左右,上限以5莫耳%為佳,以2.5莫耳%更佳,特別以1莫耳%又更佳,以0.5莫耳%最佳,尤以0.1莫耳%為特佳。又,下限以0.005莫耳%為佳,以0.01莫耳%為特佳。
本發明中,水之作用係作為氫矽烷化合物之氧化劑。水之使用量方面,每1mmol之上述氫矽烷化合物,可為例如0.05mL以上,而以0.05至5mL為佳,以0.05至1mL更佳,以0.1至0.5mL為特佳。
反應環境方面,只要無礙於反應即可並無特別限定,可列舉例如:空氣環境、氧氣環境、氮環境氣、氬氣環境等。本發明中,其中,由可獲得提高催化劑活性之效果之特點而言,以空氣環境或氧氣環境為佳,從安全性佳之點而言,特別以空氣環境更佳。
前述反應以在溶劑存在下進行為佳。前述溶劑方面以使用與水具有互溶性之溶劑為佳,可列舉例如:甲醇、乙醇、2-丙醇、1-丁醇等醇系溶劑;二甲基醚、二乙醚、二異丙醚、二丁醚、四氫呋喃、二噁烷、1,2-二甲氧基乙烷、環戊基甲基醚等醚系溶劑;丙酮、乙基甲基酮等酮系溶劑;乙酸乙酯、乙酸丁酯等酯系溶劑等。此等可單獨使用1種,亦可組合2種以上使用。
前述溶劑之使用量,在以批式反應時基質之初期濃度以例如成為10至0.1mol/L之範圍為佳。
前述反應,實質上可不加熱而進行,亦可實質上不以活性能量線照射而進行。
又,前述反應之反應溫度,並無特別限定,可為例如0至100℃左右。本發明中,由於係使用上述具有極佳催化劑活性之固體催化劑,即使在室溫(如1至30℃),亦可有效地進行反應,因此可產率佳地製造氫及矽烷醇化合物。
前述反應之反應時間,可視反應溫度而適當地調整,在室溫下進行反應時,例如為1至360分鐘左右,而以1至60分鐘為佳,以1至30分鐘為特佳,以1 至10分鐘最佳。
前述反應可為液相或水相而無特別限定,本發明中,以水相進行(亦即液相反應,以液相氧化反應更佳)時,可在更溫和之條件下進行反應之點而佳。
前述反應可用批式、半批式、連續式等之任意方法進行。
反應終了後,反應生成物,可藉由例如:過濾、濃縮、蒸餾、萃取、晶析、再結晶、管柱層析等之分離手段,或組合該等之分離手段分離精製。
如依本發明之矽烷醇化合物及氫的製造方法,可有效地轉化氫矽烷化合物,而可高產率地製造矽烷醇化合物及氫。矽烷醇化合物之產率,例如為40%以上,以45%以上為佳,以50%以上更佳,以60%以上又更佳,以80%以上為特佳,以95%以上為最佳。
又,本發明中之固體催化劑,在反應終了後,可用過濾、離心等物理分離手段自反應生成物容易地分離、回收,經分離、回收之固體催化劑,可直接地,或加以清洗、乾燥等之後,再使用。因此,高價之固體催化劑可反複地利用,故具經濟性。
[氫產生裝置]
本發明之氫產生裝置,係具備有利用上述矽烷醇化合物及氫的製造方法以產生氫之系統,詳細言之,係具備在平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之 固體催化劑的存在下,使氫矽烷化合物與水反應而產生氫的系統。
本發明之氫產生裝置,係以固體催化劑與反應基質的接觸而產生氫,阻斷固體催化劑與反應基質之接觸以抑制氫之產生。利用此,可自由地控制反應(以氧化反應為佳)之進行速度,可在期望之時間下產生氫。亦即,本發明之氫產生裝置,具備開/關切換功能。
又,本發明之氫產生裝置,由於係由上述固體催化劑、反應基質之氫矽烷化合物及水所構成,因此相較於先前以加壓儲存氫之鋼瓶係極為小型且量輕。而且,安全性、安定性方面亦為優異。因此,搬運上容易。又,由於反應基質之氫矽烷化合物的安定性佳,因此可抑制經時劣化。
[燃料電池]
燃料電池,係利用氫為燃料,並以該氫與空氣中之氧反應而產生電力之裝置。本發明之燃料電池,其特徵為具備上述氫產生裝置,而利用使用上述氫產生裝置所產生之氫。進一步詳細言之,即其特徵為具備有利用上述矽烷醇化合物及氫的製造方法以產生氫之系統,再利用以該系統所產生之氫。
本發明之燃料電池,由於具有上述構成而可小型化、輕量化。又,由於氫產生裝置之構成組件之安定性均佳,因此可防止經時劣化。因此,可利用作為災難 時等之緊急用攜帶電源。
(實施例)
以下,以實施例進一步具體地說明本發明,惟本發明並不限定於此等實施例。
調製例1(固體催化劑之調製)
在HAuCl4(0.25mmol)之甲醇溶液50mL中,加入麩胱甘肽(1.0mmol),再於空氣環境下,0℃下攪拌30分鐘。其次,再於反應液中添加KBH4(1.0mmol)之甲醇溶液,並再次於0℃下攪拌1小時。
然後以離心器分餾反應液中之沉澱物,再於水中再分散獲得分散液。
再於該獲得之分散液中添加羥磷灰石(以下,有時稱為「HAP」,商品名「磷酸三鈣」,和光純藥工業(股)製造;10g),並於室溫下攪拌4小時。
然後,再將過濾反應液所得之濾渣以去離子水清洗、使真空乾燥,並在空氣環境下,以400℃燒製8小時以去除附著在金粒子之麩胱甘肽,得到固體催化劑(1)(Au/HAP,Au擔載量:0.5重量%)。固體催化劑(1)中並未檢驗出硫成分。因此可確定作為包覆劑之麩胱甘肽已完全地去除。又,固體催化劑(1)中之金粒子的平均粒徑為1.9nm。粒度分佈之標準偏差(σ)為0.16nm。
調製例2(固體催化劑之調製)
除了將HAP之添加量變更為2.5g以外,進行與調製例1同樣操作,得到固體催化劑(2)(Au/HAP,Au擔載量:2.0重量%)。固體催化劑(2)中之金粒子的平均粒徑為2.3nm。粒度分佈之標準偏差(σ)為0.23nm。
調製例3(固體催化劑之調製)
除了將HAP之添加量變更為1.67g以外,進行與調製例1同樣操作,得到固體催化劑(3)(Au/HAP,Au擔載量:3.0重量%)。固體催化劑(3)中之金粒子的平均粒徑為3.1nm。粒度分佈之標準偏差(σ)為0.25nm。
實施例1(矽烷醇化合物及氫的製造)
在反應容器內,加入作為反應基質之二甲基苯基矽烷(1mmol)及包含水(0.2mL)及二甲基醚(2mL)之混合液,然後再於其中加入固體催化劑(1)(二甲基苯基矽烷之0.05莫耳%),再通入空氣氣泡,同時在30℃下攪拌5分鐘,得到二甲基苯基矽烷醇及氫。然後使用氣相層析質量分析計(GC-MS)測定二甲基苯基矽烷醇之產率[%]。
又,將固體催化劑(1)自混合液中取出時,氫之產生會迅速地停止,而將固體催化劑(1)浸漬在混合液中時,氫之產生又會迅速地重新開始。
實施例2(矽烷醇化合物及氫的製造)
除了將反應時間變更為9分鐘以外,進行與實施例1同樣操作。
實施例3(矽烷醇化合物及氫的製造)
除了如實施例1進行反應,使用在該反應終了後加以回收,然後重複5次利用於再次反應之操作所得到的5th reuse固體催化劑(1)以取代固體催化劑(1),並將反應時間變更為9分鐘以外,進行與實施例1同樣操作。
實施例4(矽烷醇化合物及氫的製造)
除了使用固體催化劑(2)取代固體催化劑(1)以外,進行與實施例1同樣操作。
比較例1(矽烷醇化合物及氫的製造)
除了使用固體催化劑(3)取代固體催化劑(1)以外,進行與實施例1同樣操作。
比較例2(矽烷醇化合物及氫的製造)
除了使用塊材金取代固體催化劑(1)以外,進行與實施例1同樣操作。
比較例3(矽烷醇化合物及氫的製造)
除了取使用HAP取代固體催化劑(1)以外,進行與實施例1同樣操作。
結果總結如下表所示。
綜合以上之結果,本發明之構成及其變更係如下所述。
[1]一種矽烷醇化合物及氫的製造方法,其係在平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑的存在下,使氫矽烷化合物與水反應而得矽烷醇化合物及氫者。
[2]如[1]項所述之矽烷醇化合物及氫的製造方法,其中前述固體催化劑之平均粒徑為0.1至50μm、0.1至20μm、或0.1至0.5μm,粒徑分佈之標準偏差(σ)為0.05至0.5、 或0.1至0.3。
[3]如[1]項或[2]項所述之矽烷醇化合物及氫的製造方法,其中前述金粒子之平均粒徑為2.5nm以下、或2.0nm以下,而其下限為1.5nm。
[4]如[1]項至[3]項中任一項所述之矽烷醇化合物及氫的製造方法,其中前述羥磷灰石之比表面積為10至1000m2/g、50至800m2/g、100至700m2/g、100至500m2/g、或100至300m2/g。
[5]如[1]項至[4]項中任一項所述之矽烷醇化合物及氫的製造方法,其中前述羥磷灰石之平均粒徑為0.1至50μm、0.1至20μm、或0.1至0.5μm。
[6]如[1]項至[5]項中任一項所述之矽烷醇化合物及氫的製造方法,其中前述金粒子之態樣,為金單體、金鹽、金氧化物、金氫氧化物、或金錯合物。
[7]如[1]項至[6]項中任一項所述之矽烷醇化合物及氫的製造方法,其中前述金粒子之擔載量(換算為金屬)為羥磷灰石之0.05至10重量%、0.1至5.0重量%、0.1至3.0重量%、0.1重量%以上且未達2.0重量%、0.1至1.5重量%、或0.1至1.0重量%。
[8]如[1]項至[7]項中任一項所述之矽烷醇化合物及氫的製造方法,其中前述羥磷灰石為下述式(2)所示之化合物。
Ca10-Z(HPO4)Z(PO4)6-Z(OH)2-Z˙mH2O (2)(式中,Z表示滿足0≦Z≦1之數值,m表示0至2.5之數 值)
[9]如[1]項至[8]項中任一項所述之矽烷醇化合物及氫的製造方法,其中在羥磷灰石表面擔載金粒子的方法,係在金化合物溶液中添加還原劑以析出金單體,並使析出之金單體吸附在羥磷灰石的表面之方法。
[10]如[9]項所述之矽烷醇化合物及氫的製造方法,其中前述金化合物之溶液中添加有作為包覆劑之麩胱甘肽。
[11]如[9]項或[10]項所述之矽烷醇化合物及氫的製造方法,其中前述還原劑為氫硼化鈉(NaBH4)、氫硼化鋰(LiBH4)或氫硼化鉀(KBH4)等氫硼錯合物、聯胺、氫(H2)、三甲基矽烷等矽烷化合物、羥基化合物等。
[12]如[1]項至[11]項中任一項所述之矽烷醇化合物及氫的製造方法,其中羥磷灰石的添加量,係每1mmol之金化合物為7g以上、7至50g、10至50g、或10至45g。
[13]如[1]項至[12]項中任一項所述之矽烷醇化合物及氫的製造方法,其中在空氣環境下進行反應。
[14]如[1]項至[13]項中任一項所述之矽烷醇化合物及氫的製造方法,其實質上未加熱且不照射活性能量線而進行反應。
[15]如[1]項至[14]項中任一項所述之矽烷醇化合物及氫的製造方法,其中矽烷醇化合物為前述式(1)所示之化合物。
[16]一種氫產生裝置,其係具備有利用如[1]項至[15]項中任一項所述之矽烷醇化合物及氫的製造方法以產生氫 者。
[17]如[16]項所述之氫產生裝置,其中具備開/關切換功能,該開/關切換功能係使固體催化劑與反應基質接觸以產生氫、阻斷固體催化劑與反應基質之接觸以抑制氫的產生。
[18]一種燃料電池,其具備有如[16]項或[17]項所述之氫產生裝置。
(產業上之可利用性)
氫矽烷化合物係亦含在工業廢棄物中之化合物,因此可低廉、且安定地取得。而且,安全性、安定性亦佳,儲存及搬運容易,亦可抑制經時劣化。本申請案之發明係使用前述氫矽烷化合物作為氫儲存物質,在溫和條件下,無須來自外部之能量,即可有效地製造氫及矽烷醇化合物。同時,反應生成物中之氫可容易地分離/回收。並且,亦可通過反應之進行速度及以開/關切換固體催化劑與反應基質之接觸狀態(例如接觸/不接觸)而調整,因此可在需要時只製造需要的部分之氫及矽烷醇化合物。
因此利用具有上述特性之本發明的氫產生裝置,可較先前之電池及電瓶有優異之劣化防止性,而可長期保管。因此,可利用於災難時等作為緊急用攜帶電源。而且,亦可因應小型化、輕巧化,因此可應用在燃料電池(例如使用於智慧型手機之充電等之袖珍型燃料電池)。
而且,本發明中所得之氫可作為燃料電池之燃料使用,因此以該氫在空氣中燃燒即可產生電力。同時,只副 產水,而不產生被認為係地球溫暖化之原因之一之二氧化碳,因此為綠色能源。因此,本發明對地球環境之負擔少而能對實現低碳社會大有貢獻。

Claims (7)

  1. 一種矽烷醇化合物及氫之製造方法,其係在平均粒徑為2.5nm以下之金粒子被擔載於羥磷灰石而成之固體催化劑的存在下,使氫矽烷化合物與水反應而獲得矽烷醇化合物及氫。
  2. 如申請專利範圍第1項所述之矽烷醇化合物及氫之製造方法,其係在空氣環境下進行反應。
  3. 如申請專利範圍第1項或第2項所述之矽烷醇化合物及氫之製造方法,其實質上未進行加熱且不照射活性能量線而進行反應。
  4. 如申請專利範圍第1項至第3項中任一項所述之矽烷醇化合物及氫之製造方法,其中氫矽烷化合物為下述式(1)所示之化合物, 式中,R 1至R 4可相同亦可不同,表示氫原子、可具有取代基之烴基、或[-Si(R 5) 3]基,R 5可相同亦可不同,表示氫原子、或烴基;n表示0以上之整數;此外,n為2以上之整數時,R 4可相同亦可不同。
  5. 一種氫產生裝置,其係具備有利用如申請專利範圍第1項至第4項中任一項所述之矽烷醇化合物及氫之製造方法以產生氫之系統。
  6. 如申請專利範圍第5項所述之氫產生裝置,其具備開/ 關切換功能,該開/關切換功能係使固體催化劑與反應基質接觸以產生氫、阻斷固體催化劑與反應基質之接觸以抑制氫的產生。
  7. 一種燃料電池,其係具備有如申請專利範圍第5項或第6項所述之氫產生裝置。
TW106131217A 2017-05-15 2017-09-12 矽烷醇化合物及氫的製造方法、氫產生裝置及燃料電池 TWI736671B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017096381A JP6917020B2 (ja) 2017-05-15 2017-05-15 シラノール化合物及び水素の製造方法
JP2017-096381 2017-05-15

Publications (2)

Publication Number Publication Date
TW201900552A true TW201900552A (zh) 2019-01-01
TWI736671B TWI736671B (zh) 2021-08-21

Family

ID=64273736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131217A TWI736671B (zh) 2017-05-15 2017-09-12 矽烷醇化合物及氫的製造方法、氫產生裝置及燃料電池

Country Status (5)

Country Link
US (1) US11505460B2 (zh)
JP (1) JP6917020B2 (zh)
KR (1) KR102408055B1 (zh)
TW (1) TWI736671B (zh)
WO (1) WO2018211720A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0614609A2 (pt) * 2005-08-03 2016-11-08 Univ Alabama silanos como uma fonte de hidrogênio
JP2009233653A (ja) * 2008-03-06 2009-10-15 Daicel Chem Ind Ltd 表面銀固定化ハイドロキシアパタイト
JP5928894B2 (ja) * 2012-08-30 2016-06-01 国立大学法人大阪大学 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3−プロパンジオールの製造方法
JP2014047211A (ja) * 2012-09-03 2014-03-17 Kiyoomi Kaneda 金(0)−ヒドロアパタイトを用いたヒドロシランのアルコキシ化
CN104707651B (zh) 2013-12-16 2017-04-05 中国科学院大连化学物理研究所 一种催化硅烷向硅醇高效转化的催化剂及其制备和应用
JP6563724B2 (ja) 2015-07-27 2019-08-21 ハリマ化成株式会社 水素発生装置、その製造方法及び水素発生方法

Also Published As

Publication number Publication date
JP6917020B2 (ja) 2021-08-11
KR102408055B1 (ko) 2022-06-15
JP2018193260A (ja) 2018-12-06
US11505460B2 (en) 2022-11-22
TWI736671B (zh) 2021-08-21
US20190276309A1 (en) 2019-09-12
WO2018211720A1 (ja) 2018-11-22
KR20200008107A (ko) 2020-01-23

Similar Documents

Publication Publication Date Title
US20220227623A1 (en) Organic hydrogen storage raw material dehydrogenation catalyst, carrier of the catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen
US20220258133A1 (en) Catalyst for dehydrogenating organic hydrogen storage raw material, carrier for catalyst, hydrogen storage alloy, and method for providing high purity hydrogen
JP6284488B2 (ja) 合金形成元素でコーティングされた安定化されたリチウム金属形状付与物及びその製造法
CA2881788C (en) Method for producing conductive mayenite compound powder
KR100883995B1 (ko) 수소 저장 물질로서 아릴기를 갖는 유기-전이금속 복합체및 이의 제조방법
US7790911B2 (en) Advanced preparation method of organic-transition metal hydride complexes as hydrogen storage materials
JP2019532808A (ja) 金属間化合物を含む触媒を生成する方法、および方法により生成される触媒
Lai et al. Stabilization of nanosized borohydrides for hydrogen storage: Suppressing the melting with TiCl 3 doping
JP5260497B2 (ja) 水素に富むシクロシロキサンの製造方法
TWI736671B (zh) 矽烷醇化合物及氫的製造方法、氫產生裝置及燃料電池
JP2012176866A (ja) 硫化物系固体電解質ガラスの製造方法
JP5883240B2 (ja) 水素製造方法
US9550672B2 (en) Method for preparation of an alane-etherate complex and alane
US20150093579A1 (en) Method of preparation of alane-etherate and alane
JPS62256937A (ja) アルカリ金属の製造方法
AU2002318885B2 (en) Inorganic Hydrogen and Hydrogen Polymer Compounds and Applications Thereof
EP4444660A1 (en) Low pressure process for synthesis of pt(pf3)4 involving a soluble intermediate and storage of obtained pt(pf3)4
JP2004331550A (ja) 水素化有機シランの製造方法
JP2016020287A (ja) 硫化リチウムの製造方法
JP2015071516A (ja) アルカリ金属硫化物の製造方法
CN1329957A (zh) 纳米微粉制备方法
JPH0480846B2 (zh)
JPH0328369B2 (zh)