TW201842237A - Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法 - Google Patents
Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法 Download PDFInfo
- Publication number
- TW201842237A TW201842237A TW107112750A TW107112750A TW201842237A TW 201842237 A TW201842237 A TW 201842237A TW 107112750 A TW107112750 A TW 107112750A TW 107112750 A TW107112750 A TW 107112750A TW 201842237 A TW201842237 A TW 201842237A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- steel sheet
- plated steel
- zirconium oxide
- depth position
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/08—Tin or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/285—Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/30—Electroplating: Baths therefor from solutions of tin
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
- C25D5/505—After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/06—Electrolytic coating other than with metals with inorganic materials by anodic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
- C25D9/10—Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/30—Electroplating: Baths therefor from solutions of tin
- C25D3/32—Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12583—Component contains compound of adjacent metal
- Y10T428/1259—Oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
本發明之Sn鍍敷鋼板具有:鋼板;Sn鍍敷層,設於前述鋼板之至少一側的表面;及皮膜,設於前述Sn鍍敷層表面且含有鋯氧化物與錫氧化物;前述皮膜中前述鋯氧化物之含量,以金屬Zr量計為0.2mg/m2
~50mg/m2
;透過X射線光電子光譜法之深度方向分析中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠前述皮膜之表面側;並且,前述深度位置A與前述深度位置B間之深度方向距離為0.5nm以上。
Description
本發明係有關於一種Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法。 本申請案依據2017年4月13日在日本申請之日本專利特願2017-79792號主張優先權,且在此引用其內容。
錫(Sn)鍍敷鋼板廣為人知的是「鍍錫鐵片」,飲料罐或食物罐等罐裝用途之外之其他用途上亦正廣泛使用。這是因為Sn對人體安全,且為美麗之金屬之故。該Sn鍍敷鋼板主要藉由電鍍法所製造。這是因為為將較高價金屬Sn之使用量控制於必要最小限度之量的話,使用電鍍法較熔融鍍敷法有利。Sn鍍敷鋼板於鍍敷後、或藉由鍍敷後之加熱熔融處理賦與美麗金屬光澤後,多藉由使用有6價鉻酸鹽溶液之電解處理或浸漬處理等鉻酸鹽處理,於Sn鍍敷上施行鉻酸鹽皮膜。該鉻酸鹽皮膜之效果是:抑制Sn鍍敷表面之氧化以防止外觀黃變、或防止在塗裝後使用時因錫氧化物之內聚破壞造成塗膜密著性劣化、耐硫化黑變提升等。
另一方面,近年來,因環境或安全意識高漲,不僅最終製品中未含6價鉻,更追求未進行鉻酸鹽處理本身。然而,如上述,未具鉻酸鹽皮膜之Sn鍍敷鋼板將因錫氧化物之成長造成外觀黃變、或塗膜密著性下降。又,耐硫化黑變下降。 因此,有人提出了幾個經取代鉻酸鹽皮膜之皮膜處理的Sn鍍敷鋼板。
例如,專利文獻1中提出了一種藉由使用含有磷酸離子與矽烷偶合劑之溶液的處理,形成有包含P與Si之皮膜的Sn鍍敷鋼板。專利文獻2中提出了一種藉由使用包含磷酸鋁之溶液,形成有包含Al、P,與Ni、Co、Cu之至少1種,與矽烷偶合劑之反應物之皮膜的Sn鍍敷鋼板。 專利文獻3中揭示了一種於Sn鍍敷上Zn鍍敷後,施行加熱處理至Zn單獨鍍敷層消失的未具鉻酸鹽皮膜之Sn鍍敷鋼板的製造方法。專利文獻4及專利文獻5中揭示了一種具包含鋯、磷酸、酚樹脂等之化學轉化處理皮膜的容器用鋼板。 先前技術文獻 專利文獻
專利文獻1:日本專利特開2004-60052號公報 專利文獻2:日本專利特開2011-174172號公報 專利文獻3:日本專利特開昭63-290292號公報 專利文獻4:日本專利特開2007-284789號公報 專利文獻5:日本專利特開2010-13728號公報
發明概要 發明欲解決之課題 對經製造之Sn鍍敷鋼板之後將施行填充製罐後之內容物前的殺菌處理或塗裝焙燒處理等,此時Sn鍍敷鋼板受到加熱。然而,專利文獻1~專利文獻5所提出之Sn鍍敷鋼板或其製造方法中,於加熱Sn鍍敷鋼板時,均有Sn鍍敷鋼板之一部分變色的問題。
於是,本發明有鑑於前述問題而作成,本發明之目的為提供未進行習知鉻酸鹽處理,且加熱時之色耐度優異的Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法。 用以解決課題之手段
為解決前述課題,本發明人致力研究之結果,發現於Sn鍍敷鋼板表面具有包含鋯氧化物與錫氧化物之皮膜的Sn鍍敷鋼板中,使X射線光電子光譜法之深度方向分析所得之鋯氧化物元素濃度最大值的位置是存在於:比起作為錫氧化物存在之Sn元素濃度最大值的位置還靠皮膜之表面側;藉此,可在未進行鉻酸鹽處理就能實現加熱後之色耐度優異之Sn鍍敷鋼板。
依據前述觀察所得知識而完成之本發明要旨係如下述。 (1)本發明一態樣之Sn鍍敷鋼板具有:鋼板;Sn鍍敷層,設於前述鋼板之至少一側的表面;及皮膜,設於前述Sn鍍敷層表面且含有鋯氧化物與錫氧化物;前述皮膜中前述鋯氧化物之含量,以金屬Zr量計為0.2mg/m2
~50mg/m2
;透過X射線光電子光譜法之深度方向分析中,作為前述鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為前述錫氧化物存在之Sn元素濃度最大的深度位置B,還靠前述皮膜之表面側;並且,前述深度位置A與前述深度位置B間之深度方向距離為0.5nm以上。
(2)如前述(1)之Sn鍍敷鋼板,其中前述透過X射線光電子光譜法之深度方向元素分析中,前述深度位置A中作為前述鋯氧化物存在之Zr元素濃度亦可為20%以上。
(3)如前述(1)或(2)之Sn鍍敷鋼板,其中前述皮膜更包含磷酸化合物;前述皮膜中,經P量換算之前述磷酸化合物之含量a(單位:mg/m2
)除以經金屬Zr量換算之前述鋯氧化物之含量b(單位:mg/m2
)的值a/b亦可為0.2~2.0。
(4)如前述(1)~(3)中任一態樣之Sn鍍敷鋼板,其中將前述皮膜之前述表面起算前述皮膜厚度之1/3深度位置設為深度位置C時,前述深度位置A亦可位於比起前述深度位置C還靠表面側。
(5)本發明另一態樣之Sn鍍敷鋼板之製造方法,具有以下步驟:對於鋼板至少一側的表面形成有Sn鍍敷層之Sn鍍敷鋼板,在含有鋯離子之溶液中進行陰極電解處理,藉此於前述Sn鍍敷層上形成鋯氧化物之步驟;前述陰極電解處理後,使用25℃以上之溫水利用0.3秒以上之浸漬處理或噴霧處理,進行洗淨處理之步驟;及,前述洗淨處理後,在Zr離子濃度270ppm以下之電解質溶液中進行陽極電解處理,而於前述Sn鍍敷層上形成含有前述鋯氧化物與錫氧化物之皮膜的步驟。
(6)如前述(5)之Sn鍍敷鋼板之製造方法,其中前述皮膜中前述鋯氧化物之含量以金屬Zr量計為0.2mg/m2
~50mg/m2
;透過X射線光電子光譜法之前述皮膜的深度方向分析中,作為前述鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為前述錫氧化物存在之Sn元素濃度最大的深度位置B,還靠前述皮膜表面側;並且,前述深度位置A與前述深度位置B間之深度方向的距離亦可為0.5nm以上。
(7)如前述(5)或(6)之Sn鍍敷鋼板之製造方法,其中透過X射線光電子光譜法之深度方向元素分析中,深度位置A中作為前述鋯氧化物存在之Zr元素濃度亦可為20%以上。
(8)如前述(5)~(7)中任一態樣之Sn鍍敷鋼板之製造方法,其中前述皮膜更包含磷酸化合物;前述皮膜中,經P量換算之前述磷酸化合物之含量a(單位:mg/m2
)除以經金屬Zr換算之前述鋯氧化物之含量b(單位:mg/m2
)的值a/b亦可為0.2~2.0。 發明效果
依據前述各態樣,可提供未進行習知鉻酸鹽處理,且加熱時之色耐度優異的Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法。
用以實施發明之形態 以下邊參照附加圖式邊詳細地說明本發明之較佳實施形態。 以下說明之本發明係有關於廣泛地使用於食物罐、飲料罐等罐用途等的Sn鍍敷鋼板與該Sn鍍敷鋼板之製造方法。更詳細而言,係有關於未進行習知鉻酸鹽處理,且加熱後之色耐度優異的Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法。
<1. Sn鍍敷鋼板> 圖4係顯示本實施形態Sn鍍敷鋼板之層構造的示意圖。如圖4所示,Sn鍍敷鋼板100具有鋼板10、設於鋼板10之至少一側的表面之Sn鍍敷層20、及設於Sn鍍敷層20表面包含鋯氧化物與錫氧化物之皮膜30。 本實施形態中,Sn鍍敷層20及皮膜30只要形成於鋼板10之2面中的至少一側的面即可。
更詳細而言,本實施形態Sn鍍敷鋼板100,於鋼板10之至少一側的表面形成有Sn鍍敷層20的Sn鍍敷鋼板上具有含有鋯氧化物與錫氧化物之皮膜30,皮膜30中鋯氧化物之含量以金屬Zr量計為0.2mg/m2
~50mg/m2
,此外,透過X射線光電子光譜法(X-ray Photoelectron Spectroscopy:XPS)之深度方向分析(以下,亦稱作「XPS深度方向分析」)中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠皮膜30之表面側;並且,深度位置A與深度位置B間之深度方向的距離為0.5nm以上。
(1.1鋼板) 本實施形態Sn鍍敷鋼板100中作為母材所使用之鋼板10並未特別限定。可使用一般容器用之Sn鍍敷鋼板所使用的鋼板10,可舉低碳鋼或極低碳鋼等為例。
(1.2 Sn鍍敷層) 於鋼板10之至少單面施行Sn鍍敷,形成Sn鍍敷層20。藉由該Sn鍍敷將提升Sn鍍敷鋼板100之耐蝕性。再者,本說明書中「Sn鍍敷」不僅是金屬Sn之鍍敷,亦包含金屬Sn中混入有雜質者、或於金屬Sn中添加有微量元素者。
本實施形態Sn鍍敷層20中每單面之Sn附著量並未特別限定,金屬Sn量以0.1g/m2
~15g/m2
為佳。若Sn鍍敷層每單面之附著量以Sn換算量計為0.1g/m2
以上,可得較佳之耐蝕性。又,若Sn鍍敷層20每單面之附著量以Sn換算量計為15g/m2
以下,可抑制密著性下降或成本上升,可充分地得到Sn所帶來的耐蝕性提升效果。
此處,前述每單面之Sn附著量為例如,藉由JIS G 3303記載之電解法或螢光X射線法所測定之值。
(1.3包含鋯氧化物與錫氧化物之皮膜) 本實施形態Sn鍍敷鋼板100於Sn鍍敷層20表面具有包含鋯氧化物與錫氧化物之皮膜(化學轉化處理皮膜)30。 如上述,皮膜30中鋯氧化物之含量以金屬Zr量計為每單面0.2mg/m2
~50mg/m2
。XPS深度方向分析中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠皮膜30之表面側;並且,深度位置A與深度位置B間之深度方向的距離為0.5nm以上(例如,參照圖1)。 深度位置A與深度位置B間之深度方向的距離以1.0nm以上為佳,較佳者為1.5nm以上。
皮膜30定義為:XPS深度方向分析中,自Sn鍍敷鋼板100表面起算至金屬錫之元素濃度達90%深度位置的範圍。又,前述元素濃度為XPS深度方向分析中,將作為錫氧化物存在之Sn、作為金屬錫存在之Sn及作為鋯氧化物存在之Zr元素濃度的合計設為100%時的濃度。
本實施形態Sn鍍敷鋼板100藉由於Sn鍍敷層20表面具有如前述之包含鋯氧化物與錫氧化物的皮膜30,可提升加熱時之色耐度。其理由尚未確定,但藉由本發明人等之詳細調査,可如以下地認為。
塗裝焙燒處理時或殺菌處理時,伴隨對Sn鍍敷鋼板所施加之加熱的變色將藉由Sn鍍敷層20中Sn與氧之反應所形成之錫氧化物的成長所引起。藉於Sn鍍敷層20之表面形成包含鋯氧化物之皮膜30,可知可阻礙氧擴散至Sn鍍敷層20表面,抑制錫氧化物之生成、成長。 然而,於習知具鋯皮膜之Sn鍍敷鋼板,XPS深度方向分析中,作為鋯氧化物存在之Zr元素濃度最大的深度位置是存在於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置還靠皮膜內面側。即,表面側相較於鋯氧化物存在有較多錫氧化物(例如,參照圖2)。因此,習知Sn鍍敷鋼板中,可知因錫氧化物之更加氧化(SnO至SnO2
)、或錫氧化物中對缺氧部之氧擴散及反應等,造成錫氧化物成長、變色。 另一方面,如本發明所示,XPS深度方向分析中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠皮膜30表面側;並且,若深度位置A與深度位置B間之深度方向的距離為0.5nm以上(例如,參照圖1),藉由鋯氧化物抑制對Sn鍍敷層20表面之氧擴散,亦可抑制錫氧化物成長。
又,本發明人等發現深度位置A位於比起深度位置B還靠皮膜30之表面側,但若深度位置A與深度位置B間之深度方向的距離小於0.5nm,未能得到較佳之色耐度。其理由尚未確定,但可知因鋯氧化物產生之對Sn鍍敷層20表面的氧擴散抑制效果不充分之故。
為實現如前述之錫氧化物的成長抑制效果,需要以金屬Zr量計每單面0.2mg/m2
~50mg/m2
之鋯氧化物。鋯氧化物之含量於前述範圍內的話,可確保加熱時之色耐度、塗膜密著性、耐硫化黑變。若以金屬Zr量計小於0.2mg/m2
,不僅未能充分地抑制錫氧化物之成長,耐硫化黑變亦差。若鋯氧化物之含量以金屬Zr量計超過50mg/m2
,因鋯氧化物過剩,塗膜密著性劣化,且耐蝕性亦差。每單面鋯氧化物之含量以金屬Zr量計,以1.0mg/m2
~30mg/m2
為佳,較佳者為2.0mg/m2
~10mg/m2
。
XPS深度方向元素分析皮膜30時,深度位置A中Zr元素濃度以20%以上為佳。深度位置A中Zr元素濃度為20%以上的話,可有效地抑制氧朝Sn鍍敷層20表面擴散。較佳者為深度位置A中Zr元素濃度為30%以上。
將皮膜30表面起算皮膜30厚度之1/3的深度位置作為深度位置C,而以XPS深度方向分析皮膜30時,深度位置A是位於比起深度位置C還靠表面側者為佳。藉此,可有效地抑制氧朝Sn鍍敷層20表面擴散。
皮膜30更包含磷酸化合物,於皮膜30中經P量換算之磷酸化合物含量a(單位:mg/m2
)除以經金屬Zr量換算之鋯氧化物含量b(單位:mg/m2
)的值a/b以0.2~2.0為佳。磷酸化合物可舉磷酸錫、磷酸鋯等為例。 藉於皮膜30中包含P,含有鋯氧化物及錫氧化物之皮膜30變得細緻,提升耐硫化黑變及塗裝後耐蝕性。如此之磷酸化合物可舉磷酸錫、磷酸鋯等金屬磷酸鹽為例。a/b超過2時,磷酸化合物量過剩,硫化黑變之提升效果變差故不佳。a/b之較佳者為0.4~1.5。
皮膜30中鋯氧化物及錫氧化物之存在狀態可為兩者的混合狀態,亦可為氧化物之固溶體,其存在狀態不拘。又,皮膜30中除了鋯氧化物與錫氧化物以外,亦可包含氫氧化鋯或金屬鋯、金屬錫。此外,皮膜30中亦可不可避免地包含鋯氧化物與錫氧化物以外之元素單體或化合物,例如雜質。例如,於皮膜30亦可含有C、N、F、Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Co、Ni、Zn等元素。
前述Zr及P之附著量係如以下所測定之值,例如,將表面具有本實施形態皮膜30之Sn鍍敷鋼板100浸漬並溶解於氟酸與硫酸等酸性溶液後,將所得之溶解液藉由感應耦合電漿(Inductively Coupled Plasma:ICP)發光分析法等化學分析。
本實施形態Sn鍍敷鋼板100可藉由任何方法製造,例如,可藉由以下說明之Sn鍍敷鋼板的製造方法製造。
<2. Sn鍍敷鋼板之製造方法> 以下說明本實施形態之具包含鋯氧化物及錫氧化物之皮膜30的Sn鍍敷鋼板100之製造方法。 本實施形態Sn鍍敷鋼板之製造方法具有:第1步驟,將於鋼板10之至少一側的表面形成有Sn鍍敷層20的Sn鍍敷鋼板,在含有鋯離子之溶液中藉由陰極電解處理,而於Sn鍍敷層20上形成鋯氧化物; 第2步驟,對Sn鍍敷鋼板以25℃以上之溫水利用0.3秒以上之浸漬或噴霧處理進行洗淨處理; 第3步驟,對Sn鍍敷鋼板更於Zr離子濃度270ppm以下之電解質溶液中進行陽極電解處理,於Sn鍍敷鋼板上形成含有鋯氧化物與錫氧化物之皮膜30。 再者,本實施形態中,於前述陰極電解處理之前,準備鋼板10,且藉由Sn鍍敷於鋼板之至少一側的表面上形成Sn鍍敷層20。
(2.1鋼板之準備) 鋼板10之製造方法或材質並未特別限定,可舉鑄造後經熱軋延、酸洗、冷軋延、退火、調質軋延等步驟所製造的鋼板為例。
(2.2 Sn鍍敷層之形成) 接著,於鋼板10之至少一側的表面上形成Sn鍍敷層20。於鋼板10表面施行Sn鍍敷之方法並未特別限定,以例如眾所皆知的電鍍法為佳,亦可使用將鋼板10浸漬於經熔融之Sn鍍敷的熔融法。電鍍法可利用例如,眾所周知的使用有費洛斯坦浴(Ferrostan bath:酚磺酸浴)、鹵素浴或鹼性浴等之電解法。
再者,Sn鍍敷後,亦可將施行有Sn鍍敷之鋼板10加熱至Sn熔點231.9℃以上,施行加熱熔融處理。藉由該加熱熔融處理,可於Sn鍍敷鋼板表面顯現光澤,且Sn鍍敷層20與鋼板10之間形成有Sn與Fe之合金層(未圖示),更加提升耐蝕性故為佳。 又,若使用預先形成有Sn鍍敷層20之鋼板10,可省略前述2步驟。
(2.3陰極電解處理) 為形成本實施形態之皮膜30,首先,於Sn鍍敷鋼板之Sn鍍敷層20上形成含有鋯氧化物之鋯氧化物層(未圖示)(第1步驟)。
含有鋯氧化物之鋯氧化物層(未圖示)藉於包含鋯離子之溶液中對Sn鍍敷鋼板進行陰極電解處理,可於Sn鍍敷鋼板上形成。 形成鋯氧化物層(未圖示)之方法除了陰極電解處理以外,亦可舉浸漬處理為例。然而,浸漬處理中藉由蝕刻作為基底之Sn鍍敷鋼板表面,形成含有鋯氧化物之鋯氧化物層。因此,鋯氧化物層(未圖示)之附著量容易變得不均一,又,處理時間亦變長,故工業生產不利。 另一方面,陰極電解處理中,強制之電荷移動及鋼板界面氫產生所致表面清淨化與pH上升所致附著促進效果相輔相成,可得均一之皮膜。此外,該陰極電解處理中藉於處理液中硝酸離子與銨離子共存,可進行數秒至數十秒左右之短時間處理,故於工業上極為有利。 因此,本實施形態之含有鋯氧化物之鋯氧化物層(未圖示)的形成使用陰極電解處理。
陰極電解處理使用之溶液(以下,稱作陰極電解處理液)中的鋯離子濃度,可視生產設備或生產速度(能力)適當地調整,但例如,鋯離子濃度以100ppm~4000ppm為佳。陰極電解處理液亦可包含氟離子、銨離子、硝酸離子、硫酸離子、磷酸離子等。
陰極電解處理液之液溫並未特別限定,例如,以10℃~50℃之範圍為佳。藉於50℃以下進行陰極電解處理,可形成由非常微細之粒子所形成的細緻且均一之皮膜組織。另一方面,藉於10℃以上進行陰極電解處理,可提升皮膜之形成效率。
陰極電解處理液之pH並未特別限定,但以3~5為佳。pH為3以上的話,將提升鋯氧化物之生成效率,pH為5以下的話,處理液中將不易產生沉澱,連續生產性提升故為佳。
以調整陰極電解處理液之pH或提升電解效率為目的,陰極電解處理液中亦可添加例如硝酸、氨水等。
陰極電解處理中電流密度,例如,以設為0.05A/dm2
~50A/dm2
為佳。電流密度為0.05A/dm2
以上的情況,可充分地提高鋯氧化物之形成效率,可更確實地形成含有本發明規定之鋯氧化物與錫氧化物的皮膜30。電流密度為50A/dm2
以下的情況,鋯氧化物之形成效率過大,可防止形成粗大且密著性差的鋯氧化物。較佳之電流密度的範圍為1A/dm2
~10A/dm2
。
形成鋯氧化物層(未圖示)時,陰極電解處理之時間並未特別限定,視所期之Zr附著量適當地調整即可。
陰極電解處理液所使用之溶劑,可使用例如,蒸餾水等,但並未規定需為蒸餾水等水,可視溶解之化合物或皮膜30之形成方法等適當地選擇。
鋯之供給源可使用例如,如H2
ZrF6
之鋯錯合物。Zr錯合物中之Zr藉由陰極電極界面中pH之上升成為Zr4+
,存在於陰極電解處理液中。如此之Zr離子將更於陰極電解處理液中反應,成為鋯氧化物。陰極電解處理液中包含磷酸的情況,亦形成磷酸鋯。
陰極電解處理時之通電型態可為連續通電亦可為斷續通電。
陰極電解處理時之陰極電解處理液與鋼板10的相對流速以設為50m/分以上為佳。相對流速為50m/分以上的話,隨著通電時之氫產生容易使鋼板10表面的pH均一,可抑制生成粗大之鋯氧化物。相對流速之上限並未特別限定。
(2.4洗淨處理) 為形成本實施形態之皮膜30,於Sn鍍敷鋼板之Sn鍍敷層20上形成前述含有鋯氧化物之鋯氧化物層(未圖示)後,以25℃以上之溫水利用0.3秒以上之浸漬或噴霧處理進行洗淨處理(第2步驟)。 藉由洗淨處理減少陰極電解處理後鋯氧化物層(未圖示)表面不可避免地存在之錫的氧化物或氫氧化物、金屬錫,更與之後的陽極電解處理組合,即可有效地去除該等表面之錫氧化物或氫氧化物、金屬錫。
洗淨處理使用之溫水溫度為25℃以上。若溫水溫度小於25℃,未能充分地減少鋯氧化物層(未圖示)表面不可避免地存在之錫氧化物或氫氧化物、金屬錫。因此,即使洗淨處理後進行陽極電解處理,仍不易得到適合加熱時之色耐度。 溫水溫度以30℃以上小於40℃為佳,藉此可有效減少錫氧化物或氫氧化物故為佳。
洗淨處理時間為0.3秒以上。若洗淨處理時間小於0.3秒,未能有效地減少錫氧化物或氫氧化物,不佳。洗淨處理時間以0.4秒~3秒為佳,藉此,可有效地減少錫氧化物或氫氧化物故為佳。
溫水所含之化合物並未特別限定。溫水之pH亦並未特別限定,但pH為5~8的話,可均一地去除表面之錫氧化物或氫氧化物、金屬錫故為佳。
(2.5陽極電解處理) 接著,於電解質溶液中對Sn鍍敷鋼板進行陽極電解處理,於Sn鍍敷層20上形成包含鋯氧化物與錫氧化物之皮膜30(第3步驟)。藉此,可製造本實施形態之Sn鍍敷鋼板100。
藉由洗淨處理,減少鋯氧化物層(未圖示)表面不可避免地存在之錫氧化物、錫氫氧化物及金屬錫。並且,利用陽極電解處理洗淨處理後之Sn鍍敷鋼板,因上述錫氧化物、錫氫氧化物及金屬錫溶解,可更加減少。又,藉由陽極電解處理可製造出下述Sn鍍敷鋼板:該Sn鍍敷鋼板在XPS深度方向分析中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠皮膜30表面側;並且,深度位置A與深度位置B間之深度方向的距離為0.5nm以上。
陽極電解使用之電解質溶液(以下,稱作陽極電解處理液)的pH並未特別限定,但以弱酸性至鹼性為佳。此處之弱酸性至鹼性為pH3~14之意。
前述陽極電解處理液所含之電解質之例,可舉鹼及鹼土金屬之氫氧化物或碳酸鹽、磷酸鹽、有機酸鹽、硼酸鹽、硫酸鹽等為例。較具體而言,可舉碳酸鈉、碳酸氫鈉、二磷酸鈉、檸檬酸三鈉、一酒石酸銨、硫酸鈉等為例。 電解質濃度並未特別限定。電解質濃度之上限亦並未特別限定,但濃度過大時有可能引起保管時沉澱、配管阻塞等障礙。因此,電解質濃度以設為該電解質之0℃中溶解度以下為佳。 電解質濃度以導電率滿足0.5S/m~4S/m之濃度為佳,較佳者為以導電率計滿足1S/m~2.5S/m之濃度。再者,導電率可使用市售之導電率計測定,可使用例如,東亞DKK股份有限公司製之導電率電池CT-27112B等。 又,陽極電解處理液中之Zr離子濃度為270ppm以下。因Zr離子超過270ppm時,皮膜30中混入Zr離子變成粗之皮膜,未能充分地改善加熱時之色耐度。
陽極電解處理液之液溫並未特別限定,以5℃~60℃為佳,更佳者是15℃~50℃。若溫度充分高,可提高電解效率,並可更確實地形成皮膜30。
陽極電解處理時之電流密度並未特別限定,以例如0.02A/dm2
~50A/dm2
為佳。若電流密度為0.02A/dm2
~50A/dm2
,可均一且穩定地形成本實施形態之具鋯氧化物與錫氧化物的皮膜30。若電流密度為0.02A/dm2
以上,可較縮短電解處理時間,並可防止隨著Sn鍍敷層20溶解之塗裝後耐蝕性的下降。另一方面,若電流密度為50A/dm2
以下,因可抑制Sn鍍敷鋼板上過度之氫產生,防止隨著pH上升之Sn鍍敷層20的溶解,故生產效率為佳,藉由生成均一之錫氧化物可充分地提升加熱時之色耐度或耐硫化黑變。較佳之電流密度範圍為0.04A/dm2
~10A/dm2
。
陽極電解處理之處理時間並未特別限定,可視電流密度、電極長度或生產速度(通板速度)任意地決定。
皮膜30中錫氧化物分布之厚度主要可以陽極電解處理時之通電量(電量)控制。因此,為得本實施形態之皮膜30,陽極電解處理時的通電量以設為0.1C/dm2
~10C/dm2
為佳,較佳者為0.2C/dm2
~2.0C/dm2
。
陽極電解處理液之溶劑可使用例如,蒸餾水等,但並未限定為蒸餾水等水。陽極電解處理時之通電型態可為連續通電亦可為斷續通電。 [實施例]
接著,邊顯示實施例及比較例,邊具體地說明本發明Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法。再者,以下所示之實施例僅為本發明Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法的一例,本發明Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法並未受下述例所限定。
<試驗材> 對板厚0.2mm之低碳冷軋鋼板進行作為前處理之電解鹼脫脂、水洗、浸漬於稀硫酸之酸洗及水洗。之後,使用酚磺酸浴施行電鍍Sn,之後更進行加熱熔融處理。Sn鍍敷之附著量以每單面約2.8g/m2
為標準,但一部分之試驗材藉由改變通電時間,改變Sn鍍敷之附著量。又,亦一併製作電鍍Sn後未進行加熱熔融處理之試驗材。Sn鍍敷附著量藉由螢光X射線法(Rigaku公司製ZSX Primus)測定來特定。
將如前述製作之Sn鍍敷鋼板於包含氟化鋯之水溶液中進行陰極電解處理,於Sn鍍敷鋼板上形成鋯氧化物層。調整至浴溫為35℃且pH為3以上5以下,視所期之Zr附著量適當地調整電流密度及陰極電解時間。
此外,藉將形成有鋯氧化物層之Sn鍍敷鋼板浸漬於浴溫30℃之溫水1秒鐘,進行洗淨處理。 之後,藉於導電率2.0S/m之碳酸氫鈉溶液(陽極電解處理液)中進行陽極電解處理形成皮膜。陽極電解處理液之液溫設為25℃,且陽極電解處理之電流密度設為1A/dm2
。再者,於一部分之階段中改變洗淨處理條件或陽極電解處理條件。適當地調整陽極電解處理之處理時間。又,陽極電解處理液之Zr離子濃度如表中所記載。 再者,亦一併製作僅形成鋯氧化物而未進行陽極電解處理之試驗材,與未形成鋯氧化物僅實施陽極電解處理之試驗材,作為比較例。
對如此製作之Sn鍍敷鋼板進行以下所示之各種評價。 <附著量> 藉由ICP發光分析法求出每單面之Zr附著量。
<XPS深度方向元素分析> XPS(ULVAC-PHI製PHI Quantera SXM)之深度方向分析中,定量分析錫氧化物、金屬錫、鋯氧化物之深度方向。 定量分析中,定義相當於作為錫氧化物存在之Sn的Sn3d5/2之鍵能位置為485.8eV以上487.2eV以下,相當於作為金屬Sn存在之Sn的Sn3d5/2之鍵能位置為484.3eV以上485.5eV以下,作為鋯氧化物存在之Zr之Zr3d5/2的鍵能位置為182.0eV以上182.9eV以下,使錫氧化物、金屬錫、鋯氧化物等3種合計為100%。 XPS中可能因試樣之帶電等影響使光譜,甚至是峰值位置移位(電荷移位),故利用吸附於試樣表面之汙染物質(有機物之碳)進行峰值位置補正。具體而言,使全體之光譜移位至試樣表面所檢測出之碳(C1s)的峰值位置為284.8eV後,進行定量分析。
深度方向分析為深度方向分析至在相當於金屬Sn之鍵能位置確認有峰值,且在相當於錫氧化物之鍵能位置未能確認峰值的深度。深度方向分析中濺鍍條件於以SiO2
換算為0.5nm之間隔,Ar濺鍍。XPS深度方向元素分析中,將以皮膜30表面作為起點,到達金屬Sn元素濃度為90%之深度位置為終點的範圍定義為皮膜30。依據該定義,求出皮膜30之厚度。
<深度位置A與深度位置B之位置關係> 如此求出之XPS的深度方向分析結果中,作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B,還靠皮膜表面側;並且,深度位置A與深度位置B間之深度方向的距離為0.5nm以上的情況時評價為「好」,非該情況時則評價為「差」。 再者,「元素濃度最大」指進行深度方向分析之範圍中的極大值,但該範圍中存在多數極大值時,則指極大值之最大值。 又,於多數深度位置取得極大值時,將該多數深度位置之平均值設為「元素濃度最大之深度位置」。例如,於圖1中,作為錫氧化物存在之Sn元素濃度於自表面起算深度為6.0nm、6.5nm、7.0nm這3處取得之極大值。此時之深度位置B為依據3處之平均值,自表面起算深度6.5nm的位置。
<深度位置A中Zr元素濃度> 深度位置A中Zr元素濃度小於20%的情況時評價為「可」、20%以上小於30%的情況時評價為「好」、大於30%的情況時則評價為「非常好」。
<深度位置A與深度位置C之位置關係> 測定皮膜30表面起算至深度位置A為止之深度方向距離。又,藉將上述方法求出之皮膜30厚度乘以1/3,而決定自皮膜表面起算厚度1/3之深度位置即深度位置C之位置。 深度位置A位於比起深度位置C還靠表面側的情況時評價為「好」,非該情況時則評價為「可」。
<加熱時之色耐度> 於大氣爐中對上述方法所製作之Sn鍍敷鋼板進行以205℃~210℃之板溫保持30分鐘的加熱試驗。求出加熱試驗前後中色差b*值之變化量Db*並作評價。 Db*為1以下者視為「非常好」,超過1且2以下者視為「好」,超過2且3以下者視為「可」,超過3者視為「差」;評價為「非常好」、「好」、「可」者為合格。 b*為依據JIS Z 8722,使用市售之色差計SUGA試驗機製SC-GV5測定,b*之測定條件設為光源C、全反射、測定直徑30mm。
<塗膜密著性> 如以下地評價塗膜密著性。 於以上述方法製作之Sn鍍敷鋼板表面塗布以乾燥質量計7g/m2
之市售罐用環氧樹脂塗料,並於200℃溫度下焙燒10分鐘,之後置於室溫24小時。之後,對所得之Sn鍍敷鋼板畫上到達鋼板表面之格子狀刻痕(3mm間隔縱橫各7條之刻痕),對該部位藉由膠帶剝離試驗評價塗膜密著性。 於全部之膠帶貼附部位未產生塗膜剝離的情況時評價為「非常好」,格子外有塗膜剝離的情況時評價為「好」,格子內有塗膜剝離的情況時則評價為「差」。 評價為「非常好」及「好」者為合格。
<耐硫化黑變> 如以下地評價耐硫化黑變。 於以上述方法製作之Sn鍍敷鋼板表面塗布以乾燥質量計7g/m2
之市售罐用環氧樹脂塗料後,於200℃溫度下焙燒10分鐘,之後置於室溫24小時。之後,將所得之Sn鍍敷鋼板裁切成預定尺寸,浸漬於含有磷酸二氫鈉:0.3%、磷酸氫鈉:0.7%、L-半胱胺酸鹽酸鹽:0.6%之水溶液中。將浸漬後之Sn鍍敷鋼板裝入密封容器,於121℃溫度下進行殺菌處理60分鐘。自殺菌處理後之Sn鍍敷鋼板外觀評價耐硫化黑變。 試驗前後外觀完全完全未改變者評價為「非常好」,產生10面積%以下之黑變者評價為「好」,產生超過10面積%之黑變者則評價為「差」。 評價為「非常好」及「好」者為合格。
<塗裝後耐蝕性> 如以下地評價塗裝後耐蝕性。 於以上述方法製作之Sn鍍敷鋼板表面塗布以乾燥質量計7g/m2
之市售罐用環氧樹脂塗料後,於200℃溫度下焙燒10分鐘,之後置於室溫24小時。之後,將所得之Sn鍍敷鋼板裁切成預定尺寸,於市售之番茄汁中於60℃溫度下浸漬7天。藉由目視確認浸漬後有無產生鏽,評價塗裝後耐蝕性。 完全未產生鏽者評價為「好」,產生10面積%以下之鏽者評價為「可」,產生超過10面積%之鏽者則評價為「差」。 評價為「好」及「可」者為合格。
<實施例1> 表1為改變皮膜之鋯氧化物含量後的結果。表1雖未清楚記載製造方法,但將製造表1之Sn鍍敷鋼板時的陰極電解處理液中之鋯濃度(氟化鋯)設為80~5000ppm。形成鋯氧化物後,Zr離子濃度為10ppm,且於導電率2.0S/m之碳酸氫鈉溶液(液體:弱酸性~鹼性)中陽極電解處理形成皮膜。陽極電解處理液之液溫為25℃,陽極電解處理之通電量為最大1.6C/dm2
。作為比較,於幾個例中未進行洗淨處理及/或陽極電解處理地製作試驗材。
[表1]
由表1可知,本發明例中任一評價結果均良好。另一方面,比較例中加熱時之色耐度差。又,比較例a1~6中,塗膜密著性、耐硫化黑變及塗裝後耐蝕性之任一者差。 又,依據表1之結果,於圖3顯示深度位置A之位置與加熱時之色耐度的關係。如圖3所示,深度位置A位於比起深度位置C(皮膜表面起算膜厚1/3之深度位置)還靠表面側時,可得較佳之色耐度。
<實施例2> 表2為改變深度位置A中Zr元素濃度後的結果。深度位置A中Zr元素濃度藉由改變陽極電解處理中之電量變化。
[表2]
由表2可知,本發明例之任一評價結果均良好。
<實施例3> 表3中顯示改變a/b值後之評價結果的差異。a/b藉由改變陰極電解處理浴中之磷酸離子濃度變化。
[表3]
由表3可知,本發明例之任一評價結果均良好。
<實施例4> 表4及5中顯示洗淨處理之條件差異導致評價結果的不同。表4顯示各試驗材之製造條件,表5顯示所得之試驗材的構造及評價。 再者,表4中雖未記載陽極電解處理條件,但全部之發明例及比較例中,均於以下條件下陽極電解處理:進行陽極電解處理液之電解質:碳酸氫鈉、陽極電解處理液之Zr離子濃度:10ppm、陽極電解處理液之pH:8、陽極電解處理液之導電率:2S/m、陽極電解處理液之液溫:25℃、陽極電解處理之通電量:0.5C/dm2
。
[表4]
[表5]
由表4、5可知,本發明例之任一評價結果均良好。另一方面,比較例d1所製造之試驗材加熱時之色耐度差。
<實施例5> 表6~14為改變陰極處理條件、洗淨處理條件、陽極處理條件後的結果。再者,表6~11顯示各例中試驗材之製造條件,表12~14顯示所得之試驗材的構造及評價結果。
[表6]
[表7]
[表8]
[表9]
[表10]
[表11]
[表12]
[表13]
[表14]
由表12~14可知,本發明例中任一評價結果均良好。另一方面,比較例e1~e5中加熱時之色耐度差。
<實施例6> 表15及表16為改變陽極電解處理液中之Zr離子濃度後的結果。表15顯示製造條件,表16顯示所得之Sn鍍敷鋼板的構造及評價結果。
[表15]
[表16]
由表15、16可知,本發明例中任一評價結果均良好。另一方面,比較例f1、f2中加熱時之色耐度差。
以上,詳細地說明本發明之較佳實施形態,但本發明並未受該等例所限定。只要為本發明所屬技術領域中具通常知識者,於專利申請之範圍所記載之技術思想範疇內所能思及之各種變更例或修正例均為明確,亦需知曉該等均屬本發明之技術範圍。 產業上之可利用性
如以上,於Sn鍍敷鋼板表面具有包含鋯氧化物與錫氧化物之皮膜的Sn鍍敷鋼板中,前述鋯氧化物之附著量以金屬Zr量計為0.2mg/m2
~50mg/m2
,此外,利用XPS深度方向分析所得之作為鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為錫氧化物存在之Sn元素濃度最大的深度位置B還靠皮膜之表面側;並且,深度位置A與深度位置B間之深度方向距離為0.5nm以上,該Sn鍍敷鋼板不需習知鉻酸鹽處理,加熱時之色耐度、塗膜密著性、耐硫化黑變優異。由此可知作為環境保護之罐用材料,可廣泛地使用於食物罐、飲料罐等,產業上之利用價值極高。
10‧‧‧鋼板
20‧‧‧Sn鍍敷層
30‧‧‧皮膜
100‧‧‧Sn鍍敷鋼板
圖1係顯示對本實施形態Sn鍍敷鋼板進行X射線光電子光譜分析(XPS)後鋯氧化物之峰值與錫氧化物之峰值之位置關係的圖。 圖2係顯示對習知技術之Sn鍍敷鋼板進行X射線光電子光譜分析(XPS)後鋯氧化物之峰值與錫氧化物之峰值之位置關係的圖。 圖3係顯示X射線光電子光譜分析(XPS)之深度方向分析中,顯示相對於皮膜厚度之作為鋯氧化物存在之鋯為最大元素濃度之位置(深度),與加熱後之色耐度之關係的圖。 圖4係顯示本實施形態之Sn鍍敷鋼板之層構造的示意圖。
Claims (8)
- 一種Sn鍍敷鋼板,其特徵在於具有: 鋼板; Sn鍍敷層,設於前述鋼板之至少一側的表面;及 皮膜,設於前述Sn鍍敷層表面且包含鋯氧化物與錫氧化物; 前述皮膜中前述鋯氧化物之含量,以金屬Zr量計為0.2mg/m2 ~50mg/m2 ; 透過X射線光電子光譜法之深度方向分析中,作為前述鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為前述錫氧化物存在之Sn元素濃度最大的深度位置B,還靠前述皮膜之表面側;並且,前述深度位置A與前述深度位置B間之深度方向距離為0.5nm以上。
- 如請求項1之Sn鍍敷鋼板,其中前述透過X射線光電子光譜法之深度方向元素分析中,前述深度位置A中作為前述鋯氧化物存在之Zr元素濃度為20%以上。
- 如請求項1或2之Sn鍍敷鋼板,其中前述皮膜更包含磷酸化合物; 前述皮膜中,經P量換算之前述磷酸化合物之含量a(單位:mg/m2 )除以經金屬Zr量換算之前述鋯氧化物之含量b(單位:mg/m2 )的值a/b為0.2~2.0。
- 如請求項1~3中任一項之Sn鍍敷鋼板,其中將前述皮膜之前述表面起算前述皮膜厚度之1/3深度位置設為深度位置C時,前述深度位置A是位於比起前述深度位置C還靠表面側。
- 一種Sn鍍敷鋼板之製造方法,其特徵在於具有以下步驟: 對於至少一側的表面形成有Sn鍍敷層之鋼板,在含有鋯離子之溶液中進行陰極電解處理,藉此於前述Sn鍍敷層上形成鋯氧化物之步驟; 前述陰極電解處理後,使用25℃以上之溫水利用0.3秒以上之浸漬處理或噴霧處理,進行洗淨處理之步驟;及 前述洗淨處理後,在Zr離子濃度270ppm以下之電解質溶液中進行陽極電解處理,而於前述Sn鍍敷層上形成含有前述鋯氧化物與錫氧化物之皮膜的步驟。
- 如請求項5之Sn鍍敷鋼板之製造方法,其中前述皮膜中前述鋯氧化物之含量以金屬Zr量計為0.2mg/m2 ~50mg/m2 ; 透過X射線光電子光譜法之前述皮膜的深度方向分析中,作為前述鋯氧化物存在之Zr元素濃度最大的深度位置A是位於:比起作為前述錫氧化物存在之Sn元素濃度最大的深度位置B,還靠前述皮膜表面側;並且,前述深度位置A與前述深度位置B間之深度方向的距離為0.5nm以上。
- 如請求項5或6之Sn鍍敷鋼板之製造方法,其中透過X射線光電子光譜法之深度方向元素分析中,深度位置A中作為前述鋯氧化物存在之Zr元素濃度為20%以上。
- 如請求項5~7中任一項之Sn鍍敷鋼板之製造方法,其中前述皮膜更包含磷酸化合物; 前述皮膜中,經P量換算之前述磷酸化合物之含量a(單位:mg/m2 )除以經金屬Zr換算之前述鋯氧化物之含量b(單位:mg/m2 )的值a/b為0.2~2.0。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017079792 | 2017-04-13 | ||
JP2017-079792 | 2017-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201842237A true TW201842237A (zh) | 2018-12-01 |
TWI713833B TWI713833B (zh) | 2020-12-21 |
Family
ID=63793386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107112750A TWI713833B (zh) | 2017-04-13 | 2018-04-13 | Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11021806B2 (zh) |
EP (1) | EP3611292B1 (zh) |
JP (1) | JP6870731B2 (zh) |
KR (1) | KR102303005B1 (zh) |
CN (1) | CN110494592B (zh) |
ES (1) | ES2935632T3 (zh) |
PH (1) | PH12019502237A1 (zh) |
TW (1) | TWI713833B (zh) |
WO (1) | WO2018190412A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217663A1 (ja) | 2019-04-23 | 2020-10-29 | Jfeスチール株式会社 | 表面処理鋼板の製造方法および表面処理鋼板 |
JP7410386B2 (ja) * | 2020-02-04 | 2024-01-10 | 日本製鉄株式会社 | Sn系めっき鋼板 |
US11674233B2 (en) * | 2020-03-26 | 2023-06-13 | Nippon Steel Corporation | Sn-based plated steel sheet |
IT202000014572A1 (it) * | 2020-06-18 | 2021-12-18 | Tenova Spa | Procedimento di passivazione di una banda d’acciaio stagnata |
WO2024111157A1 (ja) * | 2022-11-24 | 2024-05-30 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
JP7401039B1 (ja) * | 2022-11-24 | 2023-12-19 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
WO2024111156A1 (ja) * | 2022-11-24 | 2024-05-30 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63290292A (ja) | 1987-05-20 | 1988-11-28 | Nippon Steel Corp | 耐錆性、溶接性に優れた薄Snメツキ鋼板の製造方法 |
NZ518601A (en) | 1999-09-24 | 2004-10-29 | Morphogen Pharmaceuticals Inc | Pluripotent embryonic-like stem cells, compositions, methods and uses thereof |
JP4379005B2 (ja) | 2002-06-05 | 2009-12-09 | Jfeスチール株式会社 | Si含有化成皮膜を有する錫系めっき鋼板の製造方法 |
JP5093797B2 (ja) | 2006-03-24 | 2012-12-12 | 新日本製鐵株式会社 | 製缶加工性に優れた容器用鋼板 |
TWI391530B (zh) * | 2007-04-04 | 2013-04-01 | Nippon Steel Corp | A plated steel sheet for use in a tank and a method for manufacturing the same |
US8404357B2 (en) | 2007-08-23 | 2013-03-26 | Nippon Steel & Sumitomo Metal Corporation | Environmentally-friendly steel sheet for a can or a container as well as laminated and pre-coated steel sheet by using it |
JP4886811B2 (ja) | 2008-06-05 | 2012-02-29 | 新日本製鐵株式会社 | 有機皮膜性能に優れた容器用鋼板およびその製造方法 |
JP2011174172A (ja) | 2010-01-28 | 2011-09-08 | Jfe Steel Corp | 錫めっき鋼板およびその製造方法 |
MY160955A (en) | 2010-04-06 | 2017-03-31 | Nippon Steel Corp | Process for producing environmentally-friendly steel sheet for container material |
US8133594B2 (en) * | 2010-06-04 | 2012-03-13 | Nippon Steel Corporation | Steel sheet for container use |
JP5885345B2 (ja) * | 2012-05-29 | 2016-03-15 | 東洋鋼鈑株式会社 | 樹脂との加工密着性に優れる容器用表面処理鋼板、その製造方法および缶 |
WO2016076073A1 (ja) * | 2014-11-10 | 2016-05-19 | 新日鐵住金株式会社 | めっき鋼板およびその製造方法 |
JP5994960B1 (ja) * | 2015-01-09 | 2016-09-21 | 新日鐵住金株式会社 | 容器用鋼板及び容器用鋼板の製造方法 |
WO2016125911A1 (ja) * | 2015-02-06 | 2016-08-11 | 新日鐵住金株式会社 | Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法 |
EP3467155A4 (en) * | 2016-05-24 | 2019-10-30 | Nippon Steel Corporation | PLATED STEEL SHEET BY SN ALLOY |
KR102164123B1 (ko) * | 2016-05-24 | 2020-10-12 | 닛폰세이테츠 가부시키가이샤 | Sn 도금 강판 |
-
2018
- 2018-04-13 KR KR1020197029906A patent/KR102303005B1/ko active IP Right Grant
- 2018-04-13 TW TW107112750A patent/TWI713833B/zh active
- 2018-04-13 WO PCT/JP2018/015489 patent/WO2018190412A1/ja unknown
- 2018-04-13 EP EP18784151.5A patent/EP3611292B1/en active Active
- 2018-04-13 US US16/603,496 patent/US11021806B2/en active Active
- 2018-04-13 ES ES18784151T patent/ES2935632T3/es active Active
- 2018-04-13 CN CN201880024163.XA patent/CN110494592B/zh active Active
- 2018-04-13 JP JP2019512573A patent/JP6870731B2/ja active Active
-
2019
- 2019-09-27 PH PH12019502237A patent/PH12019502237A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN110494592B (zh) | 2021-10-01 |
JPWO2018190412A1 (ja) | 2019-12-26 |
PH12019502237A1 (en) | 2020-07-06 |
EP3611292A1 (en) | 2020-02-19 |
ES2935632T3 (es) | 2023-03-08 |
US20200040479A1 (en) | 2020-02-06 |
CN110494592A (zh) | 2019-11-22 |
WO2018190412A1 (ja) | 2018-10-18 |
KR102303005B1 (ko) | 2021-09-16 |
EP3611292B1 (en) | 2022-11-30 |
KR20190125457A (ko) | 2019-11-06 |
TWI713833B (zh) | 2020-12-21 |
EP3611292A4 (en) | 2020-12-09 |
US11021806B2 (en) | 2021-06-01 |
JP6870731B2 (ja) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI713833B (zh) | Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法 | |
JP6855833B2 (ja) | Snめっき鋼板及びSnめっき鋼板の製造方法 | |
TWI633211B (zh) | Sn鍍敷鋼板 | |
TWI633210B (zh) | Sn系合金鍍敷鋼板 | |
JP6642774B1 (ja) | Snめっき鋼板及びSnめっき鋼板の製造方法 | |
JP6852454B2 (ja) | Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法 | |
JP7239020B2 (ja) | Sn系めっき鋼板 | |
JP6003912B2 (ja) | 容器用鋼板およびその製造方法 | |
WO2016111349A1 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
TW202124788A (zh) | Sn系鍍敷鋼板 | |
JP6468059B2 (ja) | Snめっき鋼板及びSnめっき鋼板の製造方法 | |
JP6003910B2 (ja) | 容器用鋼板およびその製造方法 |