TW201834043A - 發光元件之製造方法 - Google Patents

發光元件之製造方法 Download PDF

Info

Publication number
TW201834043A
TW201834043A TW107102833A TW107102833A TW201834043A TW 201834043 A TW201834043 A TW 201834043A TW 107102833 A TW107102833 A TW 107102833A TW 107102833 A TW107102833 A TW 107102833A TW 201834043 A TW201834043 A TW 201834043A
Authority
TW
Taiwan
Prior art keywords
multilayer film
dielectric multilayer
substrate
light
laser light
Prior art date
Application number
TW107102833A
Other languages
English (en)
Other versions
TWI753997B (zh
Inventor
井上直人
住友新隆
Original Assignee
日商日亞化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日亞化學工業股份有限公司 filed Critical 日商日亞化學工業股份有限公司
Publication of TW201834043A publication Critical patent/TW201834043A/zh
Application granted granted Critical
Publication of TWI753997B publication Critical patent/TWI753997B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)

Abstract

本發明係使利用晶圓切斷之製造方法中之良率提高。 發光元件之製造方法包含:步驟(A),其係準備包含基板110、介電多層膜120及半導體構造130之晶圓100W,該基板110具有第1及第2主面,該介電多層膜120係設置於第1主面110a上,該半導體構造130係設置於第2主面110b上;步驟(B),其係使雷射光經由介電多層膜而聚光於基板之內部,於基板之內部形成改質區域110s,且自改質區域至介電多層膜產生龜裂;步驟(C),其係於步驟(B)之後,將介電多層膜中之包含龜裂之區域去除;以及步驟(D),其係於產生龜裂之部位將晶圓切斷。

Description

發光元件之製造方法
本發明係關於一種發光元件之製造方法。
以發光二極體(LED)為代表之半導體發光元件被廣泛地利用。發光二極體之製造通常採用如下之方法。首先,使半導體層於基板上成長,且執行半導體層之圖案化、電極之形成等而於基板之主面上形成半導體構造。以下,於本說明書中,為簡化說明,有時將半導體構造形成於基板之主面上而成之構造體稱為「晶圓」。藉由將具有半導體構造之晶圓分割,而獲得分別具有發光構造部之複數個晶片。 下述專利文獻1~3揭示有一種使用藍寶石基板作為供半導體層成長之基板之半導體發光元件之製造方法。於專利文獻1~3中所記載之技術中,於藉由使用藍寶石基板作為供半導體層成長之基板,且使雷射光聚光於基板內部,而於基板內部形成改質區域之後,例如藉由使支持晶圓之膠帶於晶圓之直徑方向上擴張,而將晶圓切斷。已知當於基板內部形成改質區域時,以改質區域為起點於基板內部產生龜裂,晶圓之切斷係藉由利用此種龜裂而達成。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第2011/090024號 [專利文獻2]日本專利特開2014-107485號公報 [專利文獻3]日本專利特開2013-165186號公報
[發明所欲解決之問題] 業界有提高利用晶圓切斷之製造方法中之良率的要求。 [解決問題之技術手段] 本發明之一態樣之發光元件之製造方法包含:步驟(A),其係準備包含基板、介電多層膜及半導體構造之晶圓,該基板具有第1及第2主面,該介電多層膜係設置於上述第1主面上,該半導體構造係設置於上述第2主面上;步驟(B),其係使雷射光經由上述介電多層膜而聚光於上述基板之內部,於上述基板之內部形成改質區域,且自上述改質區域至上述介電多層膜產生龜裂;步驟(C),其係於上述步驟(B)之後,去除上述介電多層膜中之包含上述龜裂之區域;以及步驟(D),其係藉由於產生上述龜裂之部位將上述晶圓切斷,而獲得複數個發光元件。 [發明之效果] 根據本發明之一態樣,可提高發光元件之製造中之良率。
(本發明者等人之見解) 於本發明之實施形態之說明前,首先,對本發明者等人所發現之問題進行說明。 有於發光元件之製造中使用在基板之與設置有半導體層之面為相反側之面設置有反射膜之晶圓的情況。反射膜例如包含介電多層膜。藉由於晶圓設置介電多層膜,於藉由切斷而獲得之發光元件中,可利用介電多層膜使朝向基板之與設置有半導體層之面為相反側之面的光反射,而獲得光提取效率提高之效果。 於利用藉由照射雷射光而形成之改質區域進行晶圓切斷中,存在如下要求:欲自基板之設置有半導體層之面之相反側對晶圓照射雷射光,以使與發光相關之半導體層等不會因雷射光之照射而受到損傷。本發明者等人發現:可藉由對在基板之與設置有半導體層之面為相反側之主面上設置有介電多層膜的晶圓,經由介電多層膜照射雷射光,而於基板內部形成改質區域,從而可將晶圓切斷。 然而,根據本發明者等人之研究,若單純地經由介電多層膜照射雷射光,於基板內形成改質區域而將晶圓切斷,則有容易於介電多層膜中之位於分割成之單片(以下有時稱為「晶粒」)之周緣之部分產生缺損,而使良率降低之虞。推測晶粒之周緣部之介電多層膜之缺損由如下原因造成:因基板與介電多層膜之間之結晶構造之差異,龜裂於基板內部伸展之方向與自基板到達介電多層膜之龜裂於介電多層膜內部伸展之方向不一致。若於形成有此種龜裂之狀態下將晶圓切斷,則存在介電多層膜於非意圖之方向被切斷,於晶粒之周緣部使介電多層膜產生缺損之情形。於晶粒之周緣部產生之介電多層膜之缺損有可能會導致發光元件之光提取效率降低。又,成為使良率降低之主要原因。 本發明者等人鑒於新發現之上述問題,進一步進行研究而完成了本發明。 以下,一面參照圖式,一面詳細地說明本發明之實施形態。以下之實施形態為例示,本發明之發光元件之製造方法並不限定於以下之實施形態。例如,以下之實施形態所示之數值、形狀、材料、步驟及步驟之順序等只不過為一例,可於技術上不產生矛盾之範圍內進行各種改變。 於以下之說明中,存在使用表示特定之方向或位置之用語(例如「上」、「下」、「右」、「左」及包含該等用語之其他用語)之情形。該等用語僅用於易於理解地表示所參照之圖式中之相對性之方向或位置。只要與所參照之圖式中之「上」、「下」等用語之相對性關係相同,則實際之製品等之例如構件等之配置亦可相對於某一基準與藉由「上」、「下」等用語所指定之絕對性之配置不同。又,存在圖式所示之構成要素之大小及位置關係等被誇張以便易於理解之情形,且存在未嚴格地反映出實際之晶圓、發光元件等之大小、或者實際之晶圓、發光元件等之構成要素間之大小關係之情形。又,於本發明中,「平行」及「垂直」(或「正交」)只要未特別提及,則並不限定於2條直線、邊或者面等所成之角分別為完全之0°及90°之情形,只要實質上為0°及90°便可。 圖1係用以說明本發明之實施形態之發光元件之例示性製造方法的流程圖。如圖1所示,本發明之實施形態之發光元件之製造方法概略而言包含如下步驟:準備包含在一主面具有介電多層膜之基板之晶圓(步驟S1);於基板之內部形成改質區域,自改質區域至介電多層膜產生龜裂(步驟S2);去除介電多層膜中之包含龜裂之區域(步驟S3);以及藉由將晶圓切斷而獲得複數個發光元件(步驟S4)。 (實施形態1) 圖2中模式性地表示切斷前之晶圓之一部分之剖面。圖2所示之晶圓100W包含:基板110,其具有第1主面110a及位於與第1主面110a為相反側之第2主面110b;第1主面110a上之介電多層膜120;以及半導體構造130,其形成於第2主面110b上。 作為基板110,選擇可供下述半導體構造130中之半導體層成長之基板。以下,對使用藍寶石基板作為基板110之例進行說明。如下所述,此處,作為基板110,使用其第2主面110b為由(0001)之密勒指數表現之c面之c面藍寶石基板。本說明書中之c面藍寶石基板亦包含第2主面110b自c面以5°以下之角度傾斜之傾斜基板。藍寶石基板之厚度例如可設為50 μm~2 mm左右。亦可準備厚度為200 μm~2 mm左右之藍寶石基板,於形成半導體構造130之後,藉由研磨等使藍寶石基板薄化為50~400 μm左右或者100~300 μm左右之範圍。 半導體構造130亦可進而包含:n型半導體層132n,其直接或間接地覆蓋基板110之第2主面110b之整個面;複數層活性層132a,其等設置於n型半導體層132n上之特定之區域;p型半導體層132p,其設置於各活性層132a上;p側電極134p,其設置於p型半導體層132p上;以及複數個n側電極134n,其等設置於n型半導體層132n上。半導體構造130亦可進而包含絕緣性之保護膜。 晶圓100W包含分別包含發光構造部136之單元區域100S之重複排列。於圖2中,表示有沿著紙面之左右方向排列之3個單元區域100S,但單元區域100S不僅配置於圖2中之紙面之左右方向,通常亦配置於與紙面垂直之方向。各發光構造部136具有:n型半導體層132n',其係半導體構造130之n型半導體層132n之一部分;活性層132a,其位於n型半導體層132n'上;活性層132a上之p型半導體層132p;p型半導體層132p上之p側電極134p;以及n型半導體層132n'上之n側電極134n。發光構造部136相當於包含之後藉由將晶圓100W切斷而獲得之晶粒中之除基板及介電多層膜以外之部分、換言之半導體部分及電極部分的構造。以下,有將俯視下位於相互鄰接之2個發光構造部136之p型半導體層132p之間的區域稱為發光構造部136之圖案中之界道(street)之情況。 發光構造部136中之n型半導體層132n'、活性層132a及p型半導體層132p之各者例如為InX AlY Ga1-X-Y N(0≦X、0≦Y、X+Y<1)等氮化物半導體層。n型半導體層132n'、活性層132a及p型半導體層132p之各者亦可為InGaAs系、GaP系等之半導體層。作為半導體層之成長方法,並無特別限定,可應用有機金屬氣相成長法(亦稱為MOCVD(Metal Organic Chemical Vapor Deposition,金屬有機物化學氣相沈積)、MOVPE(Metal Organic Vapor Phase Epitaxy,金屬有機氣相磊晶))、氫化物氣相成長法(HVPE)等。根據MOCVD,可結晶性良好地使半導體層成長。 發光構造部136之各者係藉由於切斷晶圓100W而獲得之晶粒中,對p側電極134p及n側電極134n之間供給電流而發出光。自發光構造部136發出之光主要自發光構造部136中之設置有p側電極134p及n側電極134n之側被提取。活性層132a發出之光之峰值波長例如為360 nm~650 nm之範圍內。 第1主面110a上之介電多層膜120為複數個介電膜之積層膜,且作為反射來自發光構造部136之光(典型而言為峰值波長之光)之反射膜而發揮功能。介電多層膜120例如包含選自由SiO2 膜、TiO2 膜及Nb2 O5 膜所組成之群中之2種以上。介電多層膜120中所包含之介電膜之層數、各層之厚度及材料可根據欲反射之光之波長而適當設定。藉由將選自由SiO2 膜、TiO2 膜及Nb2 O5 膜所組成之群中之2種以上用於介電多層膜120,且使活性層132a發出之光中之尤其是峰值波長之光反射的設計,可提高最終所獲得之發光元件之亮度。 圖3中一併表示出自介電多層膜120側相對於基板110之第1主面110a垂直地觀察晶圓100W而得之俯視圖、及將晶圓100W之一部分放大而得之主要部分放大圖。圖2相當於圖3之A-A'線剖視圖。如圖3所示,於晶圓100W二維地排列有複數個單元區域100S。即,發光構造部136二維地排列於第2主面110b上。晶圓100W例如可包含3000個~50000個左右之單元區域100S。藉由以單元區域100S為單位將晶圓100W切斷,可獲得複數個發光元件。 於圖3所例示之構成中,單元區域100S沿著與晶圓100W之定向平邊100f垂直之第1方向、及與定向平邊100f平行之第2方向呈矩陣狀排列。因此,發光構造部136亦沿著第1方向及第2方向呈矩陣狀排列。此處,作為基板110,使用第2主面110b為c面之藍寶石基板,圖3中箭頭A1所示之第1方向與基板110之a軸平行,圖3中箭頭A2所示之第2方向與基板110之m軸平行。 準備晶圓100W後,將晶圓100W放置於例如雷射切割裝置,於基板110之內部形成改質區域(執行隱形切割)。一般而言,晶圓100W係於利用切割保護膠帶固定於安裝有切割保護膠帶之環狀框之狀態下被放置於雷射切割裝置。 圖4表示對晶圓100W照射雷射光之狀態。如圖4中模式性地表示般,藉由使雷射光束B通過雷射切割裝置之聚光透鏡20聚光於基板110之內部,而於基板110之內部局部地形成改質區域110s。此處,一面沿著發光構造部136之圖案之界道改變照射位置,一面經由介電多層膜120對基板110之內部重複照射脈衝雷射。典型而言,藉由於與基板110之主面平行之面內一面使晶圓100W沿著第1方向及第2方向移動一面重複脈衝雷射之照射,而使雷射光沿著應將晶圓分割之線(假想分割預定線)、例如界道之中心進行掃描。藉由沿著假想分割預定線重複照射脈衝雷射,而沿著假想分割預定線於基板110之內部形成複數個改質區域110s。此處,對與第1方向平行之複數個界道之各者及與第2方向平行之複數個界道之各者執行脈衝雷射之掃描。藉由相應於界道數量之複數次掃描,可於與第1方向平行之每個界道形成包含排列於第1方向之複數個改質區域110s之群,於與第2方向平行之每個界道形成包含排列於第2方向之複數個改質區域110s之群。 於本發明之實施形態中,光束B係自介電多層膜120之表面120a側經由介電多層膜120朝向基板110之內部照射,且聚光於基板110之內部。作為雷射光之峰值波長,選擇透過介電多層膜120及基板110之光之波長。例如可使用於800~1200 nm之範圍內具有峰值波長之雷射光。 作為雷射光源,可使用能夠引起多光子吸收之產生脈衝雷射之雷射、連續波雷射等。此處,使用飛秒雷射、皮秒雷射等產生脈衝雷射之雷射光源。作為雷射光源,可利用鈦藍寶石雷射、Nd:YAG(Yttrium Aluminum Garnet,釔鋁石榴石)雷射、Nd:YVO4雷射、Nd:YLF(Yttrium Lithium Fluoride,氟化釔鋰)雷射等。 再者,隱形切割中之對準例如可藉由如下方法而執行,即,藉由搭載於雷射切割裝置之相機而自介電多層膜120之表面120a側拍攝晶圓100W,自所獲取之圖像檢測發光構造部136之圖案。 以下表示隱形切割中之加工條件之一例。晶圓100W之進給速度及脈衝之頻率可以改質區域110s之間隔成為2 μm以上且15 μm以下程度之方式適當變更。亦可改變使雷射光聚光之位置而沿著基板110之第1主面110a之法線方向形成複數個改質區域。 雷射光之峰值波長:1045 nm 雷射輸出:0.1 W~2.0 W左右 脈衝寬度:1000飛秒 頻率:100 kHz 進給速度:400 mm/s 散焦:-20 μm 此處,散焦之值係以基板110之第1主面110a之位置為基準,將基板110側設為負,且將介電多層膜120側設為正。 考慮藍寶石對波長1045 nm之光之折射率為1.75,自基板110之第1主面110a之散焦可以如下方式適當地設定,即,基板110之第1主面110a之法線方向上之使雷射光聚光之位置(深度)例如成為自基板110之第1主面110a朝向基板110之內部30 μm以上之位置。再者,於本發明之實施形態中,經由介電多層膜120對基板110照射雷射光,但由於介電多層膜120之厚度相對較薄,為1 μm以上且3 μm以下程度,故而對散焦之值幾乎無影響。 藉由使光束B聚光於基板110之內部而於基板110之內部形成改質區域110s,而如圖5中模式性地表示般,自改質區域110s至介電多層膜120產生龜裂Fra。根據本發明者等人研究出之結果,即便不另外執行特殊之步驟,多數情況下,於自雷射切割裝置取出晶圓100W之時間點便已於介電多層膜120產生龜裂。即,典型而言,認為於隱形切割完成之時間點,因龜裂自改質區域110s伸展而導致於基板110之第1主面110a與介電多層膜120之一部分產生沿著第1方向及第2方向之龜裂。 圖6係自與基板110之第1主面110a垂直之方向拍攝的介電多層膜120之表面120a之照片,且表示形成於介電多層膜120之表面120a之龜裂之一例。如圖6所示,龜裂Fra係於形成改質區域110s後,以改質區域110s為起點而產生,最終可到達介電多層膜120之表面120a。出現於介電多層膜120之表面120a之龜裂雖然在某種程度上蜿蜒,但大致沿著第1方向及第2方向形成。再者,圖6係表示介電多層膜120之表面120a之一部分,於隱形切割完成後在整個表面120a呈方格狀產生龜裂對於本發明之實施形態並非為必須。若局部地觀察,則亦可能有於隱形切割完成之時間點龜裂Fra之伸展停止於介電多層膜120內之情況。即,亦可能有形成於介電多層膜120之表面120a之龜裂未沿著第1方向或第2方向自晶圓100W之端部至端部為止連續。再者,自改質區域110s並非僅產生龜裂Fra,如圖5中模式性地表示般,亦會產生朝向基板110之第2主面110b延伸之龜裂Frb。 其次,將介電多層膜120中之包含龜裂之區域去除。例如,沿著第1方向及第2方向將介電多層膜120中之包含龜裂之區域去除。例如,藉由沿著出現於介電多層膜120之表面120a之龜裂將介電多層膜120局部地去除,而將介電多層膜120中之包含形成於表面120a之龜裂之區域呈線狀去除。再者,即便龜裂Fra未到達介電多層膜120之表面120a,亦可藉由顯微鏡等確認介電多層膜120中之龜裂Fra。根據上述內容,例如可自晶圓100W之圖像確認介電多層膜120中之龜裂之位置,且基於介電多層膜120中之龜裂之位置而將包含龜裂之區域去除。 圖7係自與基板110之第1主面110a垂直之方向拍攝的介電多層膜120之表面120a之照片,且表示將介電多層膜120中之包含龜裂之區域去除後之一例。介電多層膜120中之要被去除之部分之俯視下的寬度W例如較佳為設為3 μm以上且15 μm以下程度之範圍內,更佳為設為8 μm以上且10 μm以下程度之範圍內。藉由將寬度W設為特定值以上,可更確實地去除包含形成於介電多層膜120之龜裂之區域。藉由將寬度W設為特定值以下,可抑制因過度地去除介電多層膜120之一部分而導致之光提取效率之降低。 有用的是,於自與第1主面110a垂直之方向觀察時,介電多層膜120中之藉由該步驟而去除之區域較於形成改質區域110s時被照射雷射光之區域小。藉由使作為包含龜裂之區域而被去除之區域較於形成改質區域110s時被照射雷射光之區域小,可避免介電多層膜被過度去除。因此,可防止因過度地去除介電多層膜而導致之光提取效率之降低。 若假設先進行介電多層膜120之去除,其後形成改質區域110s,則為使雷射光不於介電多層膜120與基板110之界面折射,必須對露出於去除了介電多層膜120之區域之內側的基板110之第1主面110a照射雷射光。然而,若考慮雷射光之聚光位置等,則難以使基板110之第1主面110a之雷射光之點徑變小,為對去除了介電多層膜120之區域之內側照射雷射光,必須去除介電多層膜120之更多之部分。其結果,將晶圓100W分離成複數個發光元件100之後殘留於各發光元件之基板110上之介電多層膜120之面積被削減,而使光提取效率降低。 與此相對,於本發明之實施形態中,於將介電多層膜120去除之前形成改質區域110s。因此,可避免將介電多層膜120中之應殘留於基板110上之部分去除。 將介電多層膜120局部去除之方法既可應用利用切削磨石及切割裝置之所謂之半切,亦可應用奈秒雷射之照射。此處,如圖8中模式性地表示般,藉由與改質區域110s之形成相同之雷射光之照射而將介電多層膜120局部地去除。 藉由調整使雷射光聚光之位置等,例如可利用用於改質區域110s之形成之雷射切割裝置而將介電多層膜120局部地去除,從而可於介電多層膜120形成上下方向上貫通之槽部120g。藉由利用用於改質區域110s之形成之雷射切割裝置執行介電多層膜120之局部去除,而無須將晶圓100W向不同裝置轉移,故而可避免步驟之複雜化。又,與應用半切或奈秒雷射之照射之情形相比,可避免因於切削介電多層膜120時切削磨石與基板110接觸而導致之加工不良、因高輸出之奈秒雷射之照射而對晶圓100W產生損傷等。 以下表示利用雷射光之照射將介電多層膜120局部去除之加工條件之一例。與改質區域110s之形成同樣地,晶圓100W之進給速度及脈衝之頻率可以雷射光之聚光位置之間隔成為2 μm以上且15 μm以下程度之方式適當變更。 雷射光之峰值波長:1045 nm 雷射輸出:0.1 W~2.0 W左右 脈衝寬度:1000飛秒 頻率:100 kHz 進給速度:400 mm/s 散焦:0~5 μm 於介電多層膜120之局部去除中,使雷射光聚光於基板110及介電多層膜120之界面附近。使雷射光聚光之實際之位置只要為基板110及介電多層膜120之界面附近便可,於基板110之第1主面110a之法線方向上可容許±2 μm左右之偏移。但,就有效率地進行介電多層膜120之去除之觀點而言,有利的是使雷射光聚光於介電多層膜120內之更靠近基板110之第1主面110a之位置。亦可使雷射光複數次照射於同一聚光位置。 如參照圖6所說明般,於該例中,介電多層膜120之表面120a之龜裂大致沿著第1方向及第2方向形成。因此,於與基板110之主面平行之面內,一面使晶圓100W沿著第1方向及第2方向移動,一面重複脈衝雷射之照射,並以沿著介電多層膜120之內部或介電多層膜120之表面120a之龜裂之方式掃描雷射光,藉此,可將介電多層膜120中之包含龜裂之區域去除。由於可自介電多層膜120之表面120a側確認介電多層膜120之內部或介電多層膜120之表面120a之龜裂之位置,故而可相對容易地執行晶圓100W之對準。 圖9係表示於介電多層膜120之局部去除步驟中所形成之槽部120g與改質區域110s之形成步驟中之雷射光掃描線的關係之一例。藉由例如沿著第1方向及第2方向掃描雷射光之光束B,而如於圖9之右側放大地表示般,沿著第1方向及第2方向於介電多層膜120形成槽部120g。於該例中,介電多層膜120之局部去除中之雷射光掃描線位於槽部120g之大致中央。圖9中之虛線Sd表示於改質區域110s之形成步驟中掃描雷射光之線。因此,改質區域110s係於基板110之內部沿著虛線Sd形成。如圖9所示,此處,虛線Sd位於槽部120g之大致中央。即,於該例中,於介電多層膜120之局部去除步驟與改質區域110s之形成步驟中,雷射光掃描線大致一致。參照圖8可知,於該例中,於介電多層膜120之局部去除步驟中,將介電多層膜120中之改質區域110s之正上方之區域去除。但,如下所述,亦有於介電多層膜120之局部去除步驟與改質區域110s之形成步驟中,有意使雷射光掃描線不一致更有利於良率之提高的情況。 其次,藉由使支持晶圓100W之切割保護膠帶於晶圓100W之直徑方向上擴張,而於產生龜裂之部位將晶圓100W切斷。或者,亦可藉由將板狀之刀片之端面置於界道上,使刀片壓抵於晶圓100W,而於產生龜裂之部位將晶圓100W切斷。藉由晶圓100W之切斷,如圖10中模式性地表示般,可獲得分別具有基板110'、介電多層膜120'及發光構造部136之複數個發光元件100。此處,沿著第1方向及第2方向將晶圓100W切斷,故而俯視下之發光元件100之形狀為大致矩形。 如以上所說明般,於本實施形態中,將介電多層膜120中之包含因形成改質區域110s而產生之龜裂之區域去除,其後,將晶圓100W切斷。由於將介電多層膜120中之例如包含形成於介電多層膜120之表面120a之龜裂之位置的區域去除,故而抑制了將晶圓100W分離成複數個發光元件100時所產生之介電多層膜120之缺損之產生,而使良率提高。根據本實施形態,可獲得如下之發光元件100,即,於與發光構造部136所位於之基板110之第2主面110b為相反側之第1主面110a上具有介電多層膜120'。藉由介電多層膜120'位於第1主面110a上,可抑制光自第1主面110a側洩漏,而可抑制光提取效率之降低。如此,根據本發明之實施形態,可有效率地提供抑制了光提取效率降低之發光元件100。 (實施形態2) 以下,對本發明之實施形態2之製造方法進行說明。於上述實施形態1中,於介電多層膜120之局部去除步驟中,沿著第1方向及第2方向將介電多層膜中之改質區域110s之正上方之區域去除。然而,如以下所說明般,亦會有如下情況:藉由於將介電多層膜120中之自改質區域110s之正上方偏移特定量之區域去除之後,將晶圓100W切斷,而使良率進一步提高。 圖11及圖12分別表示藉由掃描型電子顯微鏡(SEM)而獲得之形成改質區域110s後之基板110的與m軸垂直之剖面及與a軸垂直之剖面之圖像。圖11、圖12均為第1主面110a(即,供介電多層膜120形成之側之主面)分別位於紙面之上側。於圖11、圖12中,可確認於基板110之內部沿著紙面之左右方向形成有複數個改質區域110s,複數個改質區域110s呈帶狀相連。 由圖11及圖12可知,對於基板110之與m軸垂直之剖面及基板110之與a軸垂直之剖面之任一者,自改質區域110s朝向第1主面110a延伸之龜裂Fra、及自改質區域110s朝向第2主面110b延伸之龜裂Frb均產生於基板110內。若著眼於表示基板110之與m軸垂直之剖面之圖11,則可知龜裂Fra係自改質區域110s與第1主面110a之法線方向大致平行地延伸。因此,例如於在介電多層膜120之表面120a呈方格狀出現龜裂之情形時,出現於介電多層膜120之表面120a之龜裂中之在與基板110之m軸平行之第2方向上延伸之龜裂可以說位於沿著第2方向形成之改質區域110s之大致正上方之區域。換言之,於著眼於在與基板110之m軸平行之第2方向上延伸之1個界道時,可以說介電多層膜120之內部及/或表面120a之龜裂中之與該界道重疊之龜裂之位置和形成於第1主面110a之龜裂中之與該界道重疊之龜裂之位置於俯視下(或於剖面觀察時)大致一致。 與此相對照,於圖12所示之例中,龜裂Fra係於基板110之與a軸垂直之剖面中,相對於基板110之法線方向傾斜地形成。因此,形成於第1主面110a之在與基板110之a軸平行之第1方向上延伸的龜裂之位置於剖面觀察時自改質區域110s之正上方之區域偏移。如此,有於基板110之與a軸垂直之剖面中,於第1主面110a中形成於第1方向之龜裂之位置與改質區域110s之正上方之區域不一致的情況。因此,可能有如下情況:於介電多層膜120之內部及/或表面120a中在第1方向上延伸之龜裂於俯視下亦位於自沿著第1方向形成之改質區域110s之正上方之區域朝第2方向偏移之區域。 於基板110之與a軸垂直之剖面中,龜裂Fra相對於第1主面110a之法線方向之斜率例如為3°~10°之範圍。例如,於在介電多層膜120之表面120a中在第1方向上延伸之龜裂之位置與改質區域110s之位置之間,根據自基板110之第1主面110a至改質區域110s之位置為止之距離,於俯視下在第2方向上可能產生例如3~5 μm左右大小之偏移。 於實施形態2中,於去除介電多層膜120之包含龜裂之區域之步驟中,與上述實施形態1同樣地,例如藉由雷射光之掃描而沿著第1方向及第2方向將包含形成於介電多層膜120之龜裂之區域去除。此時,關於去除俯視下包含沿第2方向延伸之龜裂之區域,針對每個界道將介電多層膜120中之沿著第2方向形成之複數個改質區域110s之正上方的區域去除。另一方面,關於去除俯視下包含沿第1方向延伸之龜裂之區域,針對每個界道將介電多層膜120中之自沿著第1方向形成之複數個改質區域110s之正上方的區域沿著第2方向移位特定量之部分去除。此時之移位量可根據所使用之基板110之性狀、及自第1主面110a至改質區域110s為止之距離(深度)而適當設定。移位量例如可為1 μm以上且20 μm以下程度之範圍。 圖13係表示介電多層膜120之局部去除步驟中之雷射光掃描線與改質區域110s之形成步驟中之雷射光掃描線之關係的另一例。圖13係將於第1方向上延伸之界道與於第2方向上延伸之界道交叉之一個部分放大表示。 圖13中之二點鏈線表示改質區域110s之形成步驟中之雷射光之掃描線Sd1及Sd2。複數個改質區域110s係沿著掃描線Sd1及掃描線Sd2形成於基板110之內部。 圖13中之粗虛線表示介電多層膜120之局部去除中之雷射光之掃描線Rm1及Rm2。於本實施形態中,使介電多層膜120之局部去除步驟中之沿著第2方向之掃描線Rm2與改質區域110s之形成步驟中之沿著第2方向之掃描線Sd2大致一致。相對於此,沿著第1方向之掃描於改質區域110s之形成步驟中係沿著掃描線Sd1進行,於介電多層膜120之局部去除步驟中係沿著自掃描線Sd1朝第2方向移位特定量之位置之掃描線Rm1進行。再者,於圖13中,以掃描線Rm2與掃描線Sd2不一致之方式進行圖示,其原因在於,為易於理解,於圖中為方便起見而以該等不重疊之方式略微錯開地進行圖示。 如該例般,於第1方向上,將介電多層膜120中之自改質區域110s之正上方之區域朝第2方向移位特定量之部分去除,藉此,可更確實地將介電多層膜120中之包含龜裂之區域去除。例如,可更確實地將包含形成於介電多層膜120之表面120a之龜裂之位置的區域去除。由於介電多層膜120之包含龜裂之區域被更確實地去除,故而抑制了因複數個發光元件100之分離而對介電多層膜120產生缺損,從而可使良率提高。再者,於該例中,以自界道之中心偏移之方式調整掃描線Sd1之位置。如該例般,考慮到於基板110之與a軸垂直之剖面中,龜裂Fra可相對於第1主面110a之法線方向傾斜地形成,有用的是使掃描線Sd1之位置自界道之中心偏離,使掃描線Rm1之位置位於例如界道之中心。藉此,可使沿著第1方向形成於介電多層膜120之內部及/或表面120a之龜裂位於界道之大致中心,而於介電多層膜120中之位於界道之大致中心之部分形成槽部120g。其結果,可於將晶圓100W切斷成複數個發光元件100時抑制介電多層膜120之缺損之產生,且可獲得於所期望之區域上形成有介電多層膜120'之發光元件100。 即便代替使掃描線Rm1自掃描線Sd1朝第2方向移位特定量,而藉由將介電多層膜120之局部去除步驟中之雷射光之點徑放大來擴寬將介電多層膜120去除之區域,亦容易將包含形成於介電多層膜120之龜裂之區域去除。但,就提高發光元件100之光提取效率之觀點而言,相較將雷射光之點徑放大,可減少介電多層膜120中之要被去除之區域,故而有利的是不使雷射光之點徑放大而使掃描線Rm1自掃描線Sd1朝第2方向移位特定量,而將包含形成於介電多層膜120之龜裂之區域去除。 如以上所說明般,根據本發明之至少任一實施形態,可抑制因複數個發光元件100之分離而對介電多層膜120產生缺損,從而可使良率提高。再者,若僅著眼於經由介電多層膜120照射雷射光而執行隱形切割之方面,則專利文獻2中所記載之技術亦並非無法與本發明之實施形態共通。然而,就專利文獻2中所記載之技術而言,預先於反射膜中之金屬膜形成槽,經由槽而使雷射光聚光於單晶基板之內部。於此種方法中,為使雷射光充分地聚光於單晶基板之內部,必須於金屬膜形成寬度相對較大之槽,從而使金屬膜不會成為雷射光之照射之阻礙。因此,反射膜之更多部分被去除,結果導致發光元件之光提取效率降低。又,認為由於未去除介電多層膜中之產生龜裂之部分,故而於將晶圓切斷而獲得之發光元件中之介電多層膜之周緣部產生缺損。 另一方面,於專利文獻3中所記載之技術中,沿著分割預定線不僅去除金屬膜亦去除介電多層膜,藉此於反射膜形成槽,其後執行隱形切割。槽之形成時應用利用切削磨石所進行之切割。然而,由於應用利用切削磨石所進行之切割,故而可能有如下情況,即,槽之底部於剖面觀察時通常為曲面狀,因槽之底部為曲面狀而導致產生像差,而無法使雷射光充分地聚光於單晶基板之內部。 若代替切割而藉由雷射光之照射預先去除介電多層膜,則明顯發現能夠避免因此種像差所導致之不良情況,但若藉由雷射光之照射先去除介電多層膜,則以碎片之形式飛散之介電多層膜之材料會導致隱形切割中之雷射光之散射或吸收。於產生此種散射或吸收之狀態之情形時,難以使雷射光聚光於基板內部,為形成改質區域必須提高雷射光之功率等。其結果,有發光構造部受到損傷而良率降低之虞。 如此,就如將用於隱形切割之雷射光之照射與用於介電多層膜之局部去除之雷射光之照射之間的順序自本發明之實施形態之順序單純地調換之構成而言,有可能反而使得良率降低。以下,一面參照實施例及比較例,一面對該方面進行說明。 [實施例] (實施例1) 首先,準備晶圓,該晶圓具有作為基板110之藍寶石基板,且於藍寶石基板之一主面上形成有作為介電多層膜120之21層介電膜之積層膜,於另一主面上形成有作為半導體構造之氮化物半導體層。此處,使用厚度200 μm之藍寶石基板,作為介電多層膜120係使用將11層SiO2 膜、10層TiO2 膜交替地積層而得之積層膜。以如下方式進行介電多層膜120之光學設計,即,使改質區域之形成及介電多層膜之局部去除中所使用之雷射光之具有峰值波長的光透過,使來自半導體構造之光之具有峰值波長之光反射。 其次,自與第1主面110a對應之形成有介電膜之主面側,使雷射光沿著第1方向及第2方向一面進行掃描一面照射,而於基板之內部形成改質區域。以下表示此時之加工條件1。 「加工條件1」 雷射光之峰值波長:約1000 nm 沿著第1方向之掃描時之脈衝能量:0.4 W 沿著第2方向之掃描時之脈衝能量:0.4 W 沿著第1方向之掃描時之頻率:100 kHz 沿著第2方向之掃描時之頻率:100 kHz 沿著第1方向之掃描時之進給速度:1000 mm/s 沿著第2方向之掃描時之進給速度:500 mm/s 散焦:-20 μm 沿著第1方向之掃描時之偏移:-10 μm 沿著第2方向之掃描時之偏移:0 μm 於隱形切割中,按照第2方向、第1方向之順序執行雷射光之掃描。又,針對每個界道往復2次照射雷射光。即,針對每個界道進行4次雷射光掃描。此處,「沿著第1方向之掃描時之偏移」係表示以於第1方向上延伸之界道之中央為基準使聚光位置以何種程度朝第2方向偏離,負號意味著於以使定向平邊與水平方向一致地到達觀察者之近前側之方式將晶圓水平地放置時,以界道之中央為基準朝左側偏移。同樣地,「沿著第2方向之掃描時之偏移」係表示以於第2方向上延伸之界道之中央為基準使聚光位置以何種程度朝第1方向偏離。 其次,自與第1主面110a對應之形成有介電膜之主面側,使雷射光沿著第1方向及第2方向一面進行掃描一面照射,而將介電多層膜局部地去除。以下表示此時之加工條件2。 「加工條件2」 雷射光之峰值波長:約1000 nm 沿著第1方向之掃描時之脈衝能量:0.2 W 沿著第2方向之掃描時之脈衝能量:0.2 W 沿著第1方向之掃描時之頻率:50 kHz 沿著第2方向之掃描時之頻率:50 kHz 沿著第1方向之掃描時之進給速度:600 mm/s 沿著第2方向之掃描時之進給速度:600 mm/s 散焦:2 μm 沿著第1方向之掃描時之偏移:-16 μm 沿著第2方向之掃描時之偏移:0 μm 此處,按照第2方向、第1方向之順序執行雷射光之掃描,針對每個界道使晶圓於第1方向或第2方向上往復1次。即,針對每個界道進行2次雷射光掃描。 其後,使用刀片將晶圓於產生龜裂之部位切斷,藉此獲得分別具有發光構造部之實施例1之發光元件。 (比較例1) 除將改質區域之形成步驟及藉由雷射光之照射所進行之介電多層膜之局部去除步驟的執行順序調換以外,以與實施例1相同之方式製作比較例1之發光元件。即,於比較例1中,於藉由雷射光之照射而沿著界道將介電多層膜局部地去除之後,自與第1主面110a對應之形成有介電膜之主面側,使雷射光沿著第1方向及第2方向一面進行掃描一面照射,而嘗試向基板內部形成改質區域。 圖14、15係用以說明比較例1之發光元件之製造方法之圖。圖14係表示於在基板之內部形成改質區域之前,藉由雷射光之照射沿著第1方向及第2方向將介電多層膜局部地去除而得之晶圓之介電多層膜之表面的照片。用於圖14所示之樣本之介電多層膜之局部去除的加工條件與上述加工條件2相同。 圖15係表示對圖14所示之局部去除介電多層膜後之晶圓照射雷射光以形成改質區域後的介電多層膜之表面之照片。此時之加工條件與上述加工條件1相同。 若參照圖15,則可知藉由雷射光之照射而形成於介電多層膜之槽部中的於第1方向上延伸之槽部之右端粗糙。推測其原因在於,於與a軸垂直之剖面中龜裂相對於基板之法線方向傾斜,相應地,用於介電多層膜之局部去除之雷射光之照射與用於改質區域形成之雷射光之照射於沿著第1方向之掃描時偏移。 又,於比較例1之晶圓中,無法使龜裂自改質區域充分地伸展至形成有介電膜之主面為止。認為其原因在於,於介電多層膜被去除之部分,用於改質區域之形成之雷射光被散射或吸收,而無法使雷射光充分地聚光於基板之內部。 將比較例1之發光元件之介電多層膜之外觀與實施例1之發光元件之介電多層膜之外觀加以比較,結果與實施例1之發光元件相比,於比較例1之發光元件中,在介電多層膜之周緣部產生較多缺損。根據該結果,可知藉由如實施例1般於隱形切割之步驟之後執行介電多層膜之局部去除步驟,可抑制因於介電多層膜產生缺損而導致之良率降低。 (比較例2) 除不執行藉由雷射光之照射將介電多層膜局部去除之步驟以外,以與實施例1相同之方式製作比較例2之發光元件。即,於比較例2中,藉由經由介電多層膜對基板照射雷射光並使雷射光聚光於基板之內部,而形成改質區域,其後,不對介電多層膜照射雷射光而將晶圓分離成複數個發光元件。使用雷射光形成改質區域時之加工條件與上述加工條件1相同。 將比較例2之發光元件之外觀與實施例1之發光元件之外觀加以比較,結果比較例2之發光元件於介電多層膜之周緣部產生更多缺損。 [產業上之可利用性] 根據本發明之一態樣,可更有效率地提供LED、雷射二極體等半導體發光元件。
20‧‧‧聚光透鏡
100‧‧‧發光元件
100f‧‧‧定向平邊
100S‧‧‧單元區域
100W‧‧‧晶圓
110‧‧‧基板
110'‧‧‧基板
110a‧‧‧基板之第1主面
110b‧‧‧基板之第2主面
110s‧‧‧改質區域
120‧‧‧介電多層膜
120'‧‧‧介電多層膜
120a‧‧‧介電多層膜之表面
120g‧‧‧槽部
130‧‧‧半導體構造
132a‧‧‧活性層
132n‧‧‧n型半導體層
132n'‧‧‧n型半導體層
132p‧‧‧p型半導體層
134n‧‧‧n側電極
134p‧‧‧p側電極
136‧‧‧發光構造部
A1‧‧‧箭頭
A2‧‧‧箭頭
B‧‧‧雷射光束
Fra‧‧‧龜裂
Frb‧‧‧龜裂
Rm1‧‧‧掃描線
Rm2‧‧‧掃描線
S1‧‧‧步驟
S2‧‧‧步驟
S3‧‧‧步驟
S4‧‧‧步驟
Sd‧‧‧虛線
Sd1‧‧‧掃描線
Sd2‧‧‧掃描線
W‧‧‧寬度
圖1係用以說明本發明之實施形態之發光元件之例示性製造方法的流程圖。 圖2係切斷前之晶圓100W之一部分之模式性剖視圖。 圖3係自介電多層膜120側與基板110之第1主面110a垂直地觀察晶圓100W而得之俯視圖。 圖4係表示對晶圓100W照射雷射光之狀態之模式性剖視圖。 圖5係表示因形成改質區域110s而導致產生龜裂Fra之狀態之模式性剖視圖。 圖6係表示形成於介電多層膜120之表面120a之龜裂之一例的俯視圖。 圖7係表示自與基板110之第1主面110a垂直之方向拍攝而得的介電多層膜120之表面120a之照片之圖,且係表示將介電多層膜120中之包含龜裂之區域去除後之一例的俯視圖。 圖8係表示對介電多層膜120之局部去除應用雷射光照射之例的模式性剖視圖。 圖9係用以說明於介電多層膜120之局部去除步驟中所形成之槽部120g與改質區域110s之形成步驟中之雷射光掃描之線的關係之一例之局部放大圖。 圖10係表示晶圓100W被切斷之狀態之模式性剖視圖。 圖11係表示形成改質區域110s後之基板110之與m軸垂直的剖面之圖像之圖。 圖12係表示形成改質區域110s後之基板110之與a軸垂直的剖面之圖像之圖。 圖13係用以表示介電多層膜120之局部去除步驟中之雷射光掃描之線與改質區域110s之形成步驟中之雷射光掃描之線的關係之另一例之俯視圖。 圖14係表示於在基板之內部形成改質區域之前,藉由雷射光之照射而沿著第1方向及第2方向局部地去除介電多層膜而得之晶圓之介電多層膜之表面的圖。 圖15係表示對圖14所示之局部去除介電多層膜後之晶圓照射雷射光以形成改質區域後的介電多層膜之表面之圖。

Claims (6)

  1. 一種發光元件之製造方法,其包含: 步驟(A),其係準備包含基板、介電多層膜及半導體構造之晶圓,該基板具有第1及第2主面,該介電多層膜係設置於上述第1主面上,該半導體構造係設置於上述第2主面上; 步驟(B),其係使雷射光經由上述介電多層膜而聚光於上述基板之內部,於上述基板之內部形成改質區域,且自上述改質區域至上述介電多層膜產生龜裂; 步驟(C),其係於上述步驟(B)之後,去除上述介電多層膜中之包含上述龜裂之區域;以及 步驟(D),其係藉由於產生上述龜裂之部位將上述晶圓切斷,而獲得複數個發光元件。
  2. 如請求項1之發光元件之製造方法,其中上述基板由藍寶石構成,且上述第2主面為c面, 上述步驟(B)包含: 步驟(B1),其係藉由使雷射光於與上述基板之a軸平行之第1方向上進行掃描,而沿著上述第1方向形成複數個上述改質區域;以及 步驟(B2),其係藉由使雷射光於與上述基板之m軸平行之第2方向上進行掃描,而沿著上述第2方向形成複數個上述改質區域。
  3. 如請求項2之發光元件之製造方法,其中於上述步驟(C)中,藉由雷射光之照射而去除上述介電多層膜中之包含上述龜裂之上述區域。
  4. 如請求項2或3之發光元件之製造方法,其中上述步驟(C)包含: 步驟(C1),其係將上述介電多層膜中之自沿著上述第1方向排列之複數個上述改質區域朝上述第2方向移位特定量之部分去除;以及 步驟(C2),其係將上述介電多層膜中之沿著上述第2方向排列之複數個上述改質區域之正上方之區域去除。
  5. 如請求項3或4之發光元件之製造方法,其中於上述步驟(C)中要被去除之上述介電多層膜之寬度為8 μm以上且10 μm以下。
  6. 如請求項1至5中任一項之發光元件之製造方法,其中上述介電多層膜包含選自由SiO2 膜、TiO2 膜及Nb2 O5 膜所組成之群中之2種以上。
TW107102833A 2017-01-26 2018-01-26 發光元件之製造方法 TWI753997B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012028 2017-01-26
JP2017012028A JP6520964B2 (ja) 2017-01-26 2017-01-26 発光素子の製造方法

Publications (2)

Publication Number Publication Date
TW201834043A true TW201834043A (zh) 2018-09-16
TWI753997B TWI753997B (zh) 2022-02-01

Family

ID=61074329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107102833A TWI753997B (zh) 2017-01-26 2018-01-26 發光元件之製造方法

Country Status (6)

Country Link
US (1) US10639747B2 (zh)
EP (1) EP3355366B1 (zh)
JP (1) JP6520964B2 (zh)
KR (1) KR102386715B1 (zh)
CN (1) CN108365059B (zh)
TW (1) TWI753997B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213967A (zh) * 2018-12-21 2023-06-06 东京毅力科创株式会社 周缘去除装置和周缘去除方法
JP2020150224A (ja) 2019-03-15 2020-09-17 キオクシア株式会社 半導体装置
DE102019207990B4 (de) * 2019-05-31 2024-03-21 Disco Corporation Verfahren zum Bearbeiten eines Werkstücks und System zum Bearbeiten eines Werkstücks
JP7391583B2 (ja) 2019-09-18 2023-12-05 浜松ホトニクス株式会社 検査装置及び検査方法
JP7305495B2 (ja) * 2019-09-18 2023-07-10 浜松ホトニクス株式会社 検査装置及び検査方法
JPWO2021065207A1 (zh) * 2019-09-30 2021-04-08
EP3913660B1 (en) * 2020-05-22 2024-06-19 Nichia Corporation Method of cutting semiconductor element and semiconductor element
CN111755578B (zh) * 2020-07-13 2021-11-02 福建晶安光电有限公司 一种衬底及其加工方法以及发光二极管及其制造方法
CN112054099A (zh) * 2020-09-09 2020-12-08 福建晶安光电有限公司 一种衬底的回收工艺
JP2022102475A (ja) * 2020-12-25 2022-07-07 浜松ホトニクス株式会社 レーザ加工方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241253C (zh) 2002-06-24 2006-02-08 丰田合成株式会社 半导体元件的制造方法
JP2004031526A (ja) 2002-06-24 2004-01-29 Toyoda Gosei Co Ltd 3族窒化物系化合物半導体素子の製造方法
JP2004165227A (ja) 2002-11-08 2004-06-10 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP4594707B2 (ja) * 2003-12-05 2010-12-08 昭和電工株式会社 半導体チップ製造方法
CN100454494C (zh) * 2003-12-05 2009-01-21 昭和电工株式会社 半导体芯片的制造方法以及半导体芯片
JP4917257B2 (ja) 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP2006286727A (ja) * 2005-03-31 2006-10-19 Denso Corp 複数の半導体装置を備えた半導体ウェハおよびそのダイシング方法
JP2009290148A (ja) * 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd ウエーハの分割方法
JP5127669B2 (ja) 2008-10-31 2013-01-23 パナソニック株式会社 半導体ウェハ
WO2011071100A1 (ja) * 2009-12-11 2011-06-16 昭和電工株式会社 半導体発光素子、半導体発光素子を用いた発光装置および電子機器
US8866153B2 (en) 2010-01-19 2014-10-21 Sharp Kabushiki Kaisha Functional element and manufacturing method of same
JP5528904B2 (ja) * 2010-05-20 2014-06-25 株式会社ディスコ サファイアウェーハの分割方法
JP2013042119A (ja) * 2011-07-21 2013-02-28 Hamamatsu Photonics Kk 発光素子の製造方法
JP5988600B2 (ja) * 2012-02-10 2016-09-07 株式会社ディスコ サファイアウェーハの分割方法
JP6423135B2 (ja) * 2012-11-29 2018-11-14 三星ダイヤモンド工業株式会社 パターン付き基板の分割方法
JP2014139997A (ja) 2013-01-21 2014-07-31 Rohm Co Ltd 発光素子および発光素子パッケージ
JP6318900B2 (ja) 2014-06-18 2018-05-09 日亜化学工業株式会社 半導体発光素子の製造方法
JP2016167552A (ja) 2015-03-10 2016-09-15 株式会社ディスコ 単結晶基板の加工方法

Also Published As

Publication number Publication date
JP2018120986A (ja) 2018-08-02
US20180212100A1 (en) 2018-07-26
CN108365059B (zh) 2022-09-27
TWI753997B (zh) 2022-02-01
KR20200067245A (ko) 2020-06-12
JP6520964B2 (ja) 2019-05-29
CN108365059A (zh) 2018-08-03
US10639747B2 (en) 2020-05-05
EP3355366A1 (en) 2018-08-01
KR102386715B1 (ko) 2022-04-13
EP3355366B1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
TWI753997B (zh) 發光元件之製造方法
JP5267462B2 (ja) 半導体発光素子及びその製造方法
US8163582B2 (en) Method for fabricating a light emitting diode chip including etching by a laser beam
JP6260601B2 (ja) 半導体素子の製造方法
WO2014030518A1 (ja) 加工対象物切断方法
JP6620825B2 (ja) 半導体素子の製造方法
US20140014976A1 (en) Optical device and processing method of the same
WO2013176089A1 (ja) 加工対象物切断方法、加工対象物、及び、半導体素子
JP4540514B2 (ja) 化合物半導体発光素子およびその製造方法
TW200404375A (en) Semiconductor element and method for producing the same
KR20150045945A (ko) 가공 대상물 절단 방법
JP2009081428A (ja) 半導体発光素子およびその製造方法
TW201025681A (en) Method for manufacturing semiconductor light emitting element
KR20150044851A (ko) 가공 대상물 절단 방법
JP2005166728A (ja) 窒化物系半導体素子の製造方法
TW200903869A (en) Semiconductor light-emitting device and method for manufacturing the same
CN104009129A (zh) Led元件的制造方法、制造用晶片基材及制造装置
KR20150045943A (ko) 가공 대상물 절단 방법
JP5258671B2 (ja) 窒化物系半導体素子の製造方法
JP6562014B2 (ja) 発光素子の製造方法
US8945963B2 (en) Optical device processing method
KR101091027B1 (ko) 발광 다이오드의 제조 방법 및 장치
JP2007324459A (ja) 窒化物系半導体素子の製造方法