TW201820335A - 半導體記憶裝置及記憶體系統 - Google Patents
半導體記憶裝置及記憶體系統 Download PDFInfo
- Publication number
- TW201820335A TW201820335A TW107108302A TW107108302A TW201820335A TW 201820335 A TW201820335 A TW 201820335A TW 107108302 A TW107108302 A TW 107108302A TW 107108302 A TW107108302 A TW 107108302A TW 201820335 A TW201820335 A TW 201820335A
- Authority
- TW
- Taiwan
- Prior art keywords
- reading
- read
- memory device
- semiconductor memory
- memory cells
- Prior art date
Links
- 230000015654 memory Effects 0.000 title claims abstract description 257
- 239000004065 semiconductor Substances 0.000 title claims abstract description 236
- 238000003860 storage Methods 0.000 title abstract description 4
- 230000004044 response Effects 0.000 claims description 14
- 238000012937 correction Methods 0.000 description 103
- 230000000694 effects Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 21
- 230000009471 action Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 16
- 230000010354 integration Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102100037009 Filaggrin-2 Human genes 0.000 description 1
- 101000878281 Homo sapiens Filaggrin-2 Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/08—Address circuits; Decoders; Word-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3418—Disturbance prevention or evaluation; Refreshing of disturbed memory data
- G11C16/3427—Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5642—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1063—Control signal output circuits, e.g. status or busy flags, feedback command signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Read Only Memory (AREA)
Abstract
實施形態提供一種可使動作高速化之半導體記憶裝置及記憶體系統。實施形態之半導體記憶裝置包含:第1及第2記憶胞;第1及第2字元線,其等分別連接於第1及第2記憶胞;及控制電路,其分別響應第1及第2指令集而執行讀取動作。控制電路可執行使用互不相同之第1至第3電壓分別讀取資料之第1序列、及使用基於第1序列之結果之電壓讀取資料之第2序列。於基於第1指令集之第1記憶胞之讀取動作中,連續地執行第1及第2序列。接著於基於第2指令集之第2記憶胞之讀取動作中,執行基於第1記憶胞之讀取動作中之第1序列之結果之第2序列。
Description
實施形態係關於一種半導體記憶裝置及記憶體系統。
作為半導體記憶裝置,已知有NAND(Not AND,反及)型快閃記憶體。
實施形態提供一種可使動作高速化之半導體記憶裝置及記憶體系統。實施形態之半導體記憶裝置包含:複數個第1及第2記憶胞;第1及第2字元線,其等分別連接於複數個第1及第2記憶胞;及控制電路,其分別響應自外部接收之第1及第2指令集執行讀取動作。控制電路可於讀取動作時執行第1及第2讀取序列。於第1讀取序列中,使用互不相同之第1至第3電壓分別讀取資料。於第2讀取序列中,使用基於第1讀取序列之結果之電壓讀取資料。於基於第1指令集之複數個第1記憶胞之讀取動作中,連續地執行第1及第2讀取序列。於繼複數個第1記憶胞之讀取動作後之基於第2指令集之複數個第2記憶胞之讀取動作中,執行使用基於複數個第1記憶胞之讀取動作中之第1讀取序列之結果之電壓之第2讀取序列。
以下,參照圖式對實施形態進行說明。所參照之圖式為模式圖。於以下之說明中,對於具有相同功能及構成之要素,附註共用之參照符號。構成參照符號之數字後之字母用於對藉由包含相同數字之參照符號進行參照且具有相同構成之要素彼此進行區別。於無須將由包含相同數字之參照符號所表示之要素相互區別之情形時,該等要素係藉由僅包含數字之參照符號而進行參照。[1]第1實施形態以下,對第1實施形態之半導體記憶裝置及記憶體系統進行說明。[1-1]構成[1-1-1]記憶體系統1之構成首先,使用圖1對記憶體系統之構成進行說明。於圖1中示出記憶體系統之方塊圖。如圖1所示,記憶體系統1具備半導體記憶裝置10及控制器20。半導體記憶裝置10係非揮發地記憶資料之NAND型快閃記憶體。半導體記憶裝置10之構成之詳細內容於下文中進行敍述。控制器20響應來自外部之未圖示之主機設備之命令,而命令半導體記憶裝置10進行讀取、寫入及刪除等。又,控制器20管理半導體記憶裝置10中之記憶體空間。如圖1所示,控制器20具備處理器(CPU)21、內置記憶體(RAM)22、ECC電路23、NAND介面電路24、緩衝記憶體25及主機介面電路26。處理器21對控制器20整體之動作進行控制。例如處理器21響應自主機設備接收之寫入命令,發行基於NAND介面之寫入命令。該動作於讀取及刪除之情形時亦相同。內置記憶體22例如為DRAM(Dynamic Random Access Memory,動態隨機存取記憶體)等半導體記憶體,且被用作處理器21之作業區域。內置記憶體22保持用以管理半導體記憶裝置10之韌體或各種管理表等。ECC電路23進行資料之錯誤訂正(ECC:Error Checking and Correcting,錯誤檢查與訂正)處理。具體而言,ECC電路23於寫入資料時基於寫入資料產生奇偶校驗。接下來,ECC電路23於讀取資料時根據奇偶校驗產生校驗子而檢測錯誤,並對所檢測出之錯誤進行訂正。NAND介面電路24與半導體記憶裝置10連接,並負責與半導體記憶裝置10之通信。例如NAND介面電路24與半導體記憶裝置10之間發送及接收輸入輸出信號I/O。例如,控制器20發送至半導體記憶裝置10之輸入輸出信號I/O包含指令CMD、位址資訊ADD及寫入資料DAT,控制器20自半導體記憶裝置10接收之輸入輸出信號I/O包含狀態資訊STS及讀取資料DAT。緩衝記憶體25暫時保持控制器20自半導體記憶裝置10及主機設備接收之資料等。主機介面電路26經由未圖示之主機匯流排與主機設備連接,並負責與主機設備之通信。例如,主機介面電路26將自主機設備接收之命令及資料分別傳輸至處理器21及緩衝記憶體25。[1-1-2]半導體記憶裝置10之構成繼而,使用圖2對半導體記憶裝置10之構成進行說明。於圖2中示出半導體記憶裝置10之方塊圖。如圖2所示,半導體記憶裝置10具備記憶胞陣列11、感測放大器模組12、列解碼器13、輸入輸出電路14、寄存器15、邏輯控制電路16、定序器17、就緒/忙碌控制電路18及電壓產生電路19。記憶胞陣列11具備區塊BLK0~BLKn(n為1以上之自然數)。區塊BLK係與位元線及字元線建立關聯之複數個非揮發性記憶胞之集合,例如成為資料之刪除單位。各記憶胞可藉由應用MLC(Multi-Level Cell,多階記憶胞)方式記憶多位元之資料。感測放大器模組12將自記憶胞陣列11讀取之資料DAT經由輸入輸出電路14輸出至控制器20。又,感測放大器模組12將經由輸入輸出電路14自控制器20接收之寫入資料DAT傳輸至記憶胞陣列11。又,感測放大器模組12具備計數器CT及設置於每條位元線之複數個感測放大器單元(未圖示)。計數器CT對所讀取之資料之整合數進行計數,並將該計數結果傳輸至定序器17。關於感測放大器單元之詳細內容於下文中進行敍述。列解碼器13選擇與進行讀取動作及寫入動作之對象之記憶胞對應之字元線。接下來,列解碼器13對選擇字元線及非選擇字元線分別施加所需之電壓。輸入輸出電路14與控制器20之間發送及接收例如8位元寬之輸入輸出信號I/O(I/O1~I/O8)。例如,輸入輸出電路14將自控制器20接收之輸入輸出信號I/O所包含之寫入資料DAT傳輸至感測放大器模組12。又,輸入輸出電路14將自感測放大器模組12傳輸來之讀取資料DAT作為輸入輸出信號I/O發送至控制器20。寄存器15包含狀態寄存器15A、位址寄存器15B、指令寄存器15C。狀態寄存器15A保持狀態資訊STS。又,狀態寄存器15A根據定序器17之指示將該狀態資訊STS傳輸至輸入輸出電路14。位址寄存器15B自輸入輸出電路14接收位址資訊ADD,並保持該位址資訊ADD。並且,位址寄存器15B將位址資訊ADD所包含之列位址信號CA及行位址信號RA分別傳輸至感測放大器模組12及列解碼器13。指令寄存器15C自輸入輸出電路14接收指令CMD,並保持該指令CMD。並且,指令寄存器15C將指令CMD傳輸至定序器17。邏輯控制電路16自控制器20接收各種控制信號以控制輸入輸出電路14及定序器17。作為該控制信號,例如使用晶片賦能信號/CE、指令鎖存賦能信號CLE、位址鎖存賦能信號ALE、寫入賦能信號/WE、讀取賦能信號/RE及寫入保護信號/WP。信號/CE係用以使半導體記憶裝置10賦能之信號。信號CLE係將與經確證之信號CLE並行地輸入至半導體記憶裝置10之信號為指令CMD通知給輸入輸出電路14之信號。信號ALE係將與經確證之信號ALE並行地輸入至半導體記憶裝置10之信號為位址資訊ADD通知給輸入輸出電路14之信號。信號/WE及/RE例如分別係指示輸入輸出電路14輸入及輸出輸入輸出信號I/O1~I/O8之信號。信號/WP例如係用以於電源之接通/斷開時使半導體記憶裝置10為保護狀態之信號。定序器17控制半導體記憶裝置10整體之動作。具體而言,定序器17基於自指令寄存器15C傳輸來之指令CMD控制感測放大器模組12、列解碼器13、電壓產生電路19等,而執行資料之寫入動作、讀取動作等。進而,定序器17可基於使用不同之讀取電壓之多次讀取動作之結果,算出最佳之讀取電壓之修正值。該動作之詳細內容於下文中進行敍述。又,定序器17具備寄存器REG。寄存器REG中例如保持有與讀取動作時施加至字元線之電壓相關之參數,定序器17參照該參數而執行讀取動作。再者,寄存器REG中所保持之各參數可覆寫。就緒/忙碌控制電路18基於定序器17之動作狀態產生就緒/忙碌信號RY/(/BY),並將該信號發送至控制器20。信號RY/(/BY)係將半導體記憶裝置10為就緒狀態抑或是忙碌狀態通知給控制器20之信號。就緒狀態係受理來自控制器20之命令之狀態,忙碌狀態係未受理來自控制器20之命令之狀態。又,信號RY/(/BY)係藉由就緒/忙碌控制電路18控制連接於其輸出之電晶體Tr之接通/斷開而產生。例如,信號RY/(/BY)於半導體記憶裝置10讀取資料等之動作中被設為“L”位準(忙碌狀態),當完成該等動作時被設為“H”位準(就緒狀態)。電壓產生電路19基於定序器17之指示產生所需之電壓。並且,電壓產生電路19將所產生之電壓供給至記憶胞陣列11、感測放大器模組12及列解碼器13。[1-1-3]記憶胞陣列11之構成繼而,使用圖3對記憶胞陣列11之構成進行說明。圖3係記憶胞陣列11之電路圖,表示與記憶胞陣列11內之1個區塊BLK相關之詳細之電路構成。如圖3所示,區塊BLK具備複數個NAND串NS。各NAND串NS與位元線BL0~BL(L-1)((L-1)為1以上之自然數)對應地設置,例如包含8個記憶胞電晶體MT(MT0~MT7)及選擇電晶體ST1、ST2。再者,1個NAND串NS所包含之記憶胞電晶體MT之數量並不限定於此,可設為任意數。記憶胞電晶體MT具備控制閘極及電荷蓄積層,且非揮發地保持資料。又,記憶胞電晶體MT0~MT7串聯連接於選擇電晶體ST1之源極與選擇電晶體ST2之汲極之間。同一區塊BLK內之選擇電晶體ST1及ST2之閘極分別共通地連接於選擇閘極線SGD及SGS。同樣地,同一區塊BLK內之記憶胞電晶體MT0~MT7之控制閘極分別共通地連接於字元線WL0~WL7。又,於記憶胞陣列11內,位於同一行之NAND串NS中之選擇電晶體ST1之汲極共通地連接於位元線BL。即,位元線BL將複數個區塊BLK間位於同一行之NAND串NS共通地連接。進而,複數個選擇電晶體ST2之源極共通地連接於源極線SL。於以上之構成中,將連接於共通之字元線WL之複數個記憶胞所保持之1位元資料之集合稱為「頁」。因此,於使2位元資料記憶於1個記憶胞中之情形時,於連接於1條字元線WL之複數個記憶胞之集合中記憶2頁量之資料。又,「頁」包含資料區域及冗餘區域。資料區域係寫入外部之電子設備欲保持於半導體記憶裝置10之資料之區域。冗餘區域例如係用以寫入與資料區域相關之元資料等資料之區域。再者,以上所說明之記憶胞電晶體MT之閾值分佈例如成為如圖4所示。於圖4中示出保持2位元資料之記憶胞電晶體MT之閾值分佈及讀取動作時所使用之電壓。圖4之縱軸及橫軸分別與記憶胞電晶體MT之數量及閾值電壓Vth對應。於記憶胞電晶體MT保持2位元之資料之情形時,如圖4所示,其閾值電壓之分佈被分成4個。將與該4個閾值分佈分別對應之2位元之資料自閾值電壓較低之開始依序稱為“ER”位準、“A”位準、“B”位準及“C”位準。保持“ER”位準之記憶胞電晶體MT相當於資料之刪除狀態,保持“A”位準、“B”位準及“C”位準之記憶胞電晶體相當於資料之寫入狀態。判定於讀取動作時讀取對象之記憶胞電晶體MT之閾值電壓包含於哪個位準中。為了進行該判定,確定各種讀取電壓。用以判定某一記憶胞電晶體MT係具有“ER”位準之閾值電壓抑或是具有“A”位準以上之閾值電壓之讀取電壓AR設定於“ER”位準較高之一者之裙部與“A”位準較低之一者之裙部之間。用以判定某一記憶胞電晶體MT係具有“A”位準以下之閾值電壓抑或是具有“B”位準以上之閾值電壓之讀取電壓BR設定於“A”位準較高之一者之裙部與“B”位準較低之一者之裙部之間。用以判定某一記憶胞電晶體MT係具有“B”位準以下之閾值電壓抑或是“C”位準之閾值電壓之讀取電壓CR設定於“B”位準較高之一者之裙部與“C”位準較低之一者之裙部之間。圖4所示之讀取電壓Vread被設定為閘極被施加有讀取電壓Vread之記憶胞電晶體MT不依據所保持之資料而接通之電壓。該等電壓值之關係為AR<BR<CR<Vread。[1-1-4]感測放大器模組12之構成繼而,使用圖5對感測放大器模組12之構成進行說明。圖5為感測放大器模組12之電路圖。如圖5所示,感測放大器模組12包含設置於每條位元線BL之感測放大器單元SAU(SAU0~SAU(L-1))。各感測放大器單元SAU分別係以可與計數器CT收發資料之方式連接。又,各感測放大器單元SAU具備感測放大器部SA、鎖存電路SDL、LDL、UDL及XDL。該等感測放大器部SA、鎖存電路SDL、LDL、UDL及XDL係以可相互收發資料之方式連接。感測放大器部SA於讀取動作時讀出已被讀取至對應之位元線BL之資料,並判斷讀取資料為“0”或是“1”。具體而言,例如於定序器17所產生之控制信號STB經確證之時序,感測放大器單元SAU確定讀取資料。又,於寫入動作時,基於寫入資料對位元線BL施加電壓。鎖存電路SDL、LDL及UDL暫時保持讀取資料及寫入資料。讀取動作時感測放大器部SA所確定之讀取資料及寫入時被傳輸至鎖存電路XDL之寫入資料例如被傳輸至鎖存電路SDL、LDL及UDL之任一者。鎖存電路XDL用於感測放大器單元SAU與控制器20之間之資料之輸入輸出。即,自控制器20接收之資料經由鎖存電路XDL被傳輸至鎖存電路SDL、LDL或者UDL、或感測放大器部SA。又,鎖存電路SDL、LDL或者UDL、或感測放大器部SA之資料經由鎖存電路XDL被傳輸至控制器20。再者,感測放大器模組12之構成並不限定於此,可進行各種變更。例如,感測放大器單元SAU所具備之鎖存電路之個數係基於1個記憶胞電晶體MT所保持之資料之位元數而設計。[1-2]動作繼而,對記憶體系統1之動作進行說明。[1-2-1]半導體記憶裝置10之動作首先,於對記憶體系統1整體之動作進行說明之前,以下對半導體記憶裝置10可執行之複數個動作進行說明。半導體記憶裝置10可執行正常讀取、追蹤讀取及偏移讀取。於記憶體系統1之讀取動作中,藉由選擇該等動作中之任一個或複數個而讀取資料。正常讀取為普通之讀取序列,使用預先設定之讀取電壓讀取資料。追蹤讀取係用以求出最佳之讀取電壓之讀取序列。偏移讀取係使用已修正之讀取電壓之讀取序列。以下,使用圖6及圖7對追蹤讀取及偏移讀取之詳細內容進行說明。於圖6及圖7中示出相鄰之2個位準之閾值分佈,並分別示出追蹤讀取及偏移讀取所使用之讀取電壓之一例。記憶胞電晶體MT會受到寫入動作後之編程干擾及資料保留、以及讀取動作後之讀取干擾等之影響。記憶胞之閾值分佈因基於施加至記憶胞之各種電壓之編程干擾及讀取干擾之影響而增高,因電荷自記憶胞丟失之資料保留之影響而降低。若受到此種影響,則記憶胞電晶體MT之閾值分佈存在例如如圖6之虛線所示般擴大之情形。追蹤讀取係於如上所述般閾值分佈擴大、例如無法於正常讀取中準確地讀取資料之情形時執行。於追蹤讀取中,為了算出讀取電壓之修正值,例如執行使用了如圖6所示之5種讀取電壓(Vtr1~Vtr5)之讀取動作。電壓Vtr1~Vtr5之電壓值分別相同,其電壓值之範圍係以包含相鄰之閾值分佈之凹部之方式設定。接下來,定序器17基於電壓Vtr1~Vtr5之讀取結果算出讀取電壓之修正值。具體而言,於追蹤讀取中之每個讀取動作中,計數器CT對整合數進行計數,並將該整合數之資訊傳輸至定序器17。接下來,定序器17分別計算整合數之變化量。例如,定序器17計算以電壓Vtr1讀取之情形時之整合數與以電壓Vtr2讀取之情形時之整合數之差量。同樣地,計算以電壓Vtr2及Vtr3讀取之情形時之整合數之差量、以電壓Vtr3及Vtr4讀取之情形時之整合數之差量及以電壓Vtr4及Vtr5讀取之情形時之整合數之差量。接下來,定序器17基於該等計算結果算出讀取電壓之修正值。更具體而言,針對整合數之變化量設置特定之基準值,定序器17將整合數之變化量超過基準值之情形設為失敗,將基準值以下之情形設為通過。如上所述,藉由利用某一閾值確認整合數之變化量,可知道記憶胞之閾值分佈大體成為何種形狀。例如,於在整合數之變化量於電壓Vtr1及Vtr2間和電壓Vtr2及Vtr3間通過、於電壓Vtr3及Vtr4間和電壓Vtr4及Vtr5間失敗之情形時,得知該頁之閾值分佈之凹部處於整合之變化量小之電壓Vtr1及Vtr3間。作為該情形時之最佳之讀取電壓,例如選擇電壓Vtr2。並且,與所算出之最佳之讀取電壓對應之修正值針對各讀取位準保持於寄存器REG中。如上所述般算出之讀取電壓之修正值例如被應用於針對該頁之偏移讀取。具體而言,例如如圖7之虛線所示,於較高之閾值分佈之下擺擴大之情形時,偏移讀取中之讀取電壓使用自初始設定之讀取電壓Vdef修正為較低之電壓後之最佳之讀取電壓Vcal。再者,該電壓Vcal包含於追蹤讀取時所使用之讀取電壓中。即,於本例之情形時,電壓Vcal成為電壓Vtr1~Vtr5中之任一個。如上所述,本實施形態之半導體記憶裝置10於執行追蹤讀取之情形時,可不經由控制器20算出讀取電壓之修正值,並應用該修正值執行偏移讀取。再者,半導體記憶裝置10之追蹤讀取中之讀取次數並不限定於此。例如,半導體記憶裝置10亦可使用6種以上之讀取電壓執行追蹤讀取。[1-2-2]記憶體系統1之讀取動作接下來,對記憶體系統1之讀取動作進行說明。於記憶體系統1之讀取動作中,半導體記憶裝置10可響應控制器20所發行之第1~第3指令集分別執行第1~第3讀取動作。第1讀取動作係追蹤讀取及偏移讀取之組合。具體而言,半導體記憶裝置10首先執行追蹤讀取,接下來使用藉由該追蹤讀取而獲得之讀取電壓之修正值執行同一頁之偏移讀取。第2讀取動作為應用最近之追蹤讀取中獲得之讀取電壓之修正值之偏移讀取。第3讀取動作為正常讀取。以下,使用圖8及圖9對記憶體系統1之讀取動作之具體例進行說明。於圖8及圖9中分別以流程圖及時序圖表示讀取動作之一例。再者,圖9所示之WLsel表示要施加至與讀取資料之對象之頁對應之字元線WL(以下稱為選擇字元線)之電壓。即,與圖9所示之選擇字元線WLsel對應之字元線隨著動作之進行而適當變化。如圖8所示,首先,控制器20發行第1指令集CS1(步驟S10),並發送至半導體記憶裝置10。該第1指令集CS1係如圖10所示之指令序列。具體而言,首先,控制器20持續發行特殊指令“xxh”及讀取指令“00h”,並發送至半導體記憶裝置10。指令“xxh”係命令半導體記憶裝置10進行追蹤讀取及偏移讀取之指令。指令“00h”係相當於用於讀取之位址輸入受理指令,且命令半導體記憶裝置10進行資料之讀取動作之指令。繼而,控制器20例如遍及5次循環發行位址資訊ADD,並發送至半導體記憶裝置10。該位址資訊ADD指定讀取之對象之位址。接下來,控制器20發行指令“30h”並發送至半導體記憶裝置10。指令“30h”係用以基於之前剛發送之指令CMD及位址資訊ADD使半導體記憶裝置10執行資料之讀取之指令。當半導體記憶裝置10接收到此種指令集CS1(指令CMD及位址資訊ADD)時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17針對所指定之頁,首先執行追蹤讀取(步驟S11)。具體而言,例如如圖9所示,列解碼器13依序對選擇字元線WLsel施加讀取電壓Vtr1~Vtr5。接下來,當於對選擇字元線WLsel施加各讀取電壓之期間定序器17確證信號STB時,藉由感測放大器模組12分別讀取資料。此處,以如上方式讀取之資料之整合數藉由計數器CT而分別被計數,定序器17基於該整合數之資訊算出讀取電壓之修正值。繼而,定序器17將藉由追蹤讀取而算出之讀取電壓之修正值保持於定序器17內之寄存器REG中(步驟S12)。接下來,定序器17使用保持於寄存器REG中之修正值,對於步驟S11中執行了追蹤讀取之頁執行偏移讀取(步驟S13)。具體而言,例如如圖9所示,列解碼器13對選擇字元線WLsel施加讀取電壓Vcal1。電壓Vcal1係應用了於之前剛執行之追蹤讀取中算出之修正值之讀取電壓。且,於對選擇字元線WLsel施加電壓Vcal1之期間當定序器17確證信號STB時,藉由感測放大器模組12讀取資料。以上所說明之步驟S11~S13之動作與第1讀取動作對應。當藉由步驟S13之偏移讀取而讀取之資料DAT被發送至控制器20時,就緒/忙碌信號自“L”位準變成“H”位準。繼而,控制器20發行第2指令集CS2(步驟S14),且發送至半導體記憶裝置10。該第2指令集CS2係如圖11所示之指令序列。具體而言,指令集CS2與針對圖10中說明之指令集CS1將特殊指令“xxh”替換成特殊指令“yyh”後之指令集相同。指令“yyh”係命令半導體記憶裝置10應用於最近之追蹤讀取中獲得之讀取電壓之修正值進行偏移讀取之指令。當半導體記憶裝置10接收到此種指令集CS2(指令CMD及位址資訊ADD)時,半導體記憶裝置10之輸入輸出電路14將接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17對接下來讀取之頁執行已回授於最近之追蹤讀取中算出之修正值之偏移讀取(步驟S15)。具體而言,例如如圖9所示,列解碼器13對與於步驟S11中已執行追蹤讀取之字元線不同之選擇字元線WLsel,施加應用步驟S11中所獲得之修正值之讀取電壓Vcal1。且,於對選擇字元線WLsel施加電壓Vcal1之期間若定序器17確證信號STB時,藉由感測放大器模組12讀取資料。以上所說明之步驟S15之動作與第2讀取動作對應。如上所述,於第2讀取動作中,無需執行追蹤讀取,而執行應用藉由最近之追蹤讀取算出之讀取電壓之修正值之偏移讀取。當藉由步驟S15之偏移讀取而讀取之資料DAT被發送至控制器20時,就緒/忙碌信號自“L”位準變成“H”位準。又,於圖9所示之例中,連續2次執行基於指令集CS2而進行之第2讀取動作。繼而,控制器20發行第3指令集CS3(步驟S16),且發送至半導體記憶裝置10。該第3指令集CS3係如圖12所示之指令序列。具體而言,指令集CS3與於圖10中所說明之指令集CS1中不發行特殊指令“xxh”之指令集相同。當半導體記憶裝置10接收到此種指令集CS3(指令CMD及位址資訊ADD)時,半導體記憶裝置10之輸入輸出電路14將接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17對接下來讀取之頁執行正常讀取(步驟S17)。具體而言,例如如圖9所示,列解碼器13對選擇字元線WLsel施加讀取電壓Vdef。接下來,當於對選擇字元線WLsel施加電壓Vdef之期間定序器17確證信號STB時,藉由感測放大器模組12讀取資料。以上所說明之步驟S17之動作與第3讀取動作對應。當藉由步驟S17之正常讀取而讀取之資料DAT被發送至控制器20時,就緒/忙碌信號自“L”位準變成“H”位準。繼而,控制器20發行指令集CS1(步驟S19),並發送至半導體記憶裝置10。如此一來,接收了指令集CS1之半導體記憶裝置10執行與步驟S11~S13相同之第1讀取動作。具體而言,定序器17針對所指定之頁,首先執行追蹤讀取(步驟S19)。接下來,定序器17將藉由步驟S19中之追蹤讀取而算出之讀取電壓之修正值覆寫至寄存器REG(步驟S20)。接下來,定序器17應用覆寫至寄存器REG之修正值,對於步驟S19中執行了追蹤讀取之頁執行偏移讀取(步驟S21)。於圖9所示之例中,於第2次第1讀取動作中之偏移讀取中,對選擇字元線WLsel施加讀取電壓Vcal2。電壓Vcal2係應用了於步驟S19中所獲得之修正值之讀取電壓。接下來,於接下來之基於指令集CS2而進行之第2讀取動作中,使用電壓Vcal2執行偏移讀取。如上所述,本實施形態之半導體記憶裝置10將藉由追蹤讀取而獲得之讀取電壓之修正值回授至針對未執行追蹤讀取之其他頁之偏移讀取。並且,該修正值於每次執行追蹤讀取時更新。再者,於上述說明中,應用了藉由追蹤讀取而獲得之修正值之讀取電壓Vcal1及Vcal2成為電壓Vtr1~Vtr5中之任一個。又,亦考慮到電壓Vcal1與電壓Vcal2不同之情形或相同之情形之任一情形。又,於上述說明中,記憶體系統1之讀取動作包含第3讀取動作,但並不限定於此。例如,亦存在未於讀取動作中執行第3讀取動作之情形。於此情形時,使用2種指令集(CS1及CS2)執行讀取動作。[1-3]第1實施形態之效果繼而,對第1實施形態之效果進行說明。根據本實施形態之記憶體系統1,可使動作高速化。以下,對本效果詳細地進行說明。於半導體記憶裝置中,因由寫入資料後之讀取動作所產生之讀取干擾或因時間經過所產生之資料保留等之影響,而導致記憶胞之閾值分佈自本來應該所處之位置偏移或擴大。如此一來,存在自記憶胞讀取之資料之錯誤位元數增多而無法正確地讀取資料之情況。針對此種記憶胞,使用已修正之讀取電壓執行偏移讀取。藉此,半導體記憶裝置可減少自記憶胞讀取之資料之錯誤位元數,從而可正確地讀取資料。該偏移讀取所應用之讀取電壓之修正值例如係藉由對讀取資料之對象之頁之追蹤讀取而算出。然而,追蹤讀取包含複數個讀取動作而處理時間較長。又,追蹤讀取會作為對例如錯誤位元數增加而無法藉由ECC實現錯誤訂正之頁之再讀取動作而執行。因此,半導體記憶裝置當已劣化之記憶胞增加時,追蹤讀取之產生次數增多而動作可能會變慢。為了減少追蹤讀取之次數,考慮到預先預測出適當之讀取電壓並執行偏移讀取之情況有效。又,只要記憶胞受到讀取干擾或資料保留等之條件相同,則可推測出追蹤讀取之結果亦變得大致相同。因此,本實施形態之記憶體系統1將藉由追蹤讀取而算出之讀取電壓之修正值保持於半導體記憶裝置10內部。並且,半導體記憶裝置10將該修正值應用於對未執行追蹤讀取之頁之偏移讀取。具體而言,記憶體系統1係根據控制器20所發行之指令集將如下動作區分使用:第1讀取動作,其執行追蹤讀取與應用了藉由該追蹤讀取而算出之讀取電壓之修正值之偏移讀取;及第2讀取動作,其執行應用了於最近之第1讀取動作中獲得之讀取電壓之修正值之偏移讀取。更具體而言,於讀取動作之開頭,控制器20發行命令第1讀取動作之指令集CS1,於讀取後續頁資料時,發行命令第2讀取動作之指令集CS2。如圖10及圖11所示,指令集CS1及CS2包含特殊指令。如上所述,藉由對未執行追蹤讀取之頁執行應用了利用最近之追蹤讀取所得之修正值之偏移讀取,與使用預先設定之讀取電壓讀取資料之情形相比,可減少錯誤位元數。又,控制器20於任意之時序發行指令集CS1,並更新讀取電壓之修正值,藉此,可使用更適當之讀取電壓之修正值。例如,認為被寫入至同一區塊BLK中之資料所受之干擾之影響大致相同。於此情形時,控制器20對於各區塊BLK中最先讀取資料之頁指示第1讀取動作。接下來,控制器20於讀取該區塊中之剩餘頁之資料時指示第2讀取動作。即,於本例中,針對各區塊BLK而一次性算出之讀取電壓之修正值於區塊BLK內繼續使用。如上所述,本實施形態之記憶體系統1可減少讀取動作中之錯誤位元數,故而可減少於記憶胞劣化之情形時執行因追蹤讀取而導致之再讀取動作之頻度。藉此,本實施形態之記憶體系統1可使動作高速化。又,於本實施形態之記憶體系統1之讀取動作中,由於如上所述般抑制追蹤讀取之次數,故而對記憶胞之讀取干擾之影響降低。即,本實施形態之記憶體系統1可抑制讀取干擾所導致之記憶胞之閾值分佈之變化,故而可提高所寫入之資料之可靠性。[2]第2實施形態繼而,對第2實施形態之記憶體系統1進行說明。第2實施形態係於上述第1實施形態中所說明之讀取動作中,控制器20未發行特殊指令,並執行應用了藉由最近之追蹤讀取而獲得之修正值之偏移讀取之實施形態。以下,對與第1實施形態不同之點進行說明。[2-1]記憶體系統1之讀取動作首先,對記憶體系統1之讀取動作進行說明。相對於在第1實施形態之半導體記憶裝置10中響應第2指令集CS2執行第2讀取動作,本實施形態之半導體記憶裝置10響應第3指令集CS3執行第2讀取動作。以下,使用圖13及圖14對記憶體系統1之讀取動作之具體例進行說明。於圖13及圖14中分別以流程圖及時序圖表示讀取動作之一例。再者,圖14所示之WLsel表示要施加至選擇字元線之電壓,與WLsel對應之字元線隨著動作之進行而適當變化。如圖13所示,首先,控制器20發行第1指令集CS1(步驟S10),並發送至半導體記憶裝置10。圖13及圖14所示之基於指令集CS1之半導體記憶裝置10之動作與第1實施形態中說明之步驟S11~S13相同,因此省略說明。繼而,控制器20發行第3指令集CS3(步驟S30),並發送至半導體記憶裝置10。當半導體記憶裝置10接收到指令集CS3時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17對接下來讀取之頁執行回授了於最近之追蹤讀取中算出之修正值之偏移讀取(步驟S31)。即,半導體記憶裝置10並未接收如第1實施形態中說明之第2指令集CS2所包含之指令“yyh”之特殊指令而執行第2讀取動作。步驟S31中之具體之動作與第1實施形態中說明之步驟S15相同,因此省略說明。再者,於圖14所示之例中,連續2次執行基於指令集CS3而進行之第2讀取動作。繼而,控制器20發行第1指令集CS1(步驟S18),並發送至半導體記憶裝置10。圖13及圖14所示之基於指令集CS1之半導體記憶裝置10之動作與第1實施形態中說明之步驟S19~S21相同,因此省略說明。並且,如圖14所示,於接下來之基於指令集CS3而進行之第2讀取動作中,執行應用了藉由步驟S19之追蹤讀取而算出之讀取電壓之修正值之偏移讀取。如上所述,本實施形態之半導體記憶裝置10可響應未使用特殊指令之指令集CS3,執行回授了藉由最近剛執行之追蹤讀取而獲得之讀取電壓之修正值之偏移讀取。[2-2]第2實施形態之效果繼而,對第2實施形態之效果進行說明。根據本實施形態之記憶體系統1,可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。以下對本效果詳細地進行說明。於第1實施形態之記憶體系統1中,分別使用包含特殊指令之指令集CS1及CS2執行包含追蹤讀取之第1讀取動作及作為沿用了修正值之偏移讀取之第2讀取動作。另一方面,於本實施形態之記憶體系統1中,命令第2讀取動作之指令集使用不包含特殊指令之指令集CS3。藉此,於本實施形態之記憶體系統1中,由於係使用不包含特殊指令之指令集CS3而執行第2讀取動作,故而可使指令序列縮短未發行特殊指令之量。即,本實施形態之記憶體系統1可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。[3]第3實施形態繼而,對第3實施形態之記憶體系統1進行說明。第3實施形態係於上述第2實施形態中說明之讀取動作中,當讀取資料之區塊位址改變時,半導體記憶裝置10執行追蹤讀取之實施形態。以下,對與第1及第2實施形態不同之點進行說明。[3-1]記憶體系統1之讀取動作首先,對記憶體系統1之讀取動作進行說明。於本實施形態之記憶體系統1之讀取動作中,控制器20於讀取最初之頁時發行第1指令集CS1,於讀取其後之頁時發行第3指令集CS3。又,半導體記憶裝置10通常係響應第3指令集CS3執行第2讀取動作,於所接收之第3指令集CS3所包含之區塊位址變化之情形時,執行第1讀取動作。以下,使用圖15及圖16對記憶體系統1之讀取動作之具體例進行說明。於圖15及圖16中,分別以流程圖及時序圖表示讀取動作之一例。再者,圖16所示之WLsel表示要施加至選擇字元線之電壓,與WLsel對應之字元線隨著動作之進行而適當變化。如圖15所示,首先,控制器20發行第1指令集CS1(步驟S10),並發送至半導體記憶裝置10。圖15及圖16所示之基於指令集CS1之半導體記憶裝置10之動作與第1實施形態中說明之步驟S11~S13相同,因此省略說明。繼而,控制器20發行第3指令集CS3(步驟S40),並發送至半導體記憶裝置10。當半導體記憶裝置10接收到指令集CS3時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17確認所指定之區塊位址是否自前一個讀取資料之頁之區塊位址改變(步驟S41)。於區塊位址未改變之情形時(步驟S41、否(No)),定序器17執行第2讀取動作。即,定序器17執行回授了於最近之追蹤讀取中算出之修正值之偏移讀取(步驟S42)。另一方面,於區塊位址改變之情形時(步驟S41、是(Yes)),半導體記憶裝置10執行第1讀取動作。具體而言,定序器17首先執行追蹤讀取(步驟S43)。接下來,定序器17將藉由步驟S43中之追蹤讀取而算出之讀取電壓之修正值覆寫至寄存器REG(步驟S44),並執行應用了該修正值之同一頁之偏移讀取(步驟S45)。該等步驟S43~S45之動作與第1實施形態中說明之步驟S19~S21之動作相同。即,半導體記憶裝置10於區塊位址未改變之情形時,以原來之修正值執行偏移讀取,於區塊位址改變之情形時,執行藉由追蹤讀取更新了修正值之偏移讀取。於後續頁之讀取動作中,反覆進行上述步驟S40之後之動作。再者,圖16所示之例表示於讀取動作之開頭執行基於指令集CS1而進行之第1讀取動作,於之後之讀取動作中藉由第3次發行之指令集CS3改變區塊位址之情形時之動作。如上所述,本實施形態之記憶體系統1中之半導體記憶裝置10響應控制器20所發行之指令集CS3,且確認寫入資料之對象之區塊位址,藉此,可將第1讀取動作及第2讀取動作區分使用。[3-2]第3實施形態之效果繼而,對第3實施形態之效果進行說明。根據本實施形態之記憶體系統1,可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。以下,對本效果詳細地進行說明。如於第1實施形態之效果之項目中所述,認為被寫入至同一區塊BLK中之資料所受之干擾之影響大致相同,且可推測出同一區塊BLK中之追蹤讀取之結果亦大致相同。因此,本實施形態之記憶體系統1中之半導體記憶裝置10於讀取動作之開頭響應包含特殊指令之指令集CS1執行追蹤讀取後,針對後續頁,響應不包含特殊指令之指令集CS3執行偏移讀取。接下來,當半導體記憶裝置10檢測到所接收之指令集CS3指定之區塊位址改變時,執行追蹤讀取,並對應用於之後之偏移讀取之讀取電壓之修正值進行更新。如上所述,本實施形態之記憶體系統1不依據控制器20之指示而判斷半導體記憶裝置10是否執行追蹤讀取。即,控制器20只要僅於讀取動作之開頭發行包含特殊指令之指令集CS1,於之後之讀取動作中發行不包含特殊指令之指令集CS3即可。藉此,於本實施形態之記憶體系統1中,控制器20可使讀取動作中之指令序列縮短未發行特殊指令之量。即,本實施形態之記憶體系統1可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。[4]第4實施形態繼而,對第4實施形態之記憶體系統1進行說明。第4實施形態係於上述第2實施形態中說明之讀取動作中,於檢測到於半導體記憶裝置10內部選擇了特定之字元線WL之情形時執行追蹤讀取之實施形態。以下,對與第1~第3實施形態之不同點進行說明。[4-1]記憶體系統1之讀取動作首先,對記憶體系統1之讀取動作進行說明。於本實施形態之記憶體系統1之讀取動作中,與第3實施形態同樣地,控制器20於讀取最初之頁時發行第1指令集CS1,於讀取其後之頁時發行第3指令集CS3。又,半導體記憶裝置10通常響應第3指令集CS3而執行第2讀取動作,於所接收之第3指令集CS3所包含之位址與特定之字元線對應之情形時,執行第1讀取動作。作為該特定之字元線,例如可指定位於各區塊BLK之端部之字元線並任意地設定。以下,使用圖17及圖18對記憶體系統1之讀取動作之具體例進行說明。於圖17及圖18中分別以流程圖及時序圖表示讀取動作之一例。再者,圖18所示之WLsel表示要施加至選擇字元線之電壓,與WLsel對應之字元線隨著動作之進行而適當變化。如圖17所示,首先,控制器20發行第1指令集CS1(步驟S10),並發送至半導體記憶裝置10。圖17及圖18所示之基於指令集CS1之半導體記憶裝置10之動作與第1實施形態中說明之步驟S11~S13相同,因此省略說明。繼而,控制器20發行第3指令集CS3(步驟S50),並發送至半導體記憶裝置10。當半導體記憶裝置10接收到指令集CS3時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17確認是否自所接收到之位址資訊中選擇了特定之字元線(步驟S51)。即,於步驟S51中,定序器17確認與接下來讀取之頁對應之字元線是否為特定之字元線。於未選擇特定之字元線WL之情形時(步驟S51、No),定序器17執行第2讀取動作。即,定序器17執行回授了於最近之追蹤讀取中算出之修正值之偏移讀取(步驟S55)。於選擇了特定之字元線WL之情形時(步驟S51、Yes),定序器17執行第1讀取動作。具體而言,定序器17首先執行追蹤讀取(步驟S53)。接下來,定序器17將藉由步驟S53中之追蹤讀取而算出之讀取電壓之修正值覆寫至寄存器REG(步驟S54),並執行應用了該修正值之同一頁之偏移讀取(步驟S55)。該等步驟S52~S54之動作與第1實施形態中說明之步驟S19~S21之動作相同。即,半導體記憶裝置10於未選擇與特定之字元線WL對應之位址之情形時,以原來之修正值執行偏移讀取,於選擇了與特定之字元線WL對應之位址之情形時,執行藉由追蹤讀取更新了修正值之偏移讀取。於後續頁之讀取動作中,反覆進行上述步驟S50以後之動作。再者,圖18所示之例表示於讀取動作之開頭執行基於指令集CS1之第1讀取動作,於之後之讀取動作中藉由第3次發行之指令集CS3選擇特定之字元線WL之情形時之動作。如上所述,本實施形態之記憶體系統1中之半導體記憶裝置10響應控制器20所發行之指令集CS3,且確認是否選擇了特定之字元線WL,藉此,可將第1讀取動作及第2讀取動作區分使用。[4-2]第4實施形態之效果繼而,對第4實施形態之效果進行說明。根據本實施形態之記憶體系統1,可獲得與第3實施形態相同之效果,進而,可使動作比第3實施形態更高速化。以下,對本效果詳細地進行說明。於半導體記憶裝置中,存在記憶胞之特性視形成記憶胞之位置而不同之情況。例如,於各NAND串中,位於中央部之記憶胞特性偏差小,位於端部之記憶胞特性偏差增大。又,存在基於記憶胞之位置而記憶胞之特性產生傾向之情形。認為若產生此種特性偏差或因位置所導致之特性差,即便於應用藉由對其他頁之追蹤讀取而獲得之修正值而執行偏移讀取之情形時,執行再讀取之頻度亦會增高。因此,本實施形態之記憶體系統1中之半導體記憶裝置10與第3實施形態同樣地,於讀取動作之開頭響應包含特殊指令之指令集CS1執行追蹤讀取後,針對後續頁,響應未包含特殊指令之指令集CS3執行偏移讀取。接下來,半導體記憶裝置10當檢測到藉由所接收之指令集CS3選擇了特定之字元線WL時執行追蹤讀取,並對之後之偏移讀取所應用之讀取電壓之修正值進行更新。如上所述,本實施形態之記憶體系統1與第3實施形態同樣地,不依據控制器20之指示,而判斷半導體記憶裝置10是否執行追蹤讀取。藉此,控制器20只要僅於讀取動作之開頭發行包含特殊指令之指令集CS1,並於之後之讀取動作中發行未包含特殊指令之指令集CS3即可。藉此,於本實施形態之記憶體系統1中,與第3實施形態同樣地,控制器20可將讀取動作中之指令序列縮短未發行特殊指令之量。又,本實施形態之記憶體系統1針對執行再讀取之可能性較高之部位,由半導體記憶裝置10始終執行追蹤讀取,故而可降低再讀取之頻度。即,本實施形態之記憶體系統1可獲得與第3實施形態相同之效果,進而,可使動作比第3實施形態更高速化。[5]第5實施形態繼而,對第5實施形態之記憶體系統1進行說明。第5實施形態係將旗標資訊寫入至各頁之冗餘區域,並基於該旗標資訊執行追蹤讀取之實施形態。以下,對與第1~第4實施形態之不同點進行說明。[5-1]動作[5-1-1]記憶體系統1之動作之概要首先,對記憶體系統1之動作之概要進行說明。於本實施形態之記憶體系統1中,於寫入動作及讀取動作中使用旗標資訊。旗標資訊係可識別寫入對應之頁之資料之時期之資訊。作為該旗標資訊,例如使用自外部之主機接收寫入資料之時刻之資訊或引用了一部分位址資訊之資訊等。於寫入動作中,旗標資訊係由控制器20產生,並被追加至由控制器20發送至半導體記憶裝置10之輸入輸出信號I/O。接下來,旗標資訊被寫入至半導體記憶裝置10中之各頁之冗餘區域。於讀取動作中,旗標資訊係於藉由半導體記憶裝置10讀取資料之前被參照。接下來,半導體記憶裝置10基於所參照之旗標資訊,執行包含追蹤讀取之第1讀取動作或作為應用了藉由最近之追蹤讀取而獲得之修正值之偏移讀取之第2讀取動作。[5-1-2]記憶體系統1之寫入動作繼而,使用圖19對記憶體系統1之寫入動作之具體例進行說明。於圖19中以流程圖表示寫入動作之一例。如圖19所示,首先,控制器20自外部之主機(未圖示)接收寫入資料及位址資訊(步驟S60)。該寫入資料及位址資訊經由主機I/F26而被暫時保持於緩衝記憶體25中。繼而,控制器20之NAND I/F24發行寫入指令,且將旗標資訊FLG追加至寫入資料(步驟S61)。該旗標資訊FLG係以被寫入至寫入對象之頁之冗餘區域之方式,追加至例如寫入資料之末尾。且,NAND I/F24將所發行之寫入指令、包含旗標資訊FLG之寫入資料及位址資訊作為輸入輸出信號I/O發送至半導體記憶裝置10。繼而,半導體記憶裝置10基於自控制器20接收到之寫入資料DAT、指令CMD及位址資訊ADD,執行寫入動作(步驟S62)。藉此,將資料記憶於對應之頁之資料區域,將旗標資訊FLG記憶於冗餘區域。再者,於步驟S61中,發行寫入指令者並不限定於NAND I/F24。例如,亦可為CPU21發行寫入指令。同樣地,於步驟S61中,產生旗標資訊FLG者並不限定於NAND I/F24。例如,亦可由CPU21產生旗標資訊FLG,將所產生之旗標資訊FLG傳輸至NAND I/F24或緩衝記憶體25後追加至寫入資料。又,理想為應用記憶1位元之資料之SLC(Single-Level Cell,單階記憶胞)之方式將旗標資訊記憶至記憶胞,但並不限定於此,亦可應用MLC方式記憶至記憶胞。[5-1-3]記憶體系統1之讀取動作繼而,對記憶體系統1之讀取動作之詳細內容進行說明。本實施形態之記憶體系統1可藉由1種指令集(例如指令集CS3)執行以下說明之讀取動作。於讀取動作中,半導體記憶裝置10響應自控制器20接收到之指令集,首先執行旗標讀取,接著執行第1讀取動作或第2讀取動作。旗標讀取係讀取記憶於各頁之冗餘區域之旗標資訊之讀取動作。藉由該旗標讀取而讀取之旗標資訊被傳輸至定序器17,定序器17基於該旗標資訊對該頁執行第1讀取動作或第2讀取動作。以下,使用圖20及圖21對記憶體系統1之讀取動作之具體例進行說明。於圖20及圖21中分別以流程圖及時序圖表示讀取動作之一例。再者,圖21所示之WLsel表示施加至選擇字元線之電壓,與WLsel對應之字元線隨著動作之進行而適當變化。首先,控制器20發行第3指令集CS3(步驟S70),且發送至半導體記憶裝置10。當半導體記憶裝置10接收到指令集CS3時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令及位址資訊分別傳輸至指令寄存器15C及位址寄存器15B。當指令“30h”被記憶於指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17針對指定之頁,首先執行旗標讀取(步驟S71)。具體而言,例如如圖21所示,列解碼器13對選擇字元線WLsel施加讀取電壓Vflg。電壓Vflg係用以讀取記憶於各頁之冗餘區域之旗標資訊FLG之讀取電壓,且係基於旗標資訊FLG之寫入方式而設定。接下來,當於對選擇字元線WLsel施加電壓Vflg之期間內定序器17確證信號STB時,藉由感測放大器模組12讀取資料。繼而,感測放大器模組12將包含於所讀取之1頁資料之冗餘區域之旗標資訊FLG傳輸至定序器17,定序器17將該旗標資訊保持於例如寄存器REG(步驟S72)。繼而,半導體記憶裝置10執行第1讀取動作。具體而言,定序器17對已執行旗標讀取之頁,首先執行追蹤讀取(步驟S73)。接下來,定序器17將藉由追蹤讀取而算出之讀取電壓之修正值保持至寄存器REG(步驟S74)。繼而,定序器17應用保持於寄存器REG之修正值,執行同一頁之偏移讀取(步驟S75)。該等具體之動作與第1實施形態中說明之步驟S11~S13相同,因此省略說明。繼而,控制器20發行指令集CS3(步驟S76),並發送至半導體記憶裝置10。接下來,定序器17基於指令集CS3,對接下來讀取之頁執行旗標讀取(步驟S77)。即,定序器17對與於步驟S71中執行了旗標讀取之字元線不同之選擇字元線WLsel執行旗標讀取。該步驟S76及S77之動作與步驟S70及S71之動作相同,因此省略說明。繼而,定序器17對已讀取之旗標資訊FLG與保持於寄存器REG內之旗標資訊FLG進行比較,並確認旗標資訊FLG是否自上一次之旗標讀取結果改變(步驟S78)。於旗標資訊FLG未改變之情形時(步驟S78、No),定序器17執行第2讀取動作。即,定序器17針對於步驟S77中執行了旗標讀取之頁,執行回授了於最近之追蹤讀取中算出之修正值之偏移讀取(步驟S79)。另一方面,於旗標資訊FLG改變之情形時(步驟S78、Yes),定序器17將已變化之旗標資訊FLG覆寫至寄存器REG(步驟S80),並執行第1寫入動作。具體而言,定序器17針對於步驟S77中已執行了旗標讀取之頁,首先執行追蹤讀取(步驟S81)。接下來,定序器17將藉由追蹤讀取而算出之讀取電壓之修正值覆寫至寄存器REG(步驟S82),並執行應用了該修正值之同一頁之偏移讀取(步驟S83)。該等步驟S80~S82之動作與第1實施形態中說明之步驟S19~S21之動作相同。即,半導體記憶裝置10針對保持相同之旗標資訊之頁,以原來之修正值執行偏移讀取,於旗標資訊改變之情形時,執行藉由追蹤讀取更新了修正值之偏移讀取。於後續頁之讀取動作中,反覆進行上述步驟S76之後之動作。再者,於圖21所示之例中,表示藉由控制器20第4次發行之指令集CS3而進行之半導體記憶裝置10之旗標讀取中,所讀取之旗標資訊自FLG1變化成FLG2之情形時之動作。如上所述,本實施形態之半導體記憶裝置10於讀取動作之開頭執行旗標讀取及追蹤讀取,並將旗標資訊FLG及讀取電壓之修正值保持至寄存器REG。接下來,於之後之讀取動作中,半導體記憶裝置10針對保持相同之旗標資訊之頁,執行應用了相同之修正值之偏移讀取,並於每次旗標資訊改變時執行追蹤讀取。再者,於上述說明中,以將旗標資訊寫入至冗余區域時應用了SLC方式之情形為例進行了說明,但並不限定於此。例如,於以MLC(Multi-Level Cell,多階記憶胞)方式寫入旗標資訊之情形時,於讀取動作中之旗標讀取中,執行使用了複數個讀取電壓之讀取動作。又,於上述說明中,以使用指令集CS3執行讀取動作之情形為例進行了說明,但並不限定於此。例如,亦可使用包含如指令集CS1之特殊指令之指令集執行讀取動作。[5-2]第5實施形態之效果繼而,對第5實施形態之效果進行說明。根據本實施形態之記憶體系統1,可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。以下,對本效果詳細地進行說明。於第1實施形態之記憶體系統1中,藉由複數個指令集將包含追蹤讀取之第1讀取動作與作為沿用了修正值之偏移讀取之第2讀取動作區分使用。另一方面,於本實施形態之記憶體系統1中,控制器20產生表示寫入各頁資料之時期之旗標資訊,且半導體記憶裝置10將該旗標資訊寫入至各頁之冗餘區域。接下來,半導體記憶裝置10於讀取動作時參照該旗標資訊,藉此將第1讀取動作與第2讀取動作區分使用。具體而言,半導體記憶裝置10於進行各頁之讀取動作時,首先執行讀取旗標資訊之旗標讀取。此處讀取之旗標資訊被保持於半導體記憶裝置10內部,並與和於該頁之前讀取之頁對應之旗標資訊進行比較。接下來,半導體記憶裝置10於經比較之旗標資訊不同之情形時,執行第1讀取動作,於經比較之旗標資訊相同之情形時,執行第2讀取動作。如上所述,半導體記憶裝置10針對保持相同旗標資訊之頁執行第2讀取動作,並於每次旗標資訊變化時,執行第1讀取動作並更新讀取電壓之修正值。即,半導體記憶裝置10可以例如圖像資料或資料資料等文件單位應用相同之讀取電壓之修正值。藉此,本實施形態之記憶體系統1可定義以大於區塊之單位沿用讀取電壓之修正值之範圍,從而可降低執行追蹤讀取之頻度。即,本實施形態之記憶體系統1可獲得與第1實施形態相同之效果,進而,可使動作比第1實施形態更高速化。[6]第6實施形態繼而,對第6實施形態之記憶體系統1進行說明。於第5實施形態中,控制器20產生旗標資訊,相對於此,第6實施形態係半導體記憶裝置10產生旗標資訊。以下,對與第1~第5實施形態不同之點進行說明。[6-1]記憶體系統1之寫入動作首先,使用圖22對記憶體系統1之寫入動作之具體例進行說明。於圖22中以流程圖表示寫入動作之一例。首先,控制器20自外部之主機(未圖示)接收寫入資料及位址資訊(步驟S90)。該寫入資料及位址資訊經由主機I/F26暫時保持於緩衝記憶體25。繼而,控制器20之NAND I/F24發行寫入指令(步驟S91)。接下來,NAND I/F24將所發行之寫入指令、寫入資料及位址資訊作為輸入輸出信號I/O發送至半導體記憶裝置10。繼而,半導體記憶裝置10之輸入輸出電路14將自控制器20接收到之指令CMD、位址資訊ADD及寫入資料DAT分別傳輸至指令寄存器15C、位址資訊ADD及感測放大器模組12之鎖存電路XDL。接下來,定序器17產生旗標資訊(步驟S92),並傳輸至連接於冗餘區域之記憶胞之感測放大器單元SAU之鎖存電路XDL。作為該旗標資訊,例如使用已接收到之位址資訊之一部分。繼而,定序器17基於被傳輸至指令寄存器15C之指令CMD執行寫入動作(步驟S93)。藉此,將資料寫入至對應之頁之資料區域,將旗標資訊寫入至冗餘區域。被寫入至該冗餘區域之旗標資訊例如於執行高速寫入動作之期間被設為相同之旗標資訊FLG。高速寫入動作平行地執行自控制器20向半導體記憶裝置10之1頁資料之傳輸與半導體記憶裝置10之1頁資料之寫入動作。以下,使用圖23對高速寫入動作之具體例進行說明。於圖23中以流程圖表示高速寫入動作之一例。如圖23所示,首先,控制器20發行第4指令集CS4(步驟S100),並發送至半導體記憶裝置10。與該第4指令集CS4對應之指令序列被示於圖24中。具體而言,首先,控制器20發行寫入指令“80h”,並發送至半導體記憶裝置10。指令“80h”係命令寫入動作之指令。繼而,控制器20例如遍及5個循環發行位址資訊ADD,並發送至半導體記憶裝置10。該位址資訊ADD指定寫入資料之位址。繼而,控制器20遍及複數個循環將寫入資料Din輸出至半導體記憶裝置10。此處經輸出之資料Din合計相當於1頁量之資料。繼而,控制器20發行指令“15h”,並發送至半導體記憶裝置10。指令“15h”係用以基於之前剛發送之位址資訊及資料Din使半導體記憶裝置10執行資料之高速寫入動作之指令。當半導體記憶裝置10接收到此種指令集CS4(指令CMD、位址資訊ADD及寫入資料DAT)時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令、位址資訊及寫入資料分別傳輸至指令寄存器15C、位址寄存器15B及感測放大器模組12之鎖存電路XDL。當指令“15h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17開始進行高速寫入動作。於高速寫入動作中,首先,感測放大器模組12將被傳輸至鎖存電路XDL之寫入資料傳輸至鎖存電路SDL(步驟S101)。接下來,當檢測到步驟S101中之資料傳輸結束時,定序器17控制就緒/忙碌控制電路18而使就緒/忙碌信號自“L”位準變成“H”位準。接下來,定序器17開始進行1頁資料之寫入動作(步驟S102)。此處,與半導體記憶裝置10開始進行寫入動作平行地,控制器20發行包含下一頁之寫入資料之第4指令集CS4(步驟S103),並發送至半導體記憶裝置10。此處,於步驟S103中發送之寫入資料經由輸入輸出電路14被保持至感測放大器模組12之鎖存電路XDL。當寫入動作結束時,定序器17控制感測放大器模組12,並將被傳輸至鎖存電路XDL之寫入資料傳輸至鎖存電路SDL(步驟S104)。此處,定序器17於進行步驟S104中之資料傳輸之期間將就緒/忙碌信號設為“L”位準,當資料傳輸結束時將就緒/忙碌信號設為“H”位準。如上所述,於高速寫入動作中,平行地執行自控制器20向半導體記憶裝置10之寫入資料之傳輸與半導體記憶裝置10之寫入動作。並且,於被寫入至半導體記憶裝置10之資料剩餘成為1頁以下之前,反覆進行步驟S102~S104之動作。當寫入資料剩餘成為1頁以下時,控制器20發行命令通常之寫入動作之第5指令集CS5(步驟S106),並發送至半導體記憶裝置10。與該第5指令集CS5對應之指令序列被示於圖24中。具體而言,指令集CS5與將指令集CS4中之指令“15h”替換成指令“10h”後之指令集相同。指令“10h”係用以基於之前剛發送之位址資訊及資料Din使半導體記憶裝置10執行通常之寫入動作之指令。當半導體記憶裝置10接收到此種指令集CS5(指令CMD、位址資訊ADD及寫入資料DAT)時,半導體記憶裝置10之輸入輸出電路14將所接收到之指令、位址資訊及寫入資料分別傳輸至指令寄存器15C、位址資訊ADD及感測放大器模組12之鎖存電路XDL。當指令“10h”被記憶至指令寄存器15C時,就緒/忙碌信號自“H”位準變成“L”位準,定序器17開始進行通常之寫入動作。當前一頁之寫入動作結束時,感測放大器模組12將被傳輸至鎖存電路XDL之寫入資料傳輸至鎖存電路SDL(步驟S107)。繼而,定序器17執行剩餘1頁資料之寫入動作(步驟S108)。接下來,當該寫入動作結束時,定序器17控制就緒/忙碌控制電路18並使就緒/忙碌信號成為“H”位準。再者,圖24所示之指令序列與圖23所示之流程圖對應。具體而言,於圖24中表示藉由2次高速寫入動作與1次通常之寫入動作寫入3頁量之資料之情形時之指令序列。圖24所示之tDLtrans及tProg分別與於高速寫入動作中進行鎖存器間之資料傳輸之期間及執行通常之寫入動作之期間對應,且tDLtrans<tProg。如上所述,於高速寫入動作中,存在於控制器20發送輸入輸出信號I/O之期間內藉由半導體記憶裝置10而進行之1頁資料之寫入動作結束之情況。如上所述,於高速寫入動作中,基於指令集CS4連續地執行1頁資料之寫入。於本實施形態之半導體記憶裝置10中,例如將該連續執行之高速寫入動作與最後之通常之寫入動作設為1組,並使其等共有相同之旗標資訊FLG。即,本實施形態之半導體記憶裝置10自基於指令集CS4開始進行高速寫入動作起至藉由指令集CS5執行通常之寫入動作為止,將相同之旗標資訊FLG寫入至各頁之冗餘區域。於本例中,半導體記憶裝置10之定序器17產生旗標資訊FLG,並將旗標資訊FLG傳輸至對應之感測放大器單元SAU之時序只要為接收各指令集之期間或接收指令“15h”或指令“10h”並開始進行鎖存器間之資料傳輸之前即可。再者,於上述說明中,基於指令“15h”及“10h”將資料自鎖存電路XLD傳向之對象之鎖存電路並不限定於鎖存電路SDL,亦可為鎖存電路LDL或UDL。又,於為控制器20藉由狀態讀取指令知曉半導體記憶裝置10之動作狀態之構成之情形時,控制器20於發行各指令集後以特定之間隔發行狀態讀取指令。接下來,控制器20藉由參照自半導體記憶裝置10輸出之狀態資訊,檢測步驟S102、S104、或S107中之資料傳輸結束。再者,關於上述高速讀取動作,例如記載於名為“SEMICONDUCTOR INTEGRATED CIRCUIT ADAPTED TO OUTPUT PASS/FAIL RESULTS OF INTERNAL OPERATIONS”且於2002年12月13日申請之美國專利申請案10/318,167號中。該專利申請案之整體係藉由參照而引用於本說明書中。[6-2]第6實施形態之效果繼而,對第6實施形態之效果進行說明。根據本實施形態之記憶體系統1,可獲得與第5實施形態相同之效果。以下,對本效果詳細地進行說明。於第5實施形態之記憶體系統1中,控制器20產生旗標資訊FLG,相對於此,於本實施形態之記憶體系統1中,半導體記憶裝置10產生旗標資訊FLG。如上所述,旗標資訊FLG亦可於半導體記憶裝置10內部產生,半導體記憶裝置10執行自控制器20接收到之資料以及旗標資訊FLG之寫入。藉此,本實施形態之記憶體系統1可執行與第5實施形態相同之讀取動作。即,本實施形態之記憶體系統1可降低執行追蹤讀取之頻度,從而可獲得與第5實施形態相同之效果。又,本實施形態之半導體記憶裝置10不依據控制器20所發行之指令而產生旗標資訊。即,本實施形態之半導體記憶裝置10不使控制器20使用特別之指令序列便可執行寫入動作及讀取動作。[7]變化例等上述實施形態之半導體記憶裝置<10,圖1>包含:複數個第1及第2記憶胞;第1及第2字元線,其等分別連接於複數個第1及第2記憶胞;及控制電路<20,圖1>,其分別響應自外部接收到之第1及第2指令集<CS1、CS2,圖9>執行讀取動作。控制電路於讀取動作時可執行第1及第2讀取序列。於第1讀取序列<Trackingread,圖9>中,使用互不相同之第1至第3電壓分別讀取資料。於第2讀取序列<Shiftread,圖9>中,使用基於第1讀取序列之結果之電壓讀取資料。於基於第1指令集之複數個第1記憶胞之讀取動作中,連續地執行第1及第2讀取序列。於繼複數個第1記憶胞之讀取動作後之基於第2指令集之複數個第2記憶胞之讀取動作中,執行使用了基於複數個第1記憶胞之讀取動作中之第1讀取序列之結果之電壓之第2讀取序列。又,上述實施形態之記憶體系統<1,圖1>具備上述實施形態之半導體記憶裝置<10,圖1>及可發行第1及第2指令集之控制器<20,圖1>。藉此,可提供一種可使動作高速化之半導體記憶裝置及記憶體系統。再者,實施形態並不限定於上述第1~第6實施形態,可進行各種變化。例如關於上述實施形態,以自連接於同一字元線WL之記憶胞讀取1頁資料之情形為例進行了說明,但並不限定於此。例如,於自連接於同一字元線WL之記憶胞讀取2頁以上之資料之情形時或自連接於同一字元線WL之記憶胞讀取多頁中之1頁資料之情形時,亦可應用上述實施形態。例如,於自連接於同一字元線WL之記憶胞讀取2頁以上之資料之情形時或自連接於同一字元線WL之記憶胞讀取多頁中之1頁資料之情形時,存在需要複數個位準之讀取動作用以確定想要讀取之頁之資料之情況。於此情形時,於連續地執行與各位準對應之追蹤讀取後,連續地執行應用了藉由該等追蹤讀取而獲得之修正值之與各位準對應之偏移讀取。如上所述,於記憶胞記憶多位元之資訊,並使用與多位準之閾值分佈對應之讀取電壓之情形時,讀取電壓之修正值針對與各位準對應之讀取電壓而被算出,並保持於定序器17內之寄存器REG。再者,於上述實施形態中,關於追蹤讀取中之修正值之算出方法,以使用整合數之差量之情形為例進行了說明,但並不限定於此。例如,於半導體記憶裝置10具備ECC電路之情形時,只要將於追蹤讀取中錯誤位元數變成最少之讀取電壓設為最佳之讀取電壓即可。於此情形時,亦考慮到最佳之讀取電壓成為與於追蹤讀取中施加之讀取電壓不同之讀取電壓之情形。又,於上述實施形態中,以半導體記憶裝置10使用定序器17內之寄存器REG作為保持藉由追蹤讀取而獲得之讀取電壓之修正值之對象之情形為例進行了說明,但並不限定於此。例如,亦可於寄存器15之區域製作保持修正值之區域,只要於半導體記憶裝置10之內部即可。又,於上述實施形態中,以半導體記憶裝置10藉由第2次之後之追蹤讀取而獲得之讀取電壓之修正值對之前獲得之修正值進行覆寫之情形為例進行了說明,但並不限定於此。例如,亦可不對藉由追蹤讀取而獲得之修正值進行覆寫而保持於不同之地方。於此情形時,只要以於之後之偏移讀取中參照新的修正值之方式進行設定,便可獲得如上述實施形態中說明之效果。又,於上述實施形態中,於第1讀取動作中之追蹤讀取及偏移讀取之期間內存在未施加電壓之期間,但並不限定於此。例如,亦可於執行追蹤讀取後連續地執行偏移讀取。於此情形時,於追蹤讀取中以施加了讀取電壓之狀態算出最佳之讀取電壓之修正值,接下來施加應用了所算出之修正值之讀取電壓。又,於上述實施形態中,以根據藉由追蹤讀取而獲得之修正值設定偏移讀取所使用之讀取電壓之情形為例進行了說明,並不限定於此。例如,亦可不藉由追蹤讀取自通常之讀取電壓算出修正值,而算出最佳之讀取電壓值本身,並保持於定序器17內之寄存器REG。於該情形時之偏移讀取中,執行直接應用了寄存器REG內之最佳之讀取電壓之讀取動作。又,於上述實施形態中,應用了藉由追蹤讀取而獲得之修正值之最佳之讀取電壓亦可並非為於追蹤讀取中施加之複數個讀取電壓中之任一個。例如,亦可並非為圖6所示之電壓Vtr1~Vtr5中之任一個,亦可將該等電壓中之電壓指定為最佳之讀取電壓。再者,於第2~第4實施形態中,以使用第1指令集CS1於讀取動作之開頭執行包含追蹤讀取之第1讀取動作之情形為例進行了說明,但並不限定於此。例如,亦可以當於讀取動作之開頭,半導體記憶裝置10自控制器20接收到第3指令集CS3時執行第1讀取動作之方式進行設定。於此情形時,不使用包含特殊指令之指令集CS1便可實現第2~第4實施形態之動作。又,於第2~第4實施形態中,亦可基於第3指令集執行第1讀取動作,且基於第1指令集執行作為回授了最近之追蹤讀取結果之偏移讀取之第2讀取動作。該情形時之指令序列及波形之一例示於圖25中。圖25相對於第2實施形態中說明之圖9,指示第1及第2讀取動作之指令集之種類不同。再者,該動作同樣地亦可應用於第3及第4實施形態。再者,於第5及第6實施形態中,於寫入之資料不滿1頁之情形時,存在於之後之寫入動作中自該頁之未寫入區域寫入資料之情況。如此一來,作為針對包含寫入之時序不同之記憶胞之頁之旗標資訊,可附加於頁之起始處進行寫入之時序之旗標資訊,亦可附加於頁之結尾處進行寫入之時序之旗標資訊。再者,於上述實施形態中,以算出最佳之讀取電壓之修正值並執行基於該修正值之讀取動作之第1讀取動作為追蹤讀取及偏移讀取之組合之情形為例進行了說明,但並不限定於此。例如,亦可於第1讀取動作中僅執行追蹤讀取,並自該追蹤讀取之讀取結果中提取最佳之資料。於此情形時,例如於追蹤讀取中讀取之所有資料被保持於感測放大器模組12。接下來,定序器17於算出最佳之讀取電壓之修正值後控制感測放大器模組12,並將基於該修正值之讀取資料或相當於與之相近之讀取資料之資料傳輸至鎖存電路XDL,並經由輸入輸出電路14輸出至控制器20。將此種動作應用於第1實施形態之情形時之指令序列及波形之一例示於圖26中。圖26相對於第1實施形態中說明之圖9,省略了第1讀取動作中之偏移讀取之點不同。於此種情形時,可執行反應了最近之追蹤讀取之結果之偏移讀取。再者,該動作同樣地亦可應用於第2~第6實施形態。再者,於上述實施形態中,存在於第1~第3讀取動作中讀取之資料對控制器20之錯誤訂正無效之情形(ECC錯誤)。於產生此種ECC錯誤之情形時,控制器20可基於該讀取資料算出最佳之讀取電壓之修正值,並對資料之讀取失敗之部位執行重試讀取。以下,使用圖27及圖28對於第1實施形態中說明之記憶體系統1之動作中產生重試讀取之情形之一例進行說明。於圖27及圖28中分別以流程圖及時序圖表示重試讀取之一例。如圖27所示,首先,控制器20發行第1指令集CS1(步驟S110),並發送至半導體記憶裝置10。接下來,半導體記憶裝置10響應指令集CS1執行第1讀取動作。具體而言,定序器17執行追蹤讀取(步驟S111),保持藉由追蹤讀取而獲得之修正值(步驟S112),執行基於該修正值之偏移讀取(步驟S113)。該等步驟S110~S113之動作與於第1實施形態中使用圖8進行說明之步驟S10~S13相同。當控制器20接收到藉由步驟S113之偏移讀取而讀取之資料DAT時,執行錯誤訂正處理。於本例中,控制器20未能完成該讀取資料之錯誤訂正(步驟S114)。於如上所述般產生ECC錯誤之情形時,控制器20基於藉由步驟S113之偏移讀取而讀取之資料DAT算出最佳之讀取電壓(步驟S115)。接下來,控制器20發行指示使用了已算出之最佳之讀取電壓之重試讀取之第6指令集CS6(步驟S116),並發送至半導體記憶裝置10。該第6指令集CS6例如為如圖29所示之指令序列。具體而言,指令集CS6與相對於在圖10中說明之指令集CS1,將特殊指令“xxh”替換成特殊指令“zzh”後所得之指令集相同。指令“zzh”係命令半導體記憶裝置10進行使用了控制器20所指定之讀取電壓之偏移讀取之指令。接收到此種指令集CS6(指令CMD及位址資訊ADD)之半導體記憶裝置10針對與步驟S113相同之頁,執行使用了控制器20已算出之最佳之讀取電壓之偏移讀取(步驟S117)。即,半導體記憶裝置10針對產生了ECC錯誤之頁,執行使用了控制器20已算出之最佳之讀取電壓之重試讀取。再者,此時,與半導體記憶裝置10自控制器20接收到之最佳之讀取電壓對應之修正值被保持於定序器17內之寄存器REG中。當藉由步驟S117之偏移讀取而讀取之資料DAT被發送至控制器20時,控制器20發行第2指令集CS2。當半導體記憶裝置10自控制器20接收到第2指令集CS2時,針對後續頁,執行使用了步驟S117中所使用之讀取電壓之偏移讀取。即,於產生ECC錯誤並進行重試讀取之情形時,於之後之第2讀取動作中,回授於最近之重試讀取中控制器20所算出之讀取電壓之修正值。圖28所示之波形與以上所說明之步驟S110~S119之動作對應。於圖28所示之一例中,於開頭之第1讀取動作中執行基於電壓Vcal1而進行之偏移讀取。於之後之重試讀取中,執行基於控制器20所算出之最佳之讀取電壓Vcal2而進行之偏移讀取。接下來,於重試讀取後之第2讀取動作中,執行回授了於重試讀取中使用之讀取電壓之偏移讀取。如上所述,記憶體系統1亦可將於重試讀取中由控制器20算出之最佳之讀取電壓應用於之後之第2讀取動作。又,控制器20於產生ECC錯誤之情形時,基於在偏移讀取中讀取之資料算出最佳之讀取電壓,藉此,可縮短計算最佳值所需之時間。再者,由半導體記憶裝置10保持之基於控制器20之計算之修正值於接下來執行第1讀取動作或重試讀取時被更新。又,於上述說明中,以於第1讀取動作中產生ECC錯誤之情形為例進行了說明,但並不限定於此。例如,於在第2及第3讀取動作中產生ECC錯誤之情形時,亦可執行上述般之重試讀取。又,於上述說明中,以控制器20於指示半導體記憶裝置10進行重試讀取時發行第6指令集CS6之情形為例進行了說明,但並不限定於此。例如,亦可藉由控制器20指示半導體記憶裝置10進行對被稱為“Set feature”之半導體記憶裝置10之動作模式進行變更之動作或對被稱為“Parameter set”之半導體記憶裝置10之各種參數進行變更之動作,而將控制器20算出之最佳之讀取電壓應用於半導體記憶裝置10。於此情形時,於藉由控制器20、Set feature等變更半導體記憶裝置10之動作模式或參數後,發行指示應用了該修正值之偏移讀取之指令集(例如指令集CS2)。控制器20指示半導體記憶裝置10進行Set feature之指令序列例如成為圖30所示之指令序列。如圖30所示,首先,控制器20發行例如Set feature指令“EFh”,並發送至半導體記憶裝置10。指令“EFh”係命令半導體記憶裝置10進行參數之變更之指令。繼而,控制器20發行位址資訊ADD,並發送至半導體記憶裝置10。該位址資訊ADD指定與想要變更之參數對應之位址。繼而,控制器2遍及複數個循環將設定資料Din輸出至半導體記憶裝置10。此處經輸出之資料Din係相當於進行變更之參數之資料。當半導體記憶裝置10接收到該等指令等時,開始進行Set feature,變更半導體記憶裝置10之動作模式。於本例中,藉由Set feature,基於控制器20所算出之最佳之讀取電壓變更半導體記憶裝置10所保持之讀取電壓之修正值。又,圖示之tSet表示進行該Set feature之期間,於該期間內,半導體記憶裝置10成為忙碌狀態。即,於在藉由Set feature等變更半導體記憶裝置10之動作模式或參數後,發行指示應用了該修正值之偏移讀取之指令集之情形時,於半導體記憶裝置10執行重試讀取之前,半導體記憶裝置10暫時成為忙碌狀態。再者,藉由Set feature而設定之讀取電壓之修正值亦可與半導體記憶裝置10所算出之讀取電壓之修正值分開保持。於此情形時,半導體記憶裝置10基於例如指令集CS6那樣之指令序列,執行應用了對已指定之修正值進而藉由Set feature等進行指定之修正值之偏移讀取。再者,使用圖27及圖28進行說明之動作亦可使用如圖31所示之第7指令集CS7代替第6指令集CS6。如圖31所示,指令集CS7與相對於圖29中說明之指令集CS6,於特殊指令“zzh”之前發行了特殊指令“yyh”之指令集相同。如上所述,記憶體系統1亦可同時地使用複數個特殊指令。於此情形時,例如藉由指令“yyh”指示基於控制器20所指定之讀取電壓而進行之偏移讀取,藉由指令“zzh”將“yyh”所指定之讀取電壓之位準作為基準,進而應用藉由Set feature或Parameter set而指定之修正值。圖31所示之各特殊指令之作用並不限定於本例,例如亦考慮到指令“yyh”與指示偏移讀取之指令對應,指令“zzh”相當於在基於指令“yyh”而執行之偏移讀取中所使用之參數(修正值)之情形。再者,於上述實施形態中,控制器20算出最佳之讀取電壓之方法例如被記載於名為“半導體記憶裝置”且於2016年6月28日申請之美國專利申請案15/195,560號。該專利申請案之整體係藉由參照而引用於本說明書中。再者,上述說明所使用之圖9、圖14、圖16、圖18、圖21、圖25、圖26及圖28所示之輸入輸出信號I/O僅表示自控制器20發送至半導體記憶裝置10之指令集CS,而省略自半導體記憶裝置10發送至控制器20之讀取資料DAT。又,於上述說明中,圖10、圖11、圖12、圖29及圖31所示之指令“xxh”、“yyh”及“zzh”僅為一例,可分別分配任意之數字。再者,於上述說明中,所謂「讀取電壓」,與讀取資料時施加之電壓對應。即,例如於圖9所示之波形圖中,於追蹤讀取時施加至選擇字元線之電壓呈階梯狀表現,亦可使該電壓連續地增加。於此情形時,藉由使確證信號STB之時序與施加該讀取電壓之時序一致而讀取資料。又,於上述說明中,所謂「連接」,表示電性連接,不僅包含直接連接之情形,亦包含經由任意之元件連接之情形。再者,於上述實施形態中,記憶胞陣列11亦可為記憶胞電晶體MT於半導體基板之上方三維積層而成之構成。此種構成例如被記載於名為“三維積層非揮發性半導體記憶體”且於2009年3月19日申請之美國專利申請案12/407,403號。又,被記載於名為“三維積層非揮發性半導體記憶體”且於2009年3月18日申請之美國專利申請案12/406,524號、名為“非揮發性半導體記憶裝置及其製造方法”且於2010年3月25日申請之美國專利申請案12/679,991號、名為“半導體記憶體及其製造方法”且於2009年3月23日申請之美國專利申請案12/532,030號。該等專利申請案之整體係藉由參照而引用於本說明書中。又,於上述實施形態中,區塊BLK亦可不成為資料之刪除單位。例如其他刪除動作記載於名為“非揮發性半導體記憶裝置”且於2011年9月18日申請之美國專利申請案13/235,389號、名為“非揮發性半導體記憶裝置”且於2010年1月27日申請之美國專利申請案12/694,690號。該等專利申請案之整體係藉由參照而引用於本說明書中。又,關於上述實施形態中之追蹤讀取之詳細內容,例如可應用記載於名為“SEMICONDUCTOR MEMORY DEVICE WHICH STORES MULTIVALUED DATA”且於2012年7月9日申請之美國專利申請案13/544,147之方法。該專利申請案之整體內容係藉由參照而引用於本說明書中。再者,於上述各實施形態中,(1)於讀取動作中,施加至“A”位準之讀取動作所選擇之字元線之電壓例如為0~0.55 V之間。並不限定於此,亦可設為0.1~0.24 V、0.21~0.31 V、0.31~0.4 V、0.4~0.5 V、0.5~0.55 V中之任一個範圍。施加至“B”位準之讀取動作所選擇之字元線之電壓例如為1.5~2.3 V之間。並不限定於此,亦可設為1.65~1.8 V、1.8~1.95 V、1.95~2.1 V、2.1~2.3 V中之任一個範圍。施加至“C”位準之讀取動作所選擇之字元線之電壓例如為3.0 V~4.0 V之間。並不限定於此,亦可設為3.0~3.2 V、3.2~3.4 V、3.4~3.5 V、3.5~3.6 V、3.6~4.0 V中之任一個範圍。作為讀取動作之時間(tRead),例如可設為25~38 μs、38~70 μs、70~80 μs中之任一個範圍。(2)如上所述,寫入動作包含編程動作與驗證動作。於寫入動作中,最先施加至編程動作時所選擇之字元線之電壓例如為13.7~14.3 V之間。並不限定於此,例如亦可設為13.7~14.0 V、14.0~14.6 V中之任一個範圍。亦可改變寫入第奇數條字元線時之最先施加至所選擇之字元線之電壓與寫入第偶數條字元線時之最先施加至所選擇之字元線之電壓。 於將編程動作設為ISPP(Incremental Step Pulse Program,增量階躍脈衝編程)方式時,升壓之電壓例如可列舉0.5 V左右。 作為施加至非選擇之字元線之電壓,例如可設為6.0~7.3 V之間。並不限定於此種情形,例如亦可設為7.3~8.4 V之間,還可以設為6.0 V以下。 亦可根據非選擇之字元線係第奇數條字元線抑或是第偶數條字元線而改變所要施加之藉由電壓。 作為寫入動作之時間(tProg),例如可以設為1700 μs~1800 μs、1800 μs~1900 μs及1900 μs~2000 μs中之任一個範圍。 (3)於刪除動作中,最先施加至形成於半導體基板上部且於上方配置有記憶胞之阱之電壓例如為12 V~13.6 V之間。並不限定於此種情形,例如亦可設為13.6 V~14.8 V、14.8 V~19.0 V、19.0~19.8 V及19.8 V~21 V中之任一個範圍。 作為刪除動作之時間(tErase),例如可以設為3000~4000 μs、4000~5000 μs、4000~9000 μs中之任一個範圍。(4)記憶胞之構造具有隔著膜厚為4~10 nm之隧道絕緣膜配置於半導體基板(矽基板)上之電荷蓄積層。該電荷蓄積層亦可設為膜厚為2~3 nm之SiN或SiON等絕緣膜與膜厚為3~8 nm之多晶矽之積層構造。又,亦可向多晶矽中添加Ru等金屬。電荷蓄積層之上具有絕緣膜。該絕緣膜例如具有被膜厚為3~10 nm之下層High-k膜與膜厚為3~10 nm之上層High-k膜夾著之膜厚為4~10 nm之矽氧化膜。High-k膜可列舉HfO等。又,矽氧化膜之膜厚可以厚於High-k膜之膜厚。於絕緣膜上隔著膜厚為3~10 nm之材料形成有膜厚為30~70 nm之控制電極。此處,材料為TaO等金屬氧化膜、TaN等金屬氮化膜。控制電極可以使用W等。又,可於記憶胞間形成氣隙。再者,已對本發明之若干實施形態進行了說明,但該等實施形態係作為例子而提出,並無意圖限定發明之範圍。該等實施形態可以其他各種形態加以實施,且可於不脫離發明主旨之範圍內進行各種省略、替換、變更。該等實施形態或其變化包含於發明之範圍或主旨中,並且包含於申請專利範圍所記載之發明與其均等之範圍內。[相關申請案]本申請案享有以日本專利申請案2016-161058號(申請日:2016年8月19日)為基礎申請案之優先權。本申請案係藉由參照該基礎申請案而包含基礎申請案之全部內容。
1‧‧‧記憶體系統
10‧‧‧半導體記憶裝置
11‧‧‧記憶胞陣列
12‧‧‧感測放大器模組
13‧‧‧列解碼器
14‧‧‧輸入輸出電路
15‧‧‧寄存器
15A‧‧‧狀態寄存器
15B‧‧‧位址寄存器
15C‧‧‧指令寄存器
16‧‧‧邏輯控制電路
17‧‧‧定序器
18‧‧‧就緒/忙碌控制電路
19‧‧‧電壓產生電路
20‧‧‧控制器
21‧‧‧處理器
22‧‧‧內置記憶體
23‧‧‧ECC電路
24‧‧‧NAND介面電路
25‧‧‧緩衝記憶體
26‧‧‧主機介面電路
圖1係第1實施形態之記憶體系統之方塊圖。圖2係第1實施形態之半導體記憶裝置之方塊圖。圖3係第1實施形態之半導體記憶裝置所具備之記憶胞陣列之電路圖。圖4係第1實施形態之半導體記憶裝置所具備之記憶胞之閾值分佈。圖5係第1實施形態之半導體記憶裝置所具備之感測放大器模組之電路圖。圖6係第1實施形態之半導體記憶裝置中之讀取動作之說明圖。圖7係第1實施形態之半導體記憶裝置中之讀取動作之說明圖。圖8係第1實施形態之記憶體系統中之讀取動作之流程圖。圖9係第1實施形態之記憶體系統中之讀取動作之波形圖。圖10係第1實施形態之記憶體系統中之讀取動作之指令序列。圖11係第1實施形態之記憶體系統中之讀取動作之指令序列。圖12係第1實施形態之記憶體系統中之讀取動作之指令序列。圖13係第2實施形態之記憶體系統中之讀取動作之流程圖。圖14係第2實施形態之記憶體系統中之讀取動作之波形圖。圖15係第3實施形態之記憶體系統中之讀取動作之流程圖。圖16係第3實施形態之記憶體系統中之讀取動作之波形圖。圖17係第4實施形態之記憶體系統中之讀取動作之流程圖。圖18係第4實施形態之記憶體系統中之讀取動作之波形圖。圖19係第5實施形態之記憶體系統中之寫入動作之流程圖。圖20係第5實施形態之記憶體系統中之讀取動作之流程圖。圖21係第5實施形態之記憶體系統中之讀取動作之波形圖。圖22係第5實施形態之記憶體系統中之寫入動作之流程圖。圖23係第5實施形態之記憶體系統中之寫入動作之流程圖。圖24係第5實施形態之記憶體系統中之寫入動作之指令序列。圖25係變化例之記憶體系統中之寫入動作之波形圖。圖26係變化例之記憶體系統中之寫入動作之波形圖。圖27係變化例之記憶體系統中之讀取動作之流程圖。圖28係變化例之記憶體系統中之讀取動作之波形圖。圖29係變化例之記憶體系統中之讀取動作之指令序列。圖30係變化例之記憶體系統中之讀取動作之指令序列。圖31係變化例之記憶體系統中之讀取動作之指令序列。
Claims (17)
- 一種半導體記憶裝置,其特徵在於具備:複數個第1及第2記憶胞;第1字元線,其連接於上述複數個第1記憶胞;第2字元線,其連接於上述複數個第2記憶胞;及控制電路,其分別響應自外部接收到之第1及第2指令集而執行讀取動作;且上述控制電路可於讀取動作時執行第1及第2讀取序列,於上述第1讀取序列中使用互不相同之第1至第3電壓分別讀取資料,於上述第2讀取序列中使用基於上述第1讀取序列之結果之電壓讀取資料,於基於上述第1指令集之上述複數個第1記憶胞之讀取動作中,連續地執行上述第1及第2讀取序列,於繼上述複數個第1記憶胞之讀取動作後之、基於上述第2指令集之上述複數個第2記憶胞之讀取動作中,使用基於上述複數個第1記憶胞之讀取動作中之上述第1讀取序列之結果之電壓而執行上述第2讀取序列。
- 如請求項1之半導體記憶裝置,其進而具備:複數個第3記憶胞;及第3字元線,其連接於上述複數個第3記憶胞;且上述控制電路係於繼上述複數個第2記憶胞之讀取動作後之、基於上述第2指令集之上述複數個第3記憶胞之讀取動作中,響應上述第3字元線被選擇而連續地執行上述第1及第2讀取序列。
- 如請求項2之半導體記憶裝置,其中上述第1及第2記憶胞與上述第3記憶胞含在不同之區塊中。
- 如請求項1之半導體記憶裝置,其中於上述第1指令集中,於位址資訊之前持續發行第1指令與第2指令,於上述第2指令集中,於位址資訊之前發行上述第2指令。
- 如請求項4之半導體記憶裝置,其中於上述第2指令集中,於上述第2指令之前發行第3指令。
- 如請求項1之半導體記憶裝置,其中於上述第1指令集中,於位址資訊之前發行第1指令,於上述第2指令集中,於位址資訊之前持續發行第2指令與上述第1指令。
- 如請求項1之半導體記憶裝置,其中基於上述第1讀取序列之結果之電壓為上述第1至第3電壓中之任一者。
- 一種記憶體系統,其特徵在於具備:請求項1至7中任一項之半導體記憶裝置;及控制器,其可發行上述第1及第2指令集。
- 如請求項8之記憶體系統,其中上述控制器於上述讀取動作中,當自上述半導體記憶裝置讀取資料之區塊位址改變之情形時發行上述第1指令集。
- 如請求項8之記憶體系統,其中在上述第2讀取序列中未正確地讀取資料之情形時,上述控制器基於藉由上述第2讀取序列而讀取之資料算出最佳之讀取電壓,且發行將已應用上述最佳之讀取電壓之重試讀取向上述半導體記憶裝置指示之第3指令集。
- 一種半導體記憶裝置,其特徵在於具備:複數個第1及第2記憶胞;第1字元線,其連接於上述複數個第1記憶胞;第2字元線,其連接於上述複數個第2記憶胞;及控制電路,其響應自外部接收到之第1指令集而執行讀取動作;且上述控制電路可於讀取動作時執行第1至第3讀取序列,於上述第1讀取序列中使用第1電壓讀取資料,於上述第2讀取序列中使用互不相同之第2至第4電壓分別讀取資料,於上述第3讀取序列中使用基於上述第2讀取序列之結果之電壓讀取資料,於上述複數個第1記憶胞之讀取動作中,連續地執行上述第1至第3讀取序列,於繼上述複數個第1記憶胞之讀取動作後之上述複數個第2記憶胞之讀取動作中,連續地執行上述第1讀取序列及上述第3讀取序列,該上述第3讀取序列使用基於上述複數個第1記憶胞之讀取動作中之上述第2讀取序列之結果之電壓。
- 如請求項11之半導體記憶裝置,其於上述複數個第1記憶胞之讀取動作時之上述第1讀取序列中,讀取包含第1旗標資訊之資料,於上述複數個第2記憶胞之讀取動作時之上述第1讀取序列中,讀取包含第2旗標資訊之資料,上述控制電路於上述複數個第2記憶胞之讀取動作時之上述第3讀取序列之前,將上述第1旗標資訊與上述第2旗標資訊進行比較。
- 如請求項12之半導體記憶裝置,其中上述第1旗標資訊與上述第2旗標資訊相同。
- 如請求項12之半導體記憶裝置,其進而具備:複數個第3記憶胞;及第3字元線,其連接於上述複數個第3記憶胞;且上述控制電路係於繼上述複數個第2記憶胞之讀取動作後之上述複數個第3記憶胞之讀取動作中,藉由執行上述第1讀取序列而讀取包含第3旗標資訊之資料,於上述第2旗標資訊與上述第3旗標資訊不同之情形時,繼續連續地執行上述第2及第3讀取序列。
- 如請求項12之半導體記憶裝置,其中將上述第1及第2旗標資訊分別記憶於上述複數個第1及第2記憶胞各自保持之資料之冗餘區域。
- 如請求項15之半導體記憶裝置,其中上述控制電路可響應自外部接收到之第2指令集而執行寫入動作,上述第1及第2旗標資訊係分別於基於上述第2指令集對上述複數個第1及第2記憶胞進行之寫入動作中被寫入,上述第1及第2旗標資訊不含於上述第2指令集中。
- 一種記憶體系統,其特徵在於具備:請求項14之半導體記憶裝置,其可響應上述第2指令集而執行寫入動作;及控制器,其可發行上述第1及第2指令集;且上述第1及第2旗標資訊係分別於基於上述第2指令集之上述複數個第1及第2記憶胞之寫入動作中被寫入,於對上述複數個第1記憶胞之寫入動作中,上述半導體記憶裝置所要接收之上述第2指令集中包含上述第1旗標資訊, 於對上述複數個第2記憶胞之寫入動作中,上述半導體記憶裝置所要接收之上述第2指令集中包含上述第2旗標資訊。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP??2016-161058 | 2016-08-19 | ||
JP2016161058A JP6659494B2 (ja) | 2016-08-19 | 2016-08-19 | 半導体記憶装置及びメモリシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201820335A true TW201820335A (zh) | 2018-06-01 |
TWI709965B TWI709965B (zh) | 2020-11-11 |
Family
ID=60788783
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106104800A TWI626651B (zh) | 2016-08-19 | 2017-02-14 | Semiconductor memory device and memory system |
TW107108302A TWI709965B (zh) | 2016-08-19 | 2017-02-14 | 半導體記憶裝置、記憶體系統、及執行讀取動作之方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106104800A TWI626651B (zh) | 2016-08-19 | 2017-02-14 | Semiconductor memory device and memory system |
Country Status (4)
Country | Link |
---|---|
US (3) | US9859011B1 (zh) |
JP (1) | JP6659494B2 (zh) |
CN (2) | CN113380297B (zh) |
TW (2) | TWI626651B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6659494B2 (ja) * | 2016-08-19 | 2020-03-04 | キオクシア株式会社 | 半導体記憶装置及びメモリシステム |
CN110246533B (zh) * | 2018-03-09 | 2020-11-13 | 建兴储存科技(广州)有限公司 | 固态储存装置的失败模式检测方法及错误更正方法 |
JP2020027674A (ja) | 2018-08-10 | 2020-02-20 | キオクシア株式会社 | 半導体メモリ |
JP7158965B2 (ja) | 2018-09-14 | 2022-10-24 | キオクシア株式会社 | メモリシステム |
SG11202102625VA (en) * | 2018-11-06 | 2021-04-29 | Kioxia Corp | Semiconductor memory device |
JP2020113351A (ja) * | 2019-01-10 | 2020-07-27 | キオクシア株式会社 | メモリチップ |
JP2020155174A (ja) | 2019-03-19 | 2020-09-24 | キオクシア株式会社 | メモリシステム |
JP2021012752A (ja) | 2019-07-08 | 2021-02-04 | キオクシア株式会社 | 半導体記憶装置 |
JP2021047695A (ja) | 2019-09-19 | 2021-03-25 | キオクシア株式会社 | メモリシステム |
DE102020100541A1 (de) * | 2020-01-13 | 2021-07-15 | Infineon Technologies Ag | Bestimmung eines resultierenden datenworts beim zugriff auf einen speicher |
JP2021149997A (ja) | 2020-03-23 | 2021-09-27 | キオクシア株式会社 | メモリシステム |
US11294819B2 (en) * | 2020-03-31 | 2022-04-05 | Western Digital Technologies, Inc. | Command optimization through intelligent threshold detection |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005182871A (ja) * | 2003-12-17 | 2005-07-07 | Toshiba Corp | 不揮発性半導体記憶装置 |
US8019928B2 (en) * | 2004-02-15 | 2011-09-13 | Sandisk Il Ltd. | Method of managing a multi-bit-cell flash memory |
JP4660353B2 (ja) | 2005-11-01 | 2011-03-30 | 株式会社東芝 | 記憶媒体再生装置 |
KR100837282B1 (ko) * | 2007-06-14 | 2008-06-12 | 삼성전자주식회사 | 비휘발성 메모리 장치, 그것을 포함하는 메모리 시스템,그것의 프로그램 방법 및 읽기 방법 |
KR100888842B1 (ko) * | 2007-06-28 | 2009-03-17 | 삼성전자주식회사 | 읽기 전압을 최적화할 수 있는 플래시 메모리 장치 및그것의 독출 전압 설정 방법 |
KR101515122B1 (ko) | 2008-02-15 | 2015-04-27 | 삼성전자주식회사 | 저장된 데이터의 오류에 기반하여 기준 전압을 제어하는 방법과 메모리 데이터 검출 장치 |
KR100938092B1 (ko) * | 2008-03-10 | 2010-01-21 | 주식회사 하이닉스반도체 | 플래시 메모리 소자의 동작 방법 |
KR101486980B1 (ko) * | 2008-10-27 | 2015-01-30 | 삼성전자주식회사 | 불휘발성 메모리의 문턱 전압 산포의 분석 방법 |
US8184476B2 (en) * | 2008-12-26 | 2012-05-22 | Everspin Technologies, Inc. | Random access memory architecture including midpoint reference |
JP2010192049A (ja) * | 2009-02-19 | 2010-09-02 | Toshiba Corp | 半導体記憶装置 |
KR101578511B1 (ko) * | 2009-05-20 | 2015-12-18 | 삼성전자주식회사 | 리드 전압 설정 방법 |
KR101626528B1 (ko) * | 2009-06-19 | 2016-06-01 | 삼성전자주식회사 | 플래시 메모리 장치 및 이의 데이터 독출 방법 |
KR101727704B1 (ko) | 2010-10-04 | 2017-04-18 | 삼성전자주식회사 | 리드 성능을 향상시킬 수 있는 리드 파라미터 변경 방법과 상기 방법을 수행할 수 있는 장치들 |
KR101784973B1 (ko) * | 2010-11-11 | 2017-10-13 | 삼성전자주식회사 | 메모리 소자의 동작 전압 제공 방법 및 메모리 컨트롤러 |
US8681564B2 (en) * | 2011-05-23 | 2014-03-25 | Marvell World Trade Ltd. | Systems and methods for generating soft information in NAND flash |
KR20130034919A (ko) * | 2011-09-29 | 2013-04-08 | 에스케이하이닉스 주식회사 | 반도체 장치 및 이의 동작 방법 |
JP2013122793A (ja) * | 2011-12-09 | 2013-06-20 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP2013122804A (ja) | 2011-12-12 | 2013-06-20 | Toshiba Corp | 半導体記憶装置 |
CN103366828B (zh) * | 2012-04-10 | 2016-05-11 | 旺宏电子股份有限公司 | 存储器装置及其检测方法 |
US9645177B2 (en) | 2012-05-04 | 2017-05-09 | Seagate Technology Llc | Retention-drift-history-based non-volatile memory read threshold optimization |
JP2014053061A (ja) * | 2012-09-07 | 2014-03-20 | Toshiba Corp | 半導体記憶装置及びそのコントローラ |
US8879324B2 (en) * | 2013-02-01 | 2014-11-04 | Lsi Corporation | Compensation loop for read voltage adaptation |
US8995195B2 (en) * | 2013-02-12 | 2015-03-31 | Sandisk Technologies Inc. | Fast-reading NAND flash memory |
US20140269086A1 (en) * | 2013-03-14 | 2014-09-18 | Sandisk Technologies Inc. | System and method of accessing memory of a data storage device |
US9190159B2 (en) * | 2013-03-15 | 2015-11-17 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
JP2015056190A (ja) * | 2013-09-11 | 2015-03-23 | 株式会社東芝 | 不揮発性半導体記憶装置 |
WO2015037088A1 (ja) | 2013-09-11 | 2015-03-19 | 株式会社 東芝 | 半導体記憶装置およびメモリシステム |
KR20150091684A (ko) * | 2014-02-03 | 2015-08-12 | 에스케이하이닉스 주식회사 | 반도체 장치 |
US20150262693A1 (en) * | 2014-03-13 | 2015-09-17 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
JP2015195070A (ja) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US20160012916A1 (en) * | 2014-07-10 | 2016-01-14 | Kabushiki Kaisha Toshiba | Semiconductor memory device and memory system |
US9640270B2 (en) * | 2014-08-12 | 2017-05-02 | Sandisk Technologies Llc | System and method of using multiple read operations |
JP2016054017A (ja) * | 2014-09-04 | 2016-04-14 | 株式会社東芝 | 半導体記憶装置 |
US9251892B1 (en) * | 2014-09-11 | 2016-02-02 | Kabushiki Kaisha Toshiba | Memory system and method of controlling nonvolatile memory |
JP6266479B2 (ja) * | 2014-09-12 | 2018-01-24 | 東芝メモリ株式会社 | メモリシステム |
US9978456B2 (en) * | 2014-11-17 | 2018-05-22 | Sandisk Technologies Llc | Techniques for reducing read disturb in partially written blocks of non-volatile memory |
US9916237B2 (en) * | 2014-12-12 | 2018-03-13 | Sandisk Technologies Llc | Model based configuration parameter management |
US9792995B1 (en) * | 2016-04-26 | 2017-10-17 | Sandisk Technologies Llc | Independent multi-plane read and low latency hybrid read |
JP6659494B2 (ja) * | 2016-08-19 | 2020-03-04 | キオクシア株式会社 | 半導体記憶装置及びメモリシステム |
-
2016
- 2016-08-19 JP JP2016161058A patent/JP6659494B2/ja active Active
-
2017
- 2017-02-14 TW TW106104800A patent/TWI626651B/zh active
- 2017-02-14 TW TW107108302A patent/TWI709965B/zh active
- 2017-02-26 US US15/442,683 patent/US9859011B1/en active Active
- 2017-03-10 CN CN202110761095.9A patent/CN113380297B/zh active Active
- 2017-03-10 CN CN201710144254.4A patent/CN107767914B/zh active Active
- 2017-11-27 US US15/822,581 patent/US10163517B2/en active Active
-
2018
- 2018-11-19 US US16/195,738 patent/US10643715B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107767914A (zh) | 2018-03-06 |
US9859011B1 (en) | 2018-01-02 |
TWI709965B (zh) | 2020-11-11 |
US10163517B2 (en) | 2018-12-25 |
CN113380297B (zh) | 2023-12-29 |
CN107767914B (zh) | 2021-07-23 |
JP2018028956A (ja) | 2018-02-22 |
TWI626651B (zh) | 2018-06-11 |
CN113380297A (zh) | 2021-09-10 |
US20180090212A1 (en) | 2018-03-29 |
US10643715B2 (en) | 2020-05-05 |
US20190115085A1 (en) | 2019-04-18 |
JP6659494B2 (ja) | 2020-03-04 |
TW201807707A (zh) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI626651B (zh) | Semiconductor memory device and memory system | |
US11170857B2 (en) | Semiconductor memory device that performs successive tracking reads during an operation to read one page | |
US20230282276A1 (en) | Semiconductor memory device and memory system | |
US10803959B2 (en) | Memory system including the semiconductor memory and a controller | |
TWI602187B (zh) | Semiconductor memory devices and memory systems | |
US11804267B2 (en) | Memory system having semiconductor memory device that performs verify operations using various verify voltages | |
US10860251B2 (en) | Semiconductor memory device | |
US10692563B2 (en) | Semiconductor memory device and memory system | |
JP6545631B2 (ja) | 不揮発性半導体記憶装置 | |
KR20140123230A (ko) | 플래시 메모리와 메모리 컨트롤러를 포함하는 데이터 저장 장치 및 그것의 배드 페이지 관리 방법 | |
US10978165B2 (en) | Memory system and non-volatile semiconductor memory | |
US11430525B2 (en) | Memory device |