TW201816839A - 半導體元件的製程 - Google Patents
半導體元件的製程 Download PDFInfo
- Publication number
- TW201816839A TW201816839A TW105134230A TW105134230A TW201816839A TW 201816839 A TW201816839 A TW 201816839A TW 105134230 A TW105134230 A TW 105134230A TW 105134230 A TW105134230 A TW 105134230A TW 201816839 A TW201816839 A TW 201816839A
- Authority
- TW
- Taiwan
- Prior art keywords
- pattern
- layer
- semiconductor device
- mask layer
- mask
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
一種半導體元件的製程,其包含以下步驟。首先,在目標層上形成第一遮罩層,並在第一遮罩層上形成第二遮罩層。然後,在第二遮罩層上形成開口,以暴露第一遮罩層的一部分。接著,進行選擇性形成製程,形成填滿開口的第一圖案。在目標層上形成多個第二圖案,其中,至少一個第二圖案橫跨第一圖案。並且,在第一圖案上,形成環繞第二圖案的多個側壁子。之後,透過側壁子及第一圖案作為遮罩,圖案化目標層。
Description
本發明是關於一種半導體元件的製程,尤指一種利用側壁圖案轉移技術的半導體元件的製程。
隨著半導體元件尺寸持續地縮小與元件堆疊密度之增加,使得微影製程接近物理極限,導致設計、製程開發和光罩的成本急遽上升,許多傳統的製程方法已無法滿足需求。在目前的次光學微影特徵尺度(sub-lithography feature)的製程世代,一般係透過浸潤式(immersion)微影製程配合氟化氬雷射機台來進一步獲得較高的臨界尺寸或解析度。此外,近期業界也同時致力發展間隙壁自對準雙圖案法(spacer self-aligned double-patterning, SADP),也就是側壁圖案轉移(sidewall image transfer, SIT)技術,利用此方式以形成所需的微型化元件。
一般來說,側壁圖案轉移技術的實施方式通常是先於基底上形成多個犧牲圖案,且該些犧牲圖案之尺度係大於或等於光學微影之最小曝光極限。接著利用沈積及蝕刻製程,於犧牲圖案之側壁形成側壁子。由於側壁子之尺度小於光學微影之曝光極限,因此可利用側壁子作為蝕刻基底之遮罩,進一步將側壁子之圖案轉移至基底內。然而,當半導體元件之尺寸逐漸縮小時,其中各部分之區域之電性及物理要求也日趨嚴苛;例如,導線及電晶體結構的尺寸、形狀以及彼此的間距等,如何達到所需之規格要求以及克服各物理極限形成此些結構已為現今半導體產業之重要議題。
本發明之一目的在於提供一種半導體元件的製程,其可在製程簡化的前提下,形成具有精準布局的半導體元件。
為達上述目的,本發明之另一實施例提供一種半導體元件的製程,其包含以下步驟。首先,在一目標層上形成一第一遮罩層,並在該第一遮罩層上形成一第二遮罩層。然後,在該第二遮罩層上形成至少一開口,以暴露該第一遮罩層的一部分。接著,進行一選擇性形成製程,形成一第一圖案填滿該至少一開口。在該目標層上形成複數個第二圖案,其中,至少一個該第二圖案橫跨該第一圖案。並且,在該第一圖案上,形成環繞該些第二圖案的複數個側壁子。之後,透過該些側壁子及該第一圖案作為一遮罩,圖案化該目標層。
本發明之半導體元件的製程,主要是利用阻擋圖案置換一部份的遮罩層,再於該阻擋圖案上形成犧牲圖案及側壁子,藉此,來阻擋該側壁子的部分圖案,使後續形成的半導體元件可具有特定布局圖案。該阻擋圖案因是形成於側壁子的下方,並且是由開口圖案定義,其臨界尺寸可被較有效地控制,大體上可控制於20奈米至60奈米之間。再且,本發明的阻擋圖案是利用選擇性形成製程而直接形成在該開口圖案內,阻擋圖案不會超出該開口圖案的範圍,因此,可省去後續進行平坦化製程的麻煩與缺陷,避免因平坦化製程而可能造成中間凹陷等問題。因此,依據上述之實施例,本發明不僅可簡化整體製程,更有利於形成臨界尺寸較小的阻擋圖案,而形成具有更精準布局的半導體元件。
為使熟習本發明所屬技術領域的一般技藝者能更進一步了解本發明,下文特列舉本發明的數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成的功效。
請參照第1圖至第12圖,所繪示者為本發明較佳實施例中半導體元件的製程的步驟示意圖,其中第1圖、第3圖、第7圖及第11圖為半導體元件形成階段的上視圖,第2圖、第4圖、第8圖及第12圖則分別為第1圖、第3圖、第7圖及第11圖沿剖面線A-A’的剖面示意圖。
首先,提供一基底,例如包含一介電層(dielectric layer)100,並且,介電層100上依序形成一目標層140與一遮罩層160。在一實施例中,介電層100可具有如第2圖所示的一單層結構,其可包含氧化矽(silicon oxide, SiO)、氮氧化矽(silicon oxynitride, SiNO)、碳氮化矽(silicon carbonitride, SiCN)等低介電常數材料(介電常數值小於3.9),或者是由前述低介電常數材料所組成的一多層結構(未繪示)。另外,目標層140可同樣是一介電層,包含氧化矽、氮氧化矽或碳氮化矽等低介電常數材料,或者是其他合適的材質,如半導體材質、導電材質或其他非導電層料等;而遮罩層160則較佳具有一多層結構,例如是由一氧化矽層161、一金屬氮化物層162及一氧化矽層163所組合的複合結構,但不以此為限。此外,在另一實施例中,還可先在介電層100上還可進一步形成具有單層結構或多層結構的蝕刻停止層110,例如是形成在目標層140與介電層100之間,如第2圖所示。
另一方面,介電層100內還可形成有至少一導電層120,導電層120可以是各式導電單元或金屬接點(metal contact),例如為接觸插塞(contact plug)、介層插塞(via plug)或導線(wiring)等,如第2圖所示。然而,本發明的導電層120並不以前述樣態為限,在其他實施例中,該基底還可選擇另包含一半導體基底,如含矽基底或矽覆絕緣(silicon-on-insulator, SOI)基底等,而在該些實施例中,該導電層也可以是形成在該含矽基底上的一閘極(未繪示),或者是形成在該含矽基底內的汲極、源極(未繪示)等。
然後,在介電層100上形成至少一阻擋圖案222。具體來說,是將遮罩層160的至少一部分置換為阻擋圖案222。在本實施例中,阻擋圖案222的形成例如是先移除一部分的氧化矽層163,形成位在遮罩層160內的開口164、166,而暴露下方的部分金屬氮化物層162,如第3圖及第4圖所示。其中,開口164、166的尺寸可藉由控制所移除之氧化矽層163的尺寸而有效控制,大體上可使開口的寬度W1介於20奈米至45奈米之間,如開口164;但亦可選擇形成尺寸較大的開口,而使其寬度W2介於40奈米至60奈米之間,如開口166,但不以此為限。
隨即進行一選擇性形成製程(selective forming process)已在開口164、166內形成阻擋圖案222。該選擇性形成製程是依據開口164、166所暴露出下方膜層的材質來形成特定且均厚的薄膜,使該薄膜僅會形成在開口164、166內並填滿開口164、166,而不超過開口164、166範圍。舉例來說,在本實施例是進行一選擇性金屬化學氣相沈積(selective metal chemical vapor deposition)製程,較佳是氮化鈦(titanium nitride, TiN)混合鈷(cobalt, Co)的選擇性化學氣相沈積製程,以在開口164、166暴露出的金屬氮化物層162(例如是包含氮化鈦)上長出均厚且填滿開口164、166的氮化鈦金屬薄膜或氮化鈦混合鈷金屬薄膜,如第5圖所示,構成阻擋圖案222。具體來說,該氮化鈦與鈷的選擇性化學氣相沈積製程的操作溫度大體上約在20℃至450℃之間,並且,是於一操作壓力下進行,該操作壓力的範圍則約為30帕至50帕(Pa)。另外,該氮化鈦與鈷的選擇性化學氣相沈積製程是選擇通入鈷-鈦-氮合金以及氮氣(N2
)等。其中鈷-鈦-氮合金的氣體流量約為45至50每分鐘標準毫升(standard cubic centimeter per minute, 以下簡稱為sccm),而氮氣的氣體流量則約為340至425sccm,但不以此為限。根據本發明,該氮化鈦金屬薄膜或該氮化鈦混合鈷金屬薄膜的厚度較佳是小於15奈米,且具有良好的階梯覆蓋(step coverage)特性,以形成剛好位在開口164、166內,並剛好填滿開口164、166的阻擋圖案222。藉此,阻擋圖案222的頂表面可恰好與氧化矽層163的頂表面齊平,而不需額外進行一平坦化製程來移除超出開口164、166的部分。本實施例的阻擋圖案222因是由該氮化鈦金屬薄膜或該氮化鈦混合鈷金屬薄膜組成,而與氧化矽層161、163具顯著的蝕刻選擇比。
然而,本領域之通常知識者應了解,該阻擋圖案的形成方式以及材質並不限於前述,該阻擋圖案亦可能以其他方式形成,或配合下方膜層的材質而具有其他的相容性材質。舉例來說,在一實施例中,也可選擇進行一選擇性金屬氧化(selective metal oxidation)製程或選擇性金屬氮化(selective metal nitridation)製程,而僅針對開口164、166暴露出的金屬氮化物層162(例如是包含氮化鈦)進行特定的氧化製程或氮化製程,形成剛好填滿開口164、166的氮氧化鈦金屬薄膜或氮化鈦金屬薄膜,做為阻擋圖案(未繪示)。此外,在另一實施例中,若開口164、166暴露出的下方膜層是一金屬層(未繪示),則亦可進行該選擇性金屬氧化製程或選擇性金屬氮化製程,形成包含金屬氧化物薄膜或金屬氮化物薄膜的阻擋圖案(未繪示)。
後續,進行至少一次間隙壁自對準雙圖案法(sidewalls alignment double patterning, SADP)技術,也就是側壁圖案轉移(sidewalls image transference, SIT)技術,而在遮罩層160上形成複數個平行的犧牲圖案182,如第6圖所示。其中,犧牲圖案182的材質可包含多晶矽(polysilicon),或是其他與下方遮罩層160具蝕刻選擇比的合適材料,如氧化矽、氮化矽等,但不以此為限。在本實施例中,各犧牲圖案182是橫跨於遮罩層160與阻擋圖案222之上,並且在垂直於該基底的一投影方向上與阻擋圖案222部分重疊,如第6圖所示。此外,在一實施例中,阻擋圖案222可具有大於犧牲圖案182間距P的一長度L,如第7圖所示。
而後,繼續形成環繞各犧牲圖案182的側壁子202,如第7圖及第8圖所示。側壁子202例如是包含二氧化鈦(TiO2
),或是其他與犧牲圖案182與遮罩層160具蝕刻選擇比的材料,如鎢(tungsten, W)、氮化鉭(TaN)、氮化鈦等。具體來說,側壁子200的形成方式例如是先全面性地在該基底上形成一側壁材料層(未繪示),覆蓋各犧牲圖案182,並且進行一回蝕刻製程,完全移除位在犧牲圖案182頂表面上的該側壁材料層,以形成緊鄰且環繞犧牲圖案182的側壁子202。因此,各側壁子202同樣是橫跨於遮罩層160與阻擋圖案222之上,並且在垂直於該基底的一投影方向上,與阻擋圖案222部分重疊,如第8圖所示。
之後,則可如第9圖所示,完全移除犧牲圖案182。然後,再以各側壁子202及下方的阻擋圖案222同時做為一遮罩,進行一蝕刻製程,例如是乾蝕刻、濕蝕刻或者是依序進行乾蝕刻及濕蝕刻,以將各側壁子202與阻擋圖案222的圖案一併轉移至下方的目標層140與蝕刻停止層110內。詳細來說,本實施例是先將側壁子202與阻擋圖案222的圖案轉移至部分的遮罩層160,例如是氧化矽層163及金屬氮化物層162中,以圖案化遮罩層160;再接著並利用圖案化遮罩層160作為遮罩,繼續蝕刻下方的目標層140與蝕刻停止層110。需特別說明的是,因部分的遮罩層160(特別是指部分的氧化矽層163)已被阻擋圖案222置換,是以在轉移側壁子202圖案時,由於蝕刻選擇比的不同而僅能略蝕刻其下方的阻擋圖案222,如第11圖所示。也就是說,當進行該蝕刻製程時,暴露出的氧化矽層163及金屬氮化物層162會被完全移除,但暴露出的阻擋圖案222僅會部分移除,而被蝕刻成城垛狀,如第10圖所示。同時,位在阻擋圖案222下方的金屬氮化物層162會受到阻擋圖案222遮蔽而完全不會被移除,因此,位在阻擋圖案222上方的側壁子202圖案完全無法被轉移到阻擋圖案222下方的金屬氮化物層162。也就是說,僅有部分的遮罩層160被成功地圖案化。
而後,即可在完全移除側壁子202或者保留側壁子202的情況下,繼續蝕刻目標層140與蝕刻停止層110,其同樣可以是進行乾蝕刻、濕蝕刻或者是依序進行乾蝕刻及濕蝕刻,以在目標層140與蝕刻停止層110中形成連接下方金屬層120的至少一開口240,並同時定義出至少一鰭狀結構260,如第12圖所示。需說明的是,在完全移除側壁子202再進行該蝕刻製程的實施例中,還可在移除側壁子202時選擇性地一併移除部分的遮罩層160(例如是氧化矽層163),如第12圖所示。
本實施例是利用阻擋圖案222遮蔽至少一部分的側壁子202圖案,而可利用側壁子202圖案定義出相互間隔且平行排列的開口240,如第11圖所示。並且,有一部分的開口240因受到阻擋圖案222遮蔽的影響,而被分隔成兩部分。在此情況下,形成於開口240之間的鰭狀結構260有一部分會彼此連接,如第12圖所示。也就是說,位在阻擋圖案222下方的鰭狀結構264、266可橫跨位在圖案化的遮罩層160下方的鰭狀結構262,形成彼此交錯排列的鰭狀結構。
此外,在移除殘留側壁子202及遮罩層160時,同樣由於蝕刻選擇比的不同而無法完全移除阻擋圖案222,因此,仍有部分的阻擋圖案222被保留在鰭狀結構264、266的上方,使得鰭狀結構264、266的上方可殘留有較厚的膜層。詳細來說,鰭狀結構262的上方僅留有圖案化的部分遮罩層160(即金屬氮化物層162及氧化矽層161),且遮罩層160因受到圖案化的影響而被蝕刻成多個遮罩單元160a,分別位在各鰭狀結構262的上方。另一方面,鰭狀結構264、266的上方則會因仍殘留有剩餘的阻擋圖案222及遮罩層160(即金屬氮化物層162及氧化矽層161),因此,相對於鰭狀結構262的上方殘留的遮罩單元160a,具有相對較厚的膜層。
最後,可選擇先進行一清洗製程,例如以氬氣(Ar)對目標層140,亦即層間介電層,的開口240的表面進行清洗,再於各開口240內選擇性地進行一金屬矽化物(silicidation)製程,之後再進行插塞製程,形成直接電連接導電層120的接觸插塞、導線(未繪示),或是進行其他半導體元件的製程。
由此,即完成本發明半導體元件的製程。本發明的製程主要是利用阻擋圖案置換一部份的遮罩層,再於其上形成犧牲圖案及側壁子,藉此來阻擋該側壁子的部分圖案,使後續形成的半導體元件可具有特定布局圖案。該阻擋圖案因是形成於側壁子的下方,並且是由開口圖案定義,其臨界尺寸可被較有效地控制,大體上可控制於20奈米至60奈米之間。再且,本發明的阻擋圖案是利用選擇性金屬化學氣相沈積製程而直接形成在該開口圖案內,因此,可省去後續進行平坦化製程的麻煩與缺陷(例如是中間凹陷等問題),而有利於整體製程的簡化。因此,依據上述之實施例,本發明不僅可簡化整體製程,更有利於形成臨界尺寸較小的阻擋圖案,使後續形成的半導體元件能具有更精準的布局圖案。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100‧‧‧介電層
110‧‧‧蝕刻停止層
120‧‧‧導電層
140‧‧‧目標層
160‧‧‧遮罩層
160a‧‧‧遮罩單元
161‧‧‧氧化矽層
162‧‧‧金屬氮化物層
163‧‧‧氧化矽層
164、166‧‧‧開口
182‧‧‧犧牲圖案
202‧‧‧側壁子
222‧‧‧阻擋圖案
240‧‧‧開口
260、262、264、266‧‧‧鰭狀結構
L‧‧‧長度
P‧‧‧間距
W1、W2‧‧‧寬度
第1圖至第12圖繪示本發明較佳實施例中半導體元件的製程的步驟示意圖。
Claims (15)
- 一種半導體元件的製程,包含以下步驟: 在一目標層上形成一第一遮罩層; 在該第一遮罩層上形成一第二遮罩層; 在該第二遮罩層上形成一開口,以暴露該第一遮罩層的一部分; 進行一選擇性形成製程,形成一第一圖案填滿該一開口; 在該目標層上形成複數個第二圖案,其中,至少一個該第二圖案橫跨該第一圖案; 在該第一圖案上,形成環繞該些第二圖案的複數個側壁子;以及 透過該些側壁子及該第一圖案作為一遮罩,圖案化該目標層。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第一圖案在一投影方向上重疊至少一個該側壁子。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第一遮罩層與該第二遮罩層包含不同的材質。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第一遮罩層與該第一圖案包含相同的材質。
- 如申請專利範圍第4項所述之半導體元件的製程,其中,該第一圖案包含鈷或氮化鈦。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第一圖案與該第二遮罩層齊平。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第一圖案約具有20奈米至60奈米的長度。
- 如申請專利範圍第1項所述之半導體元件的製程,更包含: 在圖案化該目標層之前,移除該第二圖案。
- 如申請專利範圍第1項所述之半導體元件的製程,更包含: 在圖案化該目標層時,在該目標層內形成複數個鰭狀結構,其中該些鰭狀結構具有不同的寬度。
- 如申請專利範圍第9項所述之半導體元件的製程,其中,在圖案化該目標層後,該第一圖案位在至少一個該鰭狀結構上。
- 如申請專利範圍第10項所述之半導體元件的製程,其中,該第一遮罩層是位在該鰭狀結構上,並位在該第一圖案下方。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該目標層包含一半導體材質、一導電材質或一非導電材質。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該第二遮罩層包含氧化矽。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該選擇性形成步驟包含一選擇性金屬化學氣相沈積製程。
- 如申請專利範圍第1項所述之半導體元件的製程,其中,該選擇性形成步驟包含一選擇性金屬氧化製程或一選擇性金屬氮化製程。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105134230A TWI697032B (zh) | 2016-10-24 | 2016-10-24 | 半導體元件的製程 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105134230A TWI697032B (zh) | 2016-10-24 | 2016-10-24 | 半導體元件的製程 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201816839A true TW201816839A (zh) | 2018-05-01 |
TWI697032B TWI697032B (zh) | 2020-06-21 |
Family
ID=62949299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105134230A TWI697032B (zh) | 2016-10-24 | 2016-10-24 | 半導體元件的製程 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI697032B (zh) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053105A (en) * | 1990-07-19 | 1991-10-01 | Micron Technology, Inc. | Process for creating an etch mask suitable for deep plasma etches employing self-aligned silicidation of a metal layer masked with a silicon dioxide template |
US6632741B1 (en) * | 2000-07-19 | 2003-10-14 | International Business Machines Corporation | Self-trimming method on looped patterns |
US6949461B2 (en) * | 2002-12-11 | 2005-09-27 | International Business Machines Corporation | Method for depositing a metal layer on a semiconductor interconnect structure |
KR100476690B1 (ko) * | 2003-01-17 | 2005-03-18 | 삼성전자주식회사 | 반도체 장치 및 그 제조방법 |
US7687342B2 (en) * | 2005-09-01 | 2010-03-30 | Micron Technology, Inc. | Method of manufacturing a memory device |
US7902074B2 (en) * | 2006-04-07 | 2011-03-08 | Micron Technology, Inc. | Simplified pitch doubling process flow |
TW200746368A (en) * | 2006-06-09 | 2007-12-16 | Powerchip Semiconductor Corp | Manufacturing method of non-volatile memory |
TWI343596B (en) * | 2007-05-31 | 2011-06-11 | Nanya Technology Corp | Method for fabricating conductive structure and hard mask layer |
TW200939297A (en) * | 2008-03-05 | 2009-09-16 | Nanya Technology Corp | Method for patterning two-dimensional islands |
US8549458B2 (en) * | 2009-11-09 | 2013-10-01 | Cadence Design Systems, Inc. | Method, system, and program product for routing an integrated circuit to be manufactured by sidewall-image transfer |
US8298954B1 (en) * | 2011-05-06 | 2012-10-30 | International Business Machines Corporation | Sidewall image transfer process employing a cap material layer for a metal nitride layer |
-
2016
- 2016-10-24 TW TW105134230A patent/TWI697032B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI697032B (zh) | 2020-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106373880B (zh) | 半导体元件及其形成方法 | |
TWI251296B (en) | Method for fabricating semiconductor device capable of preventing damage by wet cleaning process | |
TWI713089B (zh) | 積體電路結構的形成方法 | |
KR100953034B1 (ko) | 반도체 소자 및 이의 제조 방법 | |
US20060154460A1 (en) | Self-aligned contact method | |
JP2007318068A (ja) | 半導体素子のコンタクト形成方法 | |
JP4711658B2 (ja) | 微細なパターンを有する半導体装置の製造方法 | |
US8304175B2 (en) | Patterning method | |
US20080081463A1 (en) | Method for fabricating storage node contact in semiconductor device | |
CN109494149B (zh) | 半导体结构的制作方法 | |
US9257279B2 (en) | Mask treatment for double patterning design | |
CN112750773B (zh) | 生产接触晶体管的栅极和源极/漏极通孔连接的方法 | |
TWI697032B (zh) | 半導體元件的製程 | |
KR20070113604A (ko) | 반도체 소자의 미세패턴 형성방법 | |
JP2007081347A (ja) | 半導体装置の製造方法 | |
JP2001077189A (ja) | 半導体装置の製造方法 | |
JP4257357B2 (ja) | 半導体装置の製造方法 | |
TWI553739B (zh) | 一種形成開口的方法 | |
TWI744059B (zh) | 半導體裝置的形成方法 | |
KR100537187B1 (ko) | 반도체소자 제조 방법 | |
JP2011009625A (ja) | 半導体装置の製造方法 | |
US20030045091A1 (en) | Method of forming a contact for a semiconductor device | |
KR100844935B1 (ko) | 랜딩 플러그 콘택 구조를 가진 반도체 소자 제조방법 | |
KR100723769B1 (ko) | 플래쉬 메모리소자의 제조방법 | |
KR101046755B1 (ko) | 반도체 소자의 랜딩 플러그 제조 방법 |