TW201802104A - 包含有機半導體層有機發光二極體 - Google Patents

包含有機半導體層有機發光二極體 Download PDF

Info

Publication number
TW201802104A
TW201802104A TW106110165A TW106110165A TW201802104A TW 201802104 A TW201802104 A TW 201802104A TW 106110165 A TW106110165 A TW 106110165A TW 106110165 A TW106110165 A TW 106110165A TW 201802104 A TW201802104 A TW 201802104A
Authority
TW
Taiwan
Prior art keywords
group
layer
compound
organic
metal
Prior art date
Application number
TW106110165A
Other languages
English (en)
Other versions
TWI730072B (zh
Inventor
雷吉那 路西汀內茲
弗朗索瓦 卡地納里
朱利安 弗雷
多門戈伊 帕菲西格
Original Assignee
諾瓦發光二極體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 諾瓦發光二極體有限公司 filed Critical 諾瓦發光二極體有限公司
Publication of TW201802104A publication Critical patent/TW201802104A/zh
Application granted granted Critical
Publication of TWI730072B publication Critical patent/TWI730072B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本發明與包含陽極電極、陰極電極、至少一發光層以及有機半導體層的有機發光二極體有關,其中有機半導體層被配置在陽極電極以及陰極電極之間,且有機半導體層包含鹼金屬有機錯合物以及分子式1化合物 其中X選自O、S或Se;以及R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基;用於製備同者的方法以及包含於其中的分子式1化合物。

Description

包含有機半導體層有機發光二極體
本發明與包含有機半導體層的有機發光二極體(OLED)、包含於其中之分子式1化合物、以及製造包含有機半導體層的有機發光二極體(OLED)的方法有關。
為自發光裝置的有機發光二極體(OLED)具有寬視角、極佳的對比、快速的反應、高亮度、極佳的驅動電壓特性以及色彩再現性。典型的OLED包括依序地堆疊在基板上的陽極電極、電洞注入層(HIL)、電洞傳輸層(HTL)、發光層(EML)、電子傳輸層(ETL)以及陰極電極。在此方面,HIL、HTL、EML以及ETL是從有機化合物形成的薄膜。
當將電壓施加至陽極電極以及陰極電極時,從陽極電極注入的電洞經由HIL以及HTL移動至EML,且從陰極電極注入的電子經由ETL移動至EML。電洞以及電子在EML中重組以產生激子。
因此,本發明的目的是提供一種有機發光二極體以及於其中使用的化合物,這克服了先前技術的缺點。現有技術的有機發光二極體可能遭受到高操作電壓及/或低效率,且在製造有機發光二極體中使用的有機半導體材料可能遭受到低玻璃轉化溫度及/或低揮發性。
依照先前技術,仍有改進OLED以及有機半導體材料的性能的需要,特別是改進操作電壓、達到較高的效率以及達到其中包含的化合物的高玻璃轉化溫度以及改進揮發性。
因此,本發明的目的是提供具有改進操作電壓以及效率的有機發光二極體以及包含於其中具有改進玻璃轉化溫度以及揮發性的化合物。
此目的由包含陽極電極、陰極電極、至少一發光層以及有機半導體層的有機發光二極體來達成,其中有機半導體層被配置在陽極電極以及陰極電極之間,且有機半導體層包含鹼金屬有機錯合物以及分子式1化合物
Figure TW201802104AD00001
分子式1 其中 X選自O、S或Se;以及 R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及 每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基。
根據另一方面,提供了包含陽極電極、陰極電極、至少一發光層以及有機半導體層的有機發光二極體,其中有機半導體層被配置在陽極電極以及陰極電極之間,且有機半導體層由鹼金屬有機錯合物以及分子式1化合物組成
Figure TW201802104AD00002
分子式1 其中 X選自O、S或Se;以及 R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及 每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基。
較佳地,本發明的有機半導體層是非發光層。同樣地,較佳的是,包含在有機半導體層中的分子式1化合物是在為大約≥ 380 nm至大約≤ 780 nm的波長的電磁光譜的可見區域中是非發光的。
就本發明而言,分子式1化合物具有下述結構。分子式1化合物包含一或更多個R3 基團可附接至的苯基基元。鄰接至苯基的是一或更多個基團R4 可附接至的亞蒽基。亞蒽基進一步與聯伸苯基連接。聯伸苯基由兩個伸苯基環組成,其中一個伸苯基環以一或更多個R5 基團取代,且另一個以一或更多個R6 基團取代。聯伸苯基的第二個環(亞蒽基未連接至的)與含磷基團(P(X)R1 R2 )連接。
也可將分子式1化合物描述為極性化合物。分子式1化合物較佳具有> 2.5以及≤ 10德拜的偶極矩。
如本文中所使用的用語「烷基」應包含線性以及分支以及環烷基。例如,C3 -烷基可選自n-丙基以及異丙基。同樣地,C4 -烷基包括n-丁基、二級丁基以及t-丁基。同樣地,C6 -烷基包括n-己基以及環己基。
在Cn 中的下標數字n與在各自的烷基、芳基、雜芳基或烷氧基中的碳原子總數有關。
如本文中所使用的用語「芳基」應包含苯基(C6 -芳基)、融合芳香族,例如萘、蒽、菲、稠四苯等等。進一步包含的是聯苯以及寡或多苯基,例如聯三苯等等。進一步包含的應為任何進一步的芳香族碳氫化合物取代基,例如茀基等等。亞芳基意指兩個進一步的基元附接至的基團。
如本文中所使用的用語「雜芳基」意指少一碳原子由較佳選自N、O、S、B或Si的雜原子取代的芳基。雜亞芳基意指兩個進一步基元附接至的基團。
Cn -雜芳基中的下標數字n僅意指排除雜原子數目的碳原子數目。在此上下文中,清楚的是,C5 雜亞芳基是包含五個碳原子的芳香族化合物,例如吡啶基。
在最佳的實施方式中,所有的R3 、R4 、R5 以及R6 是H。以此方式,提供了化合物的特別簡單的合成。
此外,較佳的是,X被選為O。在此例子中,在具有X=S或Se的分別化合物上觀察到了改進性能。
較佳地,在分子式1化合物中,聯伸苯基在間位中附接至鄰接的含磷基團以及/或鄰接的亞蒽基。對於含有至少一間位鏈接的伸苯基的聯伸苯基觀察到了性能上的特別有利效果。示範性以及較佳的「間位取代」化合物為如下所述的MX2、MX3以及MX4。
Figure TW201802104AD00003
MX2
Figure TW201802104AD00004
MX3
Figure TW201802104AD00005
MX4
進一步較佳的是,有機半導體層被配置在發光層以及陰極電極之間,較佳地,有機半導體層與陰極電極直接接觸。此配置的好處是,不需要注入層以確保足夠的電子從陰極電極注入至本發明的有機半導體層中。由此,在OLED的製造期間少了一層需要沉積。這組成顯著地節省了關於所需時間以及材料成本。
較佳地,有機半導體層沒有射極摻雜物及/或金屬摻雜物。較佳地,有機半導體層包含一種鹼金屬有機錯合物。
同樣地,較佳的是,有機發光二極體進一步包含電洞阻擋層,且有機半導體層被配置在電洞阻擋層以及陰極電極之間。
此外,較佳的是,有機發光二極體進一步包含電荷產生層,其中電荷產生層較佳為包含n型電荷產生層以及p型電荷產生層,且其中有機半導體層較佳地與n型電荷產生層直接接觸。
在一個較佳的實施方式中,OLED包含第一有機半導體層以及第二有機半導體層,第一有機半導體層包含鹼金屬有機錯合物以及分子式1化合物並與n型電荷產生層直接接觸,第二有機半導體層包含鹼金屬有機錯合物以及分子式1化合物、並被配置在陰極電極以及最遠離陽極電極的發光層之間。
根據本發明OLED的各種實施方式,有機半導體層的厚度可在大約≥ 20 nm至大約≤ 100 nm、較佳為大約≥ 30 nm至大約≤ 80 nm、進一步較佳為大約≥ 35 nm至大約≤ 60 nm、以及更佳為大約≥ 25 nm至大約≤ 40 nm的範圍中。
根據分子式1的最佳化合物如下
Figure TW201802104AD00006
MX1
Figure TW201802104AD00007
MX2
Figure TW201802104AD00008
MX3
Figure TW201802104AD00009
MX4
在這些較佳的OLED配置中,觀察到分子式1化合物的最佳性能。 鹼金屬有機錯合物
關於包含在具有進步性發光二極體中的鹼金屬有機錯合物,較佳的是,鹼金屬有機錯合物是有機鋰錯合物,較佳選自8-羥基喹啉鋰以及硼酸鋰,較佳為四(1H-吡唑-1-基)硼酸鋰或其混合物。
在例如US 2014/0048792以及Kathirgamanathan, Poopathy; Arkley, Vincent; Surendrakumar, Sivagnanasundram; Chan, Yun F.; Ravichandran, Seenivasagam; Ganeshamurugan, Subramaniam; Kumaraverl, Muttul-ingam; Antipan-Lara, Juan; Paramaswara, Gnanamolly; Reddy, Vanga R., Digest of Technical Papers - Society for Information Display International Symposium (2010), 41(Bk. 1), 465-468中揭露了用以形成可用於電子傳輸層的有機鋰錯合物的適合有機配位體。
在表1中示出了特別較佳的有機鋰錯合物。 表1 可適合在有機半導體層中使用的有機鋰錯合物
Figure TW201802104AD00010
Figure TW201802104AD00011
有機半導體層的有機鋰錯合物的有機配位體可選自包含喹啉鹽、硼酸鹽、酚酸鹽、吡啶鹽或希夫鹼配位體的群組,或表1; - 較佳地,喹啉鋰錯合物具有分子式I、II或III:
Figure TW201802104AD00012
(I)、
Figure TW201802104AD00013
(II)、
Figure TW201802104AD00014
(III), 其中 A1 至A6 是相同的或獨立地選自CH、CR、N、O; R是相同的或獨立地選自氫、鹵素、具有1至20個碳原子的烷基或芳基或雜芳基;且更佳地,A1 至A6 是CH; - 較佳地,硼酸鹽基礎有機配位體是四(1H-吡唑-1-基)硼酸鹽; - 較佳地,酚酸鹽是2-(吡啶-2-基)酚酸鹽或2-(二苯基磷酸基)酚酸鹽; - 較佳地,鋰希夫鹼具有結構100、101、102或103:
Figure TW201802104AD00015
- 更佳地,有機鋰錯合物選自表1的化合物。
較佳地,鹼金屬有機錯合物在為大約≥ 380 nm至大約≤ 780 nm的波長的電磁光譜的可見區域中實質上是非發光的。
在本說明書的上下文中,用語「實質上非發光」意指來自裝置的非發光摻雜物對於發光光譜的貢獻低於10%,較佳低於5%(相對於發光光譜)。
鹼金屬有機錯合物可在電磁光譜的紫外線區域中發光。
在本發明中,下述定義用語,這些定義應適用,除非在申請專利範圍或此說明書中的其他地方給出了不同的定義。
在本說明書的上下文中,與基質材料有關的用語「不同(different)」或「不同(differ)」意指基質材料在它們的結構分子式方面不同。
在本說明書的上下文中,與鋰化合物用語有關的用語「不同(different)」或「不同(differ)」意指鋰化合物在它們的結構分子式方面不同。
用語「沒有」、「不含有」、「不包含」不排除可能存在於沉積之前的化合物中的雜質。雜質關於由本發明達到的目的不具有技術效果。
真空熱蒸發,也稱為VTE,描述了在VTE來源中加熱化合物並在減壓下蒸發來自VTE來源的所述化合物的過程。
速率起始溫度是以˚C測量,並描述了VTE來源溫度,在此溫度,化合物的可測量蒸發在低於10-5 mbar的壓力下開始。
玻璃轉化溫度,也稱為Tg,是以˚C測量並由微差掃描熱量法(DSC)確定。
外部量子效率,也稱為EQE,是以百分比(%)測量。
在開始亮度以及原始亮度的97%之間的壽命,也稱為LT,是以小時(h)測量。
操作電壓,也稱為V,在底部發光裝置中以每平方公分10毫安培(mA/cm2 )以及在頂部發光裝置以15 mA/cm2 以伏特(V)測量。
色空間是由座標CIE-x以及CIE-y(國際照明委員會1931)描述。對於藍色發光,CIE-y具有特別的重要性。較小的CIE-y代表較深的藍色。
最高占據分子軌域,也稱為HOMO,以及最低未占據分子軌域,也稱為LUMO,是以電子伏特(eV)測量。
用語「OLED」以及「有機電發光裝置」、「有機-發光(light-emitting)二極體」以及「有機發光(light emitting)二極體」被同時使用並具有相同意義。
如本文中所使用的,「重量百分比(weight percent)」、「重量%(wt.-%)」、「重量的百分比(percent by weight)」、「重量的%(% by weight)」以及其變化意指組成物、成分、物質或劑為各自電子傳輸層的那個成分、物質或劑的重量除以其各自電子傳輸層的總重並乘以100。要了解的是,各自有機半導體層的所有成分、物質以及劑的總重量百分比量被選擇,使其不超過100重量%。
如本文中所使用的,「體積百分比(volume percent)」、「體積%(vol.-%)」、「體積百分比(percent by volum)」、「體積%(% by volume)」以及其變化意指組成物、成分、物質或劑,各自電子傳輸層的那個成分、物質或劑的體積除以其各自電子傳輸層的總體積並乘以100。要了解的是,陰極層的所有成分、物質以及劑的總體積百分比量被選擇,使其不超過100體積%。
無論是否明確地指出,假定本文中的所有數值由用語「大約」所修飾。如本文中所使用的,用語「大約」意指可發生的數字量的變化。無論是否由用語「大約」所修飾,申請專利範圍包括所述量的均等物。
應注意的是,如此說明書以及所附申請專利範圍中所使用的,除非內容另外清楚地指出,單數形式「一(a)」、「一(an)」以及「該」包括複數參照物。
在本文中,當第一元件被提及為被形成或配置在第二元件「上」時,第一元件可被直接配置在第二元件上,或一或更多個其他元件可被配置於其之間。當第一元件被提及為被「直接」形成或配置在第二元件上時,其之間沒有配置其他元件。
用語「接觸夾於(contacting sandwitched)」意指三層的配置,由此在中間的層與兩個鄰接的層直接接觸。
陽極電極以及陰極電極可被描述為陽極電極/陰極電極或陽極電極/陰極電極或陽極電極層/陰極層。
根據本發明的有機發光二極體可包含下述組成。在此方面,各自的組成可如下。 基板
基板可為有機發光二極體的製造中常使用的任何基板。如果光經由基板發出,基板可為透明的材料,例如玻璃基板或透明的塑膠基板,具有極佳的機械強度、熱穩定性、透明度、表面平滑度、處理容易度以及防水性。如果光經由頂部表面發出,基板可為透明或不透明的材料,例如玻璃基板、塑膠基板、金屬基板或矽基板。 陽極電極
可藉由沉積或濺鍍用以形成陽極電極的化合物來形成陽極電極。用以形成陽極電極的化合物可為高工作功能化合物,以幫助電洞注入。陽極材料也可選自低工作功能材料(即鋁)。陽極電極可為透明或反射型電極。透明的傳導化合物,例如氧化銦錫(ITO)、氧化銦鋅(IZO)、二氧化錫(SnO2)以及氧化鋅(ZnO),可用以形成陽極電極120。也可使用鎂(Mg)、鋁(Al)、鋁-鋰(Al-Li)、鈣(Ca)、鎂-銦(Mg-In)、鎂-銀(Mg-Ag)、銀(Ag)、金(Au)或諸如此類來形成陽極電極120。 陰極電極
在進一步的較佳實施方式中,陰極電極包含至少一實質上為金屬的陰極層,該實質上為金屬的陰極層包含選自鹼金屬、鹼土金屬、稀土金屬、第3族過渡金屬以及其混合物所組成的群組的第一零價金屬。
用語「實質上為金屬」應被了解為包含至少部分為實質上元素形式的金屬。用語實質上為元素應被了解為,在電子狀態與能量方面、以及在所含金屬原子之化學鍵方面,比金屬鹽、有機金屬的金屬化合物或在金屬以及非金屬之間包含共價鍵的另一種化合物的形式、或金屬的配位化合物的形式更接近元素金屬或自由金屬原子的形式、或更接近金屬原子簇的形式。
要了解的是,除了純元素金屬、原子化金屬、金屬分子以及金屬簇之外,金屬合金代表金屬的實質上元素形式的任何其他範例。這些實質上為金屬形式的示範性代表是較佳實質上為金屬的陰極層組成。
特別地,當第一零價金屬選自此群組時,可獲得低操作電壓以及高製造產量。
根據另一方面,有提供了一種有機發光二極體,其中實質上為金屬的陰極層沒有金屬鹵化物及/或沒有金屬有機錯合物。
根據較佳的實施方式,實質上為金屬的陰極層包含或由第一零價金屬組成。在特別較佳的實施方式中,實質上為金屬的陰極層進一步包含第二零價金屬,其中第二零價金屬選自主族金屬或過渡金屬;以及其中第二零價金屬與第一零價金屬不同。
在此方面,進一步的較佳的是,第二零價金屬選自Li、Na、K、Cs、Mg、Ca、Sr、Ba、Sc、Y、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Au、Al、Ga、In、Sn、Te、Bi、Pb以及其混合物所組成的群組,較佳地,第二零價金屬選自Ag、Au、Zn、Te、Yb、Ga、Bi、Ba、Ca、Al以及其混合物所組成的群組;以及最佳地,第二零價金屬選自Ag、Zn、Te、Yb、Ga、Bi以及其混合物所組成的群組。
第二零價金屬可改進沉積過程的可靠性以及沉積層的機械穩定性,且當選自此列表時由此改進製造產量。此外,第二零價金屬可改進第一陰極層的反射率。
根據一個較佳的實施方式,實質上為金屬的陰極層可包含至少大約≥ 15體積%至大約≤ 99體積%的第一零價金屬以及少於大約≥ 85體積%至大約≤ 1體積%的第二零價金屬;較佳為≥ 15體積%至大約≤ 95體積%的第一零價金屬以及少於大約≥ 85體積%至大約≤ 5體積%的第二零價金屬;更佳為≥ 20體積%至大約≤ 90體積%的第一零價金屬以及少於大約≥80體積%至大約≤ 10體積%的第二零價金屬;也較佳為≥ 15體積%至大約≤80體積%的第一零價金屬以及少於大約≥ 85體積%至大約≤ 20體積%的第二零價金屬。
特別較佳地,實質上為金屬的陰極層包含至少大約≥ 20體積%至大約≤ 85體積%的選自Mg的第一零價金屬,以及少於大約≥ 80體積%至大約≤ 15體積%的選自Ag的第二零價金屬。
第一零價金屬可以使來自陰極的有效電子注入能夠進行。第二零價金屬可穩定陰極層及/或增加陰極沉積步驟的產量及/或增加陰極的透明度或反射率。
在進一步的較佳實施方式中,包含在陰極電極中實質上為金屬的陰極層是第一陰極層,且陰極電極進一步包含第二陰極層,其中第一陰極層被配置較靠近有機半導體層,且第二陰極層被配置進一步遠離有機半導體層,且其中第二陰極層包含為零價金屬、合金、氧化物或其混合物的形式的至少一第三金屬,其中第三金屬選自主族金屬、過渡金屬、稀土金屬或其混合物,較佳地,第三金屬選自零價Ag、Al、Cu、Au、MgAg合金、氧化銦錫、氧化銦鋅、氧化鐿、氧化銦鎵鋅,以及更佳地,第三金屬選自Ag、Al或MgAg合金;以及最佳地,第三金屬選自零價Ag或Al。
第二陰極層可保護第一陰極層避免環境影響。此外,當光經由陰極電極發出時,其可提升裝置中發光的外部耦合。
第一陰極層的厚度可在大約0.2 nm至100 nm的範圍中,較佳為1至50 nm。如果不存在第二陰極層,第一陰極層的厚度可在1至25 nm的範圍中。如果存在第二陰極層,第一陰極層的厚度可在0.2至5 nm的範圍中。
第二陰極層的厚度可在0.5至500 nm的範圍中,較佳為10至200 nm,甚至更佳為50至150 nm。
當陰極電極的厚度在5 nm至50 nm的範圍中時,即使使用金屬或金屬合金,陰極電極可為透明的。 電洞注入層
可藉由真空沉積、旋轉塗佈、列印、鑄造、狹縫模具塗佈、朗謬-布洛傑(LB)沉積或諸如此類在陽極電極120上形成電洞注入層(HIL)130。當使用真空沉積形成HIL 130時,沉積條件可根據用以形成HIL 130的化合物以及HIL 130的想要結果與熱特性而不同。然而,一般而言,用於真空沉積的條件可包括100°C至500°C的沉積溫度、10-8 至10-3 托爾的壓力(1托爾等於133.322 Pa)、以及0.1至10 nm/sec的沉積率。
當使用旋轉塗佈來形成HIL 130時,列印、塗佈條件可根據用以形成HIL 130的化合物以及HIL 130的想要結果與熱特性而不同。例如,塗佈條件可包括大約2000 rpm至大約5000 rpm的塗佈速度以及大約80°C至大約200°C的熱處理溫度。在進行塗佈之後,熱處理移除了溶劑。
HIL 130可由常用以形成HIL的任何化合物所形成。可用以形成HIL 130的化合物的範例包括酞青化合物,例如銅酞青(CuPc)、4,4',4"-三(3-甲基苯基苯基胺基)三苯胺(m-MTDATA)、TDATA、2T-NATA、聚苯胺/十二基苯磺酸(Pani/DBSA)、聚(3,4-乙烯二氧噻吩)/聚(4-苯乙烯磺酸鹽)(PEDOT/PSS)、聚苯胺/樟腦磺酸(Pani/CSA)、以及聚苯胺)/聚(4-苯乙烯磺酸鹽)(PANI/PSS)。
HIL 130可為純的p摻雜物層或可選自以p摻雜物摻雜的電洞-傳輸基質化合物。已知氧化還原摻雜電洞傳輸材料的典型範例為:以LUMO能級是大約-5.2 eV的四氟-四氰基醌二甲烷(F4TCNQ)摻雜的銅酞青(CuPc),其HOMO能級是近似-5.2 eV;以F4TCNQ摻雜的鋅酞青(ZnPc)(HOMO = -5.2 eV);以F4TCNQ摻雜的α-NPD(N,N'-雙(萘-1-基)-N,N'-雙(苯基)-聯苯胺)。以2,2'-(過氟萘-2,6-二亞基)二丙二腈(PD1)摻雜的α-NPD。以2,2',2''-(環丙烷-1,2,3-三亞基)三(2-(p-氰基四氟苯基)乙腈)(PD2)摻雜的α-NPD。摻雜物濃度可選自1至20重量%,更佳為3重量%至10重量%。
HIL 130的厚度可在大約1 nm至大約100 nm的範圍中,且例如,大約1 nm至大約25 nm。當HIL 130的厚度在此範圍內時,HIL 130可具有極佳的電洞注入特徵,而無驅動電壓的實質增加。 電洞傳輸層
可藉由真空沉積、旋轉塗佈、狹縫模具塗佈、列印、鑄造、朗謬-布洛傑(LB)沉積或諸如此類在HIL 130上形成電洞傳輸層(HTL)140。當藉由真空沉積或旋轉塗佈形成HTL 140時,用於沉積以及塗佈的條件可類似於形成HIL 130的條件。然而,用於真空或溶液沉積的條件可根據用以形成HTL 140的化合物而不同。
HTL 140可由常用以形成HTL的任何化合物所形成。可適合使用的化合物被揭露在例如Yasuhiko Shirota and Hiroshi Kageyama, Chem. Rev. 2007, 107, 953−1010中並併入以作為參考。可用以形成HTL 140的化合物的範例為:咔唑衍生物,例如N-苯基咔唑或聚乙烯咔唑;具有芳香族縮合環的胺衍生物,例如N,N'-雙(3-甲基苯基)-N,N'-二苯基-[1,1-聯苯]-4,4'-二胺(TPD)、或N,N'-二(萘-1-基)-N,N'-二苯基聯苯胺(α-NPD);以及三苯胺基礎化合物,例如4,4',4"-三(N-咔唑基)三苯胺(TCTA)。在這些化合物之中,TCTA可傳輸電洞並抑制激子擴散至EML中。
HTL 140的厚度可在大約5 nm至大約250 nm的範圍中,較佳地,大約10 nm至大約200 nm,進一步地大約20 nm至大約190 nm,進一步地大約40 nm至大約180 nm,進一步地大約60 nm至大約170 nm,進一步地大約80 nm至大約160 nm,進一步地大約100 nm至大約160 nm,進一步地大約120 nm至大約140 nm。HTL 140的較佳厚度可為170 nm至200 nm。
當HTL 140的厚度在此範圍內時,HTL 140可具有極佳的電洞傳輸特徵,而沒有驅動電壓的實質增加。 電子阻擋層
電子阻擋層(EBL)145的功能是用以預防電子從發光層被轉移至電洞傳輸層,並由此限制至發光層的電子。因此,改進了效率、操作電壓及/或壽命。典型地,電子阻擋層包含三芳基胺化合物。三芳基胺化合物可具有比電洞傳輸層的LUMO能級接近真空度的LUMO能級。相較於電洞傳輸層的HOMO能級,電子阻擋層可具有進一步遠離真空度的HOMO能級。電子阻擋層的厚度選自2以及20 nm之間。
電子阻擋層可包含下面分子式Z化合物
Figure TW201802104AD00016
(Z)。
在分子式Z中, CY1以及CY2彼此相同或不同,且每個獨立地代表苯環或萘環, Ar1至Ar3彼此相同或不同,且每個獨立地選自下述所組成的群組:氫;具有6至30個碳原子的取代或未取代芳基;以及具有5至30個碳原子的取代或未取代雜芳基, Ar4選自取代或未取代苯基、取代或未取代聯苯基、取代或未取代聯三苯基、取代或未取代聯伸三苯基以及具有5至30個碳原子的取代或未取代雜芳基所組成的群組, L是具有6至30個碳原子的取代或未取代亞芳基。
如果電子阻擋層具有高三重態能級,其也可被描述為三重態控制層。
如果使用了磷光綠或藍發光層,三重態控制層的功能是降低三重態的淬熄(quenching)。由此,可達到從磷發光層發光的較高效率。三重態控制層選自具有三重態能級在鄰接發光層中的磷光射極的三重態能級之上的三芳基胺化合物。在EP 2 722 908 A1中描述了適合的三重態控制層,特別是三芳基胺化合物。 發光層(EML)
可藉由真空沉積、旋轉塗佈、狹縫模具塗佈、列印、鑄造、LB或諸如此類在HTL上形成EML 150。當使用真空沉積或旋轉塗佈形成EML時,用於沉積以及塗佈的條件可類似於形成HIL的條件。然而,用於沉積以及塗佈的條件可根據用以形成EML的化合物而不同。
發光層(EML)可由主體以及摻雜物的組合所形成。主體的範例為Alq3、4,4'-N,N'-二咔唑-聯苯(CBP)、聚(n-乙烯咔唑)(PVK)、9,10-二(萘-2-基)蒽(ADN)、4,4',4''-三(咔唑-9-基)-三苯胺(TCTA)、1,3,5-三(N-苯并咪唑-2-基)苯(TPBI)、3-叔丁基-9,10-二-2-萘基蒽(TBADN)、二苯乙烯基亞芳基(DSA)、雙(2-(2-羥基苯基)苯并噻唑)鋅(Zn(BTZ)2 )、下述E3以及下述化合物1、以及下述化合物2。
Figure TW201802104AD00017
E3
Figure TW201802104AD00018
以及
Figure TW201802104AD00019
化合物 1
Figure TW201802104AD00020
化合物 2
摻雜物可為磷光或螢光射極。磷光射極以及經由熱活化型延遲螢光(TADF)機制發光的射極是較佳的(由於它們的較高效率)。射極可為小分子或聚合物。
紅色摻雜物的範例是PtOEP、Ir(piq)3 、以及Btp2 lr(acac),但不限於此。這些化合物是磷光射極,然而,也可使用螢光紅色摻雜物。
Figure TW201802104AD00021
磷光綠色摻雜物的範例是下面示出的Ir(ppy)3 (ppy =苯基吡啶)、Ir(ppy)2 (acac)、Ir(mpyp)3 。化合物3是螢光綠色射極的範例,且如下示出了結構。
Figure TW201802104AD00022
Figure TW201802104AD00023
化合物 3
磷光藍色摻雜物的範例是F2 Irpic、(F2 ppy)2 Ir(tmd)以及Ir(dfppz)3 、三茀,如下示出了結構。4.4'-雙(4-二苯基胺基苯乙烯基)聯苯(DPAVBi)、2,5,8,11-四-叔丁基苝(TBPe)以及下面的化合物4是螢光藍色摻雜物的範例。
Figure TW201802104AD00024
Figure TW201802104AD00025
Figure TW201802104AD00026
F2 Irpic (F2 ppy)2 Ir(tmd) Ir(dfppz)3
Figure TW201802104AD00027
化合物 4
基於100重量份的主體,摻雜物的量可在大約0.01至大約50重量份的範圍中。或者,發光層可由發光聚合物組成。EML可具有大約10 nm至大約100 nm的厚度,例如,大約20 nm至大約60 nm。當EML的厚度在此範圍內時,EML可具有極佳的發光,而無驅動電壓的實質增加。 電洞阻擋層(HBL)
當EML包含磷光摻雜物時,可藉由使用真空沉積、旋轉塗佈、狹縫模具塗佈、列印、鑄造、LB沉積或諸如此類在EML上形成電洞阻擋層(HBL),以防止三重態激子或電洞擴散至ETL中。
當使用真空沉積或旋轉塗佈來形成HBL時,用於沉積以及塗佈的條件可類似於形成HIL的條件。然而,用於沉積以及塗佈的條件可根據用以形成HBL的化合物而不同。可使用常用以形成HBL的任何化合物。用於形成HBL的化合物範例包括噁二唑衍生物、三唑衍生物以及啡啉衍生物。
HBL可具有大約5 nm至大約100 nm的厚度,例如,大約10 nm至大約30 nm。當HBL的厚度在此範圍內時,HBL可具有極佳的電洞阻擋特性,而無驅動電壓的實質增加。 電子傳輸層
根據本發明OLED可隨選地含有電子傳輸層(ETL)。
根據各種實施方式,OLED可包含電子傳輸層或包含至少第一電子傳輸層以及至少第二電子傳輸層的電子傳輸層堆疊。
根據本發明的OLED的各種實施方式,電子傳輸層可包含至少一基質化合物。較佳地,基質化合物是有機化合物。更佳地,基質化合物為共價有機基質化合物。換言之,基質化合物包含共價鍵。要了解的是,「實質上共價」意指化合物包含主要由共價鍵鍵結在一起的元素。
根據另一方面,提供了有機發光二極體,其中電子傳輸層被配置在本發明的發光層以及有機半導體層之間。較佳地,電子傳輸層與發光層直接接觸,且有機半導體層接觸夾於電子傳輸層以及陰極電極之間。
較佳地,電子傳輸層沒有射極摻雜物及/或鹼金屬有機錯合物。
根據另一方面,電子傳輸層包含第一有機基質化合物。
根據更佳的方面,第一有機基質化合物選自包含苯并[k]熒蒽、芘、蒽、茀、螺(雙茀)、菲、苝、三蝶烯、螺[茀-9,9'-氧雜蒽]、蔻、聯伸三苯、氧雜蒽、苯并呋喃、二苯并呋喃、二萘并呋喃、吖啶、苯并[c]吖啶、二苯并[c,h]吖啶、二苯并[a,j]吖啶、三嗪、吡啶、嘧啶、咔唑、苯基三唑、苯并咪唑、啡啉、噁二唑、苯并噁唑、噁唑、喹唑啉、苯并[h ]喹唑啉、吡啶并[3,2-h]喹唑啉、嘧啶并[4,5-f]喹唑啉、喹啉、苯并喹啉、吡咯并[2,1-a]異喹啉、苯并呋喃[2,3-d]噠嗪、噻吩并嘧啶、二噻吩并噻吩、苯并噻吩并嘧啶、苯并噻吩并嘧啶、氧化膦、磷雜環戊二烯,三芳基硼烷、2-(苯并[d]噁唑-2-基)苯氧基金屬錯合物、2-(苯并[d]噻唑-2-基)苯氧基金屬錯合物或其混合物的群組。
電子傳輸層可較佳包含具有大約≥ 0德拜(Debye)以及大約≤ 2.5德拜的偶極矩的第一有機基質化合物,較佳為≥ 0德拜以及< 2.3德拜,更佳為≥ 0德拜以及< 2德拜。第一有機基質化合物也可被描述為非極性有機基質化合物。
含有N個原子的分子之偶極矩
Figure TW201802104AD00028
是由以下所給定:
Figure TW201802104AD00029
Figure TW201802104AD00030
其中
Figure TW201802104AD00031
以及
Figure TW201802104AD00032
為分子中原子i的部分電荷以及位置。偶極矩是由半經驗分子軌域法確定。使用如下所述的方法來計算出表5中的值。使用如程式套裝TURBOMOLE V6.5中實施的具有def-SV(P)基礎的Becke以及Perdew BP的DFT函數或具有def2-TZVP基礎組的混合函數B3LYP來獲得部分電荷以及原子位置。如果多於一個構形是可行的,選擇具有最低總能量的構形來確定偶極矩。
例如,第一有機基質化合物可具有大約≥ 0德拜以及大約≤ 2.5德拜的偶極矩,第一有機基質化合物可含有倒轉中心I、水平鏡面、多於一個Cn 軸(n>1)及/或垂直於Cn 的nC2
如果第一有機基質化合物具有大約≥ 0德拜以及大約≤ 2.5德拜的偶極矩,第一有機基質化合物可含有蒽基團、芘基團、苝基團、蔻基團、苯并[k]熒蒽基團、茀基團、氧雜蒽基團、二苯并[c,h]吖啶基團、二苯并[a,j]吖啶基團、苯并[c]吖啶基團、三芳基硼烷基團、二噻吩并噻吩基團、三嗪基團或苯并噻吩并嘧啶基團。
如果第一有機基質化合物具有大約≥ 0德拜以及大約≤ 2.5德拜的偶極矩,第一有機基質化合物可沒有咪唑基團、啡啉基團、氧化膦基團、噁唑基團、噁二唑基團、三唑基團、嘧啶基團、喹唑啉基團、苯并[h]喹唑啉基團或吡啶并[3,2-h]喹唑啉基團。
在一個較佳的實施方式中,第一有機基質化合物選自下述化合物或其衍生物,化合物為蒽、芘、蔻、聯伸三苯、茀、螺-茀、氧雜蒽、咔唑、二苯并[c,h]吖啶、二苯并[a,j]吖啶、苯并[c]吖啶、三芳基硼烷化合物、2-(苯并[d]噁唑-2-基)苯氧基金屬錯合物;2-(苯并[d]噻唑-2-基)苯氧基金屬錯合物、三嗪、苯并噻吩并嘧啶、二噻吩并噻吩、苯并[k]熒蒽、苝或其混合物。
可進一步較佳的是,第一有機基質化合物包含分子式(1)的三芳基硼烷化合物
Figure TW201802104AD00033
(1) 其中R1 、R3 以及R7 獨立地選自H、D、C1 -C16 烷基以及C1 -C16 烷氧基所組成的群組; R2 、R4 、R5 以及R6 獨立地選自H、D、C1 -C16 烷基、C1 -C16 烷氧基以及C6 -C20 芳基所組成的群組; Ar0 選自取代或未取代的C6 -C20 芳基,其中,在Ar0 被取代的例子中,取代基獨立地選自D、C1 -C12 烷基、C1 -C16 烷氧基以及C6 -C20 芳基所組成的群組;以及 Ar1 選自取代或未取代的C6 -C20 亞芳基,其中,在Ar1 被取代的例子中,取代基獨立地選自D、C1 -C12 烷基、C1 -C16 烷氧基以及C6 -C20 芳基所組成的群組;以及 Ar2 選自H、D、取代或未取代C6 -C40 芳基以及C5 -C40 雜芳基所組成的群組。
較佳地,Ar0 選自取代或未取代苯基或萘基,其中,在Ar0 被取代的例子中,取代基獨立地選自D、C1 -C12 烷基、C1 -C16 烷氧基以及C6 -C20 芳基所組成的群組。
分子式(1)的三芳基硼烷化合物:
Figure TW201802104AD00034
(1) 被揭露在WO2015049030A2以及EP15187135.7中。
在進一步的較佳實施方式中,第一有機基質化合物包含分子式(2)的二苯并[c,h]吖啶化合物
Figure TW201802104AD00035
(2) 及/或分子式(3)的二苯并[a,j]吖啶化合物
Figure TW201802104AD00036
(3) 及/或分子式(4)的苯并[c]吖啶化合物
Figure TW201802104AD00037
(4) 其中Ar3 獨立地選自C6 -C20 亞芳基,較佳為伸苯基、聯伸苯基或伸茀基; Ar4 獨立地選自未取代或取代C6 -C40 芳基,較佳為苯基、萘基、蒽基、芘基或菲基; 以及在Ar4 被取代的例子中,一或更多個取代基可獨立地選自C1 -C12 烷基以及C1 -C12 雜烷基所組成的群組,其中C1 -C5 烷基是較佳的。
在EP 2 395 571中揭露了適合的二苯并[c,h]吖啶化合物。在EP 2 312 663中揭露了適合的二苯并[a,j]吖啶。在WO 2015/083948中揭露了適合的苯并[c]吖啶化合物。
在進一步的實施方式中,較佳的是,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的二苯并[c,h]吖啶化合物,較佳為7-(萘-2-基)二苯并[c,h]吖啶、7-(3-(芘-1-基)苯基)二苯并[c,h]吖啶、7-(3-(吡啶-4-基)苯基)二苯并[c,h]吖啶。
在進一步的實施方式中,較佳的是,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的二苯并[a,j]吖啶化合物,較佳為14-(3-(芘-1-基)苯基)二苯并[a,j]吖啶。
在進一步的實施方式中,較佳的是,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的苯并[c]吖啶化合物,較佳為7-(3-(芘-1-基)苯基)苯并[c]吖啶。
可進一步較佳的是,第一有機基質化合物包含分子式(5)的三嗪化合物
Figure TW201802104AD00038
(5) 其中Ar5 獨立地選自未取代或取代的C6 -C20 芳基或Ar5.1 -Ar5.2 , 其中Ar5.1 選自未取代或取代的C6 -C20 亞芳基以及 Ar5,2 選自未取代或取代的C6 -C20 芳基或未取代以及取代的C5 -C20 雜芳基; Ar6 選自未取代或取代的C6 -C20 亞芳基,較佳為伸苯基、聯伸苯基、三伸苯基、伸茀基; Ar7 獨立地選自取代或未取代芳基、取代或未取代雜芳基、具有6至40個環形成原子的芳基以及雜芳基,較佳為苯基、萘基、菲基、茀基、聯三苯、吡啶基、喹啉基、嘧啶基、三嗪基、苯并[h]喹啉基或苯并[4,5]噻吩并[3,2-d]嘧啶所組成的群組; x選自1或2, 其中在Ar5 被取代的例子中,一或更多個取代基可獨立地選自C1 -C12 烷基以及C1 -C12 雜烷基,較佳為C1 -C5 烷基; 以及在Ar7 被取代的例子中,一或更多個取代基可獨立地選自C1 -C12 烷基以及C1 -C12 雜烷基,較佳為C1 -C5 烷基,以及選自C6 -C20 芳基。
在US 2011/284832、WO 2014/171541、WO 2015/008866、WO2015/105313、JP 2015-074649 A以及JP 2015-126140以及KR 2015/0088712中揭露了適合的三嗪化合物。
此外,較佳的是,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的三嗪化合物,較佳為3-[4-(4,6-二-2-萘基-1,3,5-三嗪-2-基)苯基]喹啉酮、2-[3-(6'-甲基[2,2'-雙吡啶]-5-基)-5-(9-菲基)苯基]-4,6-二苯基-1,3,5-三嗪、2-(3-(菲-9-基)-5-(吡啶-2-基)苯基)-4,6-二苯基-1,3,5-三嗪、2,4-二苯基-6-(5'''-苯基-[1,1':3',1'':3'',1''':3''',1''''-五聯苯]-3-基)-1,3,5-三嗪、2-([1,1'-聯苯]-3-基)-4-(3'-(4,6-二苯基-1,3,5-三嗪-2-基)-[1,1'-聯苯]-3-基)-6-苯基-1,3,5-三嗪及/或2-(3'-(4,6-二苯基-1,3,5-三嗪-2-基)-[1,1'-聯苯]-3-基)-4-苯基苯并[4,5]噻吩并[3,2-d]嘧啶。
在進一步的較佳實施方式中,第一有機基質化合物包含2-(苯并[d]噁唑-2-基)苯氧基金屬錯合物或分子式(6)的2-(苯并[d]噻唑-2-基)苯氧基金屬錯合物
Figure TW201802104AD00039
(6) 其中M是選自Al、Zr或Sc的金屬; X選自O或S;以及 n選自3或4。
在WO 2010/020352中揭露了適合的2-(苯并[d]噁唑-2-基)苯氧基金屬錯合物或2-(苯并[d]噻唑-2-基)苯氧基金屬錯合物。
在一個較佳的實施方式中,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的苯并噻吩并嘧啶化合物,較佳為2-苯基-4-(4',5',6'-三苯基-[1,1':2',1'':3'',1'''-四聯苯]-3'''-基)苯并[4,5]噻吩并[3,2-d]嘧啶。在WO 2015/0105316中揭露了適合的苯并噻吩并嘧啶化合物。
在一個較佳的實施方式中,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的苯并[k]熒蒽化合物,較佳為7,12-二苯基苯并[k]熒蒽。在JP10189247 A2中揭露了適合的苯并[k]熒蒽化合物。
在一個較佳的實施方式中,第一有機基質化合物包含以C6 -C40 芳基、C5 -C40 雜芳基及/或C1 -C12 烷基取代的苝化合物,較佳為3,9-雙([1,1’-聯苯]-2-基)苝、3,9-二(萘-2-基)苝或3,10-二(萘-2-基)苝。在US2007202354中揭露了適合的苝化合物。
在一個較佳的實施方式中,第一有機基質化合物包含芘化合物。在US20050025993中揭露了適合的芘化合物。
在一個較佳的實施方式中,第一有機基質化合物包含螺-茀化合物。在JP2005032686中揭露了適合的螺-茀化合物。
在一個較佳的實施方式中,第一有機基質化合物包含氧雜蒽化合物。在US2003168970A以及WO 2013149958中揭露了適合的氧雜蒽化合物。
在一個較佳的實施方式中,第一有機基質化合物包含蔻化合物。在Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S., Japanese Journal of Applied Physics, Part 2: Letters (1988), 27(2), L269-L271中揭露了適合的蔻化合物。
在一個較佳的實施方式中,第一有機基質化合物包含聯伸三苯化合物。在US20050025993中揭露了適合的聯伸三苯化合物。
在一個較佳的實施方式中,第一有機基質化合物選自咔唑化合物。在US2015207079中揭露了適合的咔唑化合物。
在一個較佳的實施方式中,第一有機基質化合物選自二噻吩并噻吩化合物。在KR2011085784中揭露了適合的二噻吩并噻吩化合物。
在一個較佳的實施方式中,第一有機基質化合物包含蒽化合物。特別較佳的是由下述分子式400代表的蒽化合物:
Figure TW201802104AD00040
在分子式400中,Ar111 以及Ar112 每個可獨立地為取代或未取代的C6 -C60 亞芳基;Ar113 至Ar116 每個可獨立地為取代或未取代的C1 -C10 烷基或取代或未取代的C6 -C60 芳基;以及g、h、i以及j每個可獨立地為0至4的整數。
在一些實施方式中,在分子式400中的Ar111 以及Ar112 每個可獨立地為下述其中之一: 伸苯基、伸萘基、伸菲基或伸芘基;或 伸苯基、伸萘基、伸菲基、茀基或伸芘基,每個以苯基、萘基或蒽基的至少其中之一取代。
在分子式400中,g、h、i以及j每個可獨立地為0、1或2的整數。
在分子式400中,Ar113 至Ar116 每個可獨立地為下述其中之一: 以苯基、萘基或蒽基的至少其中之一取代的C1 -C10 烷基; 苯基、萘基、蒽基、芘基、菲基或茀基; 苯基、萘基、蒽基、芘基、菲基、或茀基,每個以下述至少其中之一取代:氘原子、鹵素原子、羥基、氰基、硝基、胺基、甲脒基、聯胺基團、腙基團、羧基或其鹽類、磺酸基團或其鹽類、磷酸基團或其鹽類、C1 -C60 烷基、C2 -C60 烯基、C2 -C60 炔基、C1 -C60 烷氧基、苯基、萘基、蒽基、芘基、菲基、或茀基;或
Figure TW201802104AD00041
但本發明的實施方式不限於此。
根據進一步更佳的方面,第一有機基質化合物可選自下述表2的化合物。 表2 可適合使用的具有≥ 0德拜以及≤ 2.5德拜的偶極矩的第一有機基質化合物
Figure TW201802104AD00042
下述表3示出了具有≥ 0德拜以及≤ 2.5德拜的偶極矩的第一有機基質化合物之代表性範例的偶極矩。 表3 具有≥ 0德拜以及≤ 2.5德拜的偶極矩的第一有機基質化合物的代表性範例
Figure TW201802104AD00043
Figure TW201802104AD00044
Figure TW201802104AD00045
根據本發明OLED的各種實施方式,電子傳輸層的厚度可在大約≥ 0.5 nm至大約≤ 95 nm的範圍中,較佳為大約≥ 3 nm至大約≤ 80 nm,進一步較佳為大約≥ 5 nm至大約≤ 60 nm,也較佳為大約≥ 6 nm至大約≤ 40 nm,另外較佳為大約≥ 8 nm至大約≤ 20 nm以及更佳為大約≥ 3 nm至大約≤ 18 nm。 電荷產生層
在US 2012098012 A中描述了可適合用於本發明OLED的電荷產生層(CGL)。
電荷產生層一般由雙層構成。電荷產生層可為結合n型電荷產生層以及p型電荷產生層的pn接面電荷產生層。pn接面電荷產生層產生電荷或將它們分開成電洞以及電子;以及將電荷注入至個別的發光層。換言之,n型電荷產生層提供電子給鄰接至陽極電極的第一發光層,而p型電荷產生層提供電洞至鄰接至陰極電極的第二發光層,由此可進一步改進併入多發光層的有機發光裝置的發光效率,且同時可降低驅動電壓。
p型電荷產生層可由摻雜有p型摻雜物的金屬或有機材料構成。這裡,金屬可為選自Al、Cu、Fe、Pb、Zn、Au、Pt、W、In、Mo、Ni以及Ti所組成的群組的金屬,或選自Al、Cu、Fe、Pb、Zn、Au、Pt、W、In、Mo、Ni以及Ti所組成的群組的兩或更多者所組成之合金。同樣地,用於摻雜有p型的有機材料的p型摻雜物以及主體可使用習用材料。例如,p型摻雜物可為選自四氟-7,7,8,8-四氰基醌二甲烷(F4-TCNQ)、四氰基醌二甲烷的衍生物、軸烯衍生物、碘、FeCl3 、FeF3 以及SbC15 所組成的群組的其中之一。同樣地,主體可為選自N,N'-二(萘-1-基)-N,N-二苯基-聯苯胺(NPB)、N,N'-二苯基-N,N'-雙(3-甲基苯基)-1,1-聯苯-4,4'-二胺(TPD)以及N,N',N'-四萘基-聯苯胺(TNB)所組成的群組的其中之一。
n型電荷產生層可由摻雜有n型的金屬或有機材料構成。金屬可為選自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、La、Ce、Sm、Eu、Tb、Dy以及Yb所組成的群組的其中之一。同樣地,用於摻雜有n型的有機材料的n型摻雜物以及主體可使用習用材料。例如,n型摻雜物可為鹼金屬、鹼金屬化合物、鹼土金屬或鹼土金屬化合物。更具體地,n型摻雜物可選自Cs、K、Rb、Mg、Na、Ca、Sr、Eu以及Yb所組成的群組的其中之一。主體材料可為選自三(8-羥基喹啉)鋁、三嗪、羥基喹啉衍生物、吲哚衍生物以及噻咯衍生物所組成的群組的其中之一。
在另一個較佳的實施方式中,n型電荷產生層被配置鄰接至電子傳輸層。根據一個實施方式的n型電荷產生層可包括下述化學分子式16的化合物。
Figure TW201802104AD00046
(16),其中 每個A1 至A6 可為氫、鹵素原子、腈(-CN)、硝基(-NO2 )、磺醯基(-SO2 R)、亞碸(-SOR)、磺胺(-SO2 NR)、磺酸鹽(-SO3 R)、三氟甲基(-CF3 )、酯(-COOR)、醯胺(-CONHR或-CONRR’)、取代或未取代的直鏈或支鏈C1 -C12 烷氧基、取代或未取代的直鏈或支鏈C1 -C12 烷基、取代或未取代的直鏈或支鏈C2 -C12 烯基、取代或未取代的芳香或非芳香族雜環、取代或未取代的芳基、取代或未取代的單或二芳基胺、取代或未取代的芳烷基胺或諸如此類。
在本文中,每個上述R以及R’可為取代或未取代的C1 -C60 烷基、取代或未取代的芳基或取代或未取代的5至7元雜環或諸如此類。
特別較佳的是包含分子式(17)化合物的n型電荷產生層
Figure TW201802104AD00047
(17)。
p型電荷產生層被配置在n型電荷產生層上。作為用於p型電荷產生層的材料,可使用芳基胺基礎化合物。芳基胺基礎化合物的一個實施方式包括下述化學分子式18的化合物:
Figure TW201802104AD00048
(18),其中 Ar1 、Ar2 以及Ar3 每個獨立地為氫或碳氫化合物基團。在本文中,Ar1 、Ar2 以及Ar3 的至少其中之一可包括芳香族碳氫化合物取代基,且每個取代基可相同,或它們可由不同的取代基構成。當Ar1 、Ar2 以及Ar3 不是芳香族碳氫化合物時,它們可為氫;直鏈、支鏈或環脂肪族碳氫化合物;或包括N、O、S或Se的雜環基團。
在本發明的另一方面中,有機發光二極體(100)進一步的包含n型CGL(185)、p型CGL(135)以及與n型CGL直接接觸的有機半導體層。在一個較佳的實施方式中,n型CGL包含或由第一零價金屬組成。
此目的進一步由用於製備根據前述申請專利範圍任一所述的有機發光二極體的方法所達成,此方法包含下述步驟: 共同沉積至少一鹼金屬有機錯合物以及如申請專利範圍第1項中所定義的至少一分子式1化合物
Figure TW201802104AD00049
分子式1
用語共同沉積在此方面特別與沉積來自第一蒸發來源的鹼金屬有機錯合物以及來自第二蒸發來源的分子式1化合物有關。
在此方面,較佳的是,此方法包含下述步驟: 在基板上沉積陽極電極; 在陽極上沉積發光層; 在發光層上沉積有機半導體層;以及 在有機半導體層上沉積陰極電極。
在此方面,較佳的可為,此方法包含在發光層上沉積電子傳輸層的進一步步驟。在此例子中,清楚的是,有機半導體層反而是沉積在電子傳輸層上。
在另一個較佳的實施方式中,此方法包含下述步驟: 在基板上沉積陰極電極; 在陰極上沉積有機半導體層; 在有機半導體層上沉積發光層;以及 在發光層上沉積陽極電極。
關於本發明的沉積可由經由真空熱蒸發沉積或經由溶液處理沉積來達成,較佳地,處理選自旋轉塗佈、列印、鑄造及/或狹縫模具塗佈沉積。
較佳的是,沉積有機半導體層包含真空熱蒸發。
此目的最後由分子式1化合物達成
Figure TW201802104AD00050
分子式1 其中 X選自O、S或Se; R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及 每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基。
關於有機半導體層中分子式1化合物所提供的定義以及解釋也適用於關於具有進步性的化合物以及遍及整個申請案正文。
為了簡化具有進步性化合物的合成,可較佳的是,選擇R1 以及R2 為相同。也就是,較佳的是,R1 以及R2 是相同的基團。
進一步較佳的是,R1 以及R2 獨立地選自C6 至C18 芳基,較佳為C6 至C12 芳基,更佳為苯基。藉由適當地選擇基團R1 以及R2 中碳原子的數目,可輕易地調整具有進步性化合物的化學以及物理特性,例如溶解度。
進一步較佳的可為,X被選為O。
進一步較佳的是,聯伸苯基以間位附接至鄰接的含磷基團及/或鄰接的亞蒽基(anthrancenylene)。
藉由參見具有進步性的範例以及代表先前技術的比較性範例如下所展現的,發明人驚訝地發現,藉由以增加的效率與改進的操作電壓以及改進的玻璃轉化溫度與穩定性,具有進步性的化合物確實解決了上面概述的先前技術的問題。
詳細而言,具有進步性的化合物與先前技術的比較導致下面的觀察。
典型地在先前技術的OLED中使用的膦化合物具A有數個缺點。
Figure TW201802104AD00051
化合物 A
玻璃轉化溫度低,在攝氏112度。此外,OLED的操作電壓高,且效率低,由此限制了行動裝置的電池壽命,見實驗部分。
企圖增加玻璃轉化溫度已導致在蒽基團上在10位置中具有龐大取代基的化合物,例如在化合物B以及化合物C中的萘基取代基
Figure TW201802104AD00052
化合物B
Figure TW201802104AD00053
化合物 C。
玻璃轉化溫度分別增加至攝氏134以及139度。然而,未改進操作電壓,且相較於包含化合物A的裝置,壽命短了許多,見實驗部分。此外,化合物B的揮發性太低,因此其不適合用於使用真空熱蒸發(VTE)來製造OLED。當使用蒸發以及隨後的沉積作為將化合物從來源轉移至基板的方法時,低揮發性可導致在OLED的製造期間在VTE來源中化合物的部分分解。
在化合物D中,玻璃轉化溫度經由蒽基團中在10位置中的聯苯取代基而增加
Figure TW201802104AD00054
化合物 D。
玻璃轉化溫度維持高,在攝氏130度,且操作電壓仍高,且效率低,見實驗部分。
已令人驚訝也發現,聯伸苯基鏈接附接至鄰接的含磷基團及/或鄰接的亞蒽基、並導致操作電壓以及效率的顯著改進,同時保持高玻璃轉化溫度。為了確保揮發性維持在適合用於製造的範圍中,已發現的是,在亞蒽基上在10位置的苯基取代基是必要的。較大的取代基導致太低的揮發性,且在亞蒽基上在10位置中的氫原子導致非常低的玻璃轉化溫度。例如,化合物G
Figure TW201802104AD00055
化合物G 具有109˚C的Tg。
對於以間位附接至鄰接的磷基團及/或鄰接的亞蒽基的聯伸苯基觀察到了在性能上的特別有利效果。
對於不同鹼金屬有機錯合物的範圍觀察到了在裝置性能上的有利效果。特別較佳的是LiQ以及Li-1,見表1。 發光二極體(OLED)
根據本發明的另一方面,有提供了一種有機發光二極體(OLED),包含:基板、陽極電極、電洞注入層、電洞傳輸層、隨選的電子阻擋層、發光層、隨選的電洞阻擋層、隨選的電子傳輸層、具有進步性的有機半導體層、隨選的電子注入層以及陰極層,其中以那個順序配置這些層。
根據本發明的另一方面,有提供了一種有機發光二極體(OLED),包含:基板、陽極電極、第一電洞注入層、第一電洞傳輸層、隨選的第一電子阻擋層、第一發光層、隨選的第一電洞阻擋層、隨選的第一電子傳輸層、隨選的本發明有機半導體層、n型電荷產生層、p型電荷產生層、第二電洞傳輸層、隨選的第二電子阻擋層、第二發光層、隨選的第二電洞阻擋層、隨選的第二電子傳輸層、所述有機半導體層、隨選的電子注入層以及陰極層,其中以那個順序配置這些層。
根據本發明OLED的各種實施方式,OLED可不包含電子傳輸層。
根據本發明OLED的各種實施方式,OLED可不包含電子阻擋層。
根據本發明OLED的各種實施方式,OLED可不包含電洞阻擋層。
根據本發明OLED的各種實施方式,OLED可不包含電荷產生層。
根據本發明OLED的各種實施方式,OLED可不包含包含第二發光層。 製造方法
根據本發明的各種實施方式,方法可進一步包括在基板上形成陽極電極、電洞注入層、電洞傳輸層、隨選的電子阻擋層、發光層、隨選的電洞阻擋層、隨選的電子傳輸層、有機半導體層、隨選的電子注入層以及陰極層,其中以那個順序配置這些層;或可從陰極層開始,以相反的方式沉積這些層,且更佳地,在沉積陰極層之前沉積有機半導體層。
特別地,當在第一陰極層之前沉積有機半導體層時,可達到低操作電壓及/或高外部量子效率EQE。
根據本發明的各種實施方式,方法可進一步包括在基板上形成陽極電極、第一電洞注入層、第一電洞傳輸層、隨選的第一電子阻擋層、第一發光層、隨選的第一電洞阻擋層、隨選的第一電子傳輸層、隨選的本發明有機半導體層、n型電荷產生層、p型電荷產生層、第二電洞傳輸層、隨選的第二電子阻擋層、第二發光層、隨選的第二電洞阻擋層、隨選的第二電子傳輸層、有機半導體層、隨選的電子注入層以及陰極層,其中以那個順序配置這些層;可從陰極層開始,以相反的方式沉積這些層;且更佳地,在沉積陰極層之前沉積有機半導體層。
然而,根據一方面,從陰極層開始,這些層以相反的方式沉積,且包夾在陰極電極以及陽極電極之間。
例如,以第一陰極層、隨選的電子注入層、有機半導體層、隨選的電子傳輸層、隨選的電洞阻擋層、發光層、隨選的電子阻擋層、電洞傳輸層、電洞注入層、陽極電極開始(確切地以此順序)。
可將陽極電極及/或陰極電極沉積在基板上。較佳地,將陽極電極沉積在基板上。
根據本發明的另一方面,有提供了一種製造有機發光二極體(OLED)的方法,此方法使用: - 至少一沉積來源,較佳為兩個沉積來源,且更佳為至少三個沉積來源;及/或 - 經由真空熱蒸發(VTE)沉積;及/或 - 經由溶液處理沉積,較佳地,處理是選自旋轉塗佈、列印、鑄造及/或狹縫模具塗佈。 電子裝置
另一方面針對一種包含至少一有機發光二極體(OLED)的電子裝置。包含有機發光二極體(OLED)的裝置是例如顯示器或照明面板。
本發明的額外方面及/或優勢將部分地在隨後的描述中提出,且從描述部分將為顯而易見的,或可由本發明的實施來學習。
現在將詳細地參照本發明的示範性實施方式,在所附圖式中示出了其範例,其中類似的元件符號意指遍及整篇的類似元件。藉由參見圖式,下面描述了示範性實施方式,以解釋本發明的方面。
在本文中,當第一元件被提及為被形成或配置在第二元件「上」時,第一元件可被直接配置在第二元件上,或一或更多個其他元件可被配置在其之間。當第一元件被提及為被「直接」形成或配置在第二元件上時,其之間沒有配置其他的元件。
第1圖是根據本發明一個示範性實施方式的有機發光二極體(OLED)100的示意性截面圖。OLED 100包括基板110、陽極電極120、電洞注入層(HIL)130、電洞傳輸層(HTL)140、發光層(EML)150。有機半導體層170被配置至發光層(EML)150上。有機半導體層170包含或由鹼金屬有機錯合物組成,且分子式1化合物被直接形成在EML 150上。陰極層190被直接配置至有機半導體層170上。
第2圖是根據本發明另一個示範性實施方式的OLED 100的示意性截面圖。第2圖與第1圖的不同在於,第2圖的OLED 100包含電子傳輸層160。
參見第2圖,OLED 100包括基板110、陽極電極120、電洞注入層(HIL)130、電洞傳輸層(HTL)140、發光層(EML)150。電子傳輸層(ETL)160被配置至發光層(EML)150上。有機半導體層170被配置至電子傳輸層(ETL)160上。有機半導體層170包含或由鹼金屬有機錯合物組成,且分子式1化合物被直接形成在ETL 160上。陰極層190被直接配置至有機半導體層170上。
第3圖是根據本發明另一個示範性實施方式的OLED 100的示意性截面圖。第3圖與第2圖的不同在於,第3圖的OLED 100包含電子阻擋層(EBL)145,且陰極電極190包含第一陰極層191以及第二陰極層192。
參見第3圖,OLED 100包括基板110、陽極電極120、電洞注入層(HIL)130、電洞傳輸層(HTL)140、電子阻擋層(EBL)145以及發光層(EML)150。電子傳輸層(ETL)160被配置至發光層(EML)150上。有機半導體層170被配置至電子傳輸層(ETL)160上。有機半導體層170包含或由鹼金屬有機錯合物組成,且分子式1化合物被直接形成在ETL 160上。陰極層190包含第一陰極層191以及第二陰極層192。第一陰極層191是實質上為金屬的層,且其被直接配置至有機半導體層170上。第二陰極層192被直接配置至第一陰極層191上。
第4圖是根據本發明另一個示範性實施方式的串聯式(tandem)OLED 100的示意性截面圖。第4圖與第2圖的不同在於,第4圖的OLED 100進一步包含電荷產生層以及第二發光層。
參見第4圖,OLED 100包括基板110、陽極電極120、第一電洞注入層(HIL)130、第一電洞傳輸層(HTL)140、第一電子阻擋層(EBL)145、第一發光層(EML)150、第一電洞阻擋層(HBL)155、第一電子傳輸層(ETL)160、n型電荷產生層(n型CGL)185、p型電荷產生層(p型GCL)135、第二電洞傳輸層(HTL)141、第二電子阻擋層(EBL)146、第二發光層(EML)151、第二電洞阻擋層(EBL)156、第二電子傳輸層(ETL)161、有機半導體層170、第一陰極層191以及第二陰極層192。有機半導體層170包含或由鹼金屬有機錯合物組成,且分子式1化合物被直接配置至第二電子傳輸層161上,且第一陰極層191被直接配置至有機半導體層170上。第二陰極層192被直接配置至第一陰極層191上。
在上面的描述中,製造本發明OLED 100的方法以基板110開始,在基板110上形成陽極電極120,在陽極電極120上,形成第一電洞注入層130、第一電洞傳輸層140、隨選的第一電子阻擋層145、第一發光層150、隨選的第一電洞阻擋層155、隨選的ETL 160、n型CGL 185、p型CGL 135、第二電洞傳輸層141、隨選的第二電子阻擋層146、第二發光層151、隨選的第二電洞阻擋層156、隨選的至少一第二電子傳輸層161、有機半導體層170、第一陰極層191以及隨選的第二陰極層192(以那個順序或以相反的方式)。
雖然未在第1圖、第2圖、第3圖以及第4圖中示出,密封層可進一步的被形成在陰極電極190上,以密封OLED 100。此外,各種其他的修飾可應用至此。 範例 一般程序 分子式1化合物的合成
可經由兩個不同的途徑合成分子式1化合物,見方案1。 方案1
Figure TW201802104AD00056
在途徑A中,中間產物1與中間產物2在鈴木條件(Suzuki conditions)下反應以產出中間產物3。中間產物3與中間產物4在鈴木條件下反應以產出分子式1化合物。
在途徑B中,中間產物4與中間產物2在鈴木條件下反應以產出中間產物5。中間產物5與中間產物1反應以產出分子式1化合物。(3'- -[1,1'- 聯苯 ]-4- ) 二苯基氧化膦
將1 L舒倫克燒瓶以氮氣沖洗並以二苯基(4-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)苯基)氧化膦(50.8 g,126 mmol)、1-溴-3-碘苯(71.1 g,252 mmol)以及Pd(PPh3 )4 (4.4 g,3.78 mmol)裝填。加入脫氣的甘醇二甲醚(500 mL)以及2 M K2 CO3 水溶液(52 g,378 mmol K2 CO3 在190 mL水中),並將所產生的混合物於95°C在氮氣下攪拌。18 h之後,允許反應混合物冷卻至室溫,並在減壓下蒸發甘醇二甲醚。加入二氯甲烷,並以水洗滌混合物。將有機相通過MgSO4 乾燥、過濾並濃縮。將所獲得的油倒至矽膠墊上,並以二氯甲烷潤洗。洗提雜質之後,以醋酸乙酯洗提產物。將醋酸乙酯餾分(fraction)濃縮至最小量,並藉由加入MTBE來引發沉澱。將所形成的沉澱物藉由抽氣過濾收集、並以額外的MTBE洗滌。乾燥之後,獲得45.6 g(84%)的米色固體。HPLC:99.34%,GC/MS 98.8%,m/z = 433([M]+ )。(3'- -[1,1'- 聯苯 ]-3- ) 二苯基氧化膦
遵從上述用於(3'-溴-[1,1'-聯苯]-4-基)二苯基氧化膦的程序,使用二苯基(3-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)苯基)氧化膦(25.0 g,62 mmol)、1-溴-3-碘苯(26.2 g,93 mmol)、Pd(PPh3 )4 (2.2 g,1.9 mmol)、甘醇二甲醚(250 mL),以及2 M K2 CO3水溶液(26 g,186 mmol K2 CO3 在95 mL水中),獲得24.4 g(90%)的微黃色固體。HPLC/ESI-MS:98.20%,m/z = 434([M+ H]+ )。MX3
將1 L舒倫克燒瓶以沖洗氮氣並以(3'-溴-[1,1'-聯苯]-4-基)二苯基氧化膦(45.4 g,105 mmol)、(10-苯基蒽-9-基)硼酸(34.4 g,116 mmol)、以及Pd(PPh3 )4 (2.4 g,2.1 mmol)裝填。加入脫氣的甘醇二甲醚(350 mL)以及2 M K2 CO3 水溶液(29 g,210 mmol K2 CO3 在105 mL水中),並於95°C在氮氣下攪拌所產生的混合物。18 h之後,允許反應混合物冷卻至室溫。將沉澱物藉由抽氣過濾收集、並以n-己烷洗滌。將所獲得的固體溶解於二氯甲烷中、並通過Florisil®墊過濾。在減壓下將濾液濃縮至最小體積,並加入n-己烷。將所獲得的固體藉由抽氣過濾收集、並以n-己烷洗滌。乾燥之後,獲得50.0 g(82.4 mmol,78%)的亮黃色固體。HPLC/ESI-MS:99.93%,m/z = 607([M+ H]+ )。藉由昇華達成進一步的純化(HPLC:100%)。MX2
遵從用於MX3 的所描述程序,使用9-(4-溴苯基)-10-苯基蒽(5.7 g,13.8 mmol)、二苯基(3-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)苯基)氧化膦(6.2 g,15.2 mmol)、Pd(PPh3 )4 (0.32 g,0.28 mmol)、甘醇二甲醚(50 mL)以及2 M水溶液K2 CO3 (5.7 g,41.3 mmol K2 CO3 在21 mL水中),獲得4.83 g(8.0 mmol,58%)的灰白色固體。HPLC/ESI-MS:100.00%,m/z = 629([M+ Na]+ )。MX4
遵從用於MX3 的所描述程序,使用(3'-溴-[1,1'-聯苯]-3-基)二苯基氧化膦(24.0 g,55.4 mmol)以及(10-(萘-2-基)蒽-9-基)硼酸(18.2 g,61.0 mmol)、Pd(PPh3 )4 (1.28 g,1.11 mmol)、甘醇二甲醚(200 mL)以及2 M K2 CO3 水溶液(15.3 g,111 mmol K2 CO3 在56 mL水中),獲得26.8 g(44.2 mmol,80%)的亮黃色固體。HPLC/ESI-MS:98.82%,m/z = 629([M+ Na]+ )。藉由昇華達成進一步的純化(HPLC:99.94%)。MX1
遵從用於MX3 的所描述程序,使用9-(4-溴苯基)-10-苯基蒽(8.0 g,19.5 mmol)、二苯基(4-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)苯基)氧化膦(8.3 g,20.5 mmol)、Pd(PPh3 )4 (0.45 g,0.39 mmol)、甘醇二甲醚(70 mL)以及2 M水溶液K2 CO3 (8.1 g,58.6 mmol K2 CO3 在30 mL水中),獲得7.23 g(14.0 mmol,61%)的微黃色固體。HPLC/ESI-MS:99.60%,m/z = 607([M+ H]+ )。藉由昇華達成進一步的純化(HPLC:99.84%)。 玻璃轉化溫度
如於2010年3月所公開的DIN EN ISO 11357中所描述,在氮氣下並在Mettler Toledo DSC 822e示差掃描熱析儀中使用每分鐘10 K的加熱率來測量玻璃轉化溫度。 速率開始溫度
藉由將100 mg的化合物裝載至VTE來源中來決定速率開始溫度。在低於10-5 mbar的壓力下以15 K/min的固定速率來加熱VTE來源,並以熱耦測量來源內的溫度。以QCM檢測器檢測化合物的蒸發,QCM檢測器檢測檢測器的石英晶體上的化合物沉積。石英晶體上的沉積速率是以埃(Ǻngstrom)/秒來測量。為了確定速率開始溫度,對比VTE來源溫度來標繪沉積速率。速率開始是在QCM檢測器上有顯著沉積發生的溫度。為了準確的結果,將VTE來源加熱並冷卻三次,且只有來自第二以及第三次測試的結果用以決定速率開始溫度。
為了在有機化合物的蒸發速率上達到好的控制,速率開始溫度可在200至255˚C的範圍中。如果速率開始溫度低於200˚C,蒸發可能會太快速,且因此難以控制。如果速率開始溫度在255˚C之上,蒸發速率可能會太低,其可導致低節拍時間,且由於延長曝露至提升的溫度,可能會發生VTE來源中有機化合物的分解。
速率開始溫度是化合物揮發性的間接測量。速率開始溫度越高,化合物的揮發性越低。 具有蒸發發光層的底部發光裝置
對於底部發光裝置–範例1至4以及比較性範例1至6,將具有100 nm ITO的15Ω /cm2 玻璃基板(可得自康寧公司)切割成50 mm x 50 mm x 0.7 mm的大小,以異丙醇超音波清洗5分鐘,然後以純水清洗5分鐘,並以UV臭氧再次清洗30分鐘,以製備第一電極。
然後,將92重量%的N4,N4''-二(萘-1-基)-N4,N4''-二苯基-[1,1':4',1''-聯三苯]-4,4''-二胺以及8重量%的2,2',2''-(環丙烷-1,2,3-三亞基)三(2-(p-氰基四氟苯基)乙腈)真空沉積在ITO電極上,以形成具有10 nm厚度的HIL。然後將N4,N4''-二(萘-1-基)-N4,N4''-二苯基-[1,1':4',1''-聯三苯]-4,4''-二胺真空沉積在HIL上,以形成具有130 nm厚度的HTL。將作為主體的97重量%的ABH113(Sun Fine Chemicals)以及作為摻雜物的3重量%的NUBD370(Sun Fine Chemicals)沉積在HTL上,以形成具有20 nm厚度的藍色發光EML。
然後,藉由將來自第一沉積來源的基質化合物以及來自第二沉積來源的LiQ直接設置在EML上,藉由根據範例1至4以及比較性範例1以及7來設置基質化合物以及LiQ,以形成有機半導體層。有機半導體層包含50重量%的基質化合物以及50重量%的LiQ。在範例1至4中,基質化合物是分子式1化合物。有機半導體層的厚度是36 nm。
然後,藉由在10-7 bar的超高真空下蒸發鋁並將鋁層直接設置在有機半導體層上來形成陰極層。以0、1至10 nm/s(0.01至1 Å/s)的速率來進行一種或數種金屬的熱單一共同蒸發,以產生具有5至1000 nm厚度的均質陰極電極。陰極層的厚度是100 nm。
OLED堆疊由具有玻璃載片的裝置之封裝保護,避免受到環境條件的干擾。由此,形成了腔室,其包括用於進一步保護的吸收劑材料。 具有溶液處理發光層的底部發光裝置
對於底部發光裝置,將具有100 nm ITO的15Ω/cm2 玻璃基板(可得自康寧公司)切割成50 mm x 50 mm x 0.7 mm的大小,以異丙醇超音波清洗5分鐘,然後以純水清洗5分鐘,並以UV臭氧再次清洗30分鐘,以製備第一電極。
然後,將PEDOT:PSS(Clevios P VP AI 4083)直接旋轉塗佈於第一電極之頂部上,以形成55 nm厚的HIL。在熱板上以150˚C將HIL烘烤5分鐘。然後,將發光聚合物,例如MEH-PPV直接旋轉塗佈於HIL上,以形成40 nm厚的EML。在熱板上以80˚C將EML烘烤10分鐘。將裝置轉移至蒸發室中,並在高真空中沉積下述層。
將分子式1化合物以及鹼金屬有機錯合物直接設置在EML之頂部上以形成具有4 nm厚度的有機半導體層。藉由在有機半導體層之頂部上直接設置100 nm厚層的鋁來形成陰極層。 頂部發光裝置
對於頂部發光裝置-範例5至8,在玻璃上從100 nm的銀形成陽極電極,玻璃是藉由如上述用於底部發光裝置的相同方法來製備。
然後,將92重量%的聯苯-4-基(9,9-二苯基-9H-茀-2-基)-[4-(9-苯基-9H-咔唑-3-基)苯基]-胺(CAS 1242056-42-3)以及8重量%的2,2',2''-(環丙烷-1,2,3-三亞基)三(2-(p-氰基四氟苯基)乙腈)真空沉積在ITO電極上,形成具有10 nm厚度的HIL。然後將聯苯-4-基(9,9-二苯基-9H-茀-2-基)-[4-(9-苯基-9H-咔唑-3-基)苯基]-胺(CAS 1242056-42-3)真空沉積在HIL上,以形成具有117 nm厚度的HTL。然後將N,N-雙(4-(二苯并[b,d]呋喃-4-基)苯基)-[1,1':4',1''-聯三苯]-4-胺直接設置在HTL之頂部上,以形成具有5 nm厚度的EBL。
將WO2015-174682中描述的作為主體的97重量%的2-(10-苯基-9-蒽基)-苯并[b]萘并[2,3-d]呋喃以及3重量%的藍色射極摻雜物沉積在EBL上,以形成具有20 nm厚度的藍色發光EML。
然後,根據範例5以及6,藉由將來自第一沉積來源的分子式1化合物以及來自第二沉積來源的Li-1直接設置在EML上來形成有機半導體層。有機半導體層包含70重量%的分子式1化合物以及30重量%的Li-1。此外,可從表5得到有機半導體層的厚度d(以nm表示)。
在範例7以及8中,藉由在EML上直接設置5 nm的第一基質化合物ETM-39來形成電子傳輸層(ETL)。ETM-39是2,4-二苯基-6-(4',5',6'-三苯基-[1,1':2',1'':3'',1''':3''',1''''-五聯苯]-3''''-基)-1,3,5-三嗪。然後,藉由將來自第一沉積來源的根據範例5以及6的70重量%的分子式1化合物以及來自第二沉積來源的30重量%的Li-1直接設置在ETL來形成有機半導體層。此外,可從表5得到有機半導體層的厚度d(以nm表示)。
然後,第一陰極層在10-7 bar的超高真空下蒸發。因此,以0、1至10 nm/s(0.01至1 Å/s)的速率來進行一種或數種金屬的熱單一共同蒸發,以產生具有5至1000 nm厚度的均質陰極電極。然後,在相同的條件下在第一陰極層之頂部上直接設置第二陰極層。藉由將2 nm Yb直接設置至有機半導體層上來形成第一陰極層。然後,藉由將11 nm Ag直接設置至第一陰極層上來形成第二陰極層。
60 nm的聯苯-4-基(9,9-二苯基-9H-茀-2-基)-[4-(9-苯基-9H-咔唑-3-基)苯基]-胺(CAS 1242056-42-3)被直接設置在第二陰極層之頂部上。
OLED堆疊由具有玻璃載片的裝置封裝保護,避免受到環境條件的干擾。由此,形成了腔室,其包括用於進一步保護的吸收劑材料。
為了評估具有進步性的範例相較於先前技術的性能,在環境條件(20°C)下測量電流效率。電流電壓測量使用Keithley 2400電源量測設備來執行,並以V記錄。以10 mA/cm²用於底部發光以及10 mA/cm²用於頂部發光裝置,來自Instrument Systems的校正過的光譜儀CAS140用於CIE座標以及燭光亮度的測量。在環境條件(20°C)以及10 mA/cm²下,底部發光裝置的壽命使用Keithley 2400電源量測設備測量,並以小時記錄。在環境條件(20°C)以及8 mA/cm²下測量頂部發光裝置的壽命。使用校正過的光二極體來測量裝置的亮度。壽命LT被定義為直到裝置亮度降低至其初始值的97%的時間。
在底部發光裝置中,發光主要為朗伯光(Lambertian)並以外部量子效率百分比(EQE)定量。為了決定效率EQE%,使用校正過的光二極體以10 mA/cm2 測量裝置的光輸出。
在頂部發光裝置中,發光是方向向前、非朗伯光、且也高度取決於微共振腔(micro cavity)。因此,相較於底部發光裝置,效率EQE將會較高。為了確定效率EQE%,使用校正過的光二極體以10 mA/cm2 測量裝置的光輸出。 本發明的技術效果
在表4中,示出了範例1至4以及比較性範例1至7的底部發光裝置中的玻璃轉化溫度、速率開始溫度以及裝置性能。有機半導體層包含50重量%的基質化合物以及50重量%的鹼金屬有機錯合物LiQ。有機半導體層接觸夾於發光層以及陰極層之間。在範例1至4中,基質化合物選自分子式1化合物。
在比較性範例1中,化合物A用以作為基質化合物。化合物A包含附接至鄰接的含磷基團以及鄰接的亞蒽基的伸苯基。操作電壓是4.9 V,且外部量子效率是4.9%EQE。
在比較性範例2中,化合物B用以作為基質化合物。化合物B包含附接至鄰接的含磷基團與鄰接的亞蒽基的伸苯基、以及在亞蒽基上的10位置中的2-萘基取代基。Tg是134˚C,但速率開始溫度對於OLED的製造而言太高。操作電壓類似於比較性範例1,但效率稍微地改進至5.4%EQE。
在比較性範例3中,化合物C用以作為基質化合物。化合物C包含附接至鄰接的含磷基團與鄰接的亞蒽基的伸苯基、以及在亞蒽基上的10位置中的1-萘基取代基。Tg甚至更高,在139˚C,且速率開始在適合用於製造OLED的範圍中。操作電壓以及外部量子效率在類似於比較性範例2的範圍中。
在比較性範例4中,化合物D用以作為基質化合物。化合物D包含附接至鄰接的含磷基團與鄰接的亞蒽基的伸苯基、以及在亞蒽基上的10位置中的聯苯取代基。Tg稍微低於比較性範例2以及3,且速率開始溫度也降低。操作電壓以及外部量子效率在類似於比較性範例2以及3的範圍中。
在範例1至4中,基質化合物是分子式1化合物。基質化合物包含附接至鄰接的含磷基團與鄰接的亞蒽基的聯伸苯基、以及在亞蒽基上的10位置中的苯基取代基。Tg以及速率開始溫度在適合用於製造OLED的範圍中。相較於比較性範例1至4,操作電壓顯著地減少至4.2至4.4 V。外部量子效率顯著地增加至6.7至7.4% EQE。對於含有以間位附接至鄰接的含磷基團及/或鄰接的亞蒽基的聯伸苯基的分子式1化合物觀察到了特別高的外部量子效率。對於基質化合物MX2獲得了最高的效率。
在比較性範例5中,化合物E用以作為基質化合物。化合物E包含附接至鄰接的含磷基團與鄰接的亞蒽基的聯伸苯基、以及在亞蒽基上的10位置中的2-萘基取代基。速率開始溫度極高,在293˚C。因此,此化合物不適合用於OLED的製造,因為在製造過程期間可在VTE來源中發生熱降解。此外,相較於範例1至4,外部量子效率顯著較低。
在比較性範例6中,化合物F用以作為基質化合物。化合物F包含附接至鄰接的含磷基團與鄰接的亞蒽基的聯伸苯基、以及在亞蒽基上的10位置中的聯苯取代基。速率開始溫度甚至更高,在310˚C。由於化合物的極低揮發性,未製造出裝置。
總之,分子式1化合物提供了在Tg、速率開始溫度以及OLED性能方面的獨特好處。包含含有鹼金屬有機錯合物以及分子式1化合物的半導體層的有機發光裝置可具有較低操作電壓、較高的效率以及因此較低的功率消耗。
在表5中,示出了包含含有70重量%的分子式1化合物以及30重量%的Li-1的有機半導體層的頂部發光裝置的性能。Li-1是鹼金屬有機錯合物,見表1。
在範例5以及6中,有機半導體層接觸夾於發光層以及陰極電極之間。獲得了非常低的操作電壓以及高外部量子效率。
在範例7以及8中,有機半導體層接觸夾於電子傳輸層以及陰極電極之間。ETM-39是具有偶極矩 ≥ 0以及≤ 2.5德拜的化合物。相較於範例5以及6,操作電壓是可相比的,但外部量子效率從14%顯著地改進至17%EQE。
總而言之,當使用包含分子式1化合物以及鹼金屬有機錯合物的有機半導體層時,在性能中達成了令人驚訝的改進。當電子傳輸層被配置在發光層以及有機半導體層之間時,可達成外部量子效率的實質增加。
Figure TW201802104AD00057
Figure TW201802104AD00058
Figure TW201802104AD00059
Figure TW201802104AD00060
從前述詳細的描述、申請專利範圍以及範例,將顯而易見的是,可對本發明的組成物以及方法做出修飾以及變化,而不悖離本發明的精神以及範圍。因此,意欲不悖離本發明的精神以及範圍而做出的所有修飾在所附申請專利範圍的範圍內。
100‧‧‧有機發光二極體
110‧‧‧基板
120‧‧‧陽極電極
130‧‧‧電洞注入層(HIL)
135‧‧‧p型CGL
140、141‧‧‧電洞傳輸層(HTL)
145、146‧‧‧電子阻擋層(EBL)
150、151‧‧‧發光層(EML)
155、156‧‧‧電洞阻擋層(HBL)
160、161‧‧‧電子傳輸層(ETL)
170‧‧‧有機半導體層
185‧‧‧n型CGL
190‧‧‧陰極層、陰極電極
191、192‧‧‧陰極層
CGL‧‧‧電荷產生層
從下面示範性實施方式的描述結合所附圖式,本發明的這些及/或其他方面以及優勢將變得顯而易見且更立即地被領略,其中: 第1圖是根據本發明一個示範性實施方式的有機發光二極體(OLED)的示意性截面圖; 第2圖是根據本發明另一個示範性實施方式的OLED的示意性截面圖。 第3圖是根據本發明另一個示範性實施方式的OLED的示意性截面圖。 第4圖是本發明一個示範性實施方式的包含電荷產生層的串聯式OLED的示意性截面圖。
110‧‧‧基板
120‧‧‧陽極電極
130‧‧‧電洞注入層(HIL)
140‧‧‧電洞傳輸層(HTL)
150‧‧‧發光層(EML)
170‧‧‧有機半導體層
190‧‧‧陰極層、陰極電極

Claims (15)

  1. 一種有機發光二極體,包含一陽極電極、一陰極電極、至少一發光層以及一有機半導體層,其中該有機半導體層被配置在該陽極電極以及該陰極電極之間,且該有機半導體層包含一鹼金屬有機錯合物以及一分子式1化合物分子式1 其中 X選自O、S或Se;以及 R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及 每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基。
  2. 如申請專利範圍第1項所述的有機發光二極體,其中該分子式1化合物的聯伸苯基以間位附接至鄰接的含磷基團以及/或鄰接的亞蒽基。
  3. 如申請專利範圍第1項或第2項所述的有機發光二極體,其中該有機半導體層被配置在該發光層以及該陰極電極之間,較佳地,有機半導體層與該陰極電極直接接觸。
  4. 如前述申請專利範圍中任一項所述的有機發光二極體,其中該有機發光二極體進一步包含被配置在該發光層以及該有機半導體層之間的一電子傳輸層,較佳地,該電子傳輸層包含具有大約≥ 0以及≤ 2.5德拜的一偶極矩的一第一有機基質化合物。
  5. 如前述申請專利範圍中任一項所述的有機發光二極體,其中該陰極電極包含至少一實質上為金屬的陰極層,該至少一實質上為金屬的陰極層包含選自鹼金屬、鹼土金屬、稀土金屬、第3族過渡金屬以及其混合物所組成的群組的一第一零價金屬。
  6. 如申請專利範圍第5項所述的有機發光二極體,其中該實質上為金屬的陰極層進一步包含一第二零價金屬,其中該第二零價金屬選自一主族金屬或一過渡金屬;以及其中該第二零價金屬與該第一零價金屬不同。
  7. 如申請專利範圍第6項所述的有機發光二極體,其中該第二零價金屬選自Li、Na、K、Cs、Mg、Ca、Sr、Ba、Sc、Y、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Au、Al、Ga、In、Sn、Te、Bi、Pb以及其混合物所組成的群組,較佳地,第二零價金屬選自Ag、Au、Zn、Te、Yb、Ga、Bi、Ba、Ca、Al以及其混合物所組成的群組;以及最佳地,該第二零價金屬選自Ag、Zn、Te、Yb、Ga、Bi以及其混合物所組成的群組。
  8. 如前述申請專利範圍中任一項所述的有機發光二極體,其中該鹼金屬有機錯合物是一有機鋰錯合物,較佳選自8-羥基喹啉鋰以及硼酸鋰,較佳為四(1H-吡唑-1-基)硼酸鋰或其混合物。
  9. 一種用於製備如前述申請專利範圍中任一項所述的有機發光二極體的方法,該方法包含一步驟: 共同沉積至少一鹼金屬有機錯合物以及如申請專利範圍第1項中所定義的至少一分子式1化合物分子式1 於該陽極電極上、該陰極電極上或形成在該陽極電極或該陰極電極上的一或更多個層。
  10. 如申請專利範圍第9項所述的方法,包含下述步驟: 在一基板上沉積一陽極電極; 在該陽極上沉積一發光層; 在該發光層上沉積該有機半導體層;以及 在該有機半導體層上沉積該陰極電極。
  11. 如申請專利範圍第9項或第10項所述的方法,其中沉積該有機半導體層包含真空熱蒸發。
  12. 分子式1化合物分子式1 其中 X選自O、S或Se; R1 以及R2 獨立地選自C6 至C18 芳基以及C5 至C18 雜芳基所組成的群組,其中每個R1 以及R2 可獨立地是未取代或以至少一C1 至C12 烷基或C1 至C12 烷氧基取代,較佳為C1 至C4 烷基或C1 至C4 烷氧基;以及 每個R3 、R4 、R5 以及R6 獨立地選自H、C1 至C12 烷基或C1 至C12 烷氧基所組成的群組,較佳為H、C1 至C4 烷基或C1 至C4 烷氧基。
  13. 如申請專利範圍第12項所述的化合物,其中R1 以及R2 獨立地選自C6 至C18 芳基,較佳為C6 至C12 芳基,更佳為苯基。
  14. 如申請專利範圍第12項或第13項所述的化合物,其中X被選為O。
  15. 如申請專利範圍第12項至第14項中任一項所述的化合物,其中該聯伸苯基以間位附接至該鄰接的含磷基團及/或該鄰接的亞蒽基。
TW106110165A 2016-04-12 2017-03-27 包含有機半導體層有機發光二極體 TWI730072B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16164871.2A EP3232490B1 (en) 2016-04-12 2016-04-12 Organic light emitting diode comprising an organic semiconductor layer
??16164871.2 2016-04-12
EP16164871.2 2016-04-12

Publications (2)

Publication Number Publication Date
TW201802104A true TW201802104A (zh) 2018-01-16
TWI730072B TWI730072B (zh) 2021-06-11

Family

ID=55750347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110165A TWI730072B (zh) 2016-04-12 2017-03-27 包含有機半導體層有機發光二極體

Country Status (7)

Country Link
US (1) US11145817B2 (zh)
EP (1) EP3232490B1 (zh)
JP (1) JP6884159B2 (zh)
KR (1) KR102229576B1 (zh)
CN (1) CN109314191B (zh)
TW (1) TWI730072B (zh)
WO (1) WO2017178392A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256927B (zh) * 2017-06-13 2020-01-24 上海天马有机发光显示技术有限公司 有机发光器件和显示装置
EP3425692B1 (en) 2017-07-07 2023-04-05 Novaled GmbH Organic electroluminescent device comprising an electron injection layer with zero-valent metal
EP3470398B1 (en) 2017-10-13 2022-05-04 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3503242B1 (en) 2017-12-22 2021-08-25 Novaled GmbH Semiconducting material, a method for preparing the same and electronic device
EP3503241B1 (en) 2017-12-22 2022-08-24 Novaled GmbH Electronic device and method for preparing the same
EP4234539A1 (en) * 2018-02-07 2023-08-30 Novaled GmbH Organic material for an electronic optoelectronic device and electronic device comprising the organic material
EP3694012A1 (en) * 2019-02-06 2020-08-12 Novaled GmbH Method for preparing an organic semiconducting layer, a composition for use therein and an organic electronic device
US11825687B2 (en) 2019-07-17 2023-11-21 The Regents Of The University Of Michigan Organic light emitting device
CN114752070B (zh) * 2022-05-06 2023-03-21 江西科技师范大学 一种光响应智能材料及其制备方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853042B2 (ja) 1996-11-07 2006-12-06 三井化学株式会社 有機電界発光素子
US6800380B2 (en) 1998-06-23 2004-10-05 Nessdisplay Co., Ltd. Organometallic luminescent materials and organic electroluminescent device containing same
JP3945123B2 (ja) 2000-04-10 2007-07-18 三菱化学株式会社 有機電界発光素子
JP4876333B2 (ja) * 2000-06-08 2012-02-15 東レ株式会社 発光素子
WO2002043449A1 (fr) 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
JP2005032686A (ja) 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd 有機電界発光素子及び芳香族縮環化合物
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
JP2005302667A (ja) 2004-04-15 2005-10-27 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US20050245752A1 (en) * 2004-04-29 2005-11-03 Eastman Kodak Company Synthesis of unsymmetric anthracene compounds
DE102006013802A1 (de) * 2006-03-24 2007-09-27 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2008195623A (ja) 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
JP2009203203A (ja) * 2008-02-29 2009-09-10 Toyo Ink Mfg Co Ltd アントラセン誘導体及びその用途
GB0814954D0 (en) 2008-08-18 2008-09-24 Oled T Ltd Compounds having electron transport properties and their preparation and use
KR101233377B1 (ko) 2008-12-30 2013-02-18 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
EP2312663B1 (en) 2009-10-19 2014-10-15 Novaled AG Organic electronic device comprising an organic semiconducting material
KR101235369B1 (ko) 2010-01-21 2013-02-20 (주)씨에스엘쏠라 유기발광화합물 및 이를 구비한 유기발광소자
EP2395571B1 (en) 2010-06-10 2013-12-04 Novaled AG Organic electronic device comprising an organic semiconducting material
KR20120041460A (ko) 2010-10-21 2012-05-02 엘지디스플레이 주식회사 유기전계발광소자
JP2012190863A (ja) * 2011-03-09 2012-10-04 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
CN103597053B (zh) * 2011-06-13 2016-09-21 株式会社Lg化学 化合物和使用该化合物的有机电子器件
WO2012175219A1 (en) 2011-06-22 2012-12-27 Novaled Ag Electronic device and compound
KR101464408B1 (ko) * 2011-10-05 2014-11-27 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
EP3561876B1 (en) 2011-11-30 2022-02-16 Novaled GmbH Display
EP2786434B1 (en) 2011-11-30 2015-09-30 Novaled GmbH Organic electronic device
TWI597875B (zh) 2011-11-30 2017-09-01 Novaled Gmbh 有機電子裝置及其用途
KR102156221B1 (ko) 2012-04-02 2020-09-15 노발레드 게엠베하 유기 발광 소자에서의 반도체 화합물의 용도
EP2722908A1 (en) 2012-10-17 2014-04-23 Novaled AG Phosphorescent OLED and hole transporting materials for phosphorescent OLEDs
TWI642662B (zh) 2013-04-18 2018-12-01 日商東楚股份有限公司 Heterocyclic compound for organic electric field light-emitting element and use thereof
EP2811000B1 (en) * 2013-06-06 2017-12-13 Novaled GmbH Organic electronic device
WO2015008866A1 (ja) 2013-07-19 2015-01-22 東ソー株式会社 トリアジン化合物及びそれを含有する有機電界発光素子
KR101695063B1 (ko) 2013-09-30 2017-01-10 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
CN111909187A (zh) 2013-10-02 2020-11-10 默克专利有限公司 用于oled中的含硼化合物
JP2015074649A (ja) 2013-10-11 2015-04-20 東ソー株式会社 4−ピリジル基を有するトリアジン化合物及びそれを含有する有機電界発光素子
KR102164046B1 (ko) 2013-12-03 2020-10-12 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6427875B2 (ja) 2013-12-26 2018-11-28 東ソー株式会社 有機電界発光素子
KR101930365B1 (ko) 2014-01-10 2018-12-18 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자
KR102177213B1 (ko) 2014-01-20 2020-11-11 삼성디스플레이 주식회사 유기 발광 소자
KR101829745B1 (ko) 2014-01-24 2018-02-19 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2015174682A1 (ko) 2014-05-13 2015-11-19 에스에프씨 주식회사 방향족아민기를 포함하는 헤테로고리 화합물및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
WO2017178392A1 (en) 2017-10-19
US11145817B2 (en) 2021-10-12
EP3232490A1 (en) 2017-10-18
KR102229576B1 (ko) 2021-03-17
JP6884159B2 (ja) 2021-06-09
US20190131531A1 (en) 2019-05-02
EP3232490B1 (en) 2021-03-17
KR20180132848A (ko) 2018-12-12
TWI730072B (zh) 2021-06-11
CN109314191B (zh) 2020-11-03
CN109314191A (zh) 2019-02-05
JP2019516243A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP7022063B2 (ja) 有機発光ダイオード(oled)用の電子注入層
JP6916178B2 (ja) ホスフィンオキシド化合物を含む有機半導電層
JP7325570B2 (ja) 有機半導体層を含む有機発光ダイオード
TWI730072B (zh) 包含有機半導體層有機發光二極體
JP6954766B2 (ja) 有機半導体層を含む有機発光ダイオード
JP7481344B2 (ja) 有機エレクトロルミネッセンス素子およびそれに用いる固体組成物
CN111770922A (zh) 有机电子器件、包含有机电子器件的显示和照明装置
CN112055707A (zh) 化合物、其制备方法、有机半导体层、有机电子器件、包含其的显示装置和照明装置
CN113490672A (zh) 化合物和包含该化合物的有机电子器件
CN113597420A (zh) 化合物和包含该化合物的有机半导体层、有机电子器件和显示或照明装置
TW202321202A (zh) 有機發光二極體及其中使用之化合物
TW202319512A (zh) 有機發光二極體及其中使用之化合物