TW201626601A - 發光元件 - Google Patents

發光元件 Download PDF

Info

Publication number
TW201626601A
TW201626601A TW104133517A TW104133517A TW201626601A TW 201626601 A TW201626601 A TW 201626601A TW 104133517 A TW104133517 A TW 104133517A TW 104133517 A TW104133517 A TW 104133517A TW 201626601 A TW201626601 A TW 201626601A
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting
oxide
electrode layer
Prior art date
Application number
TW104133517A
Other languages
English (en)
Other versions
TWI698032B (zh
Inventor
上坂正吾
佐佐木俊毅
大澤信晴
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201626601A publication Critical patent/TW201626601A/zh
Application granted granted Critical
Publication of TWI698032B publication Critical patent/TWI698032B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]

Abstract

本發明的一個實施方式提供一種具有反射率高的電極層的發光效率高的發光元件。本發明的一個實施方式是一種發光元件,包括:第一電極層;第二電極層;以及設置在第一電極層與第二電極層之間的EL層,其中,第一電極層包括:導電層;以及與導電層接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的含量以上。

Description

發光元件
本發明的一個實施方式係關於一種發光元件或包括該發光元件的發光裝置、顯示裝置、電子裝置及照明設備。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。因此,更明確而言,作為本說明書所公開的本發明的一個實施方式的技術領域的一個例子,可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、這些裝置的驅動方法或它們的製造方法。
近年來,對利用電致發光(Electroluminescence:EL)的發光元件的研究開發日益 火熱。在這些發光元件的基本結構中,在一對電極之間夾有包含發光物質的層(EL層)。藉由對該元件的電極間施加電壓,可以獲得來自發光物質的發光。
因為上述發光元件是自發光型發光元件,所以使用該發光元件的發光裝置具有如下優點:具有良好的可見度;不需要背光源;以及耗電量低等。而且,該發光裝置還具有如下優點:能夠被製造得薄且輕;以及回應速度快等。
在將上述發光元件用於顯示裝置時,有如下兩個方法:在像素中的各子像素中設置能夠發射互不相同的顏色的光的EL層的方法(以下稱為分別塗布方式);以及在像素中的子像素中例如設置能夠發射白色光的共同的EL層,在各子像素中設置能夠使互不相同的顏色的光透過的濾色片的方法(以下稱為白色EL+濾色片方式,注意,共同的EL層的發光顏色不侷限於白色)。
作為白色EL+濾色片方式的優點可以舉出:由於在所有子像素中共同使用EL層,所以與分別塗布方式相比,EL層的材料的損失少,且可以降低在圖案形成時需要的成本,由此可以以低成本及高生產率製造顯示裝置。並且,在分別塗布方式中,為了防止各子像素的EL層的材料互相混入,在各像素之間需要餘地,而由於在白色EL+濾色片方式中不需要該餘地,可以實現像素密度更高的高清晰的顯示裝置。
上述發光元件根據包含在EL層中的發光物質 的種類可以提供各種發光顏色。特別是,在考慮對照明或白色EL+濾色片方式的顯示裝置的應用時,需要能夠以高效率得到白色發光或近似白色的發光的發光元件。此外,需要耗電量低的發光元件。
為了改善來自發光元件的光的提取效率,已提出如下方法:採用在一對電極之間利用光的共振效應的光學微諧振腔(micro optical resonator)(微腔)結構而提高所定波長的光強度(例如,參照專利文獻1)。
此外,為了降低發光元件的耗電量,已提出如下方法:藉由作為一對電極中的不提取光的電極使用功函數高的金屬氧化物,減少因該電極導致的電壓損失,由此降低發光元件的驅動電壓(例如參照專利文獻2)。
[專利文獻1]日本專利申請公開第2012-182127號公報
[專利文獻2]日本專利申請公開第2012-182119號公報
在發光元件中,為了改善光提取效率,作為一對電極中的不提取光的電極較佳為使用反射率高的材料。此外,為了降低發光元件的驅動電壓,作為陽極較佳為使用功函數高的材料。但是,選擇反射率高、功函數高、適合發光元件的電極的穩定的材料是很困難的。
由此,一直以來藉由採用層疊反射率高的材料及功函數高的材料的電極結構,以圖實現發光元件的光 提取效率的提高及驅動電壓的降低。然而,當層疊兩種不同材料時,由於離子化傾向的差異有時在兩種不同材料的介面產生電子的授受。此外,當所層疊的材料的一方使用氧化物時,有時在兩種不同的材料的介面產生氧的授受。這種電子的授受或氧的授受成為電極材料腐蝕的原因。若電極材料腐蝕,則使用該電極材料形成的電極層的應力產生變化,所以有時產生因膜剝離導致的不良、發光元件的發光效率的降低或驅動電壓的上升。此外,這也會成為發光元件的電短路或發光不良的原因。
作為製造能夠進行全彩色顯示的顯示裝置的方法,在分別塗布方式中,由於需要使用具有微細的開口的陰影遮罩只對要蒸鍍的子像素蒸鍍特定的發光層的製程,所以被要求將陰影遮罩的開口部配置(也稱為對準)在所希望的位置的高精度(也稱為對準精度)。此外,有如下課題:在能夠進行高清晰的顯示的顯示裝置中,由於被要求更高的對準精度,所以顯示裝置的製造中的良率下降,而製造成本增大。
針對於此,在白色EL+濾色片方式中,由於不需要如上所述的具有微細的開口的陰影遮罩,所以可以以高產率製造顯示裝置。然而,在白色EL+濾色片方式中,由於在各子像素中共同形成具有發射白色光的發光層,所以各子像素包含不需要的顏色的發光。因此,白色EL+濾色片方式具有如下課題:與分別塗布方式相比,光利用效率低。因此,被要求提高發射白色的發光元件的發 光效率。此外,被要求提高發光元件的生產率。另外,被要求光利用效率高的發光元件。
為了從由包括一個發光單元的EL層構成的發光元件得到白色發光,需要在單層的EL層中同時高效地使發射不同顏色的光的發光物質發光。從EL層得到的發光受到產生注入到EL層中的電子及電洞的再結合的區域的分佈的影響。例如,當該再結合的區域偏於包含一個發光物質的發光層時,來自另一個發光物質的發光變弱。換言之,根據產生注入到EL層中的電子及電洞的再結合的區域,EL層所發射的發光顏色變化。因此,為了控制EL層所發射的發光顏色,控制產生注入到EL層中的電子及電洞的再結合的區域是重要的。
換而言之,由於藉由控制產生注入到EL層中的電子及電洞的再結合的區域,可以控制EL層所發射的發光顏色,所以可以從包括具有發射白色光的功能的發光層的發光元件提取所希望的顏色的光。因此,在顯示裝置的各子像素中共同形成具有發射白色光的功能的發光層,分別控制產生各子像素的電子及電洞的再結合的區域,且控制各子像素的發光顏色,只要可以由此從各子像素提取不同的發光顏色,則可以製造光利用效率高的發光元件。
鑒於上述問題,本發明的一個實施方式的目的之一是提供一種新穎的發光元件。此外,本發明的一個 實施方式的目的之一是提供一種發光效率高的新穎的發光元件。本發明的一個實施方式的目的之一是提供一種耗電量得到降低的新穎的發光元件。本發明的一個實施方式的目的之一是提供一種包括具有多個發光層的EL層的新穎的發光元件。本發明的一個實施方式的目的之一是提供一種EL層的電子及電洞的再結合的區域受到控制的發光元件。另外,本發明的一個實施方式的目的之一是提供一種新穎的發光元件的製造方法。
注意,上述目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。此外,可以從說明書等的記載得知並抽取上述目的以外的目的。
本發明的一個實施方式是一種發光元件,包括:第一電極層;第二電極層;以及設置在第一電極層與第二電極層之間的EL層,其中,第一電極層包括:導電層;以及與導電層接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的含量以上。
本發明的其他實施方式是一種發光元件,包括:第一電極層;第一電極層上的EL層;以及EL層上的第二電極層,其中,第一電極層包括:導電層;以及在導電層上並與其接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、 Y、Zr、Sn、La、Ce、Nd或Hf),並且氧化物層中的M的含量為In的含量以上。
本發明的其他實施方式是一種發光元件,包括:第一電極層;在第一電極層上並與其接觸的EL層;以及在EL層上並與其接觸的第二電極層,其中,第一電極層包括:導電層;以及在導電層上並與其接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的含量以上。
本發明的其他實施方式是一種發光元件,包括:第一電極層;第二電極層;第三電極層;以及EL層,其中,EL層設置在第一電極層與第二電極層之間以及第二電極層與第三電極層之間,第一電極層包括:導電層;以及與導電層接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的含量以上。
本發明的其他實施方式是一種發光元件,包括:第一電極層;第一電極層上的EL層;EL層上的第二電極層;以及第三電極層,其中,EL層設置在第三電極層上,第一電極層包括:導電層;以及在導電層上並與其接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的 含量以上。
本發明的其他實施方式是一種發光元件,包括:第一電極層;在第一電極層上並與其接觸的EL層;在EL層上並與其接觸的第二電極層;以及第三電極層,其中,EL層以在第三電極層上並與其接觸的方式設置,第一電極層包括:導電層;以及在導電層上並與其接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),氧化物層中的M的含量為In的含量以上。
本發明的其他實施方式是一種半導體裝置,包括:第一電極層;以及電晶體,其中第一電極層包括:導電層;以及與導電層接觸的氧化物層,導電層具有反射光的功能,氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,氧化物層中的M的含量為In的含量以上。
在上述結構中,電晶體在氧化物半導體層中包括通道區域,氧化物半導體層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。
在上述各結構中,第三電極層較佳為具有與氧化物層的組成不同的氧化物。
在上述各結構中,較佳的是,使用第一電極層及第二電極層夾持的第一區域所發射的光的顏色與使用第二電極層及第三電極層夾持的第二區域所發射的光的顏色不同。
在上述各結構中,較佳的是,EL層包括第一發光層及第二發光層,第一發光層包含具有發射光的功能的第一化合物,並且第二發光層包含具有發射光的功能的第二化合物。
在上述各結構中,較佳的是,第一化合物和第二化合物中的一個具有能夠將單重激發能轉換為發光的功能,並且,第一化合物和第二化合物中的另一個具有能夠將三重激發能轉換為發光的功能。
在上述各結構中,較佳的是,第一化合物所發射的光的顏色與第二化合物不同。
在上述各結構中,導電層較佳為包含Al或Ag。
在上述各結構中,第二電極層較佳為包含In、Ag、Mg中的至少一個。
在上述各結構中,氧化物層還包含Zn是較佳的。
在上述各結構中,M較佳為Ga。
在上述各結構中,氧化物層較佳為包含In、Ga、Zn。
本發明的其他實施方式是一種包括上述各結構的發光元件的顯示裝置,其中,顯示裝置包括進行發光元件的開關的電晶體,電晶體在氧化物半導體層中包括通道區域,並且,氧化物半導體層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。
在上述結構中,氧化物層及氧化物半導體層較佳為包含相同的元素。
本發明的一個實施方式在其範疇內包括:包括上述各結構的發光元件、濾色片或電晶體的顯示裝置;包括上述各結構的顯示裝置、外殼或觸控感測器的電子裝置;或者包括上述各結構的發光元件、外殼或觸控感測器的照明設備。注意,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明設備)。另外,在發光裝置中安裝有連接器諸如FPC(Flexible Printed Circuit:撓性印刷電路)或TCP(Tape Carrier Package:捲帶式封裝)的模組、在TCP端部設置有印刷線路板的模組、或者將IC(積體電路)藉由COG(Chip On Glass:晶粒玻璃接合)方式直接安裝在發光裝置上的模組有時包括發光元件。
藉由本發明的一個實施方式可以提供一種新穎的發光元件。藉由本發明的一個實施方式可以提供一種發光效率高的新穎的發光元件。藉由本發明的一個實施方式可以提供一種耗電量得到降低的新穎的發光元件。藉由本發明的一個實施方式可以提供一種包括具有多個發光層的EL層的新穎的發光元件。藉由本發明的一個實施方式可以提供一種EL層的電子及電洞的再結合的區域受到控制的發光元件。藉由本發明的一個實施方式可以提供一種新穎的發光元件的製造方法。
注意,這些效果的記載不妨礙其他效果的存 在。此外,本發明的一個實施方式並不一定需要具有所有上述效果。另外,可以從說明書、圖式、申請專利範圍等的記載得知並抽取上述效果以外的效果。
100‧‧‧EL層
101‧‧‧電極層
101a‧‧‧導電層
101b‧‧‧氧化物層
101c‧‧‧透明導電膜
101d‧‧‧氧化物層
101e‧‧‧透明導電膜
102‧‧‧電極層
103‧‧‧電極層
103a‧‧‧導電層
103b‧‧‧氧化物層
103c‧‧‧透明導電膜
104‧‧‧電極層
104a‧‧‧導電層
104b‧‧‧氧化物層
106‧‧‧發光單元
108‧‧‧發光單元
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
113‧‧‧電子傳輸層
114‧‧‧電子注入層
115‧‧‧電荷產生層
116‧‧‧電洞注入層
117‧‧‧電洞傳輸層
118‧‧‧電子傳輸層
119‧‧‧電子注入層
120‧‧‧發光層
120a‧‧‧發光層
120b‧‧‧發光層
121‧‧‧發光層
121a‧‧‧發光層
121b‧‧‧發光層
122‧‧‧發光層
122a‧‧‧發光層
122b‧‧‧發光層
140‧‧‧分隔壁
150‧‧‧發光元件
170‧‧‧發光元件
172‧‧‧發光元件
174‧‧‧發光元件
176‧‧‧發光元件
190‧‧‧串聯型發光元件
200‧‧‧基板
210A‧‧‧區域
210B‧‧‧區域
211A‧‧‧區域
211B‧‧‧區域
212A‧‧‧區域
212B‧‧‧區域
213A‧‧‧區域
213B‧‧‧區域
220‧‧‧基板
221B‧‧‧區域
221G‧‧‧區域
221R‧‧‧區域
223‧‧‧遮光層
224B‧‧‧光學元件
224G‧‧‧光學元件
224R‧‧‧光學元件
250‧‧‧發光元件
270‧‧‧發光元件
280‧‧‧發光元件
282‧‧‧發光元件
290‧‧‧發光元件
292‧‧‧發光元件
400‧‧‧EL層
401‧‧‧電極層
401a‧‧‧導電層
401b‧‧‧氧化物層
402‧‧‧電極層
411‧‧‧電洞注入層
412‧‧‧電洞傳輸層
413‧‧‧發光層
414‧‧‧發光層
415‧‧‧電子傳輸層
416‧‧‧電子注入層
421‧‧‧客體材料
422‧‧‧主體材料
431‧‧‧客體材料
432‧‧‧有機化合物
433‧‧‧有機化合物
450‧‧‧發光元件
501‧‧‧電極層
501a‧‧‧導電層
501b‧‧‧氧化物層
501c‧‧‧透明導電膜
502‧‧‧電極層
503‧‧‧電極層
503a‧‧‧導電層
503b‧‧‧氧化物層
503c‧‧‧透明導電膜
510‧‧‧基板
512‧‧‧密封基板
514‧‧‧光學元件
520‧‧‧發光層
521‧‧‧發光層
522‧‧‧發光層
531‧‧‧電洞注入層
532‧‧‧電洞傳輸層
533‧‧‧電子傳輸層
534‧‧‧電子注入層
535‧‧‧電荷產生層
537‧‧‧電洞傳輸層
538‧‧‧電子傳輸層
539‧‧‧電子注入層
540‧‧‧緩衝層
600‧‧‧顯示裝置
601‧‧‧信號線驅動電路部
602‧‧‧像素部
603‧‧‧掃描線驅動電路部
604‧‧‧密封基板
605‧‧‧密封材料
607‧‧‧區域
608‧‧‧佈線
609‧‧‧FPC
610‧‧‧元件基板
611‧‧‧電晶體
612‧‧‧電晶體
613‧‧‧下部電極
614‧‧‧分隔壁
616‧‧‧EL層
617‧‧‧上部電極
618‧‧‧發光元件
621‧‧‧光學元件
622‧‧‧遮光層
623‧‧‧電晶體
624‧‧‧電晶體
801‧‧‧像素電路
802‧‧‧像素部
804‧‧‧驅動電路部
804a‧‧‧掃描線驅動電路
804b‧‧‧信號線驅動電路
806‧‧‧保護電路
807‧‧‧端子部
852‧‧‧電晶體
854‧‧‧電晶體
862‧‧‧電容元件
872‧‧‧發光元件
1001‧‧‧基板
1002‧‧‧基底絕緣膜
1003‧‧‧閘極絕緣膜
1006‧‧‧閘極電極
1007‧‧‧閘極電極
1008‧‧‧閘極電極
1020‧‧‧層間絕緣膜
1021‧‧‧層間絕緣膜
1022‧‧‧電極
1024B‧‧‧下部電極
1024G‧‧‧下部電極
1024R‧‧‧下部電極
1025‧‧‧分隔壁
1026‧‧‧上部電極
1028‧‧‧EL層
1029‧‧‧密封層
1031‧‧‧密封基板
1032‧‧‧密封材料
1033‧‧‧基材
1034B‧‧‧彩色層
1034G‧‧‧彩色層
1034R‧‧‧彩色層
1035‧‧‧遮光層
1036‧‧‧保護層
1037‧‧‧層間絕緣膜
1040‧‧‧像素部
1041‧‧‧驅動電路部
1042‧‧‧周邊部
2000‧‧‧觸控面板
2001‧‧‧觸控面板
2501‧‧‧顯示裝置
2502R‧‧‧像素
2502t‧‧‧電晶體
2503c‧‧‧電容元件
2503g‧‧‧掃描線驅動電路
2503s‧‧‧信號線驅動電路
2503t‧‧‧電晶體
2509‧‧‧FPC
2510‧‧‧基板
2510a‧‧‧絕緣層
2510b‧‧‧撓性基板
2510c‧‧‧黏合層
2511‧‧‧佈線
2519‧‧‧端子
2521‧‧‧絕緣層
2528‧‧‧分隔壁
2550R‧‧‧發光元件
2560‧‧‧密封層
2567BM‧‧‧遮光層
2567p‧‧‧防反射層
2567R‧‧‧彩色層
2570‧‧‧基板
2570a‧‧‧絕緣層
2570b‧‧‧撓性基板
2570c‧‧‧黏合層
2580R‧‧‧發光模組
2590‧‧‧基板
2591‧‧‧電極
2592‧‧‧電極
2593‧‧‧絕緣層
2594‧‧‧佈線
2595‧‧‧觸控感測器
2597‧‧‧黏合層
2598‧‧‧佈線
2599‧‧‧連接層
2601‧‧‧脈衝電壓輸出電路
2602‧‧‧電流檢測電路
2603‧‧‧電容器
2611‧‧‧電晶體
2612‧‧‧電晶體
2613‧‧‧電晶體
2621‧‧‧電極
2622‧‧‧電極
8000‧‧‧顯示模組
8001‧‧‧上蓋
8002‧‧‧下蓋
8003‧‧‧FPC
8004‧‧‧觸控感測器
8005‧‧‧FPC
8006‧‧‧顯示裝置
8009‧‧‧框架
8010‧‧‧印刷基板
8011‧‧‧電池
8501‧‧‧照明設備
8502‧‧‧照明設備
8503‧‧‧照明設備
8504‧‧‧照明設備
9000‧‧‧外殼
9001‧‧‧顯示部
9003‧‧‧揚聲器
9005‧‧‧操作鍵
9006‧‧‧連接端子
9007‧‧‧感測器
9008‧‧‧麥克風
9050‧‧‧操作按鈕
9051‧‧‧資訊
9052‧‧‧資訊
9053‧‧‧資訊
9054‧‧‧資訊
9055‧‧‧鉸鏈
9100‧‧‧可攜式資訊終端
9101‧‧‧可攜式資訊終端
9102‧‧‧可攜式資訊終端
9200‧‧‧可攜式資訊終端
9201‧‧‧可攜式資訊終端
在圖式中:圖1A及圖1B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖2A及圖2B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖3A及圖3B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖4是說明本發明的一個實施方式的發光元件的剖面示意圖;圖5A及圖5B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖6A及圖6B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖7A及圖7B是說明本發明的一個實施方式的發光元件的剖面示意圖;圖8A及圖8B是說明本發明的一個實施方式的用於計算的結晶模型的圖;圖9A至圖9E是說明本發明的一個實施方式的發光元件的製造方法的剖面示意圖; 圖10A至圖10C是說明本發明的一個實施方式的發光元件的製造方法的剖面示意圖;圖11是說明本發明的一個實施方式的發光元件的剖面示意圖;圖12A及圖12B是說明本發明的一個實施方式的發光層的能階關係的圖;圖13是說明本發明的一個實施方式的發光層的能階關係的圖;圖14A及圖14B是說明本發明的一個實施方式的顯示裝置的俯視圖及剖面示意圖;圖15A及圖15B是說明本發明的一個實施方式的顯示裝置的剖面示意圖;圖16是說明本發明的一個實施方式的顯示裝置的剖面示意圖;圖17是說明本發明的一個實施方式的顯示裝置的剖面示意圖;圖18是說明本發明的一個實施方式的顯示裝置的剖面示意圖;圖19A及圖19B是說明本發明的一個實施方式的顯示裝置的方塊圖及電路圖;圖20A及圖20B是示出本發明的一個實施方式的觸控面板的一個例子的透視圖;圖21A至圖21C是示出本發明的一個實施方式的顯示裝置及觸控感測器的一個例子的剖面圖; 圖22A及圖22B是示出本發明的一個實施方式的觸控面板的一個例子的剖面圖;圖23A及圖23B是本發明的一個實施方式的觸控感測器的方塊圖及時序圖;圖24是本發明的一個實施方式的觸控感測器的電路圖;圖25是說明本發明的一個實施方式的顯示模組的透視圖;圖26A至圖26G是說明本發明的一個實施方式的電子裝置的圖;圖27是說明本發明的一個實施方式的照明設備的圖;圖28是說明根據實施例的電極層的反射率的圖;圖29A至圖29C是說明根據實施例的發光元件的剖面示意圖;圖30是說明實施例的發光元件的電流效率-亮度特性的圖;圖31是說明實施例的發光元件的電場發射光譜的圖;圖32是說明實施例的發光元件的電流效率-亮度特性的圖;圖33是說明實施例的發光元件的亮度-電壓特性的圖;圖34是說明實施例的發光元件的電場發射光譜的 圖;圖35是說明實施例的發光元件的電流效率-亮度特性的圖;圖36是說明實施例的發光元件的亮度-電壓特性的圖;圖37是說明實施例的發光元件的電場發射光譜的圖。
以下,參照圖式詳細地說明本發明的實施方式。注意,本發明不侷限於以下說明,其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式所記載的內容中。
另外,為了便於理解,有時在圖式等中示出的各結構的位置、大小及範圍等並不表示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式等所公開的位置、大小、範圍等。
此外,在本說明書等中,為了方便起見,附加了第一、第二等序數詞,而其有時並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地置換為“第二”或“第三”等而進行說明。此外,本說明書等中所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
注意,在本說明書等中,當利用圖式說明發明的結構時,表示相同的部分的符號在不同的圖式中共同使用。
注意,顏色一般是由色相(相當於單色光的波長)、色度(彩度,亦即,沒有呈白色的程度)及明度(亮度,亦即,光的強度)的三個要素規定的。在本說明書中,顏色也可以只由上述三個要素中的任一個或只任兩個規定。另外,在本說明書中,“兩個光的顏色不同”的情況是指上述三個要素中至少一個不同的情況,也包括兩個光的光譜的形狀或各峰值的相對強度比的分佈不同的情況。
在本說明書等中,藍色發光在420nm以上且490nm以下的波長區域中具有至少一個發射光譜峰值,綠色發光在500nm以上且小於550nm的波長區域中具有至少一個發射光譜峰值,黃色發光在550nm以上且小於590nm的波長區域中具有至少一個發射光譜峰值,紅色發光在590nm以上且740nm以下的波長區域中具有至少一個發射光譜峰值。
在本說明書等中,螢光材料是指在從單重激發態的最低能階(S1能階)返回到基態時在可見光區域發光的材料。磷光材料是指在從三重激發態的最低能階(T1能階)返回到基態時在室溫下在可見光區域發光的材料。換言之,磷光材料是指可以將三重激發能轉換為可見光的材料之一。
在本說明書等中,室溫是指0℃至40℃中的任一個溫度。
注意,在本說明書等中,透明導電膜是指具有使可見光透過的功能且具有導電性的膜。例如,透明導電膜包括以銦錫氧化物(Indium Tin Oxide,以下ITO)為代表的氧化物導電體膜、氧化物半導體膜或包含有機物的有機導電體膜。作為包含有機物的有機導電體膜,例如可以舉出包含混合有機化合物與電子予體(施體)而成的複合材料的膜、包含混合有機化合物與電子受體(受體)而成的複合材料的膜等。另外,透明導電膜的電阻率較佳為1×105Ω.cm以下,更佳為1×104Ω.cm以下。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,有時可以將“絕緣膜”變換為“絕緣層”。
實施方式1
在本實施方式中,以下參照圖1A至圖10C對本發明的一個實施方式的發光元件進行說明。
〈1.發光元件的結構實例1〉
圖1A及圖1B是示出本發明的一個實施方式的發光元件的剖面圖。圖1A所示的發光元件150包括電極層101、EL層100、電極層102。此外,電極層101包括導電層101a、在導電層101a上並與其接觸的氧化物層 101b。
圖1A所示的EL層100如圖1B所示也可以包括電洞注入層111、電洞傳輸層112、發光層120、電子傳輸層118、電子注入層119。
注意,在本實施方式的發光元件中,將電極層101用作陽極且將電極層102用作陰極而進行說明,但是發光元件的結構並不侷限於此。就是說,也可以將電極層101用作陰極,將電極層102用作陽極,該電極層之間的各層的疊層順序相反。換言之,從陽極一側依次層疊電洞注入層111、電洞傳輸層112、發光層120、電子傳輸層118、電子注入層119即可。
在一對電極之間的EL層中,根據其功能形成各層即可,不侷限於此。就是說,一對電極層之間的EL層也可以包括具有如下功能的層:減少電洞或電子的注入能障;提高電洞或電子的傳輸性;阻礙電洞或電子的傳輸性;或者抑制因電極導致的淬滅現象等。
〈〈電極層的結構實例〉〉
構成電極層101的導電層101a具有反射光的功能。藉由使用具有鋁(Al)或銀(Ag)的材料形成導電層101a,可以提高導電層101a的反射率,因此可以提高發光元件150的發光效率。由於Al的材料成本低且容易形成圖案,所以可以降低發光元件的製造成本,因此是較佳的。此外,由於Ag尤其具有高反射率,所以可以提高發 光元件的發光效率,因此是較佳的。
構成電極層101的在導電層101a上並與其接觸的氧化物層101b較佳為具有導電性。氧化物層101b的電阻率較佳為1×105Ω.cm以下,更佳為1×104Ω.cm以下。藉由使氧化物層101b具有導電性,可以提高從電極層101至EL層100的電子或電洞的注入性,從而可以降低發光元件150的驅動電壓。
氧化物層101b較佳為具有使光透過的功能。由於氧化物層101b具有使光透過的功能,可以提高電極層101的反射率,所以可以提高發光元件150的發光效率。
藉由作為氧化物層101b使用包含銦(In)的氧化物,可以提高氧化物層101b的導電性。此外,可以提高氧化物層101b的光穿透率。
當構成電極層101的導電層101a與導電層101a上的氧化物層101b接觸時,有時在用於導電層101a的材料與用於氧化物層101b的材料之間產生離子化傾向的差異。
離子化傾向的大小可以以標準電極電位值為指標。例如,由於Al的標準電極電位為-1.68V,In的標準電極電位為-0.34V,所以Al的離子化傾向比In大。當作為導電層101a使用包含Al的材料,且作為氧化物層101b使用包含In的氧化物時,由於在包含Al的材料與包含In的氧化物之間離子化傾向的差異變大,所以在該材 料之間產生電子的授受,而產生電解腐蝕。此外,由於Al與氧的鍵合力比In與氧的鍵合力強,在包含Al的材料與包含In的氧化物之間產生氧的授受,有時在包含Al的材料與包含In的氧化物的介面形成Al的氧化物。由於Al的氧化物的導電性低,所以電極層101的導電性下降,這成為發光元件150的驅動電壓上升的原因之一。此外,由於當產生電解腐蝕時,該電極層的應力產生變化,所以有時產生膜剝離。
於是,在本發明的一個實施方式中,作為氧化物層101b使用包含In及其與氧的鍵能比In與氧的鍵能大的元素的氧化物。或者,作為氧化物層101b使用包含In及其離子化傾向比In大的元素的氧化物。或者,作為氧化物層101b使用包含In及其標準電極電位比In小的元素的氧化物。就是說,作為氧化物層101b使用包含In及穩定劑M(M表示Al、矽(Si)、鈦(Ti)、鎵(Ga)、釔(Y)、鋯(Zr)、錫(Sn)、鑭(La)、鈰(Ce)、釹(Nd)或鉿(Hf))的氧化物。
氧化物層101b中的穩定劑M的含量較佳為In的含量以上。藉由採用上述結構,氧化物層101b中的金屬元素與氧的鍵合力更強,由此可以防止氧化物層101b與導電層101a之間的氧的授受。因此,可以防止在電極層101中產生電解腐蝕,並可以降低發光元件150的驅動電壓。此外,為了製造穩定的電極層,穩定劑M的含量比In的含量多是較佳的。
表1示出In及能夠用於穩定劑M的元素的例子的標準電極電位。此外,表2示出In與氧以及能夠用於穩定劑M的元素的一個例子的Ga與氧的鍵能的計算值。
表1所示的標準電極電位是從“化學便覽基礎 編II改訂4版,表12.40(II465頁至II468頁)丸善株式會社”引用的。藉由使包含In的氧化物層具有如表1所示的以其標準電極電位比In小的元素為穩定劑M,該氧化物層與包含Al的導電層之間的標準電極電位的差異縮小,所以在該氧化物層與該導電層之間不容易產生氧化氧化還原反應。就是說,可以防止包含Al的導電層與包含In的氧化物層之間的電子的授受或氧的授受。
在表2所示的金屬元素與氧的鍵能的計算中,使用第一原理計算軟體的VASP(The Vienna Ab initio simulation package)。圖8A及圖8B是用於計算的結晶模型。另外,利用投影綴加波(PAW:Projector Augmented Wave)法計算內殼層電子的效果。作為泛函使用GGA/PBE(Generalized-Gradient-Approximation:廣義梯度近似/Perdew-Burke-Ernzerhof)。表3示出計算條件。
根據公式(1)計算出與氧的鍵能(Ebinding(M-O))。此外,公式(1)的M表示In或Ga,n為依賴於模型尺寸的原子個數,在這次計算中n=16。此外,Eatom(M)及Eatom(O)為各原子的總能量,且Etot(M2nO3n)為M2O3結晶模型的總能量。如圖8B,在In2O3結晶中,In只為六配位,O只為四配位,In-O的鍵合強度可以被認為是恆定的。另一方面,如圖8A,由於在β-Ga2O3結晶中存在有三配位及四配位的O以及四配位及六配位的Ga,所以這些Ga-O的鍵能不一致,這裡為了使計算簡化,使用平均值算出Ga-O的鍵能。
從計算結果可知,如表2,Ga-O鍵能比In-O鍵能大。因此,可以說Ga與氧的鍵合比In與氧的鍵合強。
在如In-Ga-Zn氧化物的包含多個金屬元素的氧化物中,氧與兩種或三種金屬元素鍵合的情況比氧只與一個金屬元素鍵合的情況多。由此,接著,對In:Ga:Zn=1:1:1(原子個數比)結晶模型計算出金屬元素與氧(M-O)間的鍵能。模型中的原子個數為84原子,在計算中使用表3所示的條件。鍵能(EB,M-O)根據公式 (2)計算出。在公式(2)中,鍵能(EB,M-O)依賴於M-O間的距離(dM-O)。公式(2)的a0,M、a1,M、a2,M以公式(3)的S變為最少的方式進行擬合來計算出。此外,公式(4)的IGZO:VO表示在In-Ga-Zn氧化物中存在有氧缺陷(VO)的In-Ga-Zn氧化物模型,以E(VO)表示該模型中的VO生成能量。
[公式4]E(V O )=E tot (IGZOV O )+E atom (O)-E tot (IGZO)...(4)
Ga-O及In-O的平均距離的0.195nm、0.220nm處的鍵能分別被計算出為2.33eV、1.80eV。因此,在如In-Ga-Zn氧化物的包含多個金屬元素的氧化物中,Ga-O的鍵能比In-O的鍵能大,可以說是Ga與氧的鍵合比In 與氧的鍵合強。
如上所述,藉由作為穩定劑M將其標準電極電位比In小的元素或其離子化傾向比In大的元素用於氧化物層101b或者作為穩定劑M將與氧的鍵能比In強的元素用於氧化物層101b,可以抑制包含In的氧化物層101b與包含Al的導電層101a之間的電子的授受或氧的授受。就是說,藉由將包含In以及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)的氧化物用於氧化物層101b,可以防止在電極層101中產生電解腐蝕,並可以降低發光元件150的驅動電壓。此外,藉由使氧化物層101b中的穩定劑M的含量為In的含量以上,可以高效地防止氧化物層101b與導電層101a之間的氧的授受,因此是較佳的。
由於Ag的標準電極電位為0.80V,所以Ag的離子化傾向比In小。因此,當導電層101a使用包含Ag的材料形成時,由於不容易產生從氧化物層101b至導電層101a的氧的授受,所以是較佳的。此外,在此情況下,藉由將包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)的氧化物用於氧化物層101b,氧化物層101b中的氧的鍵合力更強,所以可以形成更穩定的電極層101。
電極層102具有使光透過的功能。藉由將包含In、Ag、鎂(Mg)中的至少一個的材料用於電極層102,可以提高電極層102的穿透率,由此可以提高發光 元件150的發光效率。
當電極層102具有使光透過的功能及反射光的功能時,藉由微腔效果可以提高發光元件150的發光效率。為此,將包含In、Ag、Mg的至少一個的材料用於電極層102是較佳的。
此外,也可以採用電極層101具有反射光的功能及使光透過的功能的結構。此時,電極層101所包括的導電層101a較佳為具有能夠使光透過的厚度。此外,當電極層101具有反射光的功能及使光透過的功能時,電極層102較佳為具有反射光的功能,特別較佳為具有反射率高的Ag。
藉由在提取光的電極層上設置濾色片,可以提高發光元件150的色純度。因此,可以提高包括發光元件150的顯示裝置的色純度。
〈2.發光元件的結構實例2〉
下面,參照圖2A及圖2B對與圖1A及圖1B所示的發光元件150不同的結構實例進行說明。
圖2A及圖2B是示出本發明的一個實施方式的發光元件的剖面圖。在圖2A及圖2B中使用與圖1A及圖1B相同的陰影線示出具有與圖1A及圖1B相同的功能的部分,而有時省略元件符號。此外,具有與圖1A及圖1B所示的功能相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
圖2A所示的發光元件170及圖2B所示的發光元件172在電極層101中包括具有反射光的功能的導電層101a、在導電層101a上並與其接觸的氧化物層101b、氧化物層101b上的透明導電膜101c。
當將電極層101用作陽極時,作為透明導電膜101c使用功函數大的材料是較佳的。此外,當將電極層101用作陰極時,作為透明導電膜101c使用功函數小的材料是較佳的。藉由包括這種透明導電膜101c,電極層101可以成為對EL層的載子注入性良好的電極。
如圖2B的發光元件172,發光層120也可以具有層疊有發光層120a及發光層120b的結構。藉由作為發光層120a及發光層120b分別使用具有發射不同發光顏色的功能的發光材料,可以從發光元件172同時得到包含多個發光顏色的發光。此外,較佳為選擇發光材料,以便藉由組合發光層120a及發光層120b所發射的光而能夠得到白色發光。
發光層120也可以具有層疊有三層以上的結構,並也可以包含不具有發光材料的層。
〈3.發光元件的結構實例3〉
下面,參照圖3A及圖3B對與圖1A及圖1B以及圖2A及圖2B所示的發光元件不同的結構實例進行說明。
圖3A及圖3B是示出本發明的一個實施方式的發光元件的剖面圖。在圖3A及圖3B中使用與圖1A及 圖1B以及圖2A及圖2B相同的陰影線示出具有與圖1A及圖1B以及圖2A及圖2B相同的功能的部分,而有時省略元件符號。此外,具有與圖1A及圖1B以及圖2A及圖2B所示的功能相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
圖3A及圖3B是在電極層101的下部還包括氧化物層101d的發光元件的結構實例。圖3A所示的發光元件174是作為電極層101的結構的一部分在導電層101a下包括氧化物層101d的發光元件。換而言之,圖3A是導電層101a由氧化物層101b及氧化物層101d夾持的電極層101的結構實例。此外,圖3B所示的發光元件176是作為電極層101的結構的一部分在導電層101a下包括氧化物層101d及透明導電膜101e的發光元件。換而言之,圖3B是導電層101a由氧化物層101b及氧化物層101d夾持,還由透明導電膜101c及透明導電膜101e夾持的電極層101的結構實例。
氧化物層101d及氧化物層101b既可以使用不同的材料又可以使用相同的材料。當使用相同的材料時,導電層101a具有被相同的氧化物材料夾持的結構。藉由作為氧化物層101d及氧化物層101b的結構採用本發明的一個實施方式的結構,導電層101a由穩定的氧化物層夾持。因此,可以形成穩定的電極層101。此外,當導電層101a被相同的氧化物材料夾持時,由於容易進行藉由蝕刻製程的圖案形成,所以是較佳的。
透明導電膜101e及透明導電膜101c既可以使用不同的材料又可以使用相同的材料。當使用相同的材料時,導電層101a、氧化物層101b、101d具有被相同的透明導電膜材料夾持的結構。當電極層101被相同的透明導電膜材料夾持時,由於容易進行藉由蝕刻製程的圖案形成,所以是較佳的。
發光元件176也可以只具有透明導電膜101c和透明導電膜101e中的任何一個。此外,也可以只具有氧化物層101d和透明導電膜101e中的任何一個。
〈4.發光元件的結構實例4〉
下面,參照圖4對與圖1A至圖3B所示的發光元件不同的結構實例進行說明。
圖4是示出本發明的一個實施方式的發光元件的剖面圖。在圖4中使用與圖1A至圖3B相同的陰影線示出具有與圖1A至圖3B相同的功能的部分,而有時省略元件符號。此外,具有與圖1A至圖3B所示的功能相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
圖4是在一對電極層之間隔著電荷產生層層疊有多個發光單元的串聯型發光元件的結構實例。串聯型發光元件190是在電極層101與電極層102之間包括發光單元106、電荷產生層115、發光單元108的發光元件。此外,發光單元106包括電洞注入層111、電洞傳輸層 112、發光層121、電子傳輸層113、電子注入層114,且發光單元108包括電洞注入層116、電洞傳輸層117、發光層122、電子傳輸層118、電子注入層119。就是說,串聯型發光元件190包括多個發光單元,圖1A至圖3B所示的發光元件是包括一個發光單元的發光元件。
發光層121及發光層122可以具有如發光層122a及發光層122b那樣層疊有兩層的結構。藉由作為兩層的發光層分別使用第一化合物及第二化合物這兩種具有發射不同顏色的功能的發光材料,可以同時得到包含多個發光顏色的發光。尤其是,較佳為選擇用於各發光層的發光材料,以便藉由組合發光層121及發光層122所發射的光而能夠得到白色發光。
發光層121或發光層122也可以分別具有層疊有三層以上的結構,並也可以包括不具有發光材料的層。
〈5.發光元件的結構實例5〉
下面,參照圖5A及圖5B對與圖1A至圖4所示的發光元件不同的結構實例進行說明。
圖5A及圖5B是示出本發明的一個實施方式的發光元件的剖面圖。在圖5A及圖5B中使用與圖1A至圖4相同的陰影線示出具有與圖1A至圖4相同的功能的部分,而有時省略元件符號。此外,具有與圖1A至圖4所示的功能相同的功能的部分由相同的元件符號表示,有 時省略其詳細說明。
圖5A及圖5B是具有與圖1A至圖4所示的發光元件不同的結構的發光元件250及發光元件270的結構實例。圖5A所示的發光元件250在基板200上包括電極層101、電極層102、電極層103。此外,電極層101包括導電層101a、在導電層101a上並與其接觸的氧化物層101b。此外,電極層103包括導電層103a、在導電層103a上並與其接觸的氧化物層103b、氧化物層103b上的透明導電膜103c。
發光元件250在電極層101與電極層102之間包括電洞注入層111、電洞傳輸層112、發光層120、電子傳輸層118、電子注入層119。此外,發光元件250在電極層102與電極層103之間包括電洞注入層111、電洞傳輸層112、發光層120、電子傳輸層118、電子注入層119。
在圖5A中,在區域210A中由電極層101及電極層102夾持且在區域210B中由電極層102及電極層103夾持的電洞注入層111、電洞傳輸層112、發光層120、電子傳輸層118、電子注入層119所例示的各功能層彼此被分開,但是各功能層也可以共同形成而不在區域210A及區域210B中分開。
發光層120可以具有層疊有發光層120a及發光層120b的結構。藉由作為兩層的發光層分別使用第一化合物及第二化合物這兩種具有發射不同顏色的功能的發 光材料,可以同時得到包含多個發光顏色的發光。尤其是,較佳為選擇用於各發光層的發光材料,以便藉由組合發光層120a及發光層120b所發射的光而能夠得到白色發光。
發光層120也可以具有層疊有三層以上的結構,並也可以包含不具有發光材料的層。
當作為構成電極層101的氧化物層101b及構成電極層103的氧化物層103b使用不同的材料時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。
當將電極層101及電極層103用作陽極時,氧化物層101b及氧化物層103b較佳為使用功函數大的材料形成。其中,例如,當將功函數較小且電洞注入性低的材料用於氧化物層101b時,從陽極注入EL層的電洞及從陰極注入EL層的電子再結合的區域稠密地分佈於離陽極較近的一側。另一方面,當將功函數較大且電洞注入性高的材料用於氧化物層103b時,電洞和電子再結合的區域稠密地分佈於離陰極較近的一側。
當在電洞和電子再結合的區域(再結合區域)中存在有發光層120時,從發光層120發射光。藉由調整形成發光元件250的各層的材料及厚度以便發光層120中的載子的再結合區域分佈得稠密,由此可以提高發光元件250的發光強度和發光效率。此外,當發光層120為一層時,發光材料所發射的光的光譜形狀(各波長成分 的相對強度比)不受到電洞和電子再結合的區域的影響,所以即使再結合區域變化,發光材料本身的發光顏色也不變化。
另一方面,如圖5A及圖5B,在發光層120由多個層(發光層120a及發光層120b)構成的情況下,當電洞或電子的注入性產生變化且發光層120中的電洞和電子再結合的區域(再結合區域)產生變化時,發光層120a及發光層120b所發射的光的強度比產生變化。因此,當發光層120a及發光層120b所發射的光的顏色不同時,發光元件250整體的被提取的光的光譜形狀(各波長成分的相對強度比)產生變化,亦即發光元件250所發射的光的顏色產生變化。
因此,在本發明的一個實施方式的發光元件中,構成電極層101的氧化物層101b包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),穩定劑M的含量較佳為上述In的含量以上,構成電極層103的氧化物層103b較佳為包含與氧化物層101b不同的氧化物。此外,藉由發光層120包含具有發射不同發光顏色的功能的至少兩個發光材料,由於從由電極層101及電極層102夾持的區域210A發射的光的發光顏色及從由電極層102及電極層103夾持的區域210B發射的光的發光顏色彼此不同,所以是較佳的。就是說,即使區域210A及區域210B共同包括發光層120,電極層101的結構及電極層103的結構彼此不同,也可以使從區域 210A及區域210B提取的發光的顏色彼此不同。
氧化物層101b及氧化物層103b也可以使用相同的材料。此外,藉由氧化物層101b及氧化物層103b使用相同的材料,且採用彼此不同的形成製程,也可以使從電極層101或電極層103至EL層的電子或電洞的注入性改變。例如,藉由改變形成氧化物層101b或氧化物層103b時的沉積室中的壓力、沉積氣體(例如,包含氧、氬或氧的混合氣體)、成膜能量、成膜時的溫度、靶材與基板之間的距離或成膜後的溫度或表面處理等而使氧化物層的性質變為不同性質,也可以改變從氧化物層至EL層的電子或電洞的注入性。此外,藉由氧化物層101b及氧化物層103b具有相同的元素,且使該元素的含量或含有率彼此不同,也可以使氧化物層101b及氧化物層103b包含彼此不同的材料。
導電層101a及導電層103a既可以使用相同的材料,又可以使用不同的材料。當導電層101a及導電層103a使用相同的材料時,可以降低發光元件250的製造成本。
在本實施方式所示的發光元件250中,區域210A及區域210B所包括的EL層的結構可以採用相同的結構。因此,藉由在顯示裝置的像素的子像素中使用包括具有發射彼此不同的發光顏色的區域210A及區域210B的發光元件250,可以從各子像素提取不同的發光顏色的光而不需要分別塗布EL層。因此,可以以高良率製造光 利用效率高的顯示裝置。就是說,包括發光元件250的顯示裝置可以降低耗電量。此外,包括發光元件250的顯示裝置可以降低製造成本。另外,由於EL層不需要分別塗布時所需要的餘地而不產生佈局的限制,所以可以製造佈局的彈性高且容易製造的顯示裝置。此外,可以製造高解析度的顯示裝置。
如圖5B所示的發光元件270,電極層101也可以包括具有反射光的功能的導電層101a、在導電層101a上並與其接觸的氧化物層101b、氧化物層101b上的透明導電膜101c。
藉由包括透明導電膜101c,電極層101可以為對EL層的載子注入性良好的電極。
透明導電膜101c及透明導電膜103c既可以使用相同的材料又可以使用不同的材料。當透明導電膜101c及透明導電膜103c使用相同的材料時,可以降低發光元件270的製造成本。此時,藉由使氧化物層101b及氧化物層103b的結構彼此不同,可以實現電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同的電極結構。
當透明導電膜101c及透明導電膜103c使用不同的材料時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。就是說,在圖5B所示的發光元件270中,由於由電極層101及電極層102夾持的區域211A以及由電極層102及電極層103夾持的區域211B 的電子或電洞的注入性不同,所以從電極層102至區域211A及區域211B的電子和電洞的再結合區域的距離彼此不同。
因此,從區域211A發射的光的發光顏色及從區域211B發射的光的發光顏色彼此不同。就是說,藉由使電極層101的結構及電極層103的結構彼此不同,可以使從區域211A及區域211B提取的發光的顏色彼此不同。
〈6.發光元件的結構實例6〉
下面,參照圖6A及圖6B對與圖1A至圖5B所示的發光元件不同的結構實例進行說明。
圖6A及圖6B是示出本發明的一個實施方式的發光元件的剖面圖。在圖6A及圖6B中使用與圖1A至圖5B相同的陰影線示出具有與圖1A至圖5B相同的功能的部分,而有時省略元件符號。此外,具有與圖1A至圖5B所示的功能相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
圖6A及圖6B是在一對電極層之間隔著電荷產生層115層疊有多個發光單元的串聯型發光元件的結構實例。發光元件280及發光元件282在基板200上包括電極層101、電極層102、電極層103。此外,在電極層101與電極層102之間以及在電極層102與電極層103之間包括發光層121、電荷產生層115、發光層122。此外,包 括電洞注入層111、電洞傳輸層112、電子傳輸層113、電子注入層114、電洞注入層116、電洞傳輸層117、電子傳輸層118、電子注入層119。
在圖6A中,在區域212A中由電極層101及電極層102夾持且在區域212B中由電極層102及電極層103夾持的電洞注入層111、電洞傳輸層112、發光層121、電子傳輸層113、電子注入層114、電荷產生層115、電洞注入層116、電洞傳輸層117、發光層122、電子傳輸層118、電子注入層119所例示的各功能層彼此分開,但是各功能層也可以共同形成而不在區域212A及區域212B中分開。
圖6A所示的發光元件280中的電極層101包括導電層101a、在導電層101a上並與其接觸的氧化物層101b。此外,電極層103包括導電層103a、在導電層103a上並與其接觸的氧化物層103b、氧化物層103b上的透明導電膜103c。
圖6B所示的發光元件282中的電極層101包括導電層101a、在導電層101a上並與其接觸的氧化物層101b、氧化物層101b上的透明導電膜101c。此外,電極層103包括導電層103a、在導電層103a上並與其接觸的氧化物層103b、氧化物層103b上的透明導電膜103c。
發光層121及發光層122可以具有如發光層121a及發光層121b那樣層疊有兩層的結構。藉由作為兩層的發光層分別使用第一化合物及第二化合物這兩種具有 發射不同顏色的功能的發光材料,可以同時得到包含多個發光顏色的發光。尤其是,較佳為選擇用於各發光層的發光材料,以便藉由組合發光層121及發光層122所發射的光而能夠得到白色發光。
發光層121或發光層122也可以分別具有層疊有三層以上的結構,並也可以包括不具有發光材料的層。
當作為構成電極層101的氧化物層101b及構成電極層103的氧化物層103b使用不同的材料時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。就是說,在發光元件280中,由於由電極層101及電極層102夾持的區域212A以及由電極層102及電極層103夾持的區域212B的電子或電洞的注入性不同,所以從電極層102至區域212A及區域212B的電子和電洞的再結合區域的距離彼此不同。
因此,在發光元件280中從區域212A發射的光的發光顏色及從區域212B發射的光的發光顏色彼此不同。此外,在發光元件282中從區域213A發射的光的發光顏色及從區域213B發射的光的發光顏色彼此不同。因此,構成電極層101的氧化物層101b包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),穩定劑M的含量較佳為上述In的含量以上,構成電極層103的氧化物層103b較佳為包含與氧化物層101b不同的氧化物。就是說,藉由使電極層101的結構及電極 層103的結構彼此不同,可以在發光元件280中使從區域212A及區域212B提取的光的發光顏色彼此不同。此外,同樣地,可以在發光元件282中使從區域213A及區域213B提取的光的發光顏色彼此不同。
此外,在發光元件280及發光元件282中,也可以作為氧化物層101b及氧化物層103b使用相同的材料。此外,藉由使氧化物層101b及氧化物層103b使用相同的材料,且採用彼此不同的形成製程,也可以使從電極層101或電極層103至EL層的電子或電洞的注入性改變。例如,藉由改變形成氧化物層101b或氧化物層103b時的沉積室中的壓力、沉積氣體(例如,包含氧、氬或氧的混合氣體)、成膜能量、成膜時的溫度、靶材與基板之間的距離或成膜後的溫度或表面處理等而使氧化物層的性質變為不同性質,也可以改變從氧化物層至EL層的電子或電洞的注入性。此外,藉由使氧化物層101b及氧化物層103b具有相同的元素,且使該元素的含量或含有率彼此不同,也可以使氧化物層101b及氧化物層103b包含彼此不同的材料。
藉由將包括發射彼此不同的發光顏色的區域212A及區域212B的發光元件280或者包括發射彼此不同的發光顏色的區域213A及區域213B的發光元件282用於顯示裝置的像素中的子像素,可以從各子像素提取不同發光顏色的光而不需要分別塗布EL層。因此,可以製造光利用效率高且容易製造的顯示裝置。就是說,包括發光 元件280或發光元件282的顯示裝置可以降低耗電量。此外,包括發光元件280或發光元件282的顯示裝置可以降低製造成本。
〈7.發光元件的結構實例7〉
下面,參照圖7A及圖7B對與圖1A至圖6B所示的發光元件不同的結構實例進行說明。
圖7A及圖7B是示出本發明的一個實施方式的發光元件的剖面圖。在圖7A及圖7B中使用與圖1A至圖6B相同的陰影線示出具有與圖1A至圖6B相同的功能的部分,而有時省略元件符號。此外,具有與圖1A至圖6B所示的功能相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
圖7A及圖7B是在一對電極層之間隔著電荷產生層115層疊有多個發光單元的串聯型發光元件的結構實例。圖7A所示的發光元件290是將光提取到與基板200相反的方向的頂面射出(頂部發射)型發光元件,並且圖7B所示的發光元件292是將光提取到基板200一側的底面射出(底部發射)型發光元件。注意,本發明的一個實施方式不侷限於此,也可以是將發光元件所發射的光提取到形成發光元件的基板200的上方及下方的兩者的雙表面射出(雙發射)型發光元件。
發光元件290及發光元件292在基板200上包括電極層101、電極層102、電極層103、電極層104。 此外,在電極層101與電極層102之間、在電極層102與電極層103之間以及在電極層102與電極層104之間包括發光層121、電荷產生層115、發光層122。此外,包括電洞注入層111、電洞傳輸層112、電子傳輸層113、電子注入層114、電洞注入層116、電洞傳輸層117、電子傳輸層118、電子注入層119。
電極層101包括導電層101a、在導電層101a上並與其接觸的氧化物層101b、氧化物層101b上的透明導電膜101c。此外,電極層103包括導電層103a、在導電層103a上並與其接觸的氧化物層103b、氧化物層103b上的透明導電膜103c。電極層104包括導電層104a、在導電層104a上並與其接觸的氧化物層104b。
圖7A所示的發光元件290及圖7B所示的發光元件292在由電極層101及電極層102夾持的區域221R與由電極層102及電極層103夾持的區域221G與由電極層102及電極層104夾持的區域221B之間包括分隔壁140。分隔壁140具有絕緣性。分隔壁140覆蓋電極層101、電極層103及電極層104的端部,並包括與該電極層重疊的開口部。藉由設置分隔壁140,可以將形成在基板200上的電極層分成為如電極層101、電極層103及電極層104那樣的島狀。
發光元件290及發光元件292在從區域221R、區域221G及區域221B發射的光被提取的方向上分別包括光學元件224R、光學元件224G及光學元件 224B。從各區域發射的光透過各光學元件射出到發光元件外部。就是說,從區域221R發射的光透過光學元件224R射出,從區域221G發射的光透過光學元件224G射出,且從區域221B發射的光透過光學元件224B射出。
光學元件224R、光學元件224G及光學元件224B具有選擇性地使入射光中的特定的顏色的光透過的功能。例如,從區域221R發射的光透過光學元件224R成為紅色光,從區域221G發射的光透過光學元件224G成為綠色光,從區域221B發射的光透過光學元件224B成為藍色光。
在圖7A及圖7B中使用虛線的箭頭示意性地示出透過各光學元件從各區域射出的紅色(R)光、綠色(G)光、藍色(B)光。注意,從各區域射出的光的顏色不侷限於此。
在各光學元件之間包括遮光層223。遮光層223具有遮蔽從相鄰的區域發射的光的功能。此外,也可以採用不設置遮光層223的結構。
再者,發光元件290及發光元件292具有微腔結構。
〈〈微腔結構〉〉
從發光層121及發光層122發射的光在一對電極層(例如,電極層101與電極層102)之間被諧振。在發光元件290及發光元件292中,藉由在各區域中調整氧化物 層及透明導電膜的厚度,可以增強從發光層121及發光層122發射的光的波長。此外,藉由在各區域中使電洞注入層111和電洞傳輸層112中的至少一個的厚度不同,也可以增強從發光層121及發光層122發射的光的波長。
例如,當電極層101、電極層102、電極層103及電極層104中的具有反射功能的物質的折射率比發光層121或發光層122的折射率小時,以電極層101與電極層102之間的光學距離為mR λR/2(mR為自然數,λR表示在區域221R中增強的光的波長)的方式調整電極層101所包括的氧化物層101b及透明導電膜101c的厚度。同樣地,以電極層103與電極層102之間的光學距離為mGλG/2(mG為自然數,λG表示在區域221G中增強的光的波長)的方式調整電極層103所包括的氧化物層103b及透明導電膜103c的厚度。再者,以電極層104與電極層102之間的光學距離為mBλB/2(mB為自然數,λB表示在區域221B中增強的光的波長)的方式調整電極層104所包括的氧化物層104b的厚度。
如上所述,藉由設置微腔結構調整各區域的電極層之間的光學距離,可以抑制各電極層附近的光的散射及光的吸收,由此可以實現高的光提取效率。
由於圖7A所示的發光元件290是頂面射出型發光元件,所以電極層101所包括的導電層101a、電極層103所包括的導電層103a以及電極層104所包括的導電層104a較佳為具有反射光的功能。此外,電極層102 較佳為具有使光透過的功能及發射光的功能。
由於圖7B所示的發光元件292是底面射出型發光元件,所以電極層101所包括的導電層101a、電極層103所包括的導電層103a、電極層104所包括的導電層104a較佳為具有反射光的功能及使光透過的功能。此外,電極層102較佳為具有反射光的功能。
發光層121及發光層122可以具有如發光層121a及發光層121b那樣層疊有兩層的結構。藉由作為兩層的發光層分別使用第一化合物及第二化合物這兩種具有發射不同顏色的功能的發光材料,可以同時得到包含多個發光顏色的發光。尤其是,較佳為選擇用於各發光層的發光材料,以便藉由組合發光層121及發光層122所發射的光而能夠得到白色發光。
發光層121或發光層122也可以分別具有層疊有三層以上的結構,並也可以包括不具有發光材料的層。
構成電極層101的氧化物層101b包含In以及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),氧化物層101b中的穩定劑M的含量為上述In的含量以上,在構成電極層103的氧化物層103b包含與氧化物層101b不同的氧化物時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。就是說,由於在發光元件290及發光元件292中由電極層101及電極層102夾持的區域221R及由電極層102及電 極層103夾持的區域221G的電子或電洞的注入性不同,所以從電極層102至區域221R及區域221G的電子及電洞的再結合區域的距離不同。
當電極層103的結構及電極層104的結構不同時,電極層103及電極層104的對EL層的電子或電洞的注入性不同。例如,當電極層103包括氧化物層103b及透明導電膜103c,且電極層104包括氧化物層104b時,由於在發光元件290及發光元件292中由電極層103及電極層102夾持的區域221G及由電極層104及電極層102夾持的區域221B的電子或電洞的注入性不同,所以從電極層102至區域221G及區域221B的電子及電洞的再結合區域的距離不同。
再者,藉由在上述微腔結構中以區域221R的光學距離、區域221G的光學距離、區域221B的光學距離彼此不同的方式調整,從區域221R發射的發光的顏色、從區域221G發射的發光的顏色、從區域221B發射的發光的顏色彼此不同。就是說,藉由使電極層101的結構、電極層103的結構、電極層104的結構彼此不同,在發光元件290及發光元件292中,可以使來自區域221R、區域221G、及區域221B的發光顏色彼此不同。
在發光元件290及發光元件292中,也可以作為氧化物層101b、氧化物層103b、氧化物層104b使用相同的材料。此外,藉由使氧化物層101b、氧化物層103b、氧化物層104b使用相同的材料,且採用彼此不同 的形成製程,也可以使從電極層101、電極層103或電極層104至EL層的電子或電洞的注入性改變。例如,藉由改變形成氧化物層101b、氧化物層103b或氧化物層104b時的沉積室中的壓力、沉積氣體(例如,包含氧、氬或氧的混合氣體)、成膜能量、成膜時的溫度、靶材與基板之間的距離或成膜後的溫度或表面處理等而使氧化物層的性質變為不同性質,也可以改變從氧化物層至EL層的電子或電洞的注入性。此外,藉由使氧化物層101b、氧化物層103b及氧化物層104b具有相同的元素,且使該元素的含量或含有率彼此不同,也可以使氧化物層101b、氧化物層103b及氧化物層104b包含彼此不同的材料。
在發光元件290及發光元件292中,導電層101a、導電層103a、或導電層104a既可以使用相同的材料,又可以使用不同的材料。當導電層101a、導電層103a、導電層104a使用相同的材料時,可以降低發光元件290及發光元件292的製造成本。
在發光元件290及發光元件292中,透明導電膜101c、透明導電膜103c既可以使用相同的材料,又可以使用不同的材料。當透明導電膜101c、透明導電膜103c使用相同的材料時,可以降低發光元件290及發光元件292的製造成本。此時,藉由使氧化物層101b及氧化物層103b的結構彼此不同,可以實現電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同的電極結構。
當透明導電膜101c及透明導電膜103c使用不同的材料時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。就是說,由於由電極層101及電極層102夾持的區域221R及由電極層102及電極層103夾持的區域221G的電子或電洞的注入性不同,所以從電極層102至區域221R及區域221G的電子及電洞的再結合區域的距離不同,由此從區域221R及區域221G發射的光成為彼此不同的發光顏色。
如上所述,藉由使電極層101的結構、電極層103的結構、電極層104的結構彼此不同,可以使從區域221R發射的光的發光顏色、從區域221G發射的光的發光顏色、從區域221B發射的光的發光顏色彼此不同。就是說,可以使從區域221R、區域221G及區域221B發射的光的顏色彼此不同。
電極層101、電極層103和電極層104中的至少一個電極層的結構與其他電極層的結構不同即可,不需要採用三個電極層的結構都不同的結構。例如,電極層103與電極層104具有相同的結構,並與電極層101的結構不同即可。
如上所述,藉由將包括發射彼此不同的發光顏色的區域221R、區域221G及區域221B的發光元件290或發光元件292用於顯示裝置的像素,可以從各子像素提取不同的發光顏色而不需要分別塗布EL層。因此,可以製造光利用效率高且容易製造的顯示裝置。就是說, 包括發光元件290或發光元件292的顯示裝置可以降低耗電量。此外,包括發光元件290或發光元件292的顯示裝置可以降低製造成本。
〈8.發光元件的構成要素〉
下面,對圖1A至圖7B所示的發光元件的構成要素的詳細內容進行說明。
〈〈基板〉〉
作為能夠形成本發明的一個實施方式的發光元件的基板,例如可以使用玻璃、石英或塑膠等。此外,也可以使用撓性基板。撓性基板是可以彎曲的基板,例如由聚碳酸酯、聚芳酯製成的塑膠基板等。另外,可以使用薄膜、藉由蒸鍍形成的無機薄膜等。注意,只要在發光元件及顯示裝置的製造過程中起支撐物的作用,就可以使用其他材料。或者,只要具有保護發光元件及光學元件的功能即可。
在本說明書等中,例如可以使用各種基板形成發光元件或電晶體。對基板的種類沒有特別的限制。作為該基板的一個例子,例如可以使用半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、具有不鏽鋼箔的基板、鎢基板、具有鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀的材料的紙或者基材薄膜等。作為玻璃基板的一 個例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出如下例子。例如可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)、聚四氟乙烯(PTFE)為代表的塑膠。或者,作為一個例子,可以舉出丙烯酸樹脂等樹脂等。或者,作為一個例子,可以舉出聚丙烯、聚酯、聚氟化乙烯或聚氯乙烯等。或者,作為一個例子,可以舉出聚醯胺、聚醯亞胺、芳族聚醯胺、環氧樹脂、無機蒸鍍薄膜、紙類等。尤其是,藉由使用半導體基板、單晶基板或SOI基板等製造電晶體,可以製造特性、尺寸或形狀等的不均勻性小、電流能力高且尺寸小的電晶體。當利用上述電晶體構成電路時,可以實現電路的低耗電量化或電路的高集成化。
另外,也可以作為基板使用撓性基板,並在撓性基板上直接形成發光元件或電晶體。或者,也可以在基板與電晶體之間或在基板與發光元件之間設置剝離層。剝離層可以在如下情況下使用:在剝離層上製造顯示裝置的一部分或全部,然後將其從基板分離並轉置到其他基板上的情況。此時,也可以將發光元件或電晶體轉置到耐熱性低的基板或撓性基板上。另外,作為上述剝離層,例如可以使用鎢膜與氧化矽膜的無機膜的層疊結構或在基板上形成有聚醯亞胺等樹脂膜的結構等。
也就是說,也可以使用一個基板來形成發光元件或電晶體,然後將發光元件或電晶體轉置到另一個基 板上。作為將發光元件或電晶體轉置至其上的基板的一個例子,可以使用上述可以形成發光元件或電晶體的基板,還可以使用玻璃紙基板、石材基板、木材基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、橡膠基板等。藉由使用上述基板,可以實現特性良好的電晶體的形成、耗電量低的電晶體的形成、不易損壞的顯示裝置的製造、耐熱性的提高、輕量化或薄型化。
〈〈一對電極〉〉
將電極層101、電極層103用作各發光元件的陽極或陰極。此外,構成電極層101的導電層101a及構成電極層103的導電層103a較佳為使用具有反射光的功能的導電材料形成。作為該導電材料,可以舉出Al或包含Al的合金等。作為包含Al的合金,可以舉出包含Al及L(L表示Ti、Nd、鎳(Ni)和La中的一個或多個)的合金等。鋁具有低電阻及高光反射率。此外,由於鋁在地殼中大量地含有且不昂貴,所以使用鋁可以降低發光元件的製造成本。此外,也可以使用Ag或包含Ag、N(N表示Y、Nd、Mg、Al、Ti、Ga、Zn、In、鎢(W)、錳(Mn)、Sn、鐵(Fe)、Ni、銅(Cu)、鈀(Pd)、銥(Ir)或金(Au))的合金等。作為包含銀的合金,例如可以舉出包含銀、鈀及銅的合金、包含銀及銅的合金、包 含銀及鎂的合金、包含銀及鎳的合金以及包含銀及金的合金等。另外,當從電極層101及電極層103提取光時,導電層101a及導電層103a較佳為使用能夠使光透過的厚度(較佳為5nm以上且30nm以下左右)的上述導電材料所例示的金屬薄膜形成,並且較佳為具有反射光的功能及使光透過的功能。
構成電極層101的氧化物層101b如上所述較佳為使用包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)的氧化物材料形成。由此,可以抑制氧化物層101b與導電層101a之間的電子的授受或氧的授受。因此,可以防止在電極層101中產生電解腐蝕,且可以降低發光元件的驅動電壓。此外,藉由使氧化物層101b中的穩定劑M的含量為In的含量以上,可以有效地防止氧化物層101b與導電層101a之間的氧的授受,因此是較佳的。
作為穩定劑M的其他例子,也可以包含鑭系元素的鐠(Pr)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鎦(Lu)等中的一種或多種。
氧化物層101b也可以包含In及穩定劑M以外的金屬元素。尤其是,包含鋅(Zn)或鋅氧化物的材料可以形成均勻的膜,所以是較佳的。就是說,氧化物層101b較佳為使用包含In、穩定劑M、Zn的氧化物。
作為構成氧化物層101b的氧化物,例如可以 使用In-Ga-Zn類氧化物、In-Al-Zn類氧化物、In-Si-Zn類氧化物、In-Ti-Zn類氧化物、In-Ti-Y類氧化物、In-Zr-Zn類氧化物、In-Sn-Zn類氧化物、In-La-Zn類氧化物、In-Ce-Zn類氧化物、In-Nd-Zn類氧化物、In-Hf-Zn類氧化物、In-Pr-Zn類氧化物、In-Sm-Zn類氧化物、In-Eu-Zn類氧化物、In-Gd-Zn類氧化物、In-Tb-Zn類氧化物、In-Dy-Zn類氧化物、In-Ho-Zn類氧化物、In-Er-Zn類氧化物、In-Tm-Zn類氧化物、In-Yb-Zn類氧化物、In-Lu-Zn類氧化物、In-Sn-Ga-Zn類氧化物、In-Hf-Ga-Zn類氧化物、In-Al-Ga-Zn類氧化物、In-Sn-Al-Zn類氧化物、In-Sn-Hf-Zn類氧化物、In-Hf-Al-Zn類氧化物。
當氧化物層101b為In-M-Zn氧化物時,關於用來形成In-M-Zn氧化物的濺射靶材的金屬元素的原子個數比,M的含量較佳為In以上。作為上述濺射靶材較佳為使用金屬元素的原子個數比為In:Ga:Zn=1:1:1、In:Ga:Zn=1:3:2、In:Ga:Zn=1:3:3、In:Ga:Zn=1:3:4、In:Ga:Zn=1:3:5、In:Ga:Zn=1:3:6、In:Ga:Zn=1:3:7、In:Ga:Zn=1:3:8、In:Ga:Zn=1:3:9、In:Ga:Zn=1:3:10、In:Ga:Zn=1:6:4、In:Ga:Zn=1:6:5、In:Ga:Zn=1:6:6、In:Ga:Zn=1:6:7、In:Ga:Zn=1:6:8、In:Ga:Zn=1:6:9、In:Ga:Zn=1:6:10或In:Ga:Zn=1:9:4的In-Ga-Zn類氧化物或其組成附近的氧化物。另外,包含在使用上述濺射靶材形成的氧化物層 101b中的金屬元素的原子個數比中,分別包含上述濺射靶材中的金屬元素的原子個數比的±20%的變動的誤差。
作為氧化物層101b的形成方法,可以適當地利用濺射法、MBE(Molecular Beam Epitaxy:分子束磊晶)法、CVD(Chemical Vapor Deposition:化學氣相沉積)法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。
當作為構成電極層101的氧化物層101b及構成電極層103的氧化物層103b使用不同的材料時,電極層101及電極層103的對EL層的電子或電洞的注入性彼此不同。
構成電極層103的與氧化物層101b不同的氧化物層103b可以使用使光透過的導電材料形成。氧化物層103b較佳為使用金屬、合金、導電化合物及它們的混合物的氧化物等形成。此外,為了氧化物層103b與導電層103a不產生電解腐蝕,氧化物層103b不包含In是較佳的。作為這種材料,可以使用氧化鈦、氧化鎢、氧化鉬等金屬氧化物。
構成電極層101的透明導電膜101c或構成電極層103的透明導電膜103c具有以使來自各發光層的所希望的光諧振而增強其波長的方式調整光學距離的功能。
作為透明導電膜101c、透明導電膜103c例如可以使用ITO、包含矽或氧化矽的銦錫氧化物(簡稱:ITSO)、氧化銦-氧化鋅(Indium Zinc Oxide)、包含氧 化鎢及氧化鋅的氧化銦等。尤其是,當將電極層101及電極層103用作陽極時,作為透明導電膜101c、透明導電膜103c較佳為使用功函數大(4.0eV以上)的材料。此外,作為透明導電膜101c、透明導電膜103c可以藉由利用濺射法、蒸鍍法、印刷法或塗佈法等形成。
除了發光元件以外,在形成場效應電晶體(FET)時,用於該電晶體的通道區域的氧化物半導體層與構成電極層101的氧化物層101b較佳為具有相同的元素。換而言之,用於電晶體的通道區域的氧化物半導體層較佳為包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。此外,該氧化物半導體層及氧化物層101b特別較佳為使用相同的材料。藉由使氧化物半導體層及氧化物層101b使用相同的材料,不需要增加成膜材料的種類,因此可以降低製造成本。此時,氧化物半導體層及氧化物層101b利用不同的形成製程即可。就是說,藉由改變成膜時的沉積室中的壓力、沉積氣體(例如,包含氧、氬或氧的混合氣體)、成膜能量、成膜時的溫度、靶材與基板之間的距離或成膜後的溫度或表面處理等而使氧化物半導體層的性質及氧化物層101b的性質不同,可以具有彼此不同的功能。
氧化物半導體是可以根據膜中的氧缺陷及/或膜中的氫、水等雜質的濃度來控制電阻率的半導體材料。因此,藉由選擇對氧化物半導體層及氧化物層101b進行增加氧缺陷及/或雜質濃度的處理或者降低氧缺陷及/或雜 質濃度的處理,可以控制使用相同的材料形成的氧化物半導體層及氧化物層101b的電阻率。
明確而言,藉由對用作電極層的一部分的氧化物層101b進行電漿處理,且增加氧化物層101b中的氧缺陷及/或氧化物層101b中的氫、水等雜質,可以實現載子密度高且低電阻的氧化物層。此外,藉由以與氧化物層101b接觸的方式形成含氫的絕緣層,且使氫從該含氫的絕緣層擴散到氧化物層101b中,可以實現載子密度高且低電阻的氧化物層。
另一方面,在用於電晶體的通道區域的氧化物半導體層上設置絕緣層,以使氧化物半導體層不會暴露於上述電漿。此外,藉由設置該絕緣層,氧化物半導體層不與接觸於氧化物層101b的含氫的絕緣層接觸。藉由作為設置在氧化物半導體層上的絕緣層使用能夠釋放氧的絕緣膜,可以對氧化物半導體層供應氧。被供應氧的氧化物半導體層由於膜中或介面的氧缺陷被填補而成為高電阻的氧化物半導體。此外,作為能夠釋放氧的絕緣膜例如可以使用氧化矽膜或氧氮化矽膜。
作為對氧化物層101b進行的電漿處理,典型地可以舉出使用包含選自稀有氣體(He、Ne、Ar、Kr、Xe)、氫和氮中的一種氣體的電漿處理。更明確而言,可以舉出Ar氛圍下的電漿處理、Ar和氫的混合氛圍下的電漿處理、氨氛圍下的電漿處理、Ar和氨的混合氛圍下的電漿處理或氮氛圍下的電漿處理等。
藉由上述電漿處理,在氧化物層101b中的發生氧脫離的晶格(或氧脫離的部分)中形成氧缺陷。該氧缺陷有可能成為產生載子的原因。此外,有時從氧化物層101b附近,更明確而言,從與氧化物層101b的下側或上側接觸的絕緣層供應氫,上述氧缺陷與氫鍵合而產生作為載子的電子。因此,因電漿處理而氧缺陷增加的氧化物層101b的載子密度比氧化物半導體層高。
藉由使用與氧化物層101b接觸的含氫的絕緣層,亦即能夠釋放氫的層,可以對氧化物層101b供應氫。能夠釋放氫的層中的氫濃度較佳為1×1022atoms/cm3以上。藉由以與氧化物層101b接觸的方式形成上述層,可以有效地使氧化物層101b中含有氫。如此,在進行上述電漿處理的同時,改變接觸於氧化物層101b的層的結構,由此可以適當地調整氧化物層101b的電阻。
另一方面,氧缺陷被填補且氫濃度被降低的氧化物半導體層可以說是高純度本質化或實質上高純度本質化的氧化物半導體層。在此,“實質上本質”是指氧化物半導體的載子密度低於8×1011/cm3,較佳為低於1×1011/cm3,更佳為低於1×1010/cm3且為1×10-9/cm3以上。因為高純度本質或實質上高純度本質的氧化物半導體的載子發生源較少,所以可以降低載子密度。此外,高純度本質或實質上高純度本質的氧化物半導體層的缺陷態密度低,因此可以降低陷阱態密度。
高純度本質或實質上高純度本質的氧化物半 導體層的關態電流(off-state current)顯著低,即便是通道寬度W為1×106μm、通道長度L為10μm的元件,在源極電極與汲極電極之間的電壓(汲極電壓)在1V至10V的範圍時,關態電流也可以為半導體參數分析儀的測定極限以下,亦即1×10-13A以下。因此,通道區域形成在氧化物半導體層中的電晶體成為電特性變動小且可靠性高的電晶體。
包含在氧化物層101b中的氫與鍵合於金屬原子的氧起反應生成水,與此同時在發生氧脫離的晶格(或氧脫離的部分)中形成氧缺陷。當氫進入該氧缺陷時,有時生成作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,含有氫的氧化物層101b的載子密度比氧化物半導體層高。
換而言之,用作電極層的一部分的氧化物層101b是與電晶體的通道區域所包括的氧化物半導體層相比其氫濃度高及/或氧缺陷量多且低電阻化的氧化物層。
在形成有電晶體的通道區域的氧化物半導體層中,較佳的是,儘可能地減少氫。明確而言,在氧化物半導體層中,藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)得到的氫濃度為2×1020atoms/cm3以下,較佳為5×1019atoms/cm3以下,更佳為1×1019atoms/cm3以下,更佳為低於5×1018atoms/cm3,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下,更進一步較佳為1×1016atoms/cm3 以下。
較佳的是,在形成用於電晶體的通道區域的氧化物半導體層之後進行熱處理。在如下條件下進行熱處理即可:以250℃以上且650℃以下的溫度,較佳為以300℃以上且400℃以下的溫度,更佳為以320℃以上且370℃以下的溫度,採用惰性氣體氛圍、包含10ppm以上的氧化性氣體的氛圍或減壓氛圍。此外,熱處理也可以在惰性氣體氛圍中進行熱處理之後,在包含10ppm以上的氧化性氣體的氛圍中進行以便填補所釋放的氧。藉由在此進行熱處理,可以從氧化物半導體層去除氫或水等雜質。此外,該熱處理也可以在將氧化物半導體層加工為島狀之前進行。
此外,為了對其通道形成在氧化物半導體中的電晶體賦予穩定的電特性,藉由降低氧化物半導體中的雜質濃度,來使氧化物半導體成為本質或實質上本質是有效的。
氧化物半導體層的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。
藉由使氧化物半導體層中的上述元素M的原子個數比為In以上,有時具有如下效果:(1)使氧化物半導體層的能隙增大;(2)使氧化物半導體層的電子親和力減小;(3)遮蔽來自外部的雜質;(4)絕緣性變高。此外,由於元素M是與氧的鍵合力強的金屬元素, 所以藉由具有其原子個數比為In以上的M,不容易產生氧缺陷。
氧化物半導體層不侷限於上述記載,可以根據所需的電晶體的半導體特性及電特性(場效移動率、臨界電壓等)來使用具有適當的組成的材料。另外,較佳的是,適當地設定氧化物半導體層的載子密度、雜質濃度、缺陷密度、金屬元素與氧的原子個數比、原子間距離、密度等,以得到所需的電晶體的半導體特性。
電極層102用作各發光元件的陽極或陰極。此外,當電極層101具有反射光的功能時,電極層102較佳為使用具有使光透過的功能的導電材料形成。作為該導電材料,可以舉出可見光的穿透率為40%以上且100%以下,較佳為60%以上且100%以下,且電阻率為1×10-2Ω.cm以下的導電材料。此外,電極層102較佳為使用具有使光透過的功能及反射光的功能的導電材料形成。作為該導電材料,可以舉出可見光的反射率為20%以上且80%以下,較佳為40%以上且70%以下,且電阻率為1×10-2Ω.cm以下的導電材料。此外,當電極層101具有使光透過的功能時,電極層102較佳為使用具有反射光的功能的導電材料形成。
電極層102可以使用一種或多種導電金屬、導電合金和導電化合物等形成。例如,可以使用ITO、ITSO、氧化銦-氧化鋅(Indium Zinc Oxide)、含有鈦的氧化銦-錫氧化物、銦-鈦氧化物、含有氧化鎢及氧化鋅的 氧化銦等。此外,也可以使用能夠使光透過的厚度(較佳為5nm以上且30nm以下左右)的金屬薄膜。作為金屬例如可以使用Ag或Ag與Al、Ag與Mg、Ag與Au、Ag與Yb等的合金等。尤其是,當將電極層102用作陰極時,較佳為使用包含選自In、Ag、Mg中的至少一個的材料。此外,較佳為使用功函數小(3.8eV以下)的材料。例如,可以使用屬於元素週期表中的第1族或第2族的元素(例如,鋰或銫等鹼金屬、鈣或鍶等鹼土金屬、鎂等)、包含上述元素的合金(例如,Ag-Mg或Al-Li)、銪或鐿等稀土金屬、包含上述稀土金屬的合金、包含鋁、銀的合金等。此外,作為電極層102可以藉由利用濺射法、蒸鍍法、印刷法或塗佈法等形成。
電極層104可以援用作為電極層101或電極層103所例示的材料。
〈〈發光層〉〉
發光層120、發光層121或發光層122較佳為包含發射選自紫色、藍色和藍綠色中的至少一個的發光的第一化合物。或者,較佳為包含發射選自綠色、黃綠色、黃色、橙色和紅色中的至少一個的發光的第二化合物。另外,各發光層除了第一化合物以外還包含電子傳輸性材料和電洞傳輸性材料中的一個或兩個。另外,較佳的是,各發光層除了第二化合物以外還包含電子傳輸性材料和電洞傳輸性材料中的一個或兩個。
此外,作為第一化合物及第二化合物,可以使用能夠將單重激發能轉換為發光的發光物質及能夠將三重激發能轉換為發光的發光物質。作為上述發光物質,可以舉出如下材料。
作為將單重激發能轉換為發光的發光物質可以舉出發射螢光的物質,例如可以使用具有5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2'-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4'-(10-苯基-9-蒽基)聯苯-4-基]-2,2'-聯吡啶(簡稱:PAPP2BPy)、N,N'-雙[4-(9H-咔唑-9-基)苯基]-N,N'-二苯基二苯乙烯-4,4'-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4'-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4'-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、4-(10-苯基-9-蒽基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPBA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]-芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N"-(2-三級丁基蒽-9,10-二基二-4,1-苯撐基)雙[N,N',N'-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2- 蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N',N'-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N',N',N",N",N''',N'''-八苯基二苯并[g,p](chrysene)-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-(9,10-二苯基-2-蒽基)-N,N',N'-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素6、香豆素545T、N,N'-二苯基喹吖酮(簡稱:DPQd)、紅螢烯、5,12-雙(1,1'-聯苯-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙烷二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙烷二腈(簡稱:DCM2)、N,N,N',N'-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N',N'-四(4-甲基苯基)苊并[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙烷二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙烷二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙烷二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧 基-1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙烷二腈(簡稱:BisDCJTM)、5,10,15,20-四苯基雙苯并(tetraphenylbisbenzo)[5,6]茚並[1,2,3-cd:1',2',3'-lm]苝等的蒽骨架、稠四苯骨架、(chrysene)骨架、菲骨架、芘骨架、苝骨架、二苯乙烯骨架、吖啶酮骨架、香豆素骨架、吩惡嗪骨架、啡噻骨架等的物質。
作為能夠將三重激發能轉換為發光的發光物質,例如可以舉出發射磷光的物質。
作為在藍色或綠色處具有發光峰值的物質,例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑(triazolato)-3-基-κN2]苯基-κC}銥(III)(簡稱:Ir(mpptz-dmp)3)、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz)3)、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b)3)、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑〕銥(III)(簡稱:Ir(iPr5btz)3)等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptz1-mp)3)、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptz1-Me)3)等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi)3)、三[3-(2,6-二甲基苯基)-7-甲基咪 唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:Ir(dmpimpt-Me)3)等具有咪唑骨架的有機金屬銥錯合物;以及雙[2-(4',6'-二氟苯基)吡啶根-N,C2']銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4',6'-二氟苯基)吡啶根-N,C2']銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3',5'-雙(三氟甲基)苯基]吡啶根-N,C2'}銥(III)吡啶甲酸鹽(簡稱:Ir(CF3ppy)2(pic))、雙[2-(4',6'-二氟苯基)吡啶根-N,C2']銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬銥錯合物。在上述金屬錯合物中,由於具有4H-三唑骨架的有機金屬銥錯合物具有優異的可靠性及發光效率,所以是特別較佳的。
作為在綠色或黃色處具有發光峰值的物質,例如可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:Ir(mppm)3)、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm)3)、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:Ir(mppm)2(acac))、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm)2(acac))、(乙醯丙酮根)雙[4-(2-降莰基)-6-苯基嘧啶]銥(III)(簡稱:Ir(nbppm)2(acac))、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:Ir(mpmppm)2(acac))、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3〕苯基-κC}銥 (III)(簡稱:Ir(dmppm-dmp)2(acac))、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:Ir(dppm)2(acac))等具有嘧啶骨架的有機金屬銥錯合物、(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-Me)2(acac))、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-iPr)2(acac))等具有吡嗪骨架的有機金屬銥錯合物、三(2-苯基吡啶-N,C2')銥(III)(簡稱:Ir(ppy)3)、雙(2-苯基吡啶根-N,C2')銥(III)乙醯丙酮(簡稱:Ir(ppy)2(acac))、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:Ir(bzq)2(acac))、三(苯并[h]喹啉)銥(III)(簡稱:Ir(bzq)3)、三(2-苯基喹啉-N,C2' )銥(III)(簡稱:Ir(pq)3)、雙(2-苯基喹啉-N,C2')銥(III)乙醯丙酮(簡稱:Ir(pq)2(acac))等具有吡啶骨架的有機金屬銥錯合物、雙(2,4-二苯基-1,3-唑-N,C2')銥(III)乙醯丙酮(簡稱:Ir(dpo)2(acac))、雙{2-[4'-(全氟苯基)苯基]吡啶-N,C2'}銥(III)乙醯丙酮(簡稱:Ir(p-PF-ph)2(acac))、雙(2-苯基苯并噻唑-N,C2')銥(III)乙醯丙酮(簡稱:Ir(bt)2(acac))等有機金屬銥錯合物、三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:Tb(acac)3(Phen))等稀土金屬錯合物。在上述金屬錯合物中,由於具有嘧啶骨架的有機金屬銥錯合物具有優異的可靠性及發光效率,所以是特別較佳的。
另外,作為在黃色或紅色處具有發光峰值的物質,例如可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:Ir(5mdppm)2(dibm))、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(5mdppm)2(dpm))、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(d1npm)2(dpm))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:Ir(tppr)2(acac))、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱:Ir(tppr)2(dpm))、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹啉]合銥(III)(簡稱:Ir(Fdpq)2(acac))等具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’)銥(III)(簡稱:Ir(piq)3)、雙(1-苯基異喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:Ir(piq)2(acac))等具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:Eu(DBM)3(Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3(Phen))等稀土金屬錯合物。在上述金屬錯合物中,由於具有嘧啶骨架的有機金屬銥錯合物具有優異的可靠性及發光效率,所以是特別較佳的。另外,具有嘧 啶骨架的有機金屬銥錯合物可以提供色度良好的紅色發光。
雖然對能夠用於發光層的主體材料的材料沒有特別的限制,但是例如可以舉出:三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、2,2',2"-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、紅啡啉(簡稱:Bphen)、浴銅靈(簡稱:BCP)、9-[4-(5-苯基-1,3,4-二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)等雜環化合物;4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等芳香胺化合物。另外,可以舉出蒽衍生物、菲衍生物、嵌二萘衍生物、(chrysene)衍生物、二苯并[g,p](chrysene) 衍生物等縮合多環芳香化合物(condensed polycyclic aromatic compound)。具體地,可以舉出9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、YGAPA、PCAPA、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、2PCAPA、6,12-二甲氧基-5,11-二苯、DBC1、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9'-聯蒽(簡稱:BANT)、9,9'-(二苯乙烯-3,3'-二基)二菲(簡稱:DPNS)、9,9'-(二苯乙稀-4,4'-二基)二菲(簡稱:DPNS2)、以及1,3,5-三(1-芘基)苯(簡稱:TPB3)等。從這些物質及各種物質中可以選擇一種或多種具有比上述發光材料的能隙大的能隙的物質。另外,在發光物質是發射磷光的物質的情況下,作為主體材料選擇三重激發能(基態和三重態激發態之間的能量差)大於發光物質的三重激發能的物質,即可。
當作為發光層的主體材料使用多個材料時,較佳為組合形成激態錯合物的兩種化合物而使用。在此情況下,可以適當地使用各種載子傳輸材料。特別較佳的是, 為了高效地形成激態錯合物,組合容易接收電子的化合物(具有電子傳輸性的材料)和容易接收電洞的化合物(具有電洞傳輸性的材料)。
這是因為如下緣故:當組合具有電子傳輸性的材料和具有電洞傳輸性的材料而得到形成激態錯合物的主體材料時,藉由調節具有電子傳輸性的材料和具有電洞傳輸性的材料的混合比率,容易使發光層中的電洞和電子之間的載子平衡最佳化。藉由使發光層中的電洞和電子之間的載子平衡最佳化,可以抑制發光層中的電子和電洞再結合的區域偏於一側。藉由抑制產生再結合的區域偏於一側,可以提高發光元件的可靠性。
作為容易接收電子的化合物(具有電子傳輸性的材料),可以使用含氮雜芳族化合物等的缺π電子型雜芳族化合物或金屬錯合物等。明確而言,可以舉出:雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、1,3-雙[5-(對三級丁基苯基)-1,3,4-二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-二唑-2-基)苯基]-9H-咔唑 (簡稱:CO11)、2,2',2"-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)等具有唑骨架的雜環化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:2mDBTPDBq-II)、2-[3'-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹啉(簡稱:2mDBTBPDBq-II)、2-[3'-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:7mDBTPDBq-II)、6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:6mDBTPDBq-II)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等具有二嗪骨架的雜環化合物;2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基〕苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)等具有三嗪骨架的雜環化合物;以及3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等具有吡啶骨架的雜環化合物。其中,具有二嗪骨架及三嗪骨架的雜環化合物和具有吡啶骨架的雜環化合物具有高可靠性,所以是較佳的。尤其是,具有二嗪(嘧啶或吡嗪)骨架及三嗪骨架的 雜環化合物具有高電子傳輸性,還有助於降低驅動電壓。
作為容易接收電洞的化合物(具有電洞傳輸性的材料),可以適當地使用富π電子型雜芳族(例如咔唑衍生物或吲哚衍生物)或芳香胺等。明確而言,可以舉出:2-[N-(9-苯基咔唑-3-基)-N-苯基胺基]螺-9,9'-聯茀(簡稱:PCASF)、4,4',4"-三[N-(1-萘基)-N-苯基胺基]三苯胺(簡稱:1'-TNATA)、2,7-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-螺-9,9'-二茀(簡稱:DPA2SF)、N,N'-雙(9-苯基咔唑-3-基)-N,N'-二苯基苯-1,3-二胺(簡稱:PCA2B)、N-(9,9-二甲基-2-二苯基胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、N,N',N"-三苯基-N,N',N"-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、2-[N-(9-苯基咔唑-3-基)-N-苯基胺基]螺-9,9'-二茀(簡稱:PCASF)、2-[N-(4-二苯基胺基苯基)-N-苯基胺基]螺-9,9'-二茀(簡稱:DPASF)、N,N'-雙[4-(咔唑-9-基)苯基]-N,N'-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)、4,4'-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB)、N,N'-雙(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯]-4,4'-二胺(簡稱:TPD)、4,4'-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、4,4'-雙[N-(螺-9,9'-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4'-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3'-(9-苯基茀-9-基)三苯基胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9- 二甲基-2-[N'-苯基-N'-(9,9-二甲基-9H-茀-2-基)胺基]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3-[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA2)、4,4'-雙(N-{4-[N'-(3-甲基苯基)-N’-苯基胺基]苯基}-N-苯基胺基)聯苯(簡稱:DNTPD)、3,6-雙[N-(4-二苯基胺基苯基)-N-(1-萘基)胺基]-9-苯基咔唑(簡稱:PCzTPN2)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-螺-9,9'-聯茀-2-胺(簡稱:PCBASF)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)等具有芳香胺骨架的化 合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4'-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、9-苯基-9H-3-(9-苯基-9H-咔唑-3-基)咔唑(簡稱:PCCP)等具有咔唑骨架的化合物;4,4',4"-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4',4"-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物以及具有咔唑骨架的化合物具有高可靠性和高電洞傳輸性,也有助於降低驅動電壓,所以是較佳的。
形成激態錯合物的主體材料的組合不侷限於上述化合物,可以使用載子能夠移動並能夠形成激態錯合物的組合的化合物,其中該激態錯合物的發光可以與發光物質的吸收光譜中的最長波長一側的吸收帶(相當於從發光物質的單重基態到單重激發態的遷移的吸收)重疊,還可以使用其他材料。
作為發光層的發光材料或主體材料,可以使用熱活化延遲螢光(Thermally Activated Delayed Fluorescent:TADF)物質。熱活化延遲螢光物質的三重 激發能階與單重激發能階的差異小,且熱活化延遲螢光物質具有藉由反系間轉換將能量從三重激發態轉換為單重激發態的功能的材料。
熱活化延遲螢光物質既可以由一種材料構成又可以由多種材料構成。例如,當熱活化延遲螢光物質由一種材料構成時,可以使用如下材料。
作為熱活化延遲螢光物質,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、伊紅等。此外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為該含金屬卟啉,例如可以舉出以如下結構式所示的原卟啉-氟化錫錯合物(SnF2(Proto IX))、中卟啉-氟化錫錯合物(SnF2(Meso IX))、血卟啉-氟化錫錯合物(SnF2(Hemato IX))、糞卟啉四甲基酯-氟化錫錯合物(SnF2(Copro III-4Me))、八乙基卟啉-氟化錫錯合物(SnF2(OEP))、初卟啉-氟化錫錯合物(SnF2(Etio I))、八乙基卟啉-氯化鉑錯合物(PtCl2OEP)等。
[化1]
作為由一種材料構成的熱活化延遲螢光物質,也可以使用以如下結構式表示的2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-吩惡嗪-10-基)苯基]-4,6-二苯 基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]硫碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)等具有富π電子型芳雜環及缺π電子型芳雜環的雜環化合物。該雜環化合物具有富π電子型芳雜環及缺π電子型芳雜環,電子傳輸性及電洞傳輸性高,所以是較佳的。另外,在富π電子型雜芳環與缺π電子型雜芳環直接鍵合的物質中,富π電子型雜芳環的施體性和缺π電子型雜芳環的受體性都強,而單重激發能階和三重激發能階之間的差異變小,所以是特別較佳的。
[化2]
當作為主體材料使用熱活化延遲螢光物質時,較佳為組合形成激態錯合物的兩種化合物而使用。此時,特別較佳為使用上述容易接收電子的化合物及容易接收電洞的化合物的組合,該組合形成激態錯合物。
〈〈電洞注入層〉〉
電洞注入層111、電洞注入層116是將電洞從陽極注入至EL層的層,是包含電洞注入性高的物質的層。例如,可以使用鉬氧化物、釩氧化物、釕氧化物、鎢氧化物或錳氧化物等過渡金屬氧化物。此外,也可以使用酞青類化合物如酞青(簡稱:H2Pc)、銅酞青(簡稱:CuPc)等;芳香胺化合物如4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N'-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N'-二苯基-(1,1'-聯苯)-4,4'-二胺(簡稱:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)等來形成電洞注入層。
作為電洞注入層,可以使用包含電洞傳輸性材料及受體物質的複合材料。藉由包含電洞傳輸性材料及受體物質,受體物質從電洞傳輸性材料抽出電子來生成電洞,而電洞穿過電洞傳輸層被注入到發光層。
作為用於電洞注入層111、電洞注入層116的電洞傳輸性材料,例如可以舉出4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4',4"-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4',4"-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4'-雙[N-(螺-9,9'-二茀-2- 基)-N-苯基胺基]聯苯(簡稱:BSPB)等芳香胺化合物;3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)等。除上述以外,還可以使用4,4'-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等咔唑衍生物等。在此所述的物質主要是電洞移動率為1×10-6cm2/Vs以上的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述以外的物質。
再者,還可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N'-[4-(4-二苯基胺基)苯基]苯基-N'-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N'-雙(4-丁基苯基)-N,N'-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
作為用於電洞注入層111及電洞注入層116的受體物質,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)等具有拉電子基團(鹵基或氰基)的化合物。另外,也可以舉出過渡金屬氧化物。此外,可以舉出屬於元素週期表中第4族 至第8族的金屬的氧化物。明確而言,較佳為使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳和氧化錸,這是因為它們具有高電子接收性。其中,尤其較佳為使用氧化鉬,因為氧化鉬在大氣中很穩定,吸濕性低,並且容易進行處理。另外,可以單獨使用上述受體物質或者將上述受體物質與其他材料混合來形成電洞注入層111及電洞注入層116。
〈〈電洞傳輸層〉〉
電洞傳輸層112、電洞傳輸層117是包含具有電洞傳輸性的材料(電洞傳輸性材料)的層,可以使用作為電洞注入層111、電洞注入層116的材料例示出的材料。電洞傳輸層112具有將注入到電洞注入層111的電洞傳輸到發光層121的功能,所以較佳為具有與電洞注入層111的高佔據分子軌域(Highest Occupied Molecular Orbital,也稱為HOMO)能階相同或接近的HOMO能階。
作為具有電洞傳輸性的材料,可以舉出:4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基 -4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二茀-2-胺(簡稱:PCBASF)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物以及具有咔唑骨架的化合物具有高可靠性和高電洞傳輸性,也有助於降低驅動電壓,所以是較佳的。另外,除了上述電洞傳輸性材料以外,也可以從各種物質中選擇電洞傳輸性材料來使用。
再者,作為電洞傳輸性高的物質,例如可以舉 出3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4'-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、3,3'-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、1,3,5-三(二苯并噻吩-4-基)-苯(簡稱:DBT3P-II)、4,4',4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-[3-(聯伸三苯-2-基)苯基]二苯并噻吩(簡稱:mDBTPTp-II)、4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等具有芳香胺骨架的化合物、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑 (簡稱:PCzPCN1)等。除此以外,可以使用4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)等咔唑化合物、胺化合物、二苯并噻吩化合物、二苯并呋喃化合物、茀化合物、聯伸三苯化合物或菲化合物等。
此外,也可以將這些能夠用於電洞傳輸層的化合物用於電洞注入層。
〈〈電子傳輸層〉〉
電子傳輸層113、電子傳輸層118是包含電子傳輸性高的物質的層。作為用於電子傳輸層113及電子傳輸層118的材料可以舉出具有喹啉配體、苯并喹啉配體、唑配體、噻唑配體的金屬錯合物、二唑衍生物、三唑衍生物、啡啉磷衍生物、吡啶衍生物、聯吡啶衍生物等。明確而言,可以使用Alq3、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2)、BAlq、Zn(BOX)2或雙[2-(2-羥基苯基)-苯并噻唑]鋅(II)(簡稱:Zn(BTZ)2)等金屬錯合物。此外,還可以使用2-(4-聯苯基)-5-(4-三級丁苯基)-1,3,4-二唑(簡稱:PBD)、1,3-雙[5-(對三級丁苯基)-1,3,4-二唑-2-基]苯(簡稱:OXD-7)、3-(4-三級丁苯基)-4-苯基-5-(4-聯苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁苯基)-4-(4-乙苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)、紅啡啉 (簡稱:Bphen)、浴銅靈(簡稱:BCP)、4,4'-雙(5-甲基苯并唑-2-基)茋(簡稱:BzOs)等雜芳族化合物。此外,也可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-co-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-co-(2,2'-聯吡啶-6,6'-二基)](簡稱:PF-BPy)等高分子化合物。這裡所述的物質主要是電子移動率為1×10-6cm2/Vs以上的物質。另外,只要是電子傳輸性比電洞傳輸性高的物質,就可以將上述物質之外的物質用於電子傳輸層113及電子傳輸層118。
電子傳輸層113及電子傳輸層118既可以為單層,又可以為由上述物質構成的層的兩層以上的疊層。
〈〈電子注入層〉〉
電子注入層114及電子注入層119是包含電子注入性高的物質的層。作為電子注入層114,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)及鋰氧化物(LiOx)等鹼金屬、鹼土金屬或這些金屬的化合物。另外,可以使用氟化鉺(ErF3)等稀土金屬化合物。此外,也可以將電子鹽用於電子注入層114及電子注入層119。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。此外,作為電子注入層114及電子注入層119也可以使用能夠用於電子傳輸層113及電子傳輸層118的物質。
另外,也可以將有機化合物與電子予體(施體)混合而成的複合材料用於電子注入層114及電子注入層119。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,較佳的是,有機化合物是在傳輸產生的電子這一方面性能優異的材料,明確而言,例如可以使用上述構成電子傳輸層113及電子傳輸層118的物質(金屬錯合物和雜芳化合物等)。作為電子予體,只要使用對有機化合物示出電子予體性的物質,即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。此外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
〈〈電荷產生層〉〉
電荷產生層115具有在對一對電極(電極層101及電極層102)施加電壓時將電子注入一個發光層(發光層121或發光層122)一側並將電洞注入另一個發光層(發光層121或發光層122)一側的功能。
例如,在圖4所示的串聯型發光元件190中,在以電極層101的電位比電極層102高的方式對電極層101施加電壓時,電子從電荷產生層115注入到發光層121並且電洞注入到發光層122。
從光提取效率的觀點來看,電荷產生層115較佳為具有可見光透射性(明確而言,電荷產生層115具有40%以上的可見光透射率)。另外,電荷產生層115即使導電率小於一對電極(電極層101及電極層102)也發揮作用。
電荷產生層115既可以具有對電洞傳輸性材料添加有電子受體(受體)的結構,也可以具有對電子傳輸性材料添加有電子予體(施體)的結構。或者,也可以層疊有這兩種結構。
另外,藉由使用上述材料形成電荷產生層115,可以抑制在層疊發光層時的驅動電壓的增大。
此外,上述發光層、電洞傳輸層、電洞注入層、電子傳輸層、電子注入層以及電荷產生層可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷等形成。此外,作為上述發光層、電洞傳輸層、電洞注入層、電子傳輸層、電子注入層以及電荷產生層,除了上述材料以外也可以使用無機化合物或高分子化合物(低聚物、樹枝狀聚合物、聚合物等)。
〈〈光學元件〉〉
光學元件224R、光學元件224G及光學元件224B是選擇性地使入射光中的特定的顏色的光透過的元件。例如,可以採用彩色層(也稱為濾色片)、帶通濾光片、多層膜濾光片等。此外,可以將顏色轉換元件應用於光學元 件。顏色轉換元件是將入射光轉換為其波長比該入射光長的光的光學元件。作為顏色轉換元件,較佳為使用利用量子點方式的元件。藉由利用量子點方式,可以提高顯示裝置的色彩再現性。
另外,也可以在光學元件224R、光學元件224G及光學元件224B上重疊地設置多個光學元件。作為其他光學元件,例如可以設置圓偏光板或防反射膜等。藉由將圓偏光板設置在顯示裝置中的發光元件所發射的光被提取的一側,可以防止從顯示裝置的外部入射的光在顯示裝置的內部被反射而射出到外部的現象。另外,藉由設置防反射膜,可以減弱在顯示裝置的表面被反射的外光。由此,可以清晰地觀察顯示裝置所發射的光。
〈〈遮光層〉〉
遮光層223具有抑制外光的反射的功能。或者,遮光層223具有阻擋從相鄰的發光元件發射出的光且防止混色的功能。遮光層223可以使用金屬、包含黑色顏料的樹脂、碳黑、金屬氧化物、包含多種金屬氧化物的固溶體的複合氧化物等。
〈〈分隔壁〉〉
分隔壁140只要具有絕緣性即可,使用無機材料或有機材料形成。作為該無機材料,可以舉出氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氮化鋁等。作為該有機 材料,例如可以舉出丙烯酸樹脂或聚醯亞胺樹脂等感光性樹脂材料。
〈9.發光元件的製造方法〉
接著,參照圖9A至圖9E及圖10A至圖10C對本發明的一個實施方式的發光元件的製造方法進行說明。在此,對圖7A所示的發光元件290的製造方法進行說明。
圖9A至圖9E及圖10A至圖10C是說明本發明的一個實施方式的發光元件的製造方法的剖面圖。
下面將說明的發光元件290的製造方法包括第一步驟至第九步驟的九個步驟。
〈〈第一步驟〉〉
第一步驟是如下製程:將發光元件的電極層(明確而言,構成電極層101的導電層101a、構成電極層103的導電層103a以及構成電極層104的導電層104a)形成在基板200上(參照圖9A)。
在本實施方式中,在基板200上形成反射導電層,將該導電層加工為所希望的形狀,由此形成導電層101a、導電層103a及導電層104a。作為上述反射導電層,使用鋁和鎳和鑭的合金膜(Al-Ni-La膜)。如此,藉由經過對同一導電層進行加工的製程形成導電層101a、導電層103a、及導電層104a,可以降低製造成本,所以是較佳的。
此外,也可以在第一步驟之前在基板200上形成多個電晶體。此外,上述多個電晶體可以與導電層101a、導電層103a及導電層104a分別電連接。
〈〈第二步驟〉〉
第二步驟是在構成電極層101的導電層101a上形成氧化物層101b的製程(參照圖9B)。
在本實施方式中,作為氧化物層101b使用In-Ga-Zn氧化物,其組成為In:Ga:Zn=1:3:6。如此,藉由使Ga的含量為In的含量以上,可以抑制導電層101a與氧化物層101b之間的電子的授受及氧的授受,由此可以得到穩定的電極層101。
作為氧化物層101b及用於先形成的電晶體的通道區域的氧化物半導體層使用相同的材料。如此,可以形成氧化物層101b而不增加形成膜的材料的種類,由此可以降低製造成本。此時,較佳的是氧化物層101b的形成製程與用於電晶體的通道區域的氧化物半導體層的形成製程彼此不同。
〈〈第三步驟〉〉
第三步驟是如下製程:形成在構成電極層103的導電層103a上並與其接觸的氧化物層103b以及在構成電極層104的導電層104a上並與其接觸的氧化物層104b(參照圖9C)。
在本實施方式中,作為氧化物層103b及氧化物層104b,使用對Ti膜進行烘焙處理而得到的鈦氧化物層。像這樣,藉由作為氧化物層103b及氧化物層104b使用與氧化物層101b不同的氧化物,電極層103及電極層104、電極層101可以具有不同的對EL層的電洞注入性。
〈〈第四步驟〉〉
第四步驟是形成發光元件的透明導電膜(明確而言,構成電極層101的透明導電膜101c及構成電極層103的透明導電膜103c)的製程(參照圖9D)。
在本實施方式中,在氧化物層101b及氧化物層103b上形成透明導電膜101c及透明導電膜103c,將該透明導電膜以及藉由第二步驟及第三步驟形成的氧化物層加工為所希望的形狀,由此形成電極層101、電極層103及電極層104。作為上述透明導電膜101c及透明導電膜103c使用ITSO膜。
此外,也可以經過多個步驟形成透明導電膜101c及透明導電膜103c。藉由經過多個步驟形成透明導電膜101c及透明導電膜103c,可以以適於各區域的微腔結構的厚度形成透明導電膜101c及透明導電膜103c。
〈〈第五步驟〉〉
第五步驟是形成覆蓋發光元件的各電極層的端部的分隔壁140的製程(參照圖9E)。
分隔壁140包括與電極層重疊的開口部。由於該開口部而露出的透明導電膜或氧化物層被用作發光元件的陽極。在本實施方式中,作為分隔壁140使用聚醯亞胺樹脂。
另外,在第一步驟至第五步驟中沒有損傷EL層(包含有機化合物的層)的可能性,由此可以使用各種各樣的成膜方法及微細加工技術。在本實施方式中,利用濺射法形成反射導電層,利用光微影法在該導電層上形成圖案,然後利用乾蝕刻法或濕蝕刻法將該導電層加工為島狀,來形成構成電極層101的導電層101a、構成電極層103的導電層103a以及構成電極層104的導電層104a。然後,利用濺射法形成氧化物層及透明導電膜,利用光微影法在該氧化物層及該透明導電膜上形成圖案,然後利用濕蝕刻法將該氧化物層及透明導電膜加工為島狀,來形成電極層101、電極層103以及電極層104。
〈〈第六步驟〉〉
第六步驟是形成電洞注入層111、電洞傳輸層112、發光層121、電子傳輸層113、電子注入層114及電荷產生層115的製程(參照圖10A)。
藉由共蒸鍍電洞傳輸性材料和包含受體物質的材料,可以形成電洞注入層111。注意,共蒸鍍是指使多個不同的物質分別從不同的蒸發源同時蒸發的蒸鍍法。藉由蒸鍍電洞傳輸性材料,可以形成電洞傳輸層112。
藉由蒸鍍發射選自綠色、黃綠色、黃色、橙色和紅色中至少一個的光的第二化合物,可以形成發光層121。第二化合物可以使用磷光性有機化合物。此外,既可以單獨蒸鍍該磷光性有機化合物,又可以與其他材料混合而蒸鍍該磷光性有機化合物。例如,也可以以磷光性有機化合物為客體材料,並將該客體材料分散在其激發能比客體材料大的主體材料中,來進行蒸鍍。此外,發光層121較佳為具有發光層121a及發光層121b的兩層結構。此時,發光層121a及發光層121b較佳為具有彼此發射不同顏色的發光物質。
藉由蒸鍍電子傳輸性高的物質,可以形成電子傳輸層113。另外,藉由蒸鍍電子注入性高的物質,可以形成電子注入層114。
藉由蒸鍍對電洞傳輸性材料添加有電子受體(受體)的材料或對電子傳輸性材料添加有電子予體(施體)的材料,可以形成電荷產生層115。
〈〈第七步驟〉〉
第七步驟是形成電洞注入層116、電洞傳輸層117、發光層122、電子傳輸層118、電子注入層119以及電極層102的製程(參照圖10B)。
藉由利用與上面所示的電洞注入層111相同的材料及方法,可以形成電洞注入層116。另外,藉由利用與上面所示的電洞傳輸層112相同的材料及方法,可以 形成電洞傳輸層117。
藉由蒸鍍發射選自紫色、藍色和藍綠色中至少一個的光的第一化合物,可以形成發光層122。第一化合物可以使用螢光性有機化合物。此外,既可以單獨蒸鍍該螢光性有機化合物,又可以與其他材料混合而蒸鍍該螢光性有機化合物。例如,也可以以螢光性有機化合物為客體材料,並將該客體材料分散在其激發能比客體材料大的主體材料中,來進行蒸鍍。
藉由蒸鍍電子傳輸性高的物質,可以形成電子傳輸層118。另外,藉由蒸鍍電子注入性高的物質,可以形成電子注入層119。
藉由層疊具有反射性的導電膜與具有透光性的導電膜,可以形成電極層102。電極層102可以採用單層結構或疊層結構。
藉由上述製程,在基板200上形成發光元件,該發光元件在電極層101、電極層103及電極層104上分別包括區域221R、區域221G及區域221B。
〈〈第八步驟〉〉
第八步驟是在基板220上形成遮光層223、光學元件224R、光學元件224G及光學元件224B的製程(參照圖10C)。
將包含黑色顏料的樹脂膜形成在所希望的區域中,來形成遮光層223。然後,在基板220及遮光層 223上形成光學元件224R、光學元件224G、光學元件224B。將包含紅色顏料的樹脂膜形成在所希望的區域中,來形成光學元件224R。將包含綠色顏料的樹脂膜形成在所希望的區域中,來形成光學元件224G。將包含藍色顏料的樹脂膜形成在所希望的區域中,來形成光學元件224B。
〈〈第九步驟〉〉
第九步驟是如下製程:將形成在基板200上的發光元件、形成在基板220上的遮光層223、光學元件224R、光學元件224G及光學元件224B貼合,並使用密封材料來密封(未圖示)。
藉由上述製程,可以形成圖7A所示的發光元件290。
在本實施方式中描述本發明的一個實施方式。或者,在其他實施方式中描述本發明的一個實施方式。注意,本發明的一個實施方式不侷限於此。例如,在本發明的一個實施方式中示出在電極層101中在導電層101a上並與其接觸的氧化物層101b包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),氧化物層101b中的M的含量為In的含量以上的情況的例子,但是本發明的一個實施方式不侷限於此。在本發明的一個實施方式中,根據情形或狀況,例如氧化物層101b也可以不包含In或穩定劑M(M表示Al、Si、 Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。或者,例如,氧化物層101b中的M的含量也可以不是In的含量以上。或者,例如在本發明的一個實施方式中示出在電極層101中的導電層101a上並與其接觸的氧化物層101b、在電極層103中的導電層103a上並與其接觸的氧化物層103b包括不同氧化物的情況的例子,但是本發明的一個實施方式不侷限於此。在本發明的一個實施方式中,根據情形或狀況,例如氧化物層101b及氧化物層103b也可以包括相同的氧化物。或者,例如在本發明的一個實施方式中示出進行開關的電晶體的通道區域中的氧化物半導體層包含In及穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)的例子,但是本發明的一個實施方式不侷限於此。在本發明的一個實施方式中,根據情形或狀況,例如氧化物半導體層也可以不包含In或穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。或者,例如在本發明的一個實施方式中示出電極層101中的導電層101a具有反射光的功能的例子,但是在本發明的一個實施方式中例如導電層101a也可以不具有反射光的功能。或者,在本發明的一個實施方式中,根據情形或狀況,電極層101也可以不包括氧化物層101b。
本實施方式可以與其他實施方式或實施例適當地組合。
實施方式2
在本實施方式中,參照圖11至圖13對本發明的一個實施方式的發光元件或者可用於本發明的一個實施方式的顯示裝置的發光元件的發光機制進行說明。
圖11是發光元件450的剖面示意圖。
圖11所示的發光元件450具有在一對電極(電極層401及電極層402)之間夾有EL層400的結構。注意,在發光元件450中,雖然說明電極層401用作陽極且電極層402用作陰極的情況,但是本發明的一個實施方式不侷限於此。
另外,EL層400包括發光層413和發光層414。此外,在發光元件450中,除了發光層413及發光層414之外還示出EL層400中的電洞注入層411、電洞傳輸層412、電子傳輸層415及電子注入層416,但是上述疊層結構只是一個例子,發光元件450中的EL層400的結構不侷限於此。例如,也可以改變EL層400中的上述各層的疊層順序。或者,也可以在EL層400中設置上述各層之外的功能層。該功能層例如具有注入載子(電子或電洞)的功能、傳輸載子的功能、抑制載子的功能、產生載子的功能即可。
另外,發光層413包含客體材料421和主體材料422。此外,發光層414包含客體材料431、有機化合物432和有機化合物433。注意,以下說明客體材料421為螢光材料且客體材料431為磷光材料的情況。
〈發光層413的發光機制〉
首先,對發光層413的發光機制進行說明。
在發光層413中,藉由載子再結合形成激發態。因為主體材料422比客體材料421更多,所以大部分的激發態作為主體材料422的激發態存在。藉由載子再結合產生的單重激發態與三重激發態的比例(以下,稱為激子生成機率)大約為1:3。
首先,對主體材料422的T1能階高於客體材料421的T1能階的情況進行說明。
能量從主體材料422的三重激發能階轉移到客體材料421的三重激發能階(三重態能量轉移)。但是,因為客體材料421是螢光材料,所以在客體材料421處於三重激發態時難以在可見光區域發光。因此,難以將主體材料422的三重激發態的能量用於發光。因此,當主體材料422的T1能階比客體材料421的T1能階高時,難以將所注入的載子中的超過25%的量的載子用於發光。
接著,圖12A示出發光層413中的主體材料422和客體材料421的能階的關係。圖12A中的記載及符號表示的是如下:Host(422):主體材料422;Guest(421):客體材料421(螢光材料);SFH:主體材料422的單重激發態的最低能階;TFH:主體材料422的三重激發態的最低能階; SFG:客體材料421(螢光材料)的單重激發態的最低能階;以及TFG:客體材料421(螢光材料)的三重激發態的最低能階。
如圖12A所示,客體材料的T1能階(圖12A中的TFG)高於主體材料的T1能階(圖12A中的TFH)。
另外,如圖12A所示,因三重態-三重態消滅(TTA:Triplet-Triplet Annihilation)而三重態激子彼此碰撞,由此它們的激發能量的一部分被轉換為主體材料的單重激發態的最低能階(SFH)。能量從主體材料的單重激發態的最低能階(SFH)轉移到能階更低的客體材料(螢光材料)的單重激發態的最低能階(SFG)(參照圖12A的Route A),由此客體材料(螢光材料)發光。
注意,因為主體材料的T1能階低於客體材料的T1能階,所以TFG的能量不失活而轉移到TFH(參照圖12A所示的Route B),被用於TTA。
藉由作為發光層413採用上述結構,可以高效地獲得來自發光層413的客體材料421的發光。
〈發光層414的發光機制〉
下面,對發光層414的發光機制進行說明。
發光層414所包含的有機化合物432和有機化合物433形成激態錯合物(也稱為Exciplex)。有機化合物432和有機化合物433中的任何一個用作發光層414 的主體材料,有機化合物432和有機化合物433中的另一個用作發光層414的輔助材料。注意,在以下說明中,說明有機化合物432為主體材料且有機化合物433為輔助材料的情況。
有機化合物432和有機化合物433的組合只要為能夠在發光層414中形成激態錯合物的組合即可,較佳的是,一個有機化合物為具有電洞傳輸性的材料,另一個有機化合物為具有電子傳輸性的材料。此時,容易形成施體-受體型的激發態,由此可以高效率地形成激態錯合物。另外,當使用具有電洞傳輸性的材料和具有電子傳輸性的材料的組合構成有機化合物432和有機化合物433的組合時,按照其混合比例可以容易控制載子平衡。明確而言,混合比例較佳為如下:具有電洞傳輸性的材料:具有電子傳輸性的材料=1:9至9:1(重量比)。此外,藉由具有該結構,可以容易控制載子平衡,所以也可以容易控制再結合區域。
圖12B示出發光層414中的有機化合物432、有機化合物433和客體材料431的能階的關係。注意,圖12B中的記載及符號表示的是如下:Host(432):主體材料(有機化合物432);Assist(433):輔助材料(有機化合物433);Guest(431):客體材料431(磷光材料);Exciplex:激態錯合物(有機化合物432及有機化合物433); SPH:主體材料(有機化合物432)的單重激發態的最低能階;TPH:主體材料(有機化合物432)的三重激發態的最低能階;TPG:客體材料431(磷光材料)的三重激發態的最低能階;SE:激態錯合物的單重激發態的最低能階;以及TE:激態錯合物的三重激發態的最低能階。
在本發明的一個實施方式的發光元件中,發光層414中的有機化合物432和有機化合物433形成激態錯合物。激態錯合物的單重激發態的最低能階(SE)和激態錯合物的三重激發態的最低能階(TE)彼此相鄰(參照圖12B的Route C)。
激態錯合物是由兩種物質構成的激發態,在是光激發的情況下,激態錯合物藉由處於激發態的一個物質與處於基態的另一個物質相互作用而形成。當藉由發射光處於基態時,形成激態錯合物的兩種物質分別恢復原來的物質的作用。在是電激發的情況下,當一個物質的陽離子物質和另一個物質的陰離子物質接近時可以形成激態錯合物。就是說,在電激發中,任何物質都可以形成激態錯合物而不形成激發態,因此可以實現驅動電壓的降低。而且,當激態錯合物的(SE)能量和(TE)能量轉移到客體材料431(磷光材料)的三重激發態的最低能階時可以得到發光(參照圖12B的Route D)。
注意,在本說明書等中,有時將上述Route C及Route D的過程稱為ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)。換言之,在發光元件450中,產生從激態錯合物到客體材料431(磷光材料)的能量供應。
有機化合物432和有機化合物433中的一個接收電洞,有機化合物432和有機化合物433中的另一個接收電子,當這些有機化合物互相接近時,迅速形成激態錯合物。或者,當一個物質處於激發態時,迅速與另一個物質相互作用而形成激態錯合物。因此,發光層414中的大部分的激子作為激態錯合物存在。因為激態錯合物的能帶間隙比有機化合物432及有機化合物433小,所以當由於電洞和電子的再結合形成激態錯合物時,可以降低驅動電壓。
藉由作為發光層414採用上述結構,可以高效地獲得來自發光層414的客體材料431(磷光材料)的發光。
〈發光層413及發光層414的發光機制〉
上面說明了發光層413及發光層414的每一個的發光機制。如發光元件450所示,當具有發光層413與發光層414彼此接觸的結構時,即使在發光層413和發光層414的介面產生從激態錯合物到發光層413的主體材料422的能量轉移(尤其是,三重激發能階的能量轉移)也可以在 發光層413中將上述三重激發能轉換為發光。
發光層413的主體材料422的T1能階比發光層414中的有機化合物432及有機化合物433的T1能階低是較佳的。在發光層413中,較佳的是,主體材料422的S1能階比客體材料421(螢光材料)的S1能階高,且主體材料422的T1能階比客體材料421(螢光材料)的T1能階低。
明確而言,圖13示出在發光層413中使用TTA,在發光層414中使用ExTET時的能階關係。圖13中的記載及符號表示的是如下:Fluorescence EML(413):螢光發光層(發光層413);Phosphorescence EML(414):磷光發光層(發光層414);SFH:主體材料422的單重激發態的最低能階;TFH:主體材料422的三重激發態的最低能階;SFG:客體材料421(螢光材料)的單重激發態的最低能階;TFG:客體材料421(螢光材料)的三重激發態的最低能階;SPH:主體材料(有機化合物432)的單重激發態的最低能階;TPH:主體材料(有機化合物432)的三重激發態的最低能階; TPG:客體材料431(磷光材料)的三重激發態的最低能階;SE:激態錯合物的單重激發態的最低能階;以及TE:激態錯合物的三重激發態的最低能階。
如圖13所示,激態錯合物只處於激發態,因此不容易產生激態錯合物和激態錯合物之間的激子擴散。激態錯合物的激發能階(SE、TE)比發光層414的有機化合物432(亦即,磷光材料的主體材料)的激發能階(SPH、TPH)低,因此不發生從激態錯合物向有機化合物432的能量擴散。就是說,在磷光發光層(發光層414)中,激態錯合物的激子擴散距離短,因此可以保持磷光發光層(發光層414)的發光效率。即使磷光發光層(發光層414)的激態錯合物的三重激發能的一部分藉由螢光發光層(發光層413)和磷光發光層(發光層414)的介面擴散到螢光發光層(發光層413)中,也由於該擴散所引起的螢光發光層(發光層413)的三重激發能利用TTA發光而可以減少能量損失。
如上所述,在發光元件450中,藉由在發光層414中利用ExTET且在發光層413中利用TTA減少能量損失,由此可以實現發光效率高的發光元件。此外,如發光元件450所示,當採用發光層413與發光層414彼此接觸的結構時,可以在減少上述能量損失的同時減少EL層400中的層的個數。因此,可以實現製造成本少的發光元件。
另外,也可以採用發光層413不與發光層414接觸的結構。此時,可以防止從在發光層414中生成的有機化合物432或客體材料431(磷光材料)的激發態到發光層413中的主體材料422或客體材料421(螢光材料)的利用德克斯特(Dexter)機制的能量轉移(尤其是,三重態能量轉移)。因此,設置在發光層413與發光層414之間的層只要具有幾nm左右的厚度即可。
設置在發光層413與發光層414之間的層既可以只包含一個材料,又可以包含電洞傳輸性材料和電子傳輸性材料。當上述層只包含一個材料時,也可以使用雙極性材料。在此,雙極性材料是指電子和電洞的移動率比例為100以下的材料。也可以使用電洞傳輸性材料或電子傳輸性材料等。或者,其中的至少一個也可以使用與發光層414的主體材料(有機化合物432)相同的材料形成。由此,發光元件的製造變得容易,並且可以降低驅動電壓。再者,也可以使用電洞傳輸性材料和電子傳輸性材料形成激態錯合物,此時可以有效地抑制激子的擴散。明確而言,可以防止從發光層414的主體材料(有機化合物432)或客體材料431(磷光材料)的激發態到發光層413的主體材料422或客體材料421(螢光材料)的能量轉移。
在發光元件450中,載子的再結合區域較佳為具有一定程度的分佈。為此,在發光層413或發光層414中較佳為具有適當的載子俘獲性,尤其是,發光層 414中的客體材料431(磷光材料)較佳為具有電子俘獲性。或者,發光層413所包含的客體材料421(螢光材料)較佳為具有電洞俘獲性。
另外,較佳為採用如下結構:與來自發光層414的發光的峰值相比,來自發光層413的發光的峰值更靠近短波長一側。使用呈現短波長的發光的磷光材料的發光元件有亮度劣化快的趨勢。於是,藉由作為短波長的發光採用螢光發光可以提供一種亮度劣化小的發光元件。
另外,藉由使發光層413和發光層414發射彼此不同的發光波長的光,可以實現多色發光的元件。此時,由於合成具有不同的發光峰值的光,因此發射光譜成為具有至少兩個峰值的發射光譜。
另外,上述結構適合用來獲得白色發光。藉由使發光層413與發光層414的光為互補色的關係,可以獲得白色發光。
另外,藉由將發光波長不同的多個發光物質用於發光層413,也可以得到由三原色或四種以上的發光顏色構成的演色性高的白色發光。在此情況下,也可以將發光層413進一步分割為層狀並使該被分割的層的每一個含有不同的發光材料。
因此,藉由組合上述結構和實施方式1所示的電極層結構,可以製造具有高發光效率的發光元件。就是說,藉由與電極層101同樣地具有導電層401a及氧化物層401b,電極層401成為反射率高且穩定的電極層。 因此,可以製造具有高發光效率的發光元件。
另外,藉由將上述結構用於實施方式1所示的在子像素中具有多個不同的電極層結構的發光元件,就是說,藉由將與電極層101同樣的結構用於電極層401且將與電極層102同樣的結構用於電極層402,可以在包括電極層401和電極層402的發光元件中增大發光層413和發光層414中的一個的發光強度,並且,可以在包括具有與電極層103同樣且與電極層401不同的電極結構的電極層和電極層402的發光元件中增大發光層413和發光層414中的另一個的發光強度。就是說,藉由使用本發明的一個實施方式的電極層,可以從各子像素提取不同的發光顏色而不需要分別塗布EL層。因此,可以製造光的利用效率高的顯示裝置而不降低良率。就是說,可以製造耗電量低的顯示裝置。另外,可以降低顯示裝置的製造成本。
下面,對可用於發光層413及發光層414的材料進行說明。
〈可用於發光層413的材料〉
在發光層413中,主體材料422的重量比最大,客體材料421(螢光材料)分散在主體材料422中。較佳的是,主體材料422的S1能階比客體材料421(螢光材料)的S1能階高,主體材料422的T1能階比客體材料421(螢光材料)的T1能階低。
主體材料422較佳為蒽衍生物或稠四苯衍生 物。因為這些衍生物的S1能階高且T1能階低。明確而言,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)聯苯-4’-基}蒽(簡稱:FLPPA)等。或者,可以舉出5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
作為客體材料421(螢光材料),可以舉出芘衍生物、蒽衍生物、聯伸三苯衍生物、茀衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹啉衍生物、喹啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的發光量子產率高,所以是較佳的。作為芘衍生物的具體例子,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)等。
〈能夠用於發光層414的材料〉
在發光層414中,主體材料(有機化合物432)的重量比最大,客體材料431(磷光材料)分散在主體材料(有機化合物432)中。較佳的是,發光層414的主體材料(有機化合物432)的T1能階高於發光層413的客體材料421(螢光材料)的T1能階及發光層414的客體材料431(磷光材料)的T1能階。
作為主體材料(有機化合物432),除了鋅、鋁類金屬錯合物以外還可以舉出二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹啉衍生物、二苯并喹啉衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等。作為其他例子,可以舉出芳族胺或咔唑衍生物等。
作為客體材料431(磷光材料),可以舉出銥、銠、鉑類有機金屬錯合物或金屬錯合物,其中較佳的是有機銥錯合物,例如銥類鄰位金屬錯合物。作為鄰位金屬化的配體,可以舉出4H-三唑配體、1H-三唑配體、咪唑配體、吡啶配體、嘧啶配體、吡嗪配體或異喹啉配體等。作為金屬錯合物可以舉出具有卟啉配體的鉑錯合物等。
作為有機化合物433(輔助材料),使用可以與有機化合物432形成激態錯合物的物質。此時,較佳的是,以激態錯合物的發光峰值與磷光材料的三重MLCT(從金屬到配體的電荷轉移:Metal to Ligand Charge Transfer)躍遷的吸收帶(明確而言,最長波長一側的吸收帶)重疊的方式選擇有機化合物432、有機化合物433及客體材料431(磷光材料)。由此,可以實現一種發光效率得到顯著提高的發光元件。注意,在使用呈現熱活化延遲螢光(Thermally activated delayed fluorescence:TADF)的材料代替磷光材料的情況下,最長波長一側的吸收帶較佳為單重態的吸收帶。
包含在發光層414的發光材料只要是能夠將三重激發態能轉換為發光的材料即可。作為能夠將該三重激發態能轉換為發光的材料,除了磷光材料以外還可以舉出TADF材料。因此,可以將磷光材料稱為TADF材料。注意,TADF材料是指能夠藉由微小的熱能量將三重激發態上轉換(up-convert)為單重激發態(反系間轉換)並高效地呈現來自單重激發態的發光(螢光)的材料。另外,可以高效地獲得熱活化延遲螢光的條件為如下:三重激發能階與單重激發能階的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。
另外,對包含在發光層413的發光材料和包含在發光層414的發光材料的發光顏色沒有限制,可以相同或不同。來自各材料的發光被混合並提取到元件的外部,因此例如當兩個發光顏色處於呈現互補色的關係時,發光元件可以發射白色光。當考慮發光元件的可靠性時,包含在發光層413的發光材料的發光峰值波長比包含在發光層414的發光材料短是較佳的。
另外,發光層413及發光層414可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷等的方法形成。
本實施方式所示的結構可以與其他實施方式或實施例所示的結構適當地組合而實施。
實施方式3
在本實施方式中,參照圖14A至圖18說明本發明的一個實施方式的顯示裝置。
〈顯示裝置的結構實例1〉
圖14A是示出顯示裝置600的俯視圖,圖14B是沿圖14A中的點劃線A-B、點劃線C-D所示的部分的剖面圖。顯示裝置600包括驅動電路部(信號線驅動電路部601、掃描線驅動電路部603)以及像素部602。信號線驅動電路部601、掃描線驅動電路部603、像素部602具有控制發光元件的發光的功能。
顯示裝置600包括元件基板610、密封基板604、密封材料605、由密封材料605圍繞的區域607、引線配線608以及FPC609。
注意,引線配線608是用來傳送輸入到信號線驅動電路部601及掃描線驅動電路部603的信號的佈線,並且從用作外部輸入端子的FPC609接收視訊信號、時脈信號、啟動信號、重設信號等。注意,雖然在此只圖 示出FPC609,但是FPC609還可以安裝有印刷線路板(PWB:Printed Wiring Board)。
作為信號線驅動電路部601,形成組合N通道型電晶體623和P通道型電晶體624的CMOS電路。另外,信號線驅動電路部601或掃描線驅動電路部603可以利用各種CMOS電路、PMOS電路或NMOS電路。另外,雖然在本實施方式中示出在基板的同一表面上設置形成有驅動電路部的驅動器和像素的顯示裝置,但是必不需要採用該結構,驅動電路部也可以形成在外部,而不形成在基板上。
另外,像素部602包括切換電晶體611、電流控制電晶體612以及與電流控制電晶體612的汲極電連接的下部電極613。注意,以覆蓋下部電極613的端部的方式形成有分隔壁614。作為分隔壁614可以使用正型感光丙烯酸樹脂膜。
另外,將分隔壁614的上端部或下端部形成為具有曲率的曲面,以獲得良好的覆蓋性。例如,在使用正型感光丙烯酸作為分隔壁614的材料的情況下,只使分隔壁614的上端部包括具有曲率半徑(0.2μm以上且3μm以下)的曲面是較佳的。作為分隔壁614,可以使用負型感光樹脂或者正型感光樹脂。
對電晶體(電晶體611、612、623、624)的結構沒有特別的限制。例如,作為電晶體也可以使用交錯型電晶體。另外,對電晶體的極性也沒有特別的限制,也 可以採用包括N通道型電晶體及P通道型電晶體的結構或者只具有N通道型電晶體和P通道型電晶體中的一個的結構。對用於電晶體的半導體膜的結晶性也沒有特別的限制。例如,可以使用非晶半導體膜或結晶性半導體膜。作為半導體材料,可以使用第14族(矽等)半導體、化合物半導體(包括氧化物半導體)、有機半導體等。作為電晶體,例如使用能隙為2eV以上,較佳為2.5eV以上,更佳為3eV以上的氧化物半導體,由此可以降低電晶體的關態電流,所以是較佳的。作為該氧化物半導體,例如可以舉出In-Ga氧化物、In-M-Zn氧化物(M表示Al、Ga、Y、Zr、La、Ce、Sn、Hf或Nd)等。
另外,較佳的是,在上述電晶體中,作為電晶體的通道區域所包括的氧化物半導體層和構成下部電極613的氧化物層使用包含相同元素的氧化物。就是說,用於電晶體的通道區域的氧化物半導體層較佳為包含In和穩定劑M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf)。此外,尤其較佳的是,作為該氧化物半導體層和該氧化物層使用相同材料。
在下部電極613上形成有EL層616及上部電極617。將下部電極613用作陽極,將上部電極617用作陰極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋轉塗佈法等各種方法形成。另外,作為構成EL層616的其他材料,也可以使用低分子化合物或高 分子化合物(包括低聚物、樹枝狀聚合物)。
由下部電極613、EL層616及上部電極617構成發光元件618。發光元件618是具有構成實施方式1的結構的發光元件。注意,當像素部包括多個發光元件時,也可以包括在實施方式1中記載的發光元件以及具有其他結構的發光元件。
另外,藉由使用密封材料605將密封基板604貼合到元件基板610,形成如下結構,亦即發光元件618安裝在由元件基板610、密封基板604以及密封材料605圍繞的區域607中。注意,在區域607中填充有填料,除了填充有惰性氣體(氮或氬等)的情況以外,也有填充有可用於密封材料605的紫外線硬化性樹脂或熱固性樹脂的情況,例如可以使用PVC(聚氯乙烯)類樹脂、丙烯酸類樹脂、聚醯亞胺類樹脂、環氧類樹脂、矽酮類樹脂、PVB(聚乙烯醇縮丁醛)類樹脂或EVA(乙烯-醋酸乙烯酯)類樹脂。藉由在密封基板中形成凹部且在其中設置乾燥劑,可以抑制水分所導致的劣化,所以是較佳的。
另外,在密封基板604的下方以與發光元件618重疊的方式設置光學元件621。此外,在在密封基板604的下方還設置遮光層622。作為光學元件621及遮光層622都可以採用與實施方式1所示的光學元件及遮光層同樣的結構。
另外,較佳為使用環氧類樹脂或玻璃粉作為密封材料605。另外,這些材料較佳為儘可能地不容易使 水或氧透過的材料。另外,作為用於密封基板604的材料,除了可以使用玻璃基板或石英基板以外,還可以使用由FRP(Fiber Reinforced Plastics;玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯、丙烯酸等構成的塑膠基板。
藉由上述步驟,可以得到包括實施方式1所記載的發光元件及光學元件的發光裝置。
〈顯示裝置的結構實例2〉
下面,參照圖15A和圖15B及圖16對顯示裝置的其他例子進行說明。另外,圖15A和圖15B及圖16是本發明的一個實施方式的顯示裝置的剖面圖。
圖15A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光元件的下部電極1024R、1024G、1024B、分隔壁1025、EL層1028、發光元件的上部電極1026、密封層1029、密封基板1031、密封材料1032等。
另外,在圖15A中,作為光學元件的一個例子,將彩色層(紅色彩色層1034R、綠色彩色層1034G及藍色彩色層1034B)設置在透明基材1033上。另外,還可以設置遮光層1035。對設置有彩色層及遮光層的透明基材1033進行對準而將其固定到基板1001上。另外,彩 色層及遮光層被覆蓋層1036覆蓋。另外,在圖15A中,透過彩色層的光成為紅色光、綠色光、藍色光,因此能夠以三個顏色的像素呈現影像。
圖15B示出作為光學元件的一個例子將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)形成在閘極絕緣膜1003和第一層間絕緣膜1020之間的例子。如上述那樣,也可以將彩色層設置在基板1001和密封基板1031之間。
在圖16中,作為光學元件的一個例子,示出彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)形成在第一層間絕緣膜1020和第二層間絕緣膜1021之間的例子。如此,彩色層也可以設置在基板1001和密封基板1031之間。
另外,雖然以上說明了具有在形成有電晶體的基板1001一側提取光的結構(底部發射型)的顯示裝置,但是也可以採用具有在密封基板1031一側提取發光的結構(頂部發射型)的顯示裝置。
〈顯示裝置的結構實例3〉
圖17及圖18示出頂部發射型顯示裝置的剖面圖的一個例子。圖17及圖18是說明本發明的一個實施方式的顯示裝置的剖面圖,省略圖15A和圖15B及圖16所示的驅動電路部1041、周邊部1042等。
在此情況下,基板1001可以使用不使光透過 的基板。到製造連接電晶體與發光元件的陽極的連接電極為止的製程與底部發射型顯示裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜相同的材料或其他各種材料形成。
雖然在此發光元件的下部電極1024R、1024G、1024B都是陽極,但是也可以是陰極。另外,在採用如圖17所示那樣的頂部發射型顯示裝置的情況下,下部電極1024R、1024G、1024B較佳為反射電極。下部電極1024R、1024G、1024B及EL層1028的結構可以分別與實施方式1的電極層101、電極層103、電極層104及EL層的結構相同。就是說,下部電極1024R、1024G、1024B較佳為包括具有反射光的功能的導電層、導電層上的氧化物層。另外,在EL層1028上設置有上部電極1026。較佳的是,藉由將上部電極1026用作半透射.半反射電極,在下部電極1024R、1024G、1024B和上部電極1026之間形成微腔結構,增強特定波長的光的強度。
在採用圖17所示的頂部發射結構的情況下,可以使用設置有彩色層(紅色彩色層1034R、綠色彩色層1034G及藍色彩色層1034B)的密封基板1031進行密封。密封基板1031也可以設置有位於像素和像素之間的遮光層1035。另外,作為密封基板1031,較佳為使用具有透光性的基板。
在圖17中,例示出設置多個發光元件並在該多個發光元件的每一個上設置彩色層的結構,但是不侷限於此。例如,如圖18所示,也可以以設置紅色彩色層1034R及藍色彩色層1034B而不設置綠色彩色層的方式以紅色、綠色、藍色的三個顏色進行全彩色顯示。如圖17所示,當設置發光元件並在該發光元件的每一個上設置彩色層時,發揮可以抑制外光反射的效果。另一方面,如圖18所示,當設置紅色彩色層以及藍色彩色層而不設置綠色彩色層時,綠色發光元件所發射出的光的能量損失少,因此發揮可以減少耗電量的效果。
另外,本實施方式所示的結構可以與其他實施方式或本實施方式中的其他結構或者實施例所示的結構適當地組合。
實施方式4
在本實施方式中,參照圖19A及圖19B說明包括本發明的一個實施方式的發光元件的顯示裝置。
注意,圖19A是說明本發明的一個實施方式的顯示裝置的方塊圖,圖19B是說明本發明的一個實施方式的顯示裝置所包括的像素電路的電路圖。
〈關於發光裝置的說明〉
圖19A所示的顯示裝置包括:具有顯示元件的像素的區域(以下稱為像素部802);配置在像素部802外側並 具有用來驅動像素的電路的電路部(以下稱為驅動電路部804);具有保護元件的功能的電路(以下稱為保護電路806);以及端子部807。此外,也可以不設置保護電路806。
較佳的是,驅動電路部804的一部分或全部與像素部802形成在同一基板上。由此,可以減少構件的數量或端子的數量。當驅動電路部804的一部分或全部不與像素部802形成在同一基板上時,驅動電路部804的一部分或全部可以藉由COG或TAB(Tape Automated Bonding:捲帶自動接合)安裝。
像素部802包括用來驅動配置為X行(X為2以上的自然數)Y列(Y為2以上的自然數)的多個顯示元件的電路(以下稱為像素電路801),驅動電路部804包括輸出選擇像素的信號(掃描信號)的電路(以下稱為掃描線驅動電路804a)以及用來供應用於驅動像素的顯示元件的信號(資料信號)的電路(以下稱為信號線驅動電路804b)等驅動電路。
掃描線驅動電路804a具有移位暫存器等。掃描線驅動電路804a藉由端子部807被輸入用來驅動移位暫存器的信號並輸出信號。例如,掃描線驅動電路804a被輸入起動脈衝信號、時脈信號等並輸出脈衝信號。掃描線驅動電路804a具有控制被供應掃描信號的佈線(以下稱為掃描線GL_1至GL_X)的電位的功能。另外,也可以設置多個掃描線驅動電路804a,並藉由多個掃描線驅 動電路804a分別控制掃描線GL_1至GL_X。或者,掃描線驅動電路804a具有能夠供應初始化信號的功能。但是,不侷限於此,掃描線驅動電路804a也可以供應其他信號。
信號線驅動電路804b具有移位暫存器等。信號線驅動電路804b藉由端子部807來接收用來驅動移位暫存器的信號和從其中得出資料信號的信號(影像信號)。信號線驅動電路804b具有根據影像信號生成寫入到像素電路801的資料信號的功能。此外,信號線驅動電路804b具有響應於由於起動脈衝信號、時脈信號等的輸入產生的脈衝信號而控制資料信號的輸出的功能。另外,信號線驅動電路804b具有控制被供應資料信號的佈線(以下稱為資料線DL_1至DL_Y)的電位的功能。或者,信號線驅動電路804b具有能夠供應初始化信號的功能。但是,不侷限於此,信號線驅動電路804b可以供應其他信號。
信號線驅動電路804b例如使用多個類比開關等來構成。信號線驅動電路804b藉由依次使多個類比開關開啟而可以輸出對影像信號進行時間分割所得到的信號作為資料信號。此外,也可以使用移位暫存器等構成信號線驅動電路804b。
脈衝信號及資料信號分別藉由被供應掃描信號的多個掃描線GL之一及被供應資料信號的多個資料線DL之一被輸入到多個像素電路801中的每一個。另外, 多個像素電路801的每一個藉由掃描線驅動電路804a來控制資料信號的寫入及保持。例如,藉由掃描線GL_m(m是X以下的自然數)從掃描線驅動電路804a對第m行第n列的像素電路801輸入脈衝信號,並根據掃描線GL_m的電位而藉由資料線DL_n(n是Y以下的自然數)從信號線驅動電路804b對第m行第n列的像素電路801輸入資料信號。
圖19A所示的保護電路806例如連接於與作為掃描線驅動電路804a和像素電路801之間的佈線的掃描線GL。或者,保護電路806連接於作為信號線驅動電路804b和像素電路801之間的佈線的資料線DL。或者,保護電路806可以連接於掃描線驅動電路804a和端子部807之間的佈線。或者,保護電路806可以連接於信號線驅動電路804b和端子部807之間的佈線。此外,端子部807是指設置有用來從外部的電路對顯示裝置輸入電源、控制信號及影像信號的端子的部分。
保護電路806是在對與其連接的佈線供應一定範圍之外的電位時使該佈線與其他佈線之間導通的電路。
如圖19A所示,藉由對像素部802和驅動電路部804分別設置保護電路806,可以提高顯示裝置對因ESD(Electro Static Discharge:靜電放電)等而產生的過電流的耐性。但是,保護電路806的結構不侷限於此,例如,也可以採用將掃描線驅動電路804a與保護電路806 連接的結構或將信號線驅動電路804b與保護電路806連接的結構。或者,也可以採用將端子部807與保護電路806連接的結構。
另外,雖然在圖19A中示出由掃描線驅動電路804a和信號線驅動電路804b形成驅動電路部804的例子,但不侷限於此。例如,也可以只形成掃描線驅動電路804a並安裝形成有另外準備的源極驅動電路的基板(例如,由單晶半導體膜或多晶半導體膜形成的驅動電路基板)。
〈像素電路的結構實例〉
圖19A所示的多個像素電路801例如可以採用圖19B所示的結構。
圖19B所示的像素電路801包括電晶體852、854、電容器862以及發光元件872。
電晶體852的源極電極和汲極電極中的一個電連接於被供應資料信號的佈線(資料線DL_n)。並且,電晶體852的閘極電極電連接於被供應閘極信號的佈線(掃描線GL_m)。
電晶體852具有控制資料信號的寫入的功能。
電容器862的一對電極中的一個電連接於被供應電位的佈線(以下,稱為電位供應線VL_a),另一個電連接於電晶體852的源極電極和汲極電極中的另一 個。
電容器862具有作為儲存被寫入的資料的儲存電容器的功能。
電晶體854的源極電極和汲極電極中的一個電連接於電位供應線VL_a。並且,電晶體854的閘極電極電連接於電晶體852的源極電極和汲極電極中的另一個。
發光元件872的陽極和陰極中的一個電連接於電位供應線VL_b,另一個電連接於電晶體854的源極電極和汲極電極中的另一個。
作為發光元件872,可以使用實施方式1至實施方式3所示的發光元件。
此外,電位供應線VL_a和電位供應線VL_b中的一個被施加高電源電位VDD,另一個被施加低電源電位VSS。
例如,在具有圖19B的像素電路801的顯示裝置中,藉由圖19A所示的掃描線驅動電路804a依次選擇各行的像素電路801,並使電晶體852開啟而寫入資料信號。
當電晶體852被關閉時,被寫入資料的像素電路801成為保持狀態。並且,流過電晶體854的源極電極與汲極電極之間的電流量根據寫入的資料信號的電位被控制,發光元件872以對應於流過的電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
另外,本發明的一個實施方式的發光元件可以適用於在顯示裝置的像素中包括主動元件的主動矩陣方式或在顯示裝置的像素中沒有包括主動元件的被動矩陣方式。
在主動矩陣方式中,作為主動元件(非線性元件)除電晶體外還可以使用各種主動元件(非線性元件)。例如,也可以使用MIM(Metal Insulator Metal:金屬-絕緣體-金屬)或TFD(Thin Film Diode:薄膜二極體)等。由於這些元件的製程少,因此能夠降低製造成本或者提高良率。另外,由於這些元件的尺寸小,所以可以提高開口率,從而能夠實現低耗電量或高亮度化。
作為除了主動矩陣方式以外的方式,也可以採用不使用主動元件(非線性元件)的被動矩陣型。由於不使用主動元件(非線性元件),所以製程少,從而可以降低製造成本或者提高良率。另外,由於不使用主動元件(非線性元件),所以可以提高開口率,從而能夠實現低耗電量或高亮度化等。
本實施方式所示的結構可以與其他實施方式或實施例所示的結構適當地組合而實施。
實施方式5
在本實施方式中,參照圖20A至圖24說明包括本發明的一個實施方式的發光元件的顯示裝置以及在該顯示裝置安裝輸入裝置的電子裝置。
〈關於觸控面板的說明1〉
注意,在本實施方式中,作為電子裝置的一個例子,對組合顯示裝置與輸入裝置的觸控面板2000進行說明。另外,作為輸入裝置的一個例子,對使用觸控感測器的情況進行說明。
圖20A及圖20B是觸控面板2000的透視圖。另外,在圖20A及圖20B中,為了明確起見,示出觸控面板2000的典型的構成要素。
觸控面板2000包括顯示裝置2501及觸控感測器2595(參照圖20B)。此外,觸控面板2000包括基板2510、基板2570以及基板2590。另外,基板2510、基板2570以及基板2590都具有撓性。注意,基板2510、基板2570和基板2590中的任一個或全部可以不具有撓性。
顯示裝置2501包括基板2510上的多個像素以及能夠向該像素供應信號的多個佈線2511。多個佈線2511被引導在基板2510的外周部,其一部分構成端子2519。端子2519與FPC2509(1)電連接。另外,多個佈線2511可以將來自信號線驅動電路2503s(1)的信號供應到多個像素。
基板2590包括觸控感測器2595以及與觸控感測器2595電連接的多個佈線2598。多個佈線2598被引導在基板2590的外周部,其一部分構成端子。並且, 該端子與FPC2509(2)電連接。另外,為了明確起見,在圖20B中以實線示出設置在基板2590的背面一側(與基板2510相對的面一側)的觸控感測器2595的電極以及佈線等。
作為觸控感測器2595,例如可以適用電容式觸控感測器。作為電容式,可以舉出表面型電容式、投影型電容式等。
作為投影型電容式,主要根據驅動方法的不同而分為自電容式、互電容式等。當採用互電容式時,可以同時檢測出多個點,所以是較佳的。
注意,圖20B所示的觸控感測器2595是採用了投影型電容式觸控感測器的結構。
另外,觸控感測器2595可以適用可檢測出手指等檢測物件的接近或接觸的各種感測器。
投影型電容式觸控感測器2595包括電極2591及電極2592。電極2591電連接於多個佈線2598之中的任何一個,而電極2592電連接於多個佈線2598之中的任何其他一個。
如圖20A及圖20B所示,電極2592具有在一個方向上配置的多個四邊形在角部相互連接的形狀。
電極2591是四邊形且在與電極2592延伸的方向交叉的方向上反復地配置。
佈線2594與其間夾著電極2592的兩個電極2591電連接。此時,較佳的是,電極2592與佈線2594 的交叉部面積儘可能小。由此,可以減少沒有設置電極的區域的面積,從而可以降低穿透率的偏差。其結果,可以降低透過觸控感測器2595的光的亮度偏差。
注意,電極2591及電極2592的形狀不侷限於此,可以具有各種形狀。例如,也可以採用如下結構:將多個電極2591配置為其間儘量沒有間隙,並隔著絕緣層間隔開地設置多個電極2592,以形成不重疊於電極2591的區域。此時,藉由在相鄰的兩個電極2592之間設置與這些電極電絕緣的虛擬電極,可以減少穿透率不同的區域的面積,所以是較佳的。
〈關於顯示裝置的說明〉
接著,參照圖21A說明顯示裝置2501的詳細內容。圖21A是沿圖20B中的點劃線X1-X2所示的部分的剖面圖。
顯示裝置2501包括多個配置為矩陣狀的像素。該像素包括顯示元件以及驅動該顯示元件的像素電路。
在以下說明中,說明將發射白色光的發光元件適用於顯示元件的例子,但是顯示元件不侷限於此。例如,也可以包括發光顏色不同的發光元件,以使各相鄰的像素的發光顏色不同。
作為基板2510及基板2570,例如,可以適當地使用水蒸氣穿透率為1×10-5g.m-2.day-1以下,較佳為 1×10-6g.m-2.day-1以下的具有撓性的材料。或者,將其熱膨脹率大致相同的材料用於基板2510及基板2570是較佳的。例如,線性膨脹係數較佳為1×10-3/K以下,更佳為5×10-5/K以下,進一步較佳為1×10-5/K以下。
注意,基板2510是疊層體,其中包括防止雜質擴散到發光元件的絕緣層2510a、撓性基板2510b以及貼合絕緣層2510a與撓性基板2510b的黏合層2510c。另外,基板2570是疊層體,其中包括防止雜質擴散到發光元件的絕緣層2570a、撓性基板2570b以及貼合絕緣層2570a與撓性基板2570b的黏合層2570c。
黏合層2510c及黏合層2570c例如可以使用包含聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯、聚氨酯、丙烯酸樹脂、環氧樹脂或具有矽氧烷鍵合的樹脂的材料。
此外,在基板2510與基板2570之間包括密封層2560。密封層2560較佳為具有比空氣大的折射率。此外,如圖21A所示,當在密封層2560一側提取光時,密封層2560可以兼作光學接合層。
另外,可以在密封層2560的外周部形成密封材料。藉由使用該密封材料,可以在由基板2510、基板2570、密封層2560及密封材料圍繞的區域中配置發光元件2550R。注意,作為密封層2560,可以填充惰性氣體(氮或氬等)。此外,可以在該惰性氣體內設置乾燥劑而吸收水分等。另外,作為上述密封材料,例如較佳為使用 環氧類樹脂或玻璃粉。此外,作為用於密封材料的材料,較佳為使用不使水分或氧透過的材料。
另外,顯示裝置2501包括像素2502R。此外,像素2502R包括發光模組2580R。
像素2502R包括發光元件2550R以及可以向該發光元件2550R供應電力的電晶體2502t。注意,將電晶體2502t用作像素電路的一部分。此外,發光模組2580R包括發光元件2550R以及彩色層2567R。
發光元件2550R包括下部電極、上部電極以及下部電極與上部電極之間的EL層。作為發光元件2550R,例如可以使用實施方式1至實施方式3所示的發光元件。
另外,也可以在下部電極與上部電極之間形成微腔結構,增強特定波長的光的強度。
另外,在密封層2560被設置於提取光一側的情況下,密封層2560接觸於發光元件2550R及彩色層2567R。
彩色層2567R位於與發光元件2550R重疊的位置。由此,發光元件2550R所發射的光的一部分透過彩色層2567R,而向圖21A中的箭頭所示的方向被射出到發光模組2580R的外部。
此外,在顯示裝置2501中,在發射光的方向上設置遮光層2567BM。遮光層2567BM以圍繞彩色層2567R的方式設置。
彩色層2567R具有使特定波長區的光透過的功能即可,例如,可以使用使紅色波長區的光透過的濾色片、使綠色波長區的光透過的濾色片、使藍色波長區的光透過的濾色片以及使黃色波長區的光透過的濾色片等。每個濾色片可以藉由印刷法、噴墨法、利用光微影技術的蝕刻法等並使用各種材料形成。
另外,在顯示裝置2501中設置有絕緣層2521。絕緣層2521覆蓋電晶體2502t。此外,絕緣層2521具有使起因於像素電路的凹凸平坦的功能。另外,可以使絕緣層2521具有能夠抑制雜質擴散的功能。由此,能夠抑制由於雜質擴散而電晶體2502t等的可靠性降低。
此外,發光元件2550R被形成於絕緣層2521的上方。另外,以與發光元件2550R所包括的下部電極的端部重疊的方式設置分隔壁2528。此外,可以在分隔壁2528上形成控制基板2510與基板2570的間隔的間隔物。
掃描線驅動電路2503g(1)包括電晶體2503t及電容器2503c。注意,可以將驅動電路與像素電路經同一製程形成在同一基板上。
另外,在基板2510上設置有能夠供應信號的佈線2511。此外,在佈線2511上設置有端子2519。另外,FPC2509(1)電連接到端子2519。此外,FPC2509(1)具有供應視訊信號、時脈信號、啟動信號、重設信 號等的功能。另外,FPC2509(1)也可以安裝有印刷線路板(PWB)。
此外,可以將各種結構的電晶體適用於顯示裝置2501。在圖21A中,雖然示出了使用底閘極型電晶體的情況,但不侷限於此,例如可以將圖21B所示的頂閘極型電晶體適用於顯示裝置2501。
另外,對電晶體2502t及電晶體2503t的極性沒有特別的限制,例如,可以使用n通道電晶體及p通道電晶體,或者可以使用n通道電晶體或p通道電晶體。此外,對用於電晶體2502t及2503t的半導體膜的結晶性也沒有特別的限制。例如,可以使用非晶半導體膜、結晶半導體膜。另外,作為半導體材料,可以使用第13族半導體(例如,含有鎵的半導體)、第14族半導體(例如,含有矽的半導體)、化合物半導體(包括氧化物半導體)、有機半導體等。藉由將能隙為2eV以上,較佳為2.5eV以上,更佳為3eV以上的氧化物半導體用於電晶體2502t和電晶體2503t中的任一個或兩個,能夠降低電晶體的關態電流,所以是較佳的。作為該氧化物半導體,可以舉出In-Ga氧化物、In-M-Zn氧化物(M表示Al、Ga、Y、Zr、La、Ce、Sn、Hf或Nd)等。
〈關於觸控感測器的說明〉
接著,參照圖21C說明觸控感測器2595的詳細內容。圖21C是沿圖20B中的點劃線X3-X4所示的部分的 剖面圖。
觸控感測器2595包括:在基板2590上配置為交錯形狀的電極2591及電極2592;覆蓋電極2591及電極2592的絕緣層2593;以及使相鄰的電極2591電連接的佈線2594。
電極2591及電極2592使用具有透光性的導電材料形成。作為具有透光性的導電材料,可以使用氧化銦、銦錫氧化物、銦鋅氧化物、氧化鋅、添加有鎵的氧化鋅等導電氧化物。此外,還可以使用含有石墨烯的膜。含有石墨烯的膜例如可以藉由使包含氧化石墨烯的膜還原而形成。作為還原方法,可以舉出進行加熱的方法等。
例如,在藉由濺射法將具有透光性的導電材料形成在基板2590上之後,可以藉由光微影法等各種圖案形成技術去除不需要的部分來形成電極2591及電極2592。
另外,作為用於絕緣層2593的材料,例如除了丙烯酸樹脂、環氧樹脂等樹脂、具有矽氧烷鍵的樹脂之外,還可以使用氧化矽、氧氮化矽、氧化鋁等無機絕緣材料。
另外,達到電極2591的開口設置在絕緣層2593中,並且佈線2594與相鄰的電極2591電連接。由於透光導電材料可以提高觸控面板的開口率,因此可以適用於佈線2594。另外,因為其導電性高於電極2591及電極2592的材料可以減少電阻,所以可以適用於佈線 2594。
電極2592延在一個方向上,多個電極2592設置為條紋狀。此外,佈線2594以與電極2592交叉的方式設置。
夾著一個電極2592設置有一對電極2591。另外,佈線2594電連接一對電極2591。
另外,多個電極2591並不一定要設置在與一個電極2592正交的方向上,也可以設置為形成大於0°且小於90°的角。
此外,一個佈線2598與電極2591或電極2592電連接。另外,將佈線2598的一部分用作端子。作為佈線2598,例如可以使用金屬材料諸如鋁、金、鉑、銀、鎳、鈦、鎢、鉻、鉬、鐵、鈷、銅或鈀等或者包含該金屬材料的合金材料。
另外,藉由設置覆蓋絕緣層2593及佈線2594的絕緣層,可以保護觸控感測器2595。
此外,連接層2599電連接佈線2598與FPC2509(2)。
作為連接層2599,可以使用異方性導電膜(ACF:Anisotropic Conductive Film)或異方性導電膏(ACP:Anisotropic Conductive Paste)等。
〈關於觸控面板的說明2〉
接著,參照圖22A說明觸控面板2000的詳細內容。 圖22A是沿圖20A中的點劃線X5-X6所示的部分的剖面圖。
圖22A所示的觸控面板2000是將圖21A所說明的顯示裝置2501與圖21C所說明的觸控感測器2595貼合在一起的結構。
另外,圖22A所示的觸控面板2000除了圖21A及圖21C所說明的結構之外還包括黏合層2597及防反射層2567p。
黏合層2597以與佈線2594接觸的方式設置。注意,黏合層2597以使觸控感測器2595重疊於顯示裝置2501的方式將基板2590貼合到基板2570。此外,黏合層2597較佳為具有透光性。另外,作為黏合層2597,可以使用熱固性樹脂或紫外線硬化性樹脂。例如,可以使用丙烯酸類樹脂、氨酯類樹脂、環氧類樹脂或矽氧烷類樹脂。
防反射層2567p設置在重疊於像素的位置上。作為防反射層2567p,例如可以使用圓偏光板。
接著,參照圖22B對與圖22A所示的結構不同的結構的觸控面板進行說明。
圖22B是觸控面板2001的剖面圖。圖22B所示的觸控面板2001與圖22A所示的觸控面板2000的不同之處是相對於顯示裝置2501的觸控感測器2595的位置。在這裡對不同的結構進行詳細的說明,而對可以使用同樣的結構的部分援用觸控面板2000的說明。
彩色層2567R位於與發光元件2550R重疊的位置。此外,圖22B所示的發光元件2550R將光射出到設置有電晶體2502t的一側。由此,發光元件2550R所發射的光的一部分透過彩色層2567R,而向圖22B中的箭頭所示的方向被射出到發光模組2580R的外部。
另外,觸控感測器2595被設置於顯示裝置2501的基板2510一側。
黏合層2597位於基板2510與基板2590之間,並將顯示裝置2501和觸控感測器2595貼合在一起。
如圖22A及圖22B所示,從發光元件射出的光可以射出到基板的頂面和底面中的任一面或雙面。
〈關於觸控面板的驅動方法的說明〉
接著,參照圖23A及圖23B對觸控面板的驅動方法的一個例子進行說明。
圖23A是示出互電容式觸控感測器的結構的方塊圖。在圖23A中,示出脈衝電壓輸出電路2601、電流檢測電路2602。另外,在圖23A中,以X1至X6的6個佈線表示被施加有脈衝電壓的電極2621,並以Y1至Y6的6個佈線表示檢測電流的變化的電極2622。此外,圖23A示出由於使電極2621與電極2622重疊而形成的電容器2603。注意,電極2621與電極2622的功能可以互相調換。
脈衝電壓輸出電路2601是用來依次將脈衝電 壓施加到X1至X6的佈線的電路。藉由對X1至X6的佈線施加脈衝電壓,在形成電容器2603的電極2621與電極2622之間產生電場。藉由利用該產生於電極之間的電場由於被遮蔽等而使電容器2603的互電容產生變化,可以檢測出被檢測體的接近或接觸。
電流檢測電路2602是用來檢測電容器2603的互電容變化所引起的Y1至Y6的佈線的電流變化的電路。在Y1至Y6的佈線中,如果沒有被檢測體的接近或接觸,所檢測的電流值則沒有變化,而另一方面,在由於所檢測的被檢測體的接近或接觸而互電容減少的情況下,檢測到電流值減少的變化。另外,藉由積分電路等檢測電流即可。
接著,圖23B示出圖23A所示的互電容式觸控感測器中的輸入/輸出波形的時序圖。在圖23B中,在一個圖框期間進行各行列中的被檢測體的檢測。另外,在圖23B中,示出沒有檢測出被檢測體(未觸摸)和檢測出被檢測體(觸摸)的兩種情況。此外,關於Y1至Y6的佈線,示出對應於所檢測出的電流值的電壓值的波形。
依次對X1至X6的佈線施加脈衝電壓,Y1至Y6的佈線的波形根據該脈衝電壓變化。當沒有被檢測體的接近或接觸時,Y1至Y6的波形根據X1至X6的佈線的電壓變化產生變化。另一方面,在有被檢測體接近或接觸的部位電流值減少,因而與其相應的電壓值的波形也產生變化。
如此,藉由檢測互電容的變化,可以檢測出被檢測體的接近或接觸。
〈關於感測器電路的說明〉
另外,作為觸控感測器,圖23A雖然示出在佈線的交叉部只設置電容器2603的被動矩陣型觸控感測器的結構,但是也可以採用包括電晶體和電容器的主動矩陣型觸控感測器。圖24示出主動矩陣型觸控感測器所包括的感測器電路的一個例子。
圖24所示的感測器電路包括電容器2603、電晶體2611、電晶體2612及電晶體2613。
對電晶體2613的閘極施加信號G2,對源極和汲極中的一個施加電壓VRES,並且另一個與電容器2603的一個電極及電晶體2611的閘極電連接。電晶體2611的源極和汲極中的一個與電晶體2612的源極和汲極中的一個電連接,對另一個施加電壓VSS。對電晶體2612的閘極施加信號G1,源極和汲極中的另一個與佈線ML電連接。對電容器2603的另一個電極施加電壓VSS。
接下來,對圖24所述的感測器電路的工作進行說明。首先,藉由作為信號G2施加使電晶體2613成為開啟狀態的電位,與電晶體2611的閘極連接的節點n被施加對應於電壓VRES的電位。接著,藉由作為信號G2施加使電晶體2613成為關閉狀態的電位,節點n的電位被保持。
接著,由於手指等被檢測體的接近或接觸,電容器2603的互電容產生變化,而節點n的電位隨其由VRES變化。
在讀出工作中,對信號G1施加使電晶體2612成為開啟狀態的電位。流過電晶體2611的電流,亦即流過佈線ML的電流根據節點n的電位而產生變化。藉由檢測該電流,可以檢測出被檢測體的接近或接觸。
在電晶體2611、電晶體2612及電晶體2613中,將氧化物半導體層用於形成有其通道區的半導體層是較佳的。尤其是藉由將這種電晶體用於電晶體2613,能夠長期間保持節點n的電位,由此可以減少對節點n再次供應VRES的工作(更新工作)的頻率。
本實施方式所示的結構可以與其他實施方式或實施例所示的結構適當地組合而實施。
實施方式6
在本實施方式中,參照圖25以及圖26A至圖26G對包括本發明的一個實施方式的發光元件的顯示模組及電子裝置進行說明。
〈關於顯示模組的說明〉
圖25所示的顯示模組8000在上蓋8001與下蓋8002之間包括連接於FPC8003的觸控感測器8004、連接於FPC8005的顯示裝置8006、框架8009、印刷基板8010、 電池8011。
例如可以將本發明的一個實施方式的發光元件用於顯示裝置8006。
上蓋8001及下蓋8002可以根據觸控感測器8004及顯示裝置8006的尺寸可以適當地改變形狀或尺寸。
觸控感測器8004能夠是電阻膜式觸控感測器或電容式觸控感測器,並且能夠被形成為與顯示裝置8006重疊。此外,也可以使顯示裝置8006的相對基板(密封基板)具有觸控感測器的功能。另外,也可以在顯示裝置8006的各像素內設置光感測器,而形成光學觸控感測器。
框架8009除了具有保護顯示裝置8006的功能以外還具有用來遮斷因印刷基板8010的工作而產生的電磁波的電磁屏蔽的功能。此外,框架8009也可以具有作為散熱板的功能。
印刷基板8010具有電源電路以及用來輸出視訊信號及時脈信號的信號處理電路。作為對電源電路供應電力的電源,既可以採用外部的商業電源,又可以採用另行設置的電池8011的電源。當使用商業電源時,可以省略電池8011。
此外,在顯示模組8000中還可以設置偏光板、相位差板、稜鏡片等構件。
〈關於電子裝置的說明〉
圖26A至圖26G是示出電子裝置的圖。這些電子裝置可以包括外殼9000、顯示部9001、揚聲器9003、操作鍵9005(包括電源開關或操作開關)、連接端子9006、感測器9007(它具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風9008等。
圖26A至圖26G所示的電子裝置可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸控感測器的功能;顯示日曆、日期或時間等的功能;藉由利用各種軟體(程式)控制處理的功能;進行無線通訊的功能;藉由利用無線通訊功能來連接到各種電腦網路的功能;藉由利用無線通訊功能,進行各種資料的發送或接收的功能;讀出儲存在儲存介質中的程式或資料來將其顯示在顯示部上的功能;等。注意,圖26A至圖26G所示的電子裝置可具有的功能不侷限於上述功能,而可以具有各種功能。另外,雖然在圖26A至圖26G中未圖示,但是電子裝置可以包括多個顯示部。此外,也可以在該電子裝置中設置照相機等而使其具有如下功能:拍攝靜態影像的功能;拍攝動態影像的功能;將所拍攝的影像儲存在儲存介質(外部儲存介質或內置於照相機的儲存介質)中的功 能;將所拍攝的影像顯示在顯示部上的功能;等。
下面,詳細地說明圖26A至圖26G所示的電子裝置。
圖26A是示出可攜式資訊終端9100的透視圖。可攜式資訊終端9100所包括的顯示部9001具有撓性。因此,可以沿著所彎曲的外殼9000的彎曲面組裝顯示部9001。另外,顯示部9001具備觸控感測器,而可以用手指或觸控筆等觸摸螢幕來進行操作。例如,藉由觸摸顯示於顯示部9001上的圖示,可以啟動應用程式。
圖26B是示出可攜式資訊終端9101的透視圖。可攜式資訊終端9101例如具有電話機、電子筆記本和資訊閱讀裝置等中的一種或多種的功能。明確而言,可以將其用作智慧手機。注意,揚聲器9003、連接端子9006、感測器9007等在可攜式資訊終端9101中未圖示,但可以設置在與圖26A所示的可攜式資訊終端9100同樣的位置上。另外,可攜式資訊終端9101可以將文字或影像資訊顯示在其多個面上。例如,可以將三個操作按鈕9050(還稱為操作圖示或只稱為圖示)顯示在顯示部9001的一個面上。另外,可以將由虛線矩形表示的資訊9051顯示在顯示部9001的另一個面上。此外,作為資訊9051的一個例子,可以舉出提示收到來自電子郵件、SNS(Social Networking Services:社交網路服務)或電話等的資訊的顯示;電子郵件或SNS等的標題;電子郵件或SNS等的發送者姓名;日期;時間;電池餘量;以及天線 接收的強度等。或者,可以在顯示有資訊9051的位置上顯示操作按鈕9050等代替資訊9051。
圖26C是示出可攜式資訊終端9102的透視圖。可攜式資訊終端9102具有將資訊顯示在顯示部9001的三個以上的面上的功能。在此,示出資訊9052、資訊9053、資訊9054分別顯示於不同的面上的例子。例如,可攜式資訊終端9102的使用者能夠在將可攜式資訊終端9102放在上衣口袋裡的狀態下確認其顯示(這裡是資訊9053)。明確而言,將打來電話的人的電話號碼或姓名等顯示在能夠從可攜式資訊終端9102的上方觀看這些資訊的位置。使用者可以確認到該顯示而無需從口袋裡拿出可攜式資訊終端9102,由此能夠判斷是否接電話。
圖26D是示出手錶型可攜式資訊終端9200的透視圖。可攜式資訊終端9200可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、網路通信、電腦遊戲等各種應用程式。此外,顯示部9001的顯示面被彎曲,能夠在所彎曲的顯示面上進行顯示。另外,可攜式資訊終端9200可以進行被通信標準化的近距離無線通訊。例如,藉由與可進行無線通訊的耳麥相互通信,可以進行免提通話。此外,可攜式資訊終端9200包括連接端子9006,可以藉由連接器直接與其他資訊終端進行資料的交換。另外,也可以藉由連接端子9006進行充電。此外,充電工作也可以利用無線供電進行,而不藉由連接端子9006。
圖26E至圖26G是示出能夠折疊的可攜式資訊終端9201的透視圖。另外,圖26E是展開狀態的可攜式資訊終端9201的透視圖,圖26F是從展開狀態和折疊狀態中的一個狀態變為另一個狀態的中途的狀態的可攜式資訊終端9201的透視圖,圖26G是折疊狀態的可攜式資訊終端9201的透視圖。可攜式資訊終端9201在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域而其顯示的一覽性強。可攜式資訊終端9201所包括的顯示部9001由鉸鏈9055所連接的三個外殼9000來支撐。藉由鉸鏈9055使兩個外殼9000之間彎折,可以從可攜式資訊終端9201的展開狀態可逆性地變為折疊狀態。例如,可以以1mm以上且150mm以下的曲率半徑使可攜式資訊終端9201彎曲。
本實施方式所示的電子裝置的特徵在於具有用來顯示某些資訊的顯示部。注意,本發明的一個實施方式的發光元件也可以應用於不包括顯示部的電子裝置。另外,雖然在本實施方式中示出了電子裝置的顯示部具有撓性且可以在所彎曲的顯示面上進行顯示的結構或能夠使其顯示部折疊的結構,但不侷限於此,也可以採用不具有撓性且在平面部上進行顯示的結構。
本實施方式所示的結構可以與其他實施方式或實施例所示的結構適當地組合而實施。
實施方式7
在本實施方式中,參照圖27說明使用本發明的一個實施方式的發光元件的照明設備的一個例子。
圖27是將發光元件用於室內照明設備8501的例子。另外,因為發光元件可以實現大面積化,所以也可以形成大面積的照明設備。此外,也可以藉由使用具有曲面的外殼來形成發光區域具有曲面的照明設備8502。本實施方式所示的發光元件為薄膜狀,所以外殼的設計的彈性高。因此,可以形成能夠對應各種設計的照明設備。再者,室內的牆面也可以設置有大型的照明設備8503。也可以在照明設備8501、照明設備8502、照明設備8503中設置觸控感測器,啟動或關閉電源。
另外,藉由將發光元件用於桌子的表面一側,可以提供具有桌子的功能的照明設備8504。此外,藉由將發光元件用於其他家具的一部分,可以提供具有家具的功能的照明設備。
如上所述,可以得到應用發光元件的各種各樣的照明設備。另外,這種照明設備包括在本發明的一個實施方式中。
本實施方式所示的結構可以與其他實施方式或實施例所示的結構適當地組合而實施。
實施例1
在本實施例中,示出本發明的一個實施方式的電極層(電極1及電極2)和比較用電極層(比較電極 1)的製造例子。注意,本實施例所使用的符號等參照實施方式1的圖7A所示的發光元件290。
〈1-1.電極1的製造〉
作為構成電極層的導電層101a,在基板200上以厚度為200nm的方式形成Al-Ni-La膜。接著,作為在導電層101a上並與其接觸的氧化物層101b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:1:1,以300℃的基板溫度進行成膜。然後,作為透明導電膜101c,在氧化物層101b上以厚度為10nm的方式形成ITSO膜。在形成ITSO膜之後,在250℃及300℃的溫度下都進行1小時的烘焙處理。藉由上述製程,製造電極1。
〈1-2.電極2的製造〉
電極2與上面所示的電極1之間的不同之處只在於形成氧化物層101b的製程,作為其他製程採用與電極1同樣的製造方法。就是說,當作為氧化物層101b形成In-Ga-Zn氧化物時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:6,以300℃的基板溫度進行成膜。
〈1-3.比較電極1的製造〉
比較電極1與上面所示的電極1之間的不同之處只在於形成氧化物層101b的製程,作為其他製程採用與電極 1同樣的製造方法。就是說,以厚度為6nm的方式形成Ti膜代替氧化物層101b,然後藉由在300℃的溫度下進行1小時的烘焙處理使Ti膜氧化,由此形成鈦氧化膜。
〈1-4.電極的特性〉
圖28示出電極1、電極2和比較電極1的反射率。
電極1和電極2的反射率高於比較電極1的反射率,這是優良的反射率。由此,藉由將本發明的一個實施方式用於電極層,可以形成反射率優良的電極。
另外,在電極1和電極2中沒有產生電解腐蝕和膜剝離。由此可知,上述電極是適合用於發光元件的電極層的穩定的電極層。
另外,當測量用於氧化物層101b的In-Ga-Zn氧化物(1:1:1)的電阻率時,該電阻率為5.5×10-3Ωm。該數值與用作透明導電膜的ITSO的電阻率2.6×10-3Ωm大致相等,亦即當將In-Ga-Zn氧化物用於發光元件的電極時,上述電阻率充分低。
因此,使用本發明的一個實施方式的氧化物層的電極具有高反射率和低電阻率,所以可以說是適合用於發光元件的電極。
以上,本實施例所示的結構可以與其他實施例及實施方式適當地組合而實施。
實施例2
在本實施例中,示出本發明的一個實施方式的發光元件(發光元件1及發光元件2)的製造例子。圖29A示出本實施例所製造的發光元件的剖面示意圖,表4示出元件結構的詳細內容。並且,下面示出所使用的化合物的結構和簡稱。
〈2-1.發光元件1的製造〉
作為構成電極層501的導電層501a,在基板510上以厚度為200nm的方式形成Al-Ni-La膜。
接著,作為在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:1:1,以300℃的基板溫度進行成膜。
接著,作為透明導電膜501c,在氧化物層501b上以厚度為40nm的方式形成ITSO膜。藉由上述製程,形成電極層501。另外,電極層501的電極面積為4mm2(2mm×2mm)。
接著,作為電洞注入層531,在電極層501上,以厚度為13.5nm且重量比(PCPPn:MoO3)為1:0.5的方式共蒸鍍3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)和氧化鉬(MoO3)。
接著,作為電洞傳輸層532,在電洞注入層531上以厚度為10nm的方式蒸鍍PCPPn。
接著,作為發光層521,在電洞傳輸層532上,以厚度為25nm且重量比(CzPA:1,6mMemFLPAPrn)為1:0.05的方式共蒸鍍9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)和N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]-芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)。另外,在發光層521中,CzPA為 主體材料,1,6mMemFLPAPrn為客體材料(螢光材料)。
接著,作為電子傳輸層533,在發光層521上以厚度分別為5nm和15nm的方式依次蒸鍍CzPA和紅啡啉(簡稱:Bphen)。
接著,作為電子注入層534,以厚度分別為0.1nm和2nm的方式蒸鍍Li2O及銅酞青(簡稱:CuPc)。
接著,作為兼作電洞注入層的電荷產生層535,以重量比(DBT3P-II:MoO3)為1:0.5且厚度為12.5nm的方式共蒸鍍4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)和MoO3
接著,作為電洞傳輸層537,在電荷產生層535上以厚度為20nm的方式蒸鍍4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)。
接著,作為發光層522,在電洞傳輸層537上,以重量比(2mDBTBPDBq-II:PCBNBB:Ir(tBuppm)2(acac))為0.7:0.3:0.06且厚度為20nm的方式共蒸鍍2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹啉(簡稱:2mDBTBPDBq-II)、4,4'-二(1-萘基)-4"-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)和(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm)2(acac))。再者,以重量比(2mDBTBPDBq-II:Ir(dmdppr-P)2(dibm))為1:0.04且厚度為20nm的方式共蒸鍍2mDBTBPDBq-II和雙{4,6- 二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:Ir(dmdppr-P)2(dibm))。另外,在發光層522中,2mDBTBPDBq-II為主體材料,PCBNBB為輔助材料,Ir(tBuppm)2(acac)及Ir(dmdppr-P)2(dibm)為客體材料(磷光材料)。
接著,作為電子傳輸層538,在發光層522上以厚度分別為30nm、15nm的方式依次蒸鍍2mDBTBPDBq-II和Bphen,並且作為電子注入層539,在電子傳輸層538上以厚度為1nm的方式蒸鍍氟化鋰(LiF)。
接著,作為電極層502,在電子注入層539上以厚度分別為15nm和70nm的方式形成銀(Ag)和鎂(Mg)的合金膜及ITO膜。另外,以體積比(Ag:Mg)為1:0.1的方式蒸鍍Ag和Mg的合金膜。
藉由上述製程,製造形成在基板510上的結構。另外,在上述成膜製程中,作為蒸鍍都採用電阻加熱法。此外,電極層502的ITO膜藉由濺射法形成。
另外,在發光元件1的密封基板512上,作為光學元件514形成綠色(Green)的濾色片。
接著,在氮氛圍的手套箱中使用有機EL用密封材料將密封基板512固定在基板510上,由此密封發光元件1。明確而言,將密封材料塗佈在發光元件的周圍,貼合基板510和密封基板512,以6J/cm2照射波長為 365nm的紫外光,並且以80℃進行1小時的熱處理。藉由上述製程,得到發光元件1。
〈2-2.發光元件2的製造〉
發光元件2與上述發光元件1之間的不同之處只在於以下製程,作為其他製程採用與發光元件1同樣的製造方法。
作為構成電極層501的在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:6,以300℃的基板溫度進行成膜。
另外,作為電洞注入層531,在電極層501上以重量比(PCPPn:MoO3)為1:0.5且厚度為20nm的方式共蒸鍍PCPPn和MoO3
〈2-3.發光元件的特性〉
下面,圖30示出上述所製造的發光元件1及發光元件2的電流效率-亮度特性。另外,各發光元件的測量在室溫(保持為23℃的氛圍)下進行。
此外,表5示出1000cd/m2附近的發光元件1及發光元件2的元件特性。
另外,圖31示出以2.5mA/cm2的電流密度使電流流過發光元件1及發光元件2時的電場發射光譜。
如圖30、圖31及表5所示,在發光元件1及發光元件2中獲得電流效率高且色純度高的綠色發光。因此,藉由使用包含In和作為穩定劑的Ga的氧化物層構成電極層501,可以得到以高電流效率發光的發光元件。
再者,發光元件2的電流效率比發光元件1高,並且發光元件2以比發光元件1低的驅動電壓驅動,因此可知,較佳的是,作為穩定劑的Ga的含量比In多。
如上所述,藉由採用本發明的一個實施方式的結構,可以製造電流效率高且以低驅動電壓驅動的發光元件。
以上,本實施例所示的結構可以與其他實施例及實施方式適當地組合而實施。
實施例3
在本實施例中,示出本發明的一個實施方式的發光元件(發光元件3至發光元件5)的製造例子。圖 29B示出本實施例所製造的發光元件的剖面示意圖,表6及表7示出元件結構的詳細內容。另外,使用與實施例2所使用的化合物同樣的化合物。
〈3-1.發光元件3的製造〉
發光元件3與實施例2所示的發光元件1之間的不同之處只在於以下製程,作為其他製程採用與發光元件1同樣的製造方法。
作為構成電極層501的在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:6,以300℃的基板溫度進行成膜。
接著,作為透明導電膜501c,在氧化物層501b上以厚度為10nm的方式形成ITSO膜。
另外,作為電洞注入層531,在電極層501上以重量比(PCPPn:MoO3)為1:0.5且厚度為9nm的方式共蒸鍍PCPPn和MoO3
〈3-2.發光元件4的製造〉
發光元件4與發光元件3之間的不同之處只在於以下製程,作為其他製程採用與發光元件3同樣的製造方法。
作為構成電極層501的在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:4,以200℃的基板溫度進行成膜。
另外,在發光元件4中,在氧化物層501b上 沒有形成透明導電膜501c,而由導電層501a及氧化物層501b構成電極層501。
接著,作為電洞注入層531,在電極層501上以重量比(PCPPn:MoO3)為1:0.5且厚度為22.5nm的方式共蒸鍍PCPPn和MoO3
〈3-3.發光元件5的製造〉
發光元件5與發光元件3之間的不同之處只在於以下製程,作為其他製程採用與發光元件3同樣的製造方法。
作為構成電極層503的導電層503a,在基板510上以厚度為200nm的方式形成Al-Ni-La膜。
作為在導電層503a上並與其接觸的氧化物層503b,以厚度為6nm的方式形成Ti膜。在形成Ti膜之後,在300℃的溫度下進行1小時的烘焙處理,由此使Ti膜氧化,形成氧化鈦膜。
接著,作為透明導電膜503c,在氧化物層503b上以厚度為10nm的方式形成ITSO膜。藉由以上製程,形成電極層503。
另外,作為電洞注入層531,在電極層503上以重量比(PCPPn:MoO3)為1:0.5且厚度為5nm的方式共蒸鍍PCPPn和MoO3
此外,在發光元件3至發光元件5的密封基板512上,作為光學元件514形成藍色(Blue)的濾色片。
〈3-4.發光元件的特性〉
下面,圖32示出上述所製造的發光元件3至發光元件5的電流效率-亮度特性。另外,圖33示出亮度-電壓特性。此外,在室溫(保持為23℃的氛圍)下對各發光元件進行測量。
另外,表8示出1000cd/m2附近的發光元件3至發光元件5的元件特性。
此外,圖34示出以2.5mA/cm2的電流密度使電流流過發光元件3至發光元件5時的電場發射光譜。
如圖32至圖34及表8所示,發光元件3及發光元件4雖然呈現色純度高的藍色發光,但是具有比發光元件5高的電流效率。這是因為如下緣故:如實施例1所示,本發明的一個實施方式的包含In-Ga-Zn氧化物的電極結構具有高反射率,尤其是在藍色區域中具有優良的反射率。因此可知,用於發光元件3及發光元件4的電極 結構尤其適應於呈現藍色光的發光元件。
如上所示,藉由使用本發明的一個實施方式的結構,可以製造具有高電流效率的發光元件。
以上,本實施例所示的結構可以與其他實施例及實施方式適當地組合而實施。
實施例4
在本實施例中,示出本發明的一個實施方式的發光元件(發光元件6至發光元件8)的製造例子。圖29C示出本實施例所製造的發光元件的剖面示意圖,表9示出元件結構的詳細內容。並且,下面示出所使用的化合物的結構和簡稱。
〈4-1.發光元件6的製造〉
作為構成電極層501的導電層501a,在基板510上以厚度為200nm的方式形成Al-Ni-La膜。
接著,作為在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物膜。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:6,以300℃的基板溫度進行成膜。
接著,作為透明導電膜501c,在氧化物層501b上以厚度為10nm的方式形成ITSO膜。藉由上述製程,形成電極層501。另外,電極層501的電極面積為4mm2(2mm×2mm)。
接著,作為電洞注入層531,在電極層501上以重量比(DBT3P-II:MoO3)為1:0.5且厚度為25nm的方式共蒸鍍DBT3P-II和MoO3
接著,作為電洞傳輸層532,在電洞注入層531上以厚度為10nm的方式蒸鍍PCPPn。
接著,作為發光層520,在電洞傳輸層532上,以重量比(cgDBCzPA:1,6mMemFLPAPrn)為1:0.02且厚度為10nm的方式共蒸鍍7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)和1,6mMemFLPAPrn。另外,在發光層520的第一層中,cgDBCzPA為主體材料,1,6mMemFLPAPrn為客體材料(螢光材料)。並且,以重量比(2mDBTBPDBq- II:PCBBiF)為0.4:0.6且厚度為2nm的方式共蒸鍍2mDBTBPDBq-II和N-(1,1'-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)。再者,以重量比(2mDBTBPDBq-II:PCBBiF:Ir(mpmppm)2(acac))為0.8:0.2:0.06且厚度為20nm的方式共蒸鍍2mDBTBPDBq-II、PCBBiF和(乙醯基丙酮)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:Ir(mpmppm)2(acac))。另外,在發光層520的第三層中,2mDBTBPDBq-II及PCBBiF為主體材料,Ir(mpmppm)2(acac)為客體材料(磷光材料)。
接著,作為電子傳輸層533,在發光層520上以厚度分別為20nm和15nm的方式依次蒸鍍2mDBTBPDBq-II和Bphen。
接著,作為電子注入層534,在電子傳輸層533上以厚度分別為0.1nm和2nm的方式蒸鍍Li2O及CuPc。然後,作為緩衝層540,以重量比(DBT3P-II:MoO3)為1:0.5且厚度為30nm的方式共蒸鍍DBT3P-II和MoO3
接著,作為電極層502,在緩衝層540上以厚度為70nm的方式形成ITO膜。
藉由上述製程,製造形成在基板510上的結構。另外,在上述成膜製程中,作為蒸鍍都採用電阻加熱法。此外,電極層502的ITO膜藉由濺射法形成。
接著,在氮氛圍的手套箱中使用有機EL用密 封材料將密封基板固定在基板510上,由此密封發光元件6。明確而言,將密封材料塗佈在發光元件的周圍,貼合基板510和密封基板,以6J/cm2照射波長為365nm的紫外光,並且以80℃進行1小時的熱處理。藉由上述製程,得到發光元件6。
〈4-2.發光元件7的製造〉
發光元件7與上述發光元件6之間的不同之處只在於以下製程,作為其他製程採用與發光元件6同樣的製造方法。
作為構成電極層501的在導電層501a上並與其接觸的氧化物層501b,以厚度為10nm的方式形成In-Ga-Zn氧化物。此時,將濺射靶材的金屬元素的原子個數比設定為In:Ga:Zn=1:3:4,以200℃的基板溫度進行成膜。
另外,在發光元件7中,在氧化物層501b上沒有形成透明導電膜501c,而由導電層501a及氧化物層501b構成電極層501。
接著,作為電洞注入層531,在電極層501上以重量比(DBT3P-II:MoO3)為1:0.5且厚度為35nm的方式共蒸鍍DBT3P-II和MoO3
〈4-3.發光元件8的製造〉
發光元件8與發光元件6之間的不同之處只在於以下 製程,作為其他製程採用與發光元件6同樣的製造方法。
作為構成電極層503的導電層503a,在基板510上以厚度為200nm的方式形成Al-Ni-La膜。
作為在導電層503a上並與其接觸的氧化物層503b,以厚度為6nm的方式形成Ti膜。在形成Ti膜之後,在300℃的溫度下進行1小時的烘焙處理,由此使Ti膜氧化,形成氧化鈦膜。
接著,作為透明導電膜503c,在氧化物層503b上以厚度為10nm的方式形成ITSO膜。藉由以上製程,形成電極層503。
另外,作為電洞注入層531,在電極層503上以重量比(DBT3P-II:MoO3)為1:0.5且厚度為25nm的方式共蒸鍍DBT3P-II和MoO3
〈4-4.發光元件的特性〉
下面,圖35示出上述所製造的發光元件6至發光元件8的電流效率-亮度特性。另外,圖36示出亮度-電壓特性。此外,在室溫(保持為23℃的氛圍)下對各發光元件進行測量。
另外,表10示出1000cd/m2附近的發光元件6至發光元件8的元件特性。
此外,圖37示出以2.5mA/cm2的電流密度使電流流過發光元件6至發光元件8時的電場發射光譜。
如圖35、圖36及表10所示,發光元件6及發光元件7示出比發光元件8高的電流效率。尤其是,發光元件7示出高電流效率。
另外,如圖37所示,可知與發光元件8相比,在發光元件6及發光元件7中,黃色區域的發光比藍色區域的發光更強。其結果,色度y按發光元件8、發光元件6、發光元件7的順序依次變高,尤其是發光元件7的色度比發光元件8更近於黃色。因此可知,藉由具有本發明的一個實施方式的包含In-Ga-Zn氧化物的電極結構以及包含與該氧化物不同的氧化物的電極結構,可以得到具有呈現不同的發光顏色的區域的發光元件。
如上所述,藉由採用本發明的一個實施方式的結構,可以製造包括具有高發光效率且呈現不同的發光顏色的區域的發光元件。
以上,本實施例所示的結構可以與其他實施例及實施方式適當地組合而實施。
100‧‧‧EL層
101‧‧‧電極層
101a‧‧‧導電層
101b‧‧‧氧化物層
102‧‧‧電極層
150‧‧‧發光元件

Claims (20)

  1. 一種發光元件,包括:第一電極層;第二電極層;以及該第一電極層與該第二電極層之間的EL層,其中,該第一電極層包括:導電層;以及與該導電層接觸的氧化物層,其中,該導電層具有反射光的功能,該氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,該氧化物層中的該M的含量為該In的含量以上。
  2. 一種發光元件,包括:第一電極層;該第一電極層上的EL層;以及該EL層上的第二電極層,其中,該第一電極層包括:導電層;以及在該導電層上並與其接觸的氧化物層,其中,該導電層具有反射光的功能,該氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,該氧化物層中的該M的含量為該In的含量以 上。
  3. 一種發光元件,包括:第一電極層;在該第一電極層上並與其接觸的EL層;以及在該EL層上並與其接觸的第二電極層,其中,該第一電極層包括:導電層;以及在該導電層上並與其接觸的氧化物層,其中,該導電層具有反射光的功能,該氧化物層包含In及M(M表示Al、Si、Ti、Ga、Y、Zr、Sn、La、Ce、Nd或Hf),並且,該氧化物層中的該M的含量為該In的含量以上。
  4. 根據申請專利範圍第1項之發光元件,還包括第三電極層,其中該EL層夾在該第二電極層與該第三電極層之間。
  5. 根據申請專利範圍第2項之發光元件,還包括第三電極層,其中該EL層位於該第三電極層上。
  6. 根據申請專利範圍第3項之發光元件,還包括第三電極層,其中該EL層位於該第三電極層上並與其接觸。
  7. 根據申請專利範圍第4項之發光元件,其中該第三電極層包括其組成與該氧化物層的組成不同的氧化物。
  8. 根據申請專利範圍第5項之發光元件,其中該第 三電極層包括其組成與該氧化物層的組成不同的氧化物。
  9. 根據申請專利範圍第6項之發光元件,其中該第三電極層包括其組成與該氧化物層的組成不同的氧化物。
  10. 根據申請專利範圍第4項之發光元件,其中可以使從該第一電極層與該第二電極層之間的第一區域發射的光的顏色與從該第二電極層與該第三電極層之間的第二區域發射的光的顏色不同。
  11. 根據申請專利範圍第5項之發光元件,其中可以使從該第一電極層與該第二電極層之間的第一區域發射的光的顏色與從該第二電極層與該第三電極層之間的第二區域發射的光的顏色不同。
  12. 根據申請專利範圍第6項之發光元件,其中可以使從該第一電極層與該第二電極層之間的第一區域發射的光的顏色與從該第二電極層與該第三電極層之間的第二區域發射的光的顏色不同。
  13. 根據申請專利範圍第1項之發光元件,其中該EL層包括第一發光層及第二發光層,該第一發光層包含具有發射光的功能的第一化合物,並且該第二發光層包含具有發射光的功能的第二化合物。
  14. 根據申請專利範圍第2項之發光元件,其中該EL層包括第一發光層及第二發光層,該第一發光層包含具有發射光的功能的第一化合物,並且該第二發光層包含具有發射光的功能的第二化合 物。
  15. 根據申請專利範圍第3項之發光元件,其中該EL層包括第一發光層及第二發光層,該第一發光層包含具有發射光的功能的第一化合物,並且該第二發光層包含具有發射光的功能的第二化合物。
  16. 根據申請專利範圍第1項之發光元件,其中該導電層包含Al或Ag。
  17. 根據申請專利範圍第2項之發光元件,其中該導電層包含Al或Ag。
  18. 根據申請專利範圍第3項之發光元件,其中該導電層包含Al或Ag。
  19. 根據申請專利範圍第1項之發光元件,其中該氧化物層包含In、Ga及Zn。
  20. 根據申請專利範圍第2項之發光元件,其中該氧化物層包含In、Ga及Zn。
TW104133517A 2014-10-23 2015-10-13 發光元件 TWI698032B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215984 2014-10-23
JP2014-215984 2014-10-23

Publications (2)

Publication Number Publication Date
TW201626601A true TW201626601A (zh) 2016-07-16
TWI698032B TWI698032B (zh) 2020-07-01

Family

ID=55760349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133517A TWI698032B (zh) 2014-10-23 2015-10-13 發光元件

Country Status (4)

Country Link
US (1) US9653705B2 (zh)
JP (1) JP6690919B2 (zh)
TW (1) TWI698032B (zh)
WO (1) WO2016063169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722146B (zh) * 2016-03-23 2021-03-21 日商三菱綜合材料股份有限公司 層合反射電極膜、層合反射電極圖型、層合反射電極圖型之製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069757A (ja) * 2013-09-27 2015-04-13 株式会社ジャパンディスプレイ 有機el表示装置
KR20240033152A (ko) 2014-05-30 2024-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
JP2017212024A (ja) * 2014-08-28 2017-11-30 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
JP6860989B2 (ja) 2015-07-24 2021-04-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
DE112016005489T5 (de) 2015-12-01 2018-08-23 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
KR102490381B1 (ko) * 2015-12-24 2023-01-18 엘지디스플레이 주식회사 유기발광 표시장치 및 유기발광 적층구조물
WO2017164211A1 (ja) * 2016-03-23 2017-09-28 三菱マテリアル株式会社 積層反射電極膜、積層反射電極パターン、積層反射電極パターンの製造方法
KR102419770B1 (ko) 2016-05-20 2022-07-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
KR102353663B1 (ko) 2016-05-20 2022-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20180002505A (ko) 2016-06-29 2018-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자의 제작 방법
KR20180010136A (ko) 2016-07-20 2018-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
CN109952814B (zh) 2016-11-30 2022-12-20 株式会社半导体能源研究所 显示装置及电子装置
JP6907008B2 (ja) * 2017-04-17 2021-07-21 キヤノン株式会社 有機発光装置、有機発光装置の製造方法、及び撮像装置
US11545541B2 (en) 2017-09-28 2023-01-03 Sharp Kabushiki Kaisha Display device including light emitting element including reflection electrode on which multiple metallic conductive layers are stacked and method for manufacturing same
CN108807716A (zh) * 2018-08-06 2018-11-13 京东方科技集团股份有限公司 一种显示面板及显示装置
US11482687B2 (en) 2019-11-08 2022-10-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and lighting device
KR20210083678A (ko) * 2019-12-27 2021-07-07 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR20230025781A (ko) * 2020-06-18 2023-02-23 소니 세미컨덕터 솔루션즈 가부시키가이샤 표시 장치, 표시 장치의 제조 방법 및 전자 기기

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026119A (ja) * 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP4170454B2 (ja) * 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
US6559594B2 (en) 2000-02-03 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP3967081B2 (ja) * 2000-02-03 2007-08-29 株式会社半導体エネルギー研究所 発光装置及びその作製方法
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
US20020089023A1 (en) * 2001-01-05 2002-07-11 Motorola, Inc. Low leakage current metal oxide-nitrides and method of fabricating same
JP2002343578A (ja) * 2001-05-10 2002-11-29 Nec Corp 発光体、発光素子、および発光表示装置
KR101139522B1 (ko) 2004-12-04 2012-05-07 엘지디스플레이 주식회사 반투과형 박막 트랜지스터 기판 및 그 제조 방법
EP1843194A1 (en) 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
JP5000937B2 (ja) * 2006-06-30 2012-08-15 三菱電機株式会社 半導体デバイスの製造方法
JP2008146904A (ja) * 2006-12-07 2008-06-26 Sony Corp 有機電界発光素子および表示装置
CZ301799B6 (cs) * 2007-07-30 2010-06-23 Kencl@Lukáš Zpusob úpravy datové informace v systému
KR101375831B1 (ko) 2007-12-03 2014-04-02 삼성전자주식회사 산화물 반도체 박막 트랜지스터를 이용한 디스플레이 장치
TWI479714B (zh) * 2008-01-29 2015-04-01 Koninkl Philips Electronics Nv 具整合式之鄰近感測器的有機發光二極體照明裝置
JP5416906B2 (ja) * 2008-02-18 2014-02-12 凸版印刷株式会社 蛍光性化合物、発光性インク組成物および有機el素子
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2010010111A (ja) * 2008-06-30 2010-01-14 Canon Inc 有機el表示装置及び有機el表示装置の製造方法
JP2010015786A (ja) * 2008-07-02 2010-01-21 Canon Inc 多色発光表示装置
WO2010029866A1 (en) 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101772377B1 (ko) 2008-09-12 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR101273913B1 (ko) 2008-09-19 2013-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN102160102B (zh) 2008-09-19 2013-11-06 株式会社半导体能源研究所 显示装置
WO2010038819A1 (en) 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
EP2172804B1 (en) 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
CN101719493B (zh) 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
EP2515337B1 (en) 2008-12-24 2016-02-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
KR101857405B1 (ko) 2009-07-10 2018-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
RU2491678C1 (ru) 2009-07-24 2013-08-27 Шарп Кабусики Кайся Способ изготовления подложки со структурой тонкопленочных транзисторов
JP5458102B2 (ja) 2009-09-04 2014-04-02 株式会社東芝 薄膜トランジスタの製造方法
EP2511896B1 (en) 2009-12-09 2019-05-08 Sharp Kabushiki Kaisha Semiconductor device and method for producing same
JP5727204B2 (ja) 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8778730B2 (en) 2010-01-21 2014-07-15 Sharp Kabushiki Kaisha Process for production of circuit board
US8610180B2 (en) 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
US9230994B2 (en) 2010-09-15 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101880183B1 (ko) * 2011-02-11 2018-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 표시 장치
JP5969216B2 (ja) * 2011-02-11 2016-08-17 株式会社半導体エネルギー研究所 発光素子、表示装置、照明装置、及びこれらの作製方法
US8957442B2 (en) * 2011-02-11 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
KR101894898B1 (ko) 2011-02-11 2018-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 사용한 전자 기기
KR101973207B1 (ko) * 2011-06-23 2019-04-29 삼성디스플레이 주식회사 금속 산화물이 함유된 양극 및 상기 양극을 포함하는 유기발광소자
CN102651455B (zh) 2012-02-28 2015-11-25 京东方科技集团股份有限公司 Oled器件、amoled器件及其制造方法
US20140014948A1 (en) 2012-07-12 2014-01-16 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR102137376B1 (ko) * 2012-08-03 2020-07-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
WO2014021356A1 (en) 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014199899A (ja) 2012-08-10 2014-10-23 株式会社半導体エネルギー研究所 半導体装置
US8937307B2 (en) 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102013216824A1 (de) 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
TWI657539B (zh) 2012-08-31 2019-04-21 日商半導體能源研究所股份有限公司 半導體裝置
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
CN111477634B (zh) 2012-09-13 2023-11-14 株式会社半导体能源研究所 半导体装置
US8927985B2 (en) 2012-09-20 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722146B (zh) * 2016-03-23 2021-03-21 日商三菱綜合材料股份有限公司 層合反射電極膜、層合反射電極圖型、層合反射電極圖型之製造方法

Also Published As

Publication number Publication date
WO2016063169A1 (en) 2016-04-28
US20160118625A1 (en) 2016-04-28
US9653705B2 (en) 2017-05-16
JP6690919B2 (ja) 2020-04-28
JP2016085970A (ja) 2016-05-19
TWI698032B (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI698032B (zh) 發光元件
TWI814143B (zh) 發光元件、顯示裝置、電子裝置及照明設備
KR102543330B1 (ko) 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치
TWI737594B (zh) 發光元件,顯示裝置,電子裝置,與照明裝置
JP6588308B2 (ja) 発光装置
US9653517B2 (en) Light-emitting device
JP2022188146A (ja) 発光装置、電子機器および照明装置
JP2024015119A (ja) 発光装置および電子機器
JP2016127287A (ja) 発光素子、発光装置、表示装置、及び電子機器
JP2016157944A (ja) 発光素子、表示装置、電子機器、及び照明装置
TW202211510A (zh) 發光元件,發光裝置,電子裝置以及照明裝置
JP7055856B2 (ja) 発光装置
JP2022173506A (ja) 発光素子
JP7067916B2 (ja) 発光素子、発光装置、電子機器、および照明装置
KR102663473B1 (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
TWI836636B (zh) 發光元件,顯示裝置,電子裝置,與照明裝置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees