TW201625505A - 燒結體 - Google Patents

燒結體 Download PDF

Info

Publication number
TW201625505A
TW201625505A TW104138291A TW104138291A TW201625505A TW 201625505 A TW201625505 A TW 201625505A TW 104138291 A TW104138291 A TW 104138291A TW 104138291 A TW104138291 A TW 104138291A TW 201625505 A TW201625505 A TW 201625505A
Authority
TW
Taiwan
Prior art keywords
sintered body
oxyfluoride
mpa
cerium
less
Prior art date
Application number
TW104138291A
Other languages
English (en)
Other versions
TWI589546B (zh
Inventor
Toyohiko Yano
Katsumi Yoshida
Toru Tsunoura
Yuji Shigeyoshi
Original Assignee
Nippon Yttrium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yttrium Co Ltd filed Critical Nippon Yttrium Co Ltd
Publication of TW201625505A publication Critical patent/TW201625505A/zh
Application granted granted Critical
Publication of TWI589546B publication Critical patent/TWI589546B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0067Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the density of the end product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本發明之燒結體包含釔之氟氧化物。釔之氟氧化物較佳為YOF及/或Y5O4F7。較佳為本發明之燒結體包含50質量%以上之釔之氟氧化物。關於本發明之燒結體,較佳為相對密度為70%以上,又,較佳為開放氣孔率為10%以下。又,亦較佳為本發明之燒結體之3點彎曲強度為10MPa以上且300MPa以下。

Description

燒結體
本發明係關於一種包含釔之氟氧化物之燒結體。
於半導體之製造中之各步驟、尤其是乾式蝕刻、電漿蝕刻及清洗之步驟中,使用氟系腐蝕性氣體、氯系腐蝕性氣體及使用該等之電漿。半導體製造裝置之構成構件因該等腐蝕性氣體或電漿而腐蝕,又,自構成構件之表面剝離之微細粒子(微粒)容易附著於半導體表面,而導致製品不良。為此,對於半導體製造裝置之構成構件,需使用對鹵素系電漿耐蝕性較高之陶瓷作為主體材料。
作為此種主體材料,現使用氧化鋁、氧化釔、鋁釔複合氧化物、或氟化釔(參照專利文獻1~3)。
又,作為用以防止蝕刻裝置之腐蝕之耐蝕性材料,申請人迄今為止提出有包含釔之氟氧化物之熔射材料(專利文獻4)。
[先前技術文獻] [專利文獻]
專利文獻1:日本專利特開2011-136877號公報
專利文獻2:日本專利特開2013-144622號公報
專利文獻3:日本專利特開2000-219574號公報
專利文獻4:日本專利特開2014-109066號公報
對於氧化鋁等含鋁化合物,有對半導體矽之鋁污染之擔憂。氧化釔被指摘電漿耐性不充分,表面會因照射氟系電漿發生變質而形成氟化釔(YF3)。氟化釔為氟化物,因此於化學穩定性方面存疑。
又,於將釔之氟氧化物用作熔射材料而塗佈半導體裝置之內部之情形時,所獲得之塗膜之緻密性存在極限,難言遮斷鹵素系腐蝕氣體之性能充分。
因此,本發明之課題在於提供一種能夠解決上述先前技術所存在之各種缺陷的燒結體。
本發明提供一種包含釔之氟氧化物之燒結體。
又,本發明提供一種上述燒結體之製造方法,其包括如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體之步驟;及藉由將上述成形體於5MPa以上且100MPa以下之壓力下、800℃以上且1800℃以下之溫度下進行燒結,而獲得上述燒結體之步驟。
又,本發明提供一種上述燒結體之製造方法,其包括如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體之步驟;及將上述成形體於無加壓下、1000℃以上且2000℃以下之溫度下進行燒結之步驟。
本發明之燒結體對鹵素系電漿顯示出優異之耐性,而作為蝕刻裝置等半導體製造裝置之構成材料有用。又,本發明之燒結體之製造方法可高效率地製造緻密之燒結體作為本發明之燒結體。
圖1係實施例1中所獲得之燒結體之粉末藉由XRD(X ray diffraction,X射線繞射)繞射測定所獲得之X射線圖。
圖2係實施例2中所獲得之燒結體之粉末藉由XRD繞射測定所獲得之X射線圖。
圖3係實施例3中所獲得之燒結體之粉末藉由XRD繞射測定所獲得之X射線圖。
圖4係實施例4中所獲得之燒結體之粉末藉由XRD繞射測定所獲得之X射線圖。
圖5係實施例2中所獲得之燒結體於電漿照射前後之SEM(Scanning Electron Microscope,掃描式電子顯微鏡)照片。
圖6係比較例1之單晶矽於電漿照射前後之SEM照片。
圖7係比較例2之氧化鋁於電漿照射前後之SEM照片。
圖8係比較例3之氧化釔於電漿照射前後之SEM照片。
圖9係比較例4之氟化釔於電漿照射前後之SEM照片。
圖10係表示於實施例及比較例之試樣表面於電漿照射前後之F/O比之變化的圖表。
圖11係實施例2中所獲得之燒結體於電漿照射後之剖面SEM照片及元素分佈圖。
圖12係比較例3中所獲得之燒結體於電漿照射後之剖面SEM照片及元素分佈圖。
以下,基於本發明之較佳之實施形態說明本發明。本發明之燒結體之特徵之一在於包含釔之氟氧化物。本發明之釔之氟氧化物係包含釔(Y)、氧(O)、氟(F)之化合物。作為釔之氟氧化物,可為釔(Y)、氧(O)、氟(F)之莫耳比為Y:O:F=1:1:1之化合物。或者,作為釔之氟氧化物,亦可為上述莫耳比為Y:O:F=1:1:1之化合物以外之化合物。作為此種化合物,包含包括Y5O4F7或Y7O6F9等在內之該等中 1種以上之氟氧化物。該等可使用1種或將2種以上組合而使用。於本發明中,較佳為上述莫耳比為Y:O:F=1:X:3-2X(X為0.5~1.2)之化合物,尤佳為YOF及Y5O4F7
藉由使用YOF,而具有獲得機械強度優異之燒結體、獲得緻密且無破裂之燒結體、與其他組成相比耐蝕性優異等優點。又,藉由使用Y5O4F7,具有於低溫下獲得緻密且無破裂之燒結體、藉由在氧化後生成YOF而提高耐蝕性等優點。
於本發明中,將釔之氟氧化物製成燒結體而非製成熔射材料,藉此可提高對鹵素系腐蝕氣體之阻隔性。於製成熔射材料之情形時,存在如下情況:構成熔射材料之各粒子因熔射而熔解者堆積形成熔射膜,導致於該熔解之粒子間之微小空隙流入鹵素系腐蝕氣體。與其相比,燒結體之緻密性較高,對鹵素系腐蝕氣體之阻隔性優異,因此例如將其用於半導體裝置之構成構件之情形時,可防止鹵素系腐蝕氣體向該部材內部之流入。因此,本發明之燒結體係防止因鹵素系腐蝕氣體引起之腐蝕的性能較高者。如此鹵素系腐蝕氣體之阻隔性較高之部材被適宜地用於例如蝕刻裝置之真空室構成構件或蝕刻氣體供給口、聚焦環、晶圓支架等。就將本發明之燒結體製成更緻密者之觀點而言,該燒結體之相對密度較佳為70%以上,更佳為80%以上,進而較佳為90%,尤佳為95%以上。相對密度(RD)越高越好,作為上限可列舉100%。就提高耐蝕性之觀點而言,較佳為氣孔率、尤其是開放氣孔率(OP)較小。開放氣孔率係藉由下述所記載之方法求出,較佳為10%以下,進而較佳為2%以下,尤佳為0.5%以下。具有此種相對密度(RD)及開放氣孔率(OP)之燒結體於藉由下述製造方法(1)或(2)製造本發明之燒結體時,可藉由調整其溫度條件或壓力條件而獲得。
此處所謂相對密度(RD)及開放氣孔率可基於JIS R1634,藉由阿基米德法進行測定,具體而言,藉由以下之方法進行測定。
<相對密度(RD)及開放氣孔率(OP)之測定方法>
將燒結體放入蒸餾水中,於利用膜片型真空泵之減壓下保持1小時後,測定水中重量W2[g]。又,利用濕布去除多餘之水分,測定飽水重量W3[g]。其後,放入乾燥器使燒結體充分地乾燥後,測定乾燥重量W1[g]。根據以下之式,算出鬆密度ρb[g/cm3]與開放氣孔率OP。
ρb=W1/(W3-W2)×ρ1(g/cm3)
OP=(W3-W1)/(W3-W2)×100(%)
此處,ρ1[g/cm3]係蒸餾水之密度。使用所獲得之鬆密度ρb、及理論密度ρc[g/cm3],根據以下之式算出相對密度(RD)[%]。
RD=ρbc×100(%)
又,本發明之燒結體之3點彎曲強度σf較佳為一定以上之較高值。具體而言,本發明之燒結體之3點彎曲強度σf較佳為10MPa以上,更佳為20MPa以上,進而較佳為50MPa以上,尤佳為100MPa以上。又,3點彎曲強度σf越高,作為半導體製造裝置之構成材料越具備高強度,故而較佳,作為上限,就燒結體之製造之容易性等觀點而言,較佳為300MPa以下。具有上述強度之燒結體可藉由利用下述之製造方法(1)或(2)製造本發明之燒結體而獲得。
3點彎曲強度σf係藉由以下之方法進行測定。
<3點彎曲強度σf之測定方法>
藉由切斷燒結體,並對單面進行鏡面研磨,而製作厚度1.5~3.0mm、寬度約4mm、長度約35mm之短條形之試片。將其置於SiC製治具上,利用萬能材料試驗機(1185型,INSTRON製造)進行3點彎曲試驗。條件設為支點間距離30mm、十字頭速度0.5mm/min、試片數設為5片。基於JIS R1601,使用以下之式算出彎曲強度σf[MPa]。
σf=(3×Pf×L)/(2×w×t2)(MPa)
此處,Pf為試片斷裂時之荷重[N],L為跨距[mm],w為試片之寬 度[mm],t為試片之厚度[mm]。
又,本發明之燒結體之彈性模數較佳為25GPa以上且300GPa以下,更佳為50GPa以上且300GPa以下,進而較佳為100GPa以上且250GPa以下,最佳為150GPa以上且200GPa以下。藉由設為此種範圍之彈性模數,作為半導體製造裝置之構成材料成為具備較高之耐久性者,且對鹵素系電漿顯示出優異之耐性。作為用以獲得此種彈性模數之方法之一,可列舉於下述燒結體之製造方法中,調整原料粉末之平均粒徑、成形方法、加壓方法等之方法。
<彈性模數之測定方法>
彈性模數係依據JIS R1602,藉由以下之方法而求出。
測定係使用示波器(Oscilloscope)(WJ312A,LECROY製造)及脈衝發生接收器(Pulser-Receiver,5072PR,Olympus NDT製造)。使用接著劑(縱波用:COUPLANT B GLYCERIN(Olympus製造),橫波用:Sony Cote SHN-B25(Nichigo Nikko製造))使縱波振子(V110,5MHz)、橫波振子(V156,5MHz)固定於試片,根據脈衝之傳輸速度測定縱波速度V1[m/s]與橫波速度Vt[m/s]。根據所獲得之V1與Vt、試片之鬆密度ρb[kg/mm3],使用以下之式算出彈性模數E[GPa]。
E=ρb.(Vt 2.V1 2-4Vt 4)/(V1 2-Vt 2)×10-9(GPa)
又,本發明之燒結體之熱導率較佳為5.0W/(m.K)以上,更佳為10.0W/(m.K)以上。如此具有較高之熱導率之燒結體可適宜地用於要求均熱性之構成構件或溫度變化較大之構成構件之用途。又,於將本發明之燒結體用於蝕刻裝置之氣體或電氣等之導入端子等要求隔熱性之構成構件之用途之情形時,該燒結體之熱導率為5.0W/(m.K)以下,尤佳為低至3.0W/(m.K)以下程度。熱導率可藉由以下方式進行測定。
<熱導率之測定方法>
使用邊長10mm、厚度1mm之正方形板狀試樣。於試樣之兩面塗佈鉑,自其上較薄地噴附加入有碳粒子之噴霧(FC-153,Fine Chemical Japan製造)。將經黑化處理之試樣設置於治具,對正面照射由氙閃光燈產生之脈衝(脈衝寬度0.33ms),測定試樣背面之溫度變化,藉此求出熱擴散係數α。溫度變化係將半數時間之10倍設為計算範圍。又,使用氧化鋁作為標準試樣,求出比熱容量C。於溫度25℃、濕度50%、空氣中進行測定,且進行3次測定。測定係使用熱常數測定裝置(LFA447,NETZSCH製造)。
基於JIS R1611,使用以下之式求出熱導率λ[W/(m.K)]。
λ=α×C×ρ(W/(m.K))
此處,α為熱擴散係數[m2/s],C為比熱容量[J/kg.K],ρ為試樣之鬆密度[kg/m3]。
本發明之燒結體可為實質上僅包含釔之氟氧化物者,但亦可包含釔之氟氧化物以外之成分。所謂實質上,意指除了氟氧化物以外,僅包含不可避免之雜質,具體而言,係指氟氧化物之含量為98質量%以上。作為此處所謂之不可避免之雜質,例如可列舉於藉由下述之(1)或(2)之方法進行製造之情形時之氧化釔等副產物。
具體而言,就進一步發揮本發明之耐電漿性之效果之觀點、或機械強度提高等觀點而言,本發明之燒結體中之釔之氟氧化物之含量較佳為50質量%以上。就該觀點而言,燒結體中之釔之氟氧化物之量更佳為80質量%以上,進而較佳為90質量%以上,尤佳為98質量%以上。燒結體中之釔之氟氧化物之含量越高越好。
於藉由定性分析確認到本發明之燒結體包含釔之氟氧化物及氧化釔之情形時,燒結體中之釔之氟氧化物之含量可藉由以下之方法進行測定。該情形時之定性分析例如可藉由X射線繞射測定而進行。
針對將氧化釔與氟氧化釔以一定比率混合而成之粉末試樣,進 行X射線繞射測定。所獲得之繞射波峰中,取氧化釔之最大波峰強度與氟氧化釔之最大波峰強度之比,相對於混合比進行繪圖,而製作校準曲線。按照校準曲線,測定氧化釔與氟氧化釔之混合比,將於兩者之合計設為100之情形時之氟氧化釔之比率設為氟氧化釔之含量。燒結體之X射線繞射測定係將燒結體製成粉末者之測定,可藉由下述實施例中所記載之方法進行。
又,於藉由上述定性分析而判明燒結體中包含釔之氟氧化物及氧化釔以外之物質之情形時,針對該物質,與上述方法同樣地測定該物質與氟氧化釔之混合比,藉此求出氟氧化釔之含量即可。
本發明之燒結體於將其製成粉末時之使用CuKα射線或Cu-Kα1射線之X射線繞射測定(掃描範圍:2θ=10°~80°)中,最大強度之繞射波峰較佳為源自釔之氟氧化物之波峰。又,於該X射線繞射測定中,觀察到源自釔之氟氧化物以外之成分之波峰亦無妨,但較佳為該波峰較小,或未觀察到該波峰。例如於將上述掃描範圍內之源自釔之氟氧化物之最大波峰之高度設為1時,源自釔之氟氧化物以外之成分之最大波峰之高度較佳為0.5以下,更佳為0.05以下。尤其於上述X射線繞射測定中,於將上述掃描範圍內之源自釔之氟氧化物之最大波峰之高度設為1時,源自YF3之波峰之最大波峰之高度較佳為0.1以下,更佳為0.03以下。又,於上述X射線繞射測定中,於將上述掃描範圍內之源自釔之氟氧化物之最大波峰之高度設為1時,源自Y2O3之最大波峰之高度較佳為0.2以下,更佳為0.05以下。燒結體粉末之X射線繞射測定可藉由下述實施例中所記載之方法進行。本發明之燒結體之上述波峰比可藉由調整原料粉末中之釔之氟氧化物之比率、或燒結條件之溫度或燒結氛圍等,而設為上述範圍內。
於本發明之燒結體包含YOF之情形時,作為該YOF較佳為包含菱形晶體(rhombohedral crystal),於本發明之燒結體包含Y5O4F7之情形 時,作為該Y5O4F7較佳為包含斜方晶體(orthorhombic crystal)。該等結晶相可藉由進行燒結體表面或粉末之X射線繞射測定而鑑定。
作為本發明之燒結體中之釔之氟氧化物以外之成分,例如可列舉:各種燒結助劑、黏合劑樹脂、碳等。又,本發明之燒結體除了釔之氟氧化物以外,亦可含有先前使用之氧化鋁、氧化釔、鋁釔複合氧化物、或氟化釔、含有釔以外之其他稀土元素之化合物等各種陶瓷材料。
本發明之燒結體藉由為包含釔之氟氧化物之燒結體,而與其他陶瓷材料之燒結體相比,對鹵素系電漿具有優異之耐性,又,與先前之包含釔之氟氧化物之熔射材料相比,緻密性及對鹵素系腐蝕性氣體之阻隔性優異。
以下,對本發明之燒結體之較佳之製造方法進行說明。作為本發明之燒結體之製造方法,例如可列舉以下之(1)之方法。
(1)一種燒結體之製造方法,其具有如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體之步驟;及藉由將上述成形體於5MPa以上且100MPa以下之壓力下,於800℃以上且1800℃以下之溫度下進行燒結,而獲得上述燒結體之步驟。
首先,對(1)之方法進行說明。
於上述(1)之方法中,獲得成形體之步驟與燒結成形體之步驟亦可同時進行。例如,將粉末試樣置入模具中,將其直接加壓燒結之方法亦包括在上述(1)之方法中。
作為包含上述釔之氟氧化物之原料粉末中之釔之氟氧化物,可列舉與上述燒結體所含之釔之氟氧化物相同者。原料所使用之釔之氟氧化物通常為粉末狀。原料粉末所含之釔之氟氧化物之平均粒徑較佳為5μm以下,更佳為1.5μm以下,進而較佳為1.1μm以下,尤佳為1μm以下。平均粒徑係體積基準之累計分率為50%之粒徑(以下,簡稱 為「D50」),且係藉由雷射繞射、散射式粒度分佈測定法進行測定。具體之測定方法如下所述。作為原料粉末之平均粒徑之較佳粒徑,可列舉與原料粉末所含之釔之氟氧化物之平均粒徑相同之粒徑。
(平均粒徑之測定方法)
利用日機裝股份有限公司製造之Microtrac HRA進行測定。測定時係使用2質量%六偏磷酸鈉水溶液作為分散介質,向Microtrac HRA之試樣循環器之室中添加試樣(顆粒)直至裝置判定為適當濃度為止。
原料粉末除了釔之氟氧化物以外,亦可使用上述之燒結助劑或黏合劑等作為其他成分,較佳為本發明之燒結體之燒結助劑及黏合劑樹脂等其他成分之量較少。尤其於原料粉末中,燒結助劑較佳為5質量%以下,更佳為2質量%以下。本發明之製造方法之特徵之一在於即便不使用燒結助劑,或儘量減少其量,亦可獲得緻密之燒結體。作為此處所謂之燒結助劑,可列舉:SiO2、MgO、CaO、進而各種稀土類氧化物等。原料粉末之成形可使用模具加壓法、橡膠加壓(靜水壓)法、板材成形法、擠出成形法、鑄造成形法等。於無加壓燒結之情形時,較佳為藉由利用油壓加壓等所進行之單軸加壓進行加壓後,進行靜水壓而成形。該情形時之單軸加壓之壓力較佳為20MPa以上且85MPa以下,更佳為22MPa以上且75MPa以下。又,靜水壓時之壓力較佳為85MPa以上且250MPa以下,更佳為100MPa以上且220MPa以下。於進行加壓燒結之情形時,較佳為藉由利用油壓加壓等所進行之單軸加壓進行加壓成形後,進行加壓燒結。作為該情形時之單軸加壓之壓力,較佳為10MPa以上且100MPa以下,更佳為15MPa以上且80MPa以下。原料粉末中,釔之氟氧化物之含量較佳為80質量%以上,更佳為95質量%以上,尤佳為98質量%以上。
於(1)之方法中,將上述中所獲得之成形體加壓燒結。作為具體之加壓燒結法,可使用熱壓、脈衝通電加壓(SPS)、熱靜水壓(HIP)。 作為加壓燒結之加壓壓力,較佳為5MPa以上且100MPa以下。藉由設為5MPa以上,具有容易獲得緻密且耐電漿性較高之燒結體之優點,藉由設為100MPa以下,具有抑制衝壓模具之破損等優點。就該等觀點而言,加壓燒結之加壓壓力較佳為20MPa以上,更佳為100MPa以下。又,燒結溫度較佳為800℃以上且1800℃以下。藉由設為800℃以上,具有容易促進緻密化,此外使所添加之黏合劑分解、蒸發,原料中所含之未反應成分發生反應而形成氟氧化物等優點。藉由設為1800℃以下,具有抑制氟氧化物之分解,抑制加壓燒結設備之損壞之優點。就該等觀點而言,燒結溫度更佳為1000℃以上且1700℃以下。
又,於上述範圍內之壓力及溫度下加壓燒結之時間(最高溫度下之保持時間)較佳為0小時以上且6小時以下,更佳為20分鐘以上且2小時以下。
尤其於熱壓之情形時,作為加壓燒結之加壓壓力,較佳為30MPa以上且50MPa以下,燒結溫度較佳為1300℃以上且1700℃以下。又,於脈衝通電加壓燒結之情形時,作為加壓燒結之加壓壓力,較佳為30MPa以上且100MPa以下,燒結溫度更佳為1000℃以上且1500℃以下。
本發明之燒結體亦可代替(1)之方法而藉由下述(2)之方法適宜地製造。
(2)一種燒結體之製造方法,其具有如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體之步驟;及將上述成形體於無加壓下,於1000℃以上且2000℃以下之溫度下進行燒結之步驟。
(2)之方法於進行無加壓燒結之方面與(1)之方法不同,但獲得原料粉末之成形體之步驟與(1)之方法相同。
就獲得緻密之燒結體之觀點,或去除混入之有機物之觀點而言,燒結溫度較佳為1000℃以上,就抑制氟氧化物之分解,抑制對加壓燒結設備之損壞等觀點而言,較佳為2000℃以下。就該等觀點而言,燒結溫度更佳為1200℃以上且1800℃以下。又,於上述燒結溫度下燒結之時間(最高溫度下之保持時間)較佳為0小時以上且24小時以下,更佳為0小時以上且6小時以下。於本製造方法中,即便為無加壓燒結亦可將上述原料粉末於上述溫度下進行燒結,藉此可獲得充分緻密之燒結體。
(1)及(2)中之任一方法中之燒結均可於含氧之氛圍下進行,亦可於惰性氛圍下進行。然而,就防止生成氧化釔之觀點而言,較佳為於惰性氛圍下進行。作為含氧之氛圍,可列舉大氣,作為惰性氛圍,可列舉氬氣等稀有氣體或氮氣或真空等。又,關於(1)及(2)中之任一方法中之燒結,至1200℃之升溫及降溫較佳為以0.5℃/分鐘以上且40℃/分鐘以下之速度進行,1200℃以上之溫度區域之升溫及降溫較佳為以1℃/分鐘以上且30℃/分鐘以下之速度進行。
如此而獲得之燒結體可用於蝕刻裝置中之真空室及該室內之試樣台或夾頭、聚焦環、蝕刻氣體供給口等半導體製造裝置之構成構件。又,本發明之燒結體除了可用於半導體製造裝置之構成構件以外,亦可用於各種電漿處理裝置、化學設備之構成構件之用途。
[實施例]
以下,藉由實施例進一步詳細地說明本發明。然而,本發明之範圍並不限定於該實施例。
[實施例1](藉由無加壓燒結所進行之包含YOF之燒結體之製造)
將YOF粉末(平均粒徑0.8μm)約1.4g置入直徑15mm之圓形之模具中,藉由油壓加壓以25.5MPa之壓力進行單軸加壓並保持1分鐘,而進行一次成形。將所獲得之一次成形品進而以200MPa保持1分鐘 而進行均壓成形。將其置入氧化鋁製之坩堝中,鋪上底粉,於其上放置成形體,蓋上蓋子,進而將坩堝整體置入碳製之較大坩堝中。於Ar氣流中(流速2升/分鐘),以30℃/min升溫至1200℃,進而以10℃/min升溫至1600℃,於1600℃下保持1小時後,以10℃/min降溫至1200℃,其後以30℃/min降溫。藉此獲得燒結體。對所獲得之燒結體藉由上述方法測定相對密度RD,結果為96%,開放氣孔率為0.2%。藉由下述方法,測定所獲得之燒結體之粉末之XRD。將所獲得之X射線圖示於圖1。如圖1所示,於該X射線圖中,僅觀察到視為源自YOF之波峰,未觀察到源自YOF以外之成分之波峰,僅使用YOF作為原料粉末,據此視為該燒結體係包含大致100質量%之YOF者。對實際獲得之燒結體藉由上述方法測定釔之氟氧化物之量,結果為100質量%。
<燒結體粉末之XRD測定>
使用磁製研缽與研杵將燒結體之一部分粉碎而獲得粉末,將該粉末設置於玻璃製支架上,進行XRD測定。XRD之測定條件設為:連續掃描下、Cu靶、球管電壓40kV、球管電流30mA、掃描範圍2θ=10°~80°、掃描速度0.050°2θ/s。Kβ射線係利用彎曲石墨濾波器而去除。
[實施例2](藉由加壓燒結所進行之包含YOF之燒結體之製造)
將YOF粉末(平均粒徑0.8μm)約20g置入縱35mm、橫35mm之四角形之模具中,藉由油壓加壓,以18.4MPa之壓力進行一次成形。將其置入與上述方形模具相同之尺寸之碳製之熱壓模具中,藉由熱壓進行燒結。於Ar流中(流速2升/分鐘),以30℃/min升溫至1200℃,進而以10℃/min升溫至1600℃,於1600℃下保持1小時後,以10℃/min降溫至1200℃,其後以30℃/min降溫。於1600℃下保持1小時之期間,以36.7MPa之壓力進行單軸加壓。藉此獲得燒結體。對實際獲得之燒結體藉由上述方法測定相對密度RD,結果為99.5%,開放氣孔率為 0.1%。又,藉由上述方法測定3點彎曲強度,結果為120MPa。又,藉由上述方法測定彈性模數,結果為183GPa,藉由上述方法測定熱導率,結果為17W/(m.K)。與實施例1同樣地,測定所獲得之燒結體之粉末之XRD。將所獲得之X射線圖示於圖2。如圖2所示,於該X射線圖中,僅觀察到視為源自YOF之波峰,未觀察到源自除YOF以外之成分之波峰,作為原料粉末僅使用YOF,據此視為該燒結體含有100質量%之YOF。對所獲得之燒結體藉由上述方法測定釔之氟氧化物之量,結果為100質量%。
[實施例3](藉由無加壓燒結所進行之包含Y5O4F7之燒結體之製造)
將Y5O4F7粉末(平均粒徑1.1μm)約1.4g置入直徑15mm之圓形之模具中,藉由油壓加壓以25.5MPa之壓力進行單軸加壓並保持1分鐘,而進行一次成形。對所獲得之一次成形品,進而以200MPa保持1分鐘而進行均壓成形。將其置入氧化鋁(alumina)製坩堝中,鋪上底粉,於其上放置成形體,蓋上蓋子,進而將坩堝整體置入碳製之較大之坩堝中。於Ar氣流中(流速2升/分鐘),以30℃/min升溫至1200℃,進而以10℃/min升溫至1400℃後,以10℃/min降溫至1200℃,其後以30℃/min降溫。藉此獲得燒結體。於1400℃下之保持時間為0小時。對所獲得之燒結體藉由上述方法測定相對密度RD,結果為99.6%,開放氣孔率為0.1%。又,針對所獲得之燒結體,與實施例1同樣地測定所獲得之燒結體之粉末之XRD。將所獲得之X射線圖示於圖3。如圖3所示,於該X射線圖中,主要觀察到視為源自Y5O4F7之波峰,僅觀察到極少視為源自Y5O4F7以外之成分之波峰,僅使用Y5O4F7作為原料粉末,據此視為該燒結體係含有Y5O4F795質量%以上者。
[實施例4](藉由加壓燒結所進行之包含Y5O4F7之燒結體之製造)。
將Y5O4F7粉末(平均粒徑1.1μm)約20g置入縱35mm、橫35mm之四角形之模具中,藉由油壓加壓,以18.4MPa之壓力進行一次成形。 將其置入與上述方形模具相同尺寸之碳製之熱壓模具中,藉由熱壓進行燒結。於Ar氣流中(流速2升/分鐘),以30℃/min升溫至1200℃,進而以10℃/min升溫至1400℃後,以10℃/min降溫至1200℃,其後以30℃/min降溫。於1400℃下之保持時間為0小時。於溫度為1200℃以上之期間,以36.7MPa進行單軸加壓。藉此獲得燒結體。對所獲得之燒結體藉由上述方法測定相對密度RD,結果為99.8%,開放氣孔率為0.1%。又,對所獲得之燒結體藉由上述方法測定3點彎曲強度,結果為26MPa。又,藉由上述方法測定彈性模數,結果為157GPa,藉由上述方法測定熱導率,結果為2.9W/(m.K)。又,針對所獲得之燒結體,與實施例1同樣地測定所獲得之燒結體之粉末之XRD。將所獲得之X射線圖示於圖4。如圖4所示,於該X射線圖中,主要觀察到視為源自Y5O4F7之波峰,僅觀察到極少源自Y5O4F7以外之成分之波峰,及僅使用Y5O4F7作為原料粉末,據此視為該燒結體係包含Y5O4F795質量%以上者。
[實施例5](藉由無加壓燒結所進行之包含YOF之燒結體之製造)
除了將於Ar氣體氛圍下燒結設為大氣氛圍下,將1600℃下之保持時間由1小時設為2小時,除此以外,與實施例1同樣地獲得相對密度RD為87%,開放氣孔率為0.2%之燒結體。XRD測定之結果為,該燒結體除了YOF亦含有大量之Y2O3
[比較例1]
使用單晶矽(Si)。
[比較例2]
使用氧化鋁(Al2O3)之燒結體。
[比較例3]
使用氧化釔(Y2O3)之燒結體。
[比較例4]
使用氟化釔(YF3)之燒結體。
針對實施例2中所獲得之燒結體、比較例1之單晶及比較例2~4之燒結體,藉由如以下之[評價1]所記載般進行SEM觀察(S-4800,Hitachi High-Technologies Corporation)而評價耐電漿性。
[評價1]
利用電漿處理裝置(PT7160,ELMINET),對實施例2中所獲得之燒結體、比較例1之單晶及比較例2~4之燒結體之表面,照射CF4+O2電漿。將CF4設為0.8刻度,將O2設為0.2刻度,將輸出設為100W並保持30分鐘。
利用掃描型電子顯微鏡(SEM)觀察電漿照射前後之實施例2及比較例1~4之各固體表面。將分別對固體表面攝影而獲得之SEM照片示於圖5~圖9。於圖5~圖9中各自上側為照射前之SEM照片,下側為照射後之SEM照片。
如圖5所示,幾乎未見實施例2之釔之氟氧化物於照射前後之變化。相對於此,如圖6所示,確認到比較例1之矽於照射前較平坦,但於照射後表面粗糙之情況。如圖7所示,確認到比較例2之氧化鋁(alumina)於照射後,產生大量之照射前未見之白色粒子。如圖8所示,幾乎未見比較例3之氧化釔於照射前後之變化。如圖9所示,比較例4之氟化釔於照射後大量產生龜裂。
據此,根據燒結體表面之SEM觀察,顯示出實施例2之釔之氟氧化物之燒結體及比較例3之氧化釔之燒結體與其他燒結體或單晶相比對鹵素系電漿具有耐性。
以下,對上述[評價1]中所獲得之電漿照射前後之各試樣,進而藉由以下之[評價2]所記載之評價方法對耐電漿性進行評價。
[評價2]
針對各試樣表面,利用附屬於掃描型電子顯微鏡(S-4800, Hitachi High-Technologies Corporation)之裝置進行EDX(Energy Dispersive X-ray,能量色散X射線)分析。將倍率設為5000倍,使加速電壓變化為1kV、3kV、10kV及30kV而進行測定,藉由ZAF法利用下述式求出相對於電子穿透深度R的原子質量濃度Ci之變化。進而根據所求出之關係求出自各試樣表面起至電子穿透深度0.1μm(100nm)為止之部分之F原子及O原子之質量濃度。根據所獲得之濃度,求出該部分之F/O之原子比。將表示電漿照射前之F/O之原子比(照射前F/O)、電漿照射後之F/O之原子比(照射後F/O)、及電漿照射前後之F/O之原子比之變化量(照射後F/O/照射前F/O)之圖表示於圖10。於下述式中ρ為密度,A為原子量,E0為加速電壓,λ0為0.182。Z為平均原子序,若將各者之元素之原子序設為Zi,將質量濃度設為Ci,則以Z=ΣCiZi表示。
如圖10所示,於各比較例之矽(Si)、氧化鋁(Al2O3)、氧化釔(Y2O3)及氟化釔(YF3)之各試樣中,藉由氟系電漿照射,F/O比大幅度增加。即,確認到F元素向該等試樣表面之侵入。尤其關於比較例3之氧化釔(Y2O3),照射後之F/O比不到照射前之2倍,關於比較例4之氟化釔(YF3),照射後之F/O比超過照射前之2倍,因氟系電漿照射而於該等燒結體表面氟大幅度增加。相對於此,於實施例2之釔之氟氧化物之試樣中,因電漿照射而引起之F/O比之增加極少,幾乎不發生變化。因此,認為釔之氟氧化物對含氟電漿之穩定性最高。
上述[評價1]中所獲得之電漿照射後之各試樣中,對比較例3之氧 化釔(yttria)試樣及實施例1之釔之氟氧化物之試樣藉由以下之方法進行評價,進而藉由以下之[評價3]所記載之評價方法對耐電漿性進行評價。
[評價3]
於電漿照射後之試樣之表面蒸鍍鉑作為記號後,利用日立離子研磨裝置IM4000,與表面垂直地照射Ar離子,而製作剖面觀察用試樣。利用裝有高感度之EDX之掃描型電子顯微鏡(SU-8200,Hitachi High-Technologies Corporation)觀察該剖面觀察用試樣,而獲得SEM照片,並且獲得氧、氟、鉑、釔之原子分佈圖。將實施例2之燒結體剖面之SEM照片及原子分佈圖示於圖11,將比較例3之燒結體剖面之SEM照片及原子分佈圖示於圖12。於圖11及圖12之任一者中,上部左側均為SEM照片,上部右側均為氟原子分佈圖,下部右側均為鉑原子分佈圖,下部左側均為將鉑原子分佈圖與氟原子分佈圖重疊之圖。
於圖11及圖12中之上部左側之SEM圖像中,沿上下方向延伸之帶狀者為鉑塗層,其左側為試樣。鉑層之右側為離子研磨時之再堆積層,並非原來之試樣。即,鉑之緊鄰左側為試樣之表面。本發明之燒結體由於包含YOF,故而本身含有氟元素。因此,於圖11中,於氟原子分佈圖之上部右側之圖中,屬於鉑層之黑色部分以外之灰色部分表示氟原子之存在位置,該灰色部分在屬於鉑之黑色部分之左側整體地擴展。即,根據圖11中之氟原子分佈圖,與氟距表面之深度無關,同樣地分佈。於圖11之下部左側之使鉑原子分佈圖與氟原子分佈圖重疊之圖中亦相同,未見試樣表面之氟原子之聚集。即,於本發明之燒結體中,未見氟電漿之影響。
另一方面,儘管比較例3之氧化釔(yttria)燒結體原本不含氟,但於觀察電漿照射後之該燒結體剖面之圖12中,由於上部右側之氟原子分佈圖中存在灰色部分,故而於該部分存在氟。由圖12之下部左側之 使鉑原子分佈圖與氟原子分佈圖重疊之圖及圖12之SEM照片明確,所謂比較例3之燒結體中之氟原子之存在位置係集中於鉑層之緊鄰左側,其距試樣表面約50nm之範圍。即,可知關於比較例3之氧化釔之燒結體,因電漿照射,氟原子侵入表面。
結合考慮上述[評價1]~[評價3]之結果,明確本發明之燒結體對鹵素系電漿之耐蝕性高於比較例1~4之任一材料。因此,明確本發明之燒結體作為蝕刻裝置等半導體製造裝置之構成構件有用。

Claims (10)

  1. 一種燒結體,其包含釔之氟氧化物。
  2. 如請求項1之燒結體,其中釔之氟氧化物為YOF。
  3. 如請求項1之燒結體,其中釔之氟氧化物為Y5O4F7
  4. 如請求項1之燒結體,其包含50質量%以上之釔之氟氧化物。
  5. 如請求項1之燒結體,其相對密度為70%以上。
  6. 如請求項1之燒結體,其開放氣孔率為10%以下。
  7. 如請求項1之燒結體,其彈性模數為25GPa以上且300GPa以下。
  8. 如請求項1之燒結體,其3點彎曲強度為10MPa以上且300MPa以下。
  9. 一種如請求項1之燒結體之製造方法,其包括如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體的步驟;及藉由將上述成形體於5MPa以上且100MPa以下之壓力下、800℃以上且1800℃以下之溫度下進行燒結,而獲得上述燒結體之步驟。
  10. 一種如請求項1之燒結體之製造方法,其包括如下步驟:獲得包含釔之氟氧化物之原料粉末之成形體的步驟;及將上述成形體於無加壓下、1000℃以上且2000℃以下之溫度下進行燒結之步驟。
TW104138291A 2014-11-21 2015-11-19 Sintered body TWI589546B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236303A JP5911036B1 (ja) 2014-11-21 2014-11-21 焼結体

Publications (2)

Publication Number Publication Date
TW201625505A true TW201625505A (zh) 2016-07-16
TWI589546B TWI589546B (zh) 2017-07-01

Family

ID=55808175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104138291A TWI589546B (zh) 2014-11-21 2015-11-19 Sintered body

Country Status (6)

Country Link
US (1) US9969652B2 (zh)
JP (1) JP5911036B1 (zh)
KR (1) KR101823493B1 (zh)
CN (1) CN107074663B (zh)
TW (1) TWI589546B (zh)
WO (1) WO2016080459A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961617B2 (en) 2015-03-18 2021-03-30 Entegris, Inc. Articles coated with fluoro-annealed films
JP6722006B2 (ja) * 2015-05-08 2020-07-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
US10106466B2 (en) 2015-05-08 2018-10-23 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
TWI751106B (zh) 2015-05-08 2022-01-01 日商東京威力科創股份有限公司 熔射用材料、熔射被膜及附熔射被膜之構件
JP6722005B2 (ja) * 2015-05-08 2020-07-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
US10138167B2 (en) 2015-05-08 2018-11-27 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
JP6722004B2 (ja) * 2015-05-08 2020-07-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP6415480B2 (ja) * 2016-06-07 2018-10-31 三井金属鉱業株式会社 焼結体
US10538845B2 (en) * 2016-06-22 2020-01-21 Ngk Spark Plug Co., Ltd. Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
KR102656926B1 (ko) * 2016-07-14 2024-04-16 신에쓰 가가꾸 고교 가부시끼가이샤 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
JP6650385B2 (ja) * 2016-11-07 2020-02-19 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
TWI663142B (zh) 2016-11-10 2019-06-21 Toto股份有限公司 結構物
KR102035513B1 (ko) * 2016-11-10 2019-10-23 토토 가부시키가이샤 구조물
US10087109B2 (en) 2016-11-10 2018-10-02 Toto Ltd. Structure
WO2018116688A1 (ja) 2016-12-20 2018-06-28 三井金属鉱業株式会社 希土類オキシフッ化物焼結体及びその製造方法
KR20190091542A (ko) * 2017-01-16 2019-08-06 엔테그리스, 아이엔씨. 플루오로-어닐링된 필름으로 코팅된 물품
US11097487B2 (en) 2018-12-21 2021-08-24 Hamilton Sundstrand Corporation Apparatus and method for controlling tolerance of compositions during additive manufacturing
CN113518767A (zh) * 2019-03-07 2021-10-19 日本钇股份有限公司 烧结体
CN111410562B (zh) * 2019-09-10 2022-12-30 包头稀土研究院 带有稀土氟氧化物涂层的碱土氧化物坩埚的制备方法
JP2022083511A (ja) 2020-11-25 2022-06-06 三星電子株式会社 焼結体、焼結体の製造方法、半導体製造装置及び半導体製造装置の製造方法
WO2023162290A1 (ja) * 2022-02-24 2023-08-31 日本イットリウム株式会社 焼結体用材料及び焼結体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160224B2 (ja) * 1998-12-21 2008-10-01 信越化学工業株式会社 オキシハロゲン化物系部材
JP4283925B2 (ja) 1999-01-27 2009-06-24 太平洋セメント株式会社 耐蝕性部材
JP5071856B2 (ja) * 2007-03-12 2012-11-14 日本碍子株式会社 酸化イットリウム材料及び半導体製造装置用部材
US7833924B2 (en) * 2007-03-12 2010-11-16 Ngk Insulators, Ltd. Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material
EP1992430A1 (en) 2007-05-15 2008-11-19 Treibacher Industrie AG Yttria-based refractory composition
JP5363132B2 (ja) * 2008-02-13 2013-12-11 日本碍子株式会社 酸化イットリウム材料、半導体製造装置用部材及び酸化イットリウム材料の製造方法
JP2012506664A (ja) 2008-10-24 2012-03-15 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 改良されたセッションセットアップシグナリング・ポリシングのための方法及び装置
US9017765B2 (en) * 2008-11-12 2015-04-28 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
JP5593694B2 (ja) 2009-12-28 2014-09-24 住友大阪セメント株式会社 耐食性部材及びその製造方法
JP6047779B2 (ja) 2012-01-16 2016-12-21 島根県 セラミック焼結体の製造方法および機能性セラミック焼結体
JP5396672B2 (ja) * 2012-06-27 2014-01-22 日本イットリウム株式会社 溶射材料及びその製造方法
JP5495165B1 (ja) 2012-12-04 2014-05-21 日本イットリウム株式会社 溶射材料

Also Published As

Publication number Publication date
US9969652B2 (en) 2018-05-15
JP2016098143A (ja) 2016-05-30
KR20170036802A (ko) 2017-04-03
WO2016080459A1 (ja) 2016-05-26
TWI589546B (zh) 2017-07-01
US20170305796A1 (en) 2017-10-26
CN107074663B (zh) 2018-06-19
CN107074663A (zh) 2017-08-18
KR101823493B1 (ko) 2018-01-30
JP5911036B1 (ja) 2016-04-27

Similar Documents

Publication Publication Date Title
TWI589546B (zh) Sintered body
KR102376825B1 (ko) 알루미나 소결체 및 광학 소자용 하지 기판
JPWO2007026739A1 (ja) 耐食性部材、これを用いた処理装置および試料処理方法ならびに耐食性部材の製造方法
TWI705951B (zh) 透明氧化鋁燒結體的製法
JP6691133B2 (ja) アルミナ焼結体及び光学素子用下地基板
TWI791473B (zh) 稀土類氟氧化物燒結體及其製造方法
US11059753B2 (en) Oriented ALN sintered body and method for producing the same
JP5787722B2 (ja) 溶湯金属用部材およびヒーターチューブ
JP2016153369A (ja) 焼結体
JPWO2016182012A1 (ja) アルミナ焼結体及び光学素子用下地基板
US20190270676A1 (en) Transparent aln sintered body and method for producing the same
JP2016144829A (ja) 溶接用エンドタブ
TWI772910B (zh) 電漿處理裝置用部材及具備其之電漿處理裝置
JP7201103B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JP2006182570A (ja) 耐食性部材およびその製造方法並びに半導体・液晶製造装置用部材
JP2016006219A (ja) 溶射膜、半導体製造装置用部材、溶射用原料及び溶射膜製造方法
JP2019189464A (ja) 三酸化二チタン質セラミックスバルク体およびその製造方法
JP2018131362A (ja) 焼結体及びその製造方法