TW201601999A - 從反應殘餘物回收氫鹵矽烷 - Google Patents

從反應殘餘物回收氫鹵矽烷 Download PDF

Info

Publication number
TW201601999A
TW201601999A TW103125616A TW103125616A TW201601999A TW 201601999 A TW201601999 A TW 201601999A TW 103125616 A TW103125616 A TW 103125616A TW 103125616 A TW103125616 A TW 103125616A TW 201601999 A TW201601999 A TW 201601999A
Authority
TW
Taiwan
Prior art keywords
slurry
halodecane
temperature
solid residue
heavy
Prior art date
Application number
TW103125616A
Other languages
English (en)
Other versions
TWI630175B (zh
Inventor
倍榮 許
安東尼D 湯普森
Original Assignee
Rec多晶矽公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rec多晶矽公司 filed Critical Rec多晶矽公司
Publication of TW201601999A publication Critical patent/TW201601999A/zh
Application granted granted Critical
Publication of TWI630175B publication Critical patent/TWI630175B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本發明揭示從反應殘餘物回收氫鹵矽烷之方法。使包含以下之無機鹵矽烷漿料通過薄膜乾燥器:(i)四鹵矽烷、三鹵矽烷、二鹵矽烷或其任何組合,(ii)矽粒子,及(iii)重物質,從而移除鹵矽烷且形成包含矽粒子的固體殘餘物。亦可在該漿料通過該薄膜乾燥器時移除重物質。

Description

從反應殘餘物回收氫鹵矽烷 【相關申請案之交叉引用】
本申請案主張於2014年7月1日之較早申請日期申請的美國申請案第14/321,700號之權益,其以全文引用的方式併入本文中。
本發明係關於從剩餘的反應殘餘物回收無機鹵矽烷。
在鹵矽烷且尤其三鹵矽烷之製造中,在氫氣與冶金級矽存在下,經由氫鹵化冶金級矽或經由氫化四鹵矽烷,所得之製程物流可包括漿料。該漿料典型地包含所需鹵矽烷(伴有未反應之矽粒子及其他多鹵矽烷/多鹵氧矽烷產物(例如Si2X6、Si2OX6,其中X=F、Cl、Br或I)及金屬鹵化物(例如AlX3)。可需要從該漿料回收液體,由此產生固態的高氯化物殘餘物。可進一步處理固體殘餘物,以再生有價值的氯化物,同時使更高價值的氫氯矽烷之損失最少(參見例如U.S.2006/0183958A)。
雖然分批式乾燥器可有效地從漿料移除鹵矽烷,但其具有缺點。舉例而言,歸因於熱容量不充足及/或存在相對於四鹵矽烷(SiX4)具有高沸點之重物質(例如多鹵矽烷、多鹵-氧矽烷、金屬鹵化物),分批式乾燥器可耗時超過10小時。在一些情況下,該沸點比SiX4的沸點高100℃。此外,漿料中之研磨固體對乾燥器壁造成腐蝕。歸因於廣泛磨損及撕裂, 分批式乾燥器典型地需要在鹵矽烷單元的使用期限期間進行若干次更換(諸如每4-5年即更換)。因此,需要一種較佳方法來分離漿料液體與固體。
揭示一種從反應殘餘物回收氫鹵矽烷之方法。該方法包含對鹵矽烷製造期間產生之無機鹵矽烷漿料進行乾燥。該方法包括:使包含以下之無機鹵矽烷漿料流經薄膜乾燥器的汽化區域以汽化揮發性鹵矽烷:(i)揮發性鹵矽烷(四鹵矽烷、三鹵矽烷、二鹵矽烷或其任何組合),(ii)矽粒子,及(iii)重物質(例如高沸點寡聚或聚合矽基物質及/或金屬鹵化物),該氣化區域具有等於或高於大氣壓的內部壓力,及在該內部壓力下大於揮發性鹵矽烷之沸點範圍的上端之內部溫度T1;從氣化區域回收汽化之揮發性鹵矽烷;及從薄膜乾燥器的出口處回收包含矽粒子之固體殘餘物及(視操作條件而定)較高沸點化合物(重物質)。較高沸點化合物可包括金屬鹵化物、多鹵矽烷、多鹵氧矽烷及其組合。合適之薄膜乾燥器包括在汽化區域內的轉子,該轉子具有複數個朝向薄膜乾燥器之內壁表面延伸的葉片。有利地,T1可小於重物質之沸點或昇華點範圍的上端,且產物進一步包含至少一部分重物質。在某些實施例中,從汽化區域回收的蒸氣實質上不含重物質。
在一些具體實例中,薄膜乾燥器進一步包含定位於汽化區域與出口之間且具有內部溫度T2(其中T2>T1)的第二汽化區域,且該方法進一步包含使漿料依序流經第一及第二汽化區域。當在內部壓力下T2大於重物質中至少一種物質的沸點或昇華點時,該方法進一步包括在第二汽化區域中汽化至少一部分重物質以產生重物質蒸氣,及回收重物質蒸氣。
經回收之蒸氣可包括夾帶之細粒。在一些具體實例中,處理經回收之蒸氣以從揮發性鹵矽烷分離夾帶之細粒。從薄膜乾燥器回收的固體殘餘物當曝露於環境氛圍中時可具有反應性。在一些具體實例中,處理固體殘餘物以產生當曝露於環境氛圍中時不具有反應性的固體物質。舉例而言,固體殘餘物可與鹼性水合物接觸以產生穩定中性固體。
藉由以下實施方式及參考隨附圖式,本發明之前述及其他特徵及優點將變得更顯而易見。
10‧‧‧薄膜乾燥器
12‧‧‧經加熱容器
12a‧‧‧容器內壁
12b‧‧‧容器外壁
12c‧‧‧環隙
13‧‧‧腔室
14‧‧‧轉子
16‧‧‧葉片
17‧‧‧漿料進料
18‧‧‧入口
20‧‧‧上部出口
21‧‧‧蒸氣
22‧‧‧下部出口
23‧‧‧蒸氣
24‧‧‧固體殘餘物
Z1‧‧‧第一汽化區域
Z2‧‧‧第二汽化區域
圖1為垂直薄膜乾燥器之一個具體實例的示意圖。
圖2為顯示在1巴(100kPa)壓力下SiCl4-Si2Cl6O之蒸氣-液體平衡的圖。
揭示對無機鹵矽烷漿料進行乾燥之方法及裝置。漿料典型地包含鹵矽烷、重物質(例如多鹵矽烷/多鹵氧矽烷(諸如Si2X6或Si2OX6)及/或金屬鹵化物(諸如AlX3))、夾帶之金屬粒子及/或矽粒子。在一些具體實例中,漿料為無機氯矽烷漿料。薄膜乾燥器用於從漿料回收鹵矽烷及形成乾燥產物(諸如可流動粉末)。重物質亦可從漿料回收,或至少一部分重物質可包括於產物中。
I.定義及縮寫
提供以下術語及縮寫之說明以便更好地描述本發明及指導一般技術者實踐本發明。除非上下文另外明確指明,否則如本文中所使用, 「包含」意謂「包括」且單數形式「一(a)」或「一(an)」或「該(the)」包括複數個提及物。除非上下文另外明確指明,否則術語「或」係指所述替代要素中之單一要素或兩種或兩種以上要素之組合。
除非另外說明,否則本文中所使用之所有技術及科學術語均具有與本發明所屬領域之一般熟習此項技術者通常所理解相同之含義。儘管類似或等效於本文所述方法及物質之方法及物質可用於實踐或測試本發明,但以下描述適合的方法及物質。該等物質、方法及實施例僅為說明性的且並不意欲為限制性的。藉由以下實施方式及申請專利範圍,本發明之其他特徵顯而易見。
除非另外指明,否則如本說明書或申請專利範圍中所使用,表示組分之數量、百分比、溫度、時間等的所有數字均應理解為由術語「約」修飾。因此,除非另外指明,否則隱含或明確闡述之數值參數及/或非數值性質均為近似值,其可取決於尋求之所需性質、在標準測試條件/方法下之偵測限度、處理方法之侷限性及/或參數或性質之本質。
起泡點:就蒸氣-液體平衡而言,起泡點為液體混合物第一次開始汽化的溫度。
DCS:二氯矽烷(SiH2Cl2)
露點:就蒸氣-液體平衡而言,露點為氣體混合物第一次開始冷凝的溫度。
細粒:如本文中所使用,術語「細粒」係指具有10-250μm之平均直徑的粒子。
重物質:如本文中所使用,術語「重物質」包括在標準溫度及壓力下 沸點或昇華點大於四鹵矽烷之反應產物。在一種製造氯矽烷之方法中,重物質為在STP下沸點或昇華點大於58℃(亦即在STP下大於四氯矽烷之沸點)之反應產物。重物質包括金屬鹵化物(例如鋁氯化物,諸如AlCl3)、多鹵矽烷及/或多鹵氧矽烷(例如Si2Cl6、Si2OCl6)及其組合。
質量通量:每單位表面積之質量流動速率;典型地以kg s-1 m-2之單位量度。
漿料:精細固體及液體之半液體、可流動混合物。
STC:四氯化矽或四氯矽烷
TCS:三氯矽烷(SiHCl3)
VLE:蒸氣-液體平衡
揮發性鹵矽烷:四鹵矽烷、三鹵矽烷、二鹵矽烷、一鹵矽烷及其組合。
II.代表性具體實例之概述
一種從反應殘餘物回收或萃取無機鹵矽烷之方法之具體實例包含:(a)使包含以下之無機鹵矽烷漿料流經薄膜乾燥器的汽化區域以汽化揮發性鹵矽烷:(i)揮發性鹵矽烷,(ii)矽粒子,及(iii)重物質,該汽化區域具有等於或高於大氣壓之內部壓力,及在該汽化區域的該內部壓力下,大於揮發性鹵矽烷之沸點範圍的上端之內部溫度T1;從汽化區域回收汽化之揮發性鹵矽烷;及從薄膜乾燥器的出口處回收包含矽粒子的固體殘餘物。
在任何或所有以上具體實例中,漿料最初可包含超過50wt%的揮發性鹵矽烷。在任何或所有以上具體實例中,重物質可包含金屬鹵化物、多鹵矽烷、多鹵氧矽烷及其組合。在一些具體實例中,漿料最初包含 至多50wt%的重物質。在任何或所有以上具體實例中,固體殘餘物可具有至少70%之乾燥度。
在任何或所有以上具體實例中,該方法可進一步包含使無機鹵矽烷漿料以一定速率流動,以使漿料質量通量維持在0.001kg s-1 m-2至0.1kg s-1 m-2內。在任何或所有以上具體實例中,該方法可進一步包含使內部壓力維持在101-170kPa之範圍內。
在任何或所有以上具體實例中,薄膜乾燥器可包括在汽化區域內的轉子,該轉子具有複數個朝向薄膜乾燥器之內壁表面延伸的葉片,且該方法可進一步包含旋轉轉子以在內壁表面上形成平均厚度2mm的漿料膜。
在任何或所有以上具體實例中,該方法可進一步包含處理固體殘餘物以產生固體物質,該固體物質當曝露於環境氛圍中時不具有反應性。在一些具體實例中,處理固體殘餘物包含使固體殘餘物與鹼性水合物接觸。在任何或所有以上具體實例中,從汽化區域回收之汽化之揮發性鹵矽烷可進一步包含夾帶之細粒,且該方法可進一步包含從揮發性鹵矽烷分離夾帶之細粒。
在任何或所有以上具體實例中,在內部壓力下溫度T1可小於重物質之沸點或昇華點範圍的上端,且固體殘餘物進一步包含至少一部分重物質。在此等具體實例中之一些中,從汽化區域回收之蒸氣實質上不含重物質。
在任何或所有以上具體實例中,當無機鹵矽烷漿料為包含(i)四氯化矽、三氯矽烷、二氯矽烷或其任何組合,(ii)矽粒子,及(iii) 重物質之無機氯矽烷漿料時,溫度T1可為80℃至200℃。在一些具體實例中,溫度T1維持在80℃至115℃之範圍內。在該等具體實例中,固體殘餘物可進一步包含至少一部分重物質。
在任何或所有以上具體實例中,薄膜乾燥器可含有定位於汽化區域及出口之間的第二汽化區域,且該方法可進一步包括維持第二汽化區域中的內部溫度T2(其中T2>T1),及使漿料依序流經第一汽化區域及第二汽化區域。在一些具體實例中,該方法進一步包含在內部壓力下使溫度T2維持在大於重物質之至少一種物質之沸點或昇華點的溫度下,在第二汽化區域中汽化至少一部分重物質以產生重物質蒸氣,及回收該重物質蒸氣。在某些具體實例中,固體殘餘物具有至少70%的乾燥度。在一些具體實例中,無機鹵矽烷漿料為無機氯矽烷漿料,且該方法進一步包含使溫度T1維持在80℃至115℃下及使溫度T2維持在115℃至200℃之範圍內的溫度下。
III.從反應殘餘物回收無機鹵矽烷之方法
從無機鹵矽烷之製造中獲得的漿料包含固體及可汽化的鹵矽烷。漿料可包括揮發性鹵矽烷、重物質(例如多鹵矽烷/多鹵氧矽烷(諸如Si2X6或Si2OX6)及/或金屬鹵化物(諸如AlX3))、夾帶之金屬粒子及/或矽粒子。在一些商業具體實例中,鹵矽烷工廠(諸如氯矽烷工廠)每分鐘生產至多30公升的漿料。漿料可包括50-95wt%的液體(諸如60-92.5wt%或80-90wt%的液體),且可包括至多50wt%的重物質(諸如1-40wt%、1-30wt%或2-15wt%的重物質,或1-40mol%的重物質、1-30mol%的重物質,或1-20mol%的重物質)。可需要從漿料回收或萃取鹵矽烷。在一些情況下,重物質 亦從漿料回收。重物質可與鹵矽烷並行地經萃取及/或在鹵矽烷移除之後經移除。
經回收之鹵矽烷可儲存及/或用於製造基於高純度晶體矽的電子器件。含矽氣體可進行熱分解以形成高純度矽。四鹵矽烷可與氫氣反應以產生其他鹵矽烷及/或矽烷。經回收之重物質可儲存及/或用於其他製程。舉例而言,多鹵矽烷及/或多鹵氧矽烷可用於產生鹵矽烷(例如藉由熱裂化)。多鹵矽烷及/或多鹵氧矽烷亦可經熱解以獲得非晶形及/或晶體矽。從漿料中移除之金屬鹵化物可儲存及/或用於其他製程。舉例而言,氯化鋁可用於製造鋁金屬及/或鹵化氫,用於石油精煉,或用於製造油漆、合成橡膠、木材防腐劑或止汗劑。
在一些具體實例中,使用薄膜乾燥器以單程方式將漿料液體與固體分離以產生實質上乾燥之固體殘餘物。在薄膜乾燥器的操作條件下可汽化之其他組分(例如AlCl3)亦可自固體分離。「實質上乾燥」意謂產物具有至少70%的乾燥度,諸如至少75%、至少80%或至少85%的乾燥度。相反地,「實質上乾燥」意謂固體殘餘物含有30wt%或更低之可回收鹵矽烷(亦即揮發性鹵矽烷),諸如25wt%、20wt%或15wt%之可回收鹵矽烷。乾燥度藉由對固體殘餘物的樣品稱重且隨後將該樣品乾燥至恆重(例如在加熱板上)來測定。乾燥度百分比藉由(最終重量/初始重量)×100%來計算。乾燥度百分比係基於可回收液體(例如揮發性鹵矽烷);固體殘餘物可包括固體粒子內夾帶的一些液體。固體殘餘物可介於類糊狀物至潮濕粉末範圍內。固體殘餘物宜為可流動粉末。固體殘餘物包含矽粒子,且可進一步包括金屬粒子(例如,來自催化劑及/或鹵矽烷處理設備)。視乾燥器條件(例 如溫度、滯留時間)而定,固體殘餘物亦可包括重物質。
合適之薄膜乾燥器為可市售的(例如型號CP-0500(5-m2乾燥器),LCI公司,Charlotte,North Carolina),且進行或不進行進一步修改均可使用。薄膜乾燥器可具有垂直或水平定向。圖1顯示一例示性垂直薄膜乾燥器10。薄膜乾燥器10包括界定腔室13之經加熱容器12,其包括至少一個汽化區域及在腔室13內之包含一或多個葉片16的轉子14。圖1之經加熱容器12包括內壁12a及外壁12b,該外壁12b環繞內壁12a且界定內壁及外壁之間的環隙12c。經加熱容器12可藉由任何合適之方法加熱,諸如藉由在空隙12c內循環經加熱流體。合適之經加熱流體包括(但不限於)蒸汽及油。合適之膜乾燥器的尺寸至少部分地可藉由工廠產能及/或漿料產生速率來決定。在一些配置中,薄膜乾燥器可具有5-20m2的內壁表面積,諸如5-10m2的內壁表面積。
腔室13內之溫度可藉由調節在空隙12c內循環之經加熱流體的溫度來控制。在一些實施例中,可將不同溫度的(例如約90℃及約200℃)兩種油進料按變化的比例進行混合以提供具有所需溫度之加熱流體。
當經由入口18引入乾燥器中之漿料進料17流經乾燥器且轉子14轉動時,藉由葉片16的動作,在內壁12a的內表面上形成薄漿料膜。當乾燥器垂直定向時,入口18位於乾燥器的上部部分且漿料進料向下流經乾燥器。薄膜乾燥器可以連續模式操作。蒸氣21、23可以逆流方向經由上部出口20及/或以同向流方向經由下部出口22離開薄膜乾燥器。如果需要的話,可藉由任何合適方法收集及冷凝蒸氣21、23。經由下部出口22回收包含固體(包括矽粒子)之固體殘餘物24。
在一些具體實例中,葉片16形成平均厚度<2mm之薄漿料膜。此薄膜產生用於熱傳遞的大表面積,由此使薄膜乾燥器能對漿料乾燥且以單程方式形成固體產物。當形成可流動固體殘餘物24時,葉片16從內壁12a刮削粉末24。在一些實施例中,在已從壁上刮削粉末之後,無法實現進一步乾燥。
可至少部分地基於漿料組成來選擇薄膜乾燥器之內部溫度。可調節溫度例如以適應具有不同重物質濃度的漿料及/或以定製固體殘餘物組成。在腔室13中的操作壓力下,溫度宜高於漿料中之揮發性鹵矽烷(例如四鹵矽烷、三鹵矽烷及/或二鹵矽烷)的沸點範圍。可能需要從漿料僅移除揮發性鹵矽烷且保留固體殘餘物中的重物質。若重物質欲保留在固體殘餘物中,則選擇在薄膜乾燥器內的壓力下小於至少一種重物質之沸點的溫度。在某些具體實例中,選擇溫度從而使從汽化區域回收之蒸氣實質上不含重物質。「實質上不含」意謂蒸氣包含小於5wt%的重物質,諸如小於2wt%的重物質或小於1wt%的重物質。
在一些實施例中,漿料為氯矽烷漿料且薄膜乾燥器之腔室13內部的溫度維持在80℃至200℃範圍內。在其中鹵矽烷為氯矽烷之一種配置中,溫度為80℃至115℃(亦即在腔室13中之操作壓力下高於STC的沸點且低於重物質之沸騰/昇華溫度範圍的上端),且固體殘餘物包含至少一部分重物質。固體殘餘物可實質上包含所有重物質,例如至少95%的重物質(諸如至少98%的重物質或至少99%的重物質)。若需要實質上不含重物質之固體殘餘物,則在腔室13中的操作壓力下,溫度可維持在大於重物質之沸騰/昇華溫度範圍之上端的溫度下,例如至少115℃(諸如115℃至200 ℃範圍內的溫度)。
在一些具體實例中,經加熱容器12之腔室13包含第一(例如上部)汽化區域Z1及第二(例如下部)汽化區域Z2。在此配置中,組態或分割乾燥器的內壁與外壁之間之環隙,從而使在第一溫度下之第一經加熱流體可循環經過對應於第一區域Z1的環隙,且使在第二溫度下之第二經加熱流體可循環經過對應於第二區域Z2的環隙。第一溫度小於或等於第二溫度。在一些配置中,第一溫度小於第二溫度,從而使揮發性組分(例如DCS、TCS及/或STC)可在乾燥器的第一汽化區域中蒸發且從其中回收,且使較不易揮發的組分(例如重物質,諸如多氯矽烷)可在乾燥器的第二汽化區域中蒸發且從其中回收。一部分重物質亦可經由乾燥器之上部出口離開該乾燥器。兩種溫度之配置有利地使乾燥器入口處之膜沸騰減至最少,該配置降低了乾燥效率且有助於從第一汽化區域Z1選擇性回收揮發性物質。在一個具體實例中,漿料為氯矽烷漿料,第一區域Z1維持在80℃至115℃的內部溫度T1下,且第二區域Z2維持在115℃至200℃範圍內之內部溫度T2下。在一些情況下,若在第一區域Z1中產生可流動粉末,則隨後在第二區域Z2中不會達到額外的乾燥度。
乾燥器可在腔室13中介於大氣壓至微正壓範圍內之壓力下操作,諸如101kPa至170kPa或105kPa至170kPa範圍內之壓力。在一些情況下,乾燥器在大氣壓(亦即約101kPa)下操作。
可部分地基於漿料組成、所需殘餘物乾燥度、乾燥器之內壁表面積及/或乾燥器條件,選擇乾燥器內之漿料的流動速率。流動速率可能受以下影響:例如漿料中之固體濃度、漿料中之重物質濃度、乾燥器的內 部溫度、轉子的旋轉速度、乾燥器之內壁表面積、薄膜厚度、所需殘餘物乾燥度或其任何組合。一般而言,若其他變量保持恆定,則較低流動速率產生較乾燥的固體殘餘物。在一個具體實例中,漿料的每單位面積質量流動速率(質量通量)為0.001-0.1kg s-1 m-2(3.6-360kg h-1 m-2或0.74-74lb h-1ft-2),諸如質量通量為0.002-0.1kg s-1 m-2、0.002-0.07kg s-1 m-2、0.002-0.05kg s-1 m-2、0.005-0.05kg s-1 m-2、0.007-0.05kg s-1 m-2、0.01-0.05kg s-1 m-2、0.02-0.05kg s-1 m2或0.02-0.04kg s-1 m-2
滯留時間(RT)可由容積流動速率、內壁表面積及膜厚度測定:RT=(內壁表面積×膜厚度)/流動速率(公升/分鐘)
因此,以每分鐘24公升(24,000cm3)之速率流經內壁表面積為10m2(100,000cm2)且產生具有2mm(0.2cm)厚度的膜之乾燥器之漿料將具有0.83分鐘或50秒之滯留時間。
在一些具體實例中(例如使用內壁表面積為10m2之乾燥器),所揭示的方法可在80%乾燥度下產生100-150kg/h之固體殘餘物,從而產生25-40kg/h的液體移除能力。
從薄膜乾燥器的上部出口回收之蒸氣包含從漿料萃取之揮發性鹵矽烷。經回收之蒸氣亦可包括細粒,其為夾帶於蒸氣流中的固體粒子。細粒宜從經回收之蒸氣流中分離。可藉由以下來分離細粒:將蒸氣流傳遞至冷凝器中,且隨後使經冷凝之蒸氣及細粒流入沈降容器中,其中夾帶之固體藉由重力從經冷凝之蒸氣中沈降出。在一些具體實例中,一部分經冷凝之蒸氣進行再循環,且當蒸氣流進入冷凝器中時與之合併。經再循 環之液體有助於冷凝蒸氣及沖洗冷凝器壁以減少由細粒造成的積垢。
從薄膜乾燥器移除之固體殘餘物典型地包括金屬鹵化物固體,且當曝露於環境氛圍時仍具有反應性。當曝露於環境氛圍時,固體殘餘物可產生腐蝕性鹵化氫氣體及/或氫鹵酸,且可為可燃的。舉例而言,當鹵矽烷漿料包含氯矽烷時,固體殘餘物可包括金屬氯化物,該等金屬氯化物當曝露於環境氛圍時可產生氯化氫氣體及/或鹽酸。因此,可進一步處理固體殘餘物以使其對環境氛圍不具有反應性。
處理固體殘餘物之合適方法描述於先前技術中,例如以引用方式併入本文中的U.S.2006/0183958A。在一些具體實例中,用鹼性水合物處理固體殘餘物以產生適用於處置或貴金屬回收之穩定、中性固體。固體殘餘物可在大於70℃之溫度下(例如在70-150℃、70-100℃、80-100℃或80-90℃之溫度下)用鹼性水合物處理。一般而言,添加充足鹼性水合物以在經處理之固體殘餘物中提供7之pH。可用於該方法中之合適鹼性水合物之實例為碳酸氫三鈉或碳酸氫三鉀、十二水合硫酸鈉鋁、三水合乙酸鈉、四水合磷酸鈉銨、十水合碳酸鈉、乾燥檸檬酸鈉、乾燥磷酸二氫鈉,及碳酸鈣或碳酸鈉、碳酸氫鈉及/或其他鹼性鹽之混合物。另外,可使用惰性水合礦物質,諸如礬石、魚眼石、鈉鎂礬、菱沸石、單斜鈉石灰、鈉斜沸石、片沸石、鉀美礬、硫鎂礬、濁沸石、插晶沸石、中性沸石、芒硝、蒙脫石、絲光沸石、鈉沸石、鎂磷石、鈣十字石、鈣沸石、輝沸石、鳥糞石及潮濕土壤。在潮濕土壤之情況下,過量的含水量可導致處理困難;約5%(w/w)之含水量適用於大多數用途。土壤可與石灰(碳酸鈣)、天然鹼(包含碳酸鈉、碳酸氫鈉及水的天然礦物質)或其他鹼性固體混合以提供充足中和強 度。為了滿足無危害填土處置之要求,鹼性陰離子一般限於鈉、鉀、鈣及鎂且不包括鋰、銣、鋇、鍶及其類似物。
在一種例示性方法中,固體殘餘物與水混合以形成漿料。將充足的含水碳酸鈣添加至漿料中以中和該漿料且提供7的pH。隨後將漿料離心,且收集及丟棄經回收之固體(主要為氯化鈣),或在一些情況下,進一步處理該等經回收之固體以用於貴金屬回收。
處理在鹵矽烷製造期間產生之固體殘餘物的其他方法描述於專利文獻中,例如描述於U.S.5,182,095、U.S.5,246,682、U.S.8,119,086及DE 4116925A1中。
Ⅳ.實施例
漿料在具有3ft2(0.28m2)加熱表面之實驗性規模薄膜乾燥器中乾燥。用具有390℉(199℃)溫度之熱油加熱薄膜乾燥器。轉子具有變速控制,典型地保持在600-1000rpm的速度下。轉子包括進料分佈環、擺錘擺動葉片及底部短軸。漿料在經加熱區域上方沿切線方向進入該單元,且藉由轉子均勻地分佈在主體壁之內圓周上。在進入乾燥器之後,漿料沿經加熱內壁向下流動,同時藉由轉子葉片不斷地攪拌。在乾燥器中之某一時刻,固體開始分離且藉由「零間隙」轉子葉片從壁上刮削。粉末形成後,離開乾燥器底部,且落入經定期清空之攜帶型接收器中。蒸氣以逆流方向流動至漿料且離開乾燥器頂部至接收器中。
為防止加熱表面上之膜沸騰,將漿料引入乾燥器中持續1-2分鐘,隨後開始熱油流動。藉由調節流量計閥來控制漿料進入乾燥器中的流動速率。歸因於流動速率之高變化性(亦即,由於進料管線中之固體沈 降),將流量計設定為手動且調節閥位以維持所需流動速率。
在初始操作中,漿料進料速率為150-250lb/h(68-113kg/h)。結果證實藉由高達236℉/113℃之實驗蒸氣溫度完全回收STC及TCS(STC沸點=135℉/57℃,TCS沸點=89℉/32℃),及高達275℉/135℃之粉末溫度。固體殘餘物介於類糊狀物至潮濕粉末範圍內。
藉由不同進料速率及漿料組成進行額外操作。在到達穩態之後,從各操作中收集漿料、粉末及蒸氣樣品。藉由氣相層析法測定漿料之液體及蒸氣組成。藉由將已知量之漿料樣品在加熱板上的小鋁船中乾燥來測定漿料之固體含量。在乾燥之後,測定固體殘餘物之重量,且該重量用以計算漿料中固體的百分比。
S%=(經乾燥之漿料的最終重量/漿料的初始重量)×100%
藉由對固體殘餘物之樣品稱重且隨後將該樣品乾燥至恆重(例如在加熱板上)來測定乾燥度。
乾燥度%=(經乾燥之殘餘物的最終重量/殘餘物的初始重量)×100%
揮發性矽烷(例如STC、TCS及/或DCS)回收之百分比如下計算:WS=S%×F
WLS=(100%-乾燥度%)×WS
回收%=(((F-WS)-WLS)/(F-WS))×100%其中WS=進料中固體的重量(kg/h),WLS=經乾燥之粉末中剩餘液體的重量(kg/h);F=進料速率(kg/h),及S=固體重量百分比。
總體而言,漿料包括60wt%的揮發物(STC及TCS)及40wt% 的重物質(Si2Cl6及Si2OCl6)。此等重物質之沸點介於135-145℃範圍內。漿料典型地包括20-36wt%之固體。在25℃下,漿料之密度介於1665-1810kg/m3(104-113lb/ft3)範圍內,視固體含量而定。表1顯示代表性漿料液體之組成。
下表2顯示試驗結果之彙總。從5次操作中收集十一份數據集。測定出約135kg/h之最小進料速率對於維持進料管線中之無堵塞地一致性流動為必需的。在136kg/h下,漿料之容積流動速率為1.44L/min,其等於在25.4mm內徑管道中大約0.05m/s之漿料速度。較低進料速率與較大乾燥度相關,且生成具有低含量之揮發性鹵矽烷的可流動粉末。在進料速率為一範圍時,使用該範圍之高端來計算每單位小時液體回收的百分比。
從表2中之結果可見,平均而言,在約135kg/h的進料速率 下獲得之經乾燥之殘餘物樣品具有76%乾燥度,且液體回收百分比介於87-94%範圍內。乾燥度與漿料中之固體的百分比及轉子速度無關。當殘餘物變為可流動粉末時,藉由轉子葉片從經加熱壁上刮削下該等粉末,且無法實現進一步乾燥。當漿料包括19wt%固體時,至多94%之液體(亦即揮發性鹵矽烷)經回收。當固體百分比加倍時,液體回收率減少至87%。雖然殘餘物乾燥度與漿料固體含量無關,但提高固體份額引起固體中之更多液體夾帶且減少經回收之液體的量。轉子速度對液體蒸發百分比不具有重大的影響。
圖2為說明在1巴下STC及Si2Cl6O之預測蒸氣液體平衡(VLE)的圖。圖中上部曲線(實線)表示露點,且下部曲線(短劃-點-短劃)表示起泡點。此等預測之量測值假設溫度探針位於距離乾燥器7呎(2.1m)處,如從上部蒸氣出口所量測。
來自操作5及6之漿料之液體部分含有0.23wt% DCS、11.74wt% TCS、46.96wt% STC、6.48wt% Si2OCl6及34.15wt% Si2Cl6。此液體組成物符合對操作5及6所預測的蒸氣溫度特徵。
鑒於可應用本發明之原理的許多可能具體實例,應認識到,所說明之具體實例僅為實施例且不應視為限制本發明之範圍。更確切地,本發明之範圍係藉由以下申請專利範圍界定。
10‧‧‧薄膜乾燥器
12‧‧‧經加熱容器
12a‧‧‧容器內壁
12b‧‧‧容器外壁
12c‧‧‧環隙
13‧‧‧腔室
14‧‧‧轉子
16‧‧‧葉片
17‧‧‧漿料進料
18‧‧‧入口
20‧‧‧上部出口
21‧‧‧蒸氣
22‧‧‧下部出口
23‧‧‧蒸氣
24‧‧‧固體殘餘物
Z1‧‧‧第一汽化區域
Z2‧‧‧第二汽化區域

Claims (20)

  1. 一種從反應殘餘物回收無機鹵矽烷之方法,其包含:使包含(i)揮發性鹵矽烷,(ii)矽粒子,及(iii)重物質之無機鹵矽烷漿料流經薄膜乾燥器的汽化區域以汽化該等揮發性鹵矽烷,該汽化區域具有等於或高於大氣壓之內部壓力,及在該汽化區域之該內部壓力下,大於該等揮發性鹵矽烷之沸點範圍的上端之內部溫度T1;從該汽化區域回收經汽化之揮發性鹵矽烷;及從該薄膜乾燥器的出口回收包含該等矽粒子之固體殘餘物。
  2. 如申請專利範圍第1項之方法,其中該漿料最初包含大於50wt%的揮發性鹵矽烷。
  3. 如申請專利範圍第1項之方法,其中該等重物質為金屬鹵化物、多鹵矽烷、多鹵氧矽烷或其組合。
  4. 如申請專利範圍第1項之方法,其中該漿料最初包含至多50wt%的重物質。
  5. 如申請專利範圍第1項之方法,其中該固體殘餘物具有至少70%的乾燥度。
  6. 如申請專利範圍第1項之方法,其進一步包含使該無機鹵矽烷漿料以一定速率流動,以使漿料質量通量維持在0.001kg s-1 m-2至0.1kg s-1 m-2內。
  7. 如申請專利範圍第1項之方法,其進一步包含使該內部壓力維持在101-170kPa範圍內。
  8. 如申請專利範圍第1項之方法,其中: 該薄膜乾燥器包含在該汽化區域內之轉子,該轉子具有複數個朝向該薄膜乾燥器之內壁表面延伸的葉片;及該方法進一步包含旋轉該轉子以在該內壁表面上形成平均厚度2mm的漿料膜。
  9. 如申請專利範圍第1項之方法,其進一步包含處理該固體殘餘物以產生當曝露於環境氛圍中時不具有反應性的固體物質。
  10. 如申請專利範圍第9項之方法,其中該處理該固體殘餘物包含使該固體殘餘物與鹼性水合物接觸。
  11. 如申請專利範圍第1項之方法,其中:從該汽化區域回收的該等經汽化之揮發性鹵矽烷進一步包含夾帶之細粒;及該方法進一步包含從該等揮發性鹵矽烷分離該等夾帶之細粒。
  12. 如申請專利範圍第1項至第11項中任一項之方法,其中:在該內部壓力下,該溫度T1小於該等重物質之沸點或昇華點範圍的上端;及該固體殘餘物進一步包含至少一部分之該等重物質。
  13. 如申請專利範圍第12項之方法,其中從該汽化區域回收的蒸氣實質上不含重物質。
  14. 如申請專利範圍第1項至第11項中任一項之方法,其中:該無機鹵矽烷漿料為包含以下的無機氯矽烷漿料:(i)四氯化矽、三氯矽烷、二氯矽烷或其任何組合,(ii)矽粒子,及(iii)重物質;及該溫度T1為80℃至200℃。
  15. 如申請專利範圍第14項之方法,其進一步包含使該溫度T1維持在80℃至115℃下。
  16. 如申請專利範圍第15項之方法,其中該固體殘餘物進一步包含至少一部分之該等重物質。
  17. 如申請專利範圍第1項至第11項中任一項之方法,其中該薄膜乾燥器含有定位於該汽化區域與該出口之間的第二汽化區域,該方法進一步包含:在該第二汽化區域中維持內部溫度T2,其中T2>T1;及使該漿料依序流經該第一汽化區域及該第二汽化區域。
  18. 如申請專利範圍第17項之方法,其進一步包含:在該內部壓力下,使該溫度T2維持在大於該等重物質之至少一種物質之沸點或昇華點的溫度下;在該第二汽化區域中汽化至少一部分之該等重物質以產生重物質蒸氣;及回收該重物質蒸氣。
  19. 如申請專利範圍第18項之方法,其中該固體殘餘物具有至少70%的乾燥度。
  20. 如申請專利範圍第17項之方法,其中:該無機鹵矽烷漿料為無機氯矽烷漿料;且該方法進一步包含使該溫度T1維持在80℃至115℃下及使該溫度T2維持在115℃至200℃之範圍內的溫度下。
TW103125616A 2014-07-01 2014-07-28 從反應殘餘物回收氫鹵矽烷 TWI630175B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/321,700 US9695052B2 (en) 2014-07-01 2014-07-01 Recovery of hydrohalosilanes from reaction residues
US14/321,700 2014-07-01

Publications (2)

Publication Number Publication Date
TW201601999A true TW201601999A (zh) 2016-01-16
TWI630175B TWI630175B (zh) 2018-07-21

Family

ID=55016534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103125616A TWI630175B (zh) 2014-07-01 2014-07-28 從反應殘餘物回收氫鹵矽烷

Country Status (8)

Country Link
US (1) US9695052B2 (zh)
JP (1) JP6353088B2 (zh)
KR (1) KR102248271B1 (zh)
CN (1) CN106170325B (zh)
DE (1) DE112014006778T5 (zh)
MY (1) MY176233A (zh)
TW (1) TWI630175B (zh)
WO (1) WO2016003478A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479211B (zh) * 2018-04-09 2020-04-21 马鞍山科宇环境工程有限公司 一种化工厂用预除湿布袋除尘器
CN109092007B (zh) * 2018-10-23 2021-06-11 郴州市金贵银业股份有限公司 一种有色冶炼烟气回收砷一体化装置与提取方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1488994A (fr) 1965-09-10 1967-07-21 Rhone Poulenc Sa Procédé de purification de chlorosilanes
US4340574A (en) * 1980-08-28 1982-07-20 Union Carbide Corporation Process for the production of ultrahigh purity silane with recycle from separation columns
US5182095A (en) 1987-12-16 1993-01-26 Huls Troisdorf Aktiengesellschaft Method for processing residues from the distillation of chlorosilanes
JPH0275301A (ja) * 1988-09-08 1990-03-15 Osaka Titanium Co Ltd 連続式濃縮装置
US5118486A (en) * 1991-04-26 1992-06-02 Hemlock Semiconductor Corporation Separation by atomization of by-product stream into particulate silicon and silanes
DE4116925C2 (de) 1991-05-24 1999-06-24 Huels Silicone Gmbh Verfahren zur Aufbereitung von Destillationsrückständen der Direkten Synthese von Chlor- und/oder Organochlorsilanen
DE4126670A1 (de) 1991-08-13 1993-02-18 Huels Chemische Werke Ag Verfahren zur abwasserfreien aufarbeitung von rueckstaenden einer chlorsilandestillation mit salzsaeure
JP3850621B2 (ja) 2000-03-17 2006-11-29 株式会社トクヤマ クロロシラン類の回収方法
US20060183958A1 (en) * 2003-04-01 2006-08-17 Breneman William C Process for the treatment of waste metal chlorides
JP4160930B2 (ja) 2004-05-19 2008-10-08 シャープ株式会社 ハロシランの製造方法、固形分の精製方法
DE102008001577A1 (de) 2008-05-06 2009-11-12 Wacker Chemie Ag Verfahren zur Hydrolyse von festen Metallsalzen mit wässrigen Salzlösungen
DE102008002537A1 (de) * 2008-06-19 2009-12-24 Evonik Degussa Gmbh Verfahren zur Entfernung von Bor enthaltenden Verunreinigungen aus Halogensilanen sowie Anlage zur Durchführung des Verfahrens
CN101786629A (zh) * 2009-01-22 2010-07-28 陶氏康宁公司 回收高沸点废料的方法
DE102009027194A1 (de) 2009-06-25 2010-12-30 Wacker Chemie Ag Verfahren zur Herstellung von Dodecahalogenneopentasilanen
US8298490B2 (en) * 2009-11-06 2012-10-30 Gtat Corporation Systems and methods of producing trichlorosilane
DE102011004058A1 (de) * 2011-02-14 2012-08-16 Evonik Degussa Gmbh Monochlorsilan, Verfahren und Vorrichtung zu dessen Herstellung
CN104066680B (zh) 2011-11-11 2016-01-20 Lg化学株式会社 三卤硅烷精炼设备

Also Published As

Publication number Publication date
CN106170325B (zh) 2019-04-05
KR20170026471A (ko) 2017-03-08
TWI630175B (zh) 2018-07-21
JP6353088B2 (ja) 2018-07-04
US20160002053A1 (en) 2016-01-07
DE112014006778T5 (de) 2017-03-23
CN106170325A (zh) 2016-11-30
US9695052B2 (en) 2017-07-04
JP2017526598A (ja) 2017-09-14
WO2016003478A1 (en) 2016-01-07
MY176233A (en) 2020-07-24
KR102248271B1 (ko) 2021-05-04

Similar Documents

Publication Publication Date Title
JP5265760B2 (ja) 塩水溶液を使用する固形金属塩の加水分解方法
KR101005530B1 (ko) 클로로실란으로부터 알루미늄과 기타 염화 금속을 제거하는 방법
JP6718517B2 (ja) ハロイサイト粉末およびハロイサイト粉末の製造方法
CN103827125A (zh) 硅烷醇的碱金属盐粉末的制备方法
TWI630175B (zh) 從反應殘餘物回收氫鹵矽烷
JP4944397B2 (ja) シラン変性されたフィラーから物質を抽出するための方法および装置
FR2948354A1 (fr) Production de silanes a partir d&#39;alliages de silicium et de metaux alcalino-terreux ou siliciures de metaux alcalino-terreux
CN109863118A (zh) 残渣废弃方法及三氯硅烷的制造方法
TWI415685B (zh) 用於水反應性鹵代矽烷及鹵化物之高溫水解之裝置及達成水解之方法
US8568597B2 (en) Process for purifying silicon source material by high gravity rotating packed beds
CN111410222A (zh) 含有含氟聚合氯化铝的药剂
WO1996037434A1 (fr) Poudre de verre de quartz synthetique, moulages en verre de quartz, tetraalcoxysilane de haute purete, et procedes de production
TW201714830A (zh) 用於從來自二氧化鈦生產(氯化物工藝)的殘留物中分離有價值的金屬氯化物的方法
KR20040106285A (ko) 탄소질 재료 처리 방법
BR112017020846B1 (pt) Processo para preparar uma fluorita sintética de grau ácido, fluorita sintética de grau ácido e aparelho para preparar a dita fluorita sintética de grau ácido
Autef et al. Importance of metakaolin impurities for geopolymer based synthesis
US3317414A (en) Production of magnesium chloride and magnesium metal
EP2385017B1 (en) Process for purifying silicon source material by high gravity roating packed beds
TW202031592A (zh) 氯矽烷類的製造方法
CN107445421A (zh) 四氯化钛除钒产生的含钒泥浆的处理方法
JP6792412B2 (ja) 炭化珪素粉末の製造方法
KR101250096B1 (ko) 에멀션을 사용하여 금속 염을 가수분해하는 방법
JP3850621B2 (ja) クロロシラン類の回収方法
RU2316472C2 (ru) Способ обработки алмазосодержащих концентратов
Bulanov et al. Sources of Carbon Impurities in the Preparation of High-Purity Monoisotopic 28 Si by a Hydride Method