TW201539837A - 電化學裝置用的電極單元 - Google Patents

電化學裝置用的電極單元 Download PDF

Info

Publication number
TW201539837A
TW201539837A TW104103862A TW104103862A TW201539837A TW 201539837 A TW201539837 A TW 201539837A TW 104103862 A TW104103862 A TW 104103862A TW 104103862 A TW104103862 A TW 104103862A TW 201539837 A TW201539837 A TW 201539837A
Authority
TW
Taiwan
Prior art keywords
alkali metal
solid electrolyte
space
polysulfide
electrochemical device
Prior art date
Application number
TW104103862A
Other languages
English (en)
Other versions
TWI711200B (zh
Inventor
Anna Katharina Duerr
Unda Jesus Enrique Zerpa
Guenther Achhammer
Domnik Bayer
Peter Heidebrecht
Stefan Meuer
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of TW201539837A publication Critical patent/TW201539837A/zh
Application granted granted Critical
Publication of TWI711200B publication Critical patent/TWI711200B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • H01M10/3927Several layers of electrolyte or coatings containing electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本發明係關於一種電化學裝置用的電極單元,該電化學裝置包含(i)固體電解質,其分隔選自由元素硫及鹼金屬陽極材料之聚硫化物組成之群的熔融陰極材料空間及熔融鹼金屬陽極材料空間;及(ii)多孔固態電極,其位於該陰極材料空間內且直接與該固體電解質相鄰,在該固態電極與該固體電解質之間存在非電子導電中間層S,其中此中間層S在該電化學裝置首次充電前已由聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之鹼金屬陽極材料之鹼金屬,且x視該鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之該等聚硫化物彼此間的混合物。

Description

電化學裝置用的電極單元
本發明係關於一種電化學裝置用的電極單元,該電化學裝置包含(i)固體電解質,其分隔選自由元素硫及鹼金屬陽極材料之聚硫化物組成之群的熔融陰極材料空間及熔融鹼金屬陽極材料空間;及(ii)多孔固態電極,其位於陰極材料空間內且直接與固體電解質相鄰,在固態電極與固體電解質之間存在非電子導電中間層S,其中中間層S在電化學裝置首次充電前已由聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之鹼金屬陽極材料之鹼金屬,且x視鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物;如申請專利範圍中所定義之包含電極單元之電化學裝置;如申請專利範圍中所定義之用於製造電極單元中之非電子導電中間層S的方法,該方法包含使形成非電子導電中間層S之多孔起始材料經受小於1標準大氣壓之壓力及將其用形成鹼金屬陽極材料之鹼金屬之熔融聚硫化物組成物浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之鹼金屬陽極材料之鹼金屬,且x視鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的 混合物;如申請專利範圍中所定義之用於電化學裝置之首次充電的方法,其中該方法包含首先用呈熔融物形式之聚硫化物化合物(I)填充熔融陰極材料空間,該聚硫化物化合物(I)包含:(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之所要鹼金屬陽極材料之鹼金屬,x視鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物,或(C)特定鹼金屬硫化物Met2S與元素硫及/或(A)或(B)中提及之聚硫化物Met2Sx之混合物,及另外在熔融陽極材料空間中安裝電子導電裝置,其安裝方式為使其至少在下部區域中接觸固體電解質之面向陽極材料之表面,使陰極空間及陽極空間與電路連接,且傳送電流通過此電化學裝置,使得聚硫化物化合物(I)經電解分解,在陰極空間中形成元素硫且在陽極空間中形成金屬性鹼金屬;及非電子導電中間層S用於電化學裝置之電極單元中的用途,該電化學裝置包含(i)固體電解質,其將如本文中所定義之熔融陰極材料空間與如本文中所定義之熔融鹼金屬陽極材料空間分隔,及(ii)多孔固態電極,其藉由非電子導電中間層S與固體電解質分隔,其中非電子導電中間層S在電化學裝置首次充電前已由形成鹼金屬陽極材料之鹼金屬之聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之鹼金屬陽極材料之鹼金屬,且x視鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物。
具有熔融陰極材料空間、熔融陽極材料空間、分隔此等空間之固體電解質及存在於陰極空間內之多孔電極的電化學裝置為已知的,且在下文中亦被稱為「具有固體電解質之電化學裝置」。
該等具有固體電解質之電化學裝置之一個實例被稱為鈉-硫電池組,其描述於例如Ullmann's Encyclopedia of Industrial Chemistiy,第4卷,D.Berndt,D.Spahrbier,第7.2.2.2.章,第608至609頁,Wiley-VCH(2003)中。
在鈉-硫電池組中,硫為陰極材料,鈉為陽極材料,且β-氧化鋁為固體電解質,且石墨氈為與陰極空間中之硫接觸的電極。
在本發明之上下文中,陰極空間為具有固體電解質之電化學裝置中之空間,其中聚硫化物在此電池之充電過程中氧化成元素硫,且元素硫在此電池之放電過程中還原成聚硫化物。
在本發明之上下文中,陽極空間為具有固體電解質之電化學裝置中之空間,其中例如鋰離子、鈉離子或鉀離子之鹼金屬離子在此裝置之充電過程中還原成例如鋰、鈉或鉀之元素鹼金屬,且例如鋰、鈉或鉀之元素鹼金屬在放電過程中氧化成例如鋰離子、鈉離子或鉀離子之鹼金屬離子。
具有固體電解質之電化學裝置可用作可再充電電池組以供電能,其在科學上一般亦被稱為「蓄電池」或「二次電池」。此等蓄電池經由氧化還原反應來產生電流且因此為原電池。
另一方面,若電流經由具有固體電解質之電化學裝置傳送,則此裝置亦可用於電解,亦即分解化合物,例如分解成其元素組份。在彼情況下,此典型地在科學上一般被稱為電解池。就技術目的而言,仍需要 研發用於大規模儲存電力且在需要時將其釋放至電力網之電化學裝置。舉例而言,需要儲存由風力發電廠生產之電能,以便在電力不足時將其釋放入電力網送至消費者。
出於此目的,需要大儲存電容,其可例如由鈉-硫電池組提供。
鈉-硫電池組之一個問題為:當電池組充電時,作為電絕緣體的硫沈積於固體電解質表面之陰極一側上,結果一般為此硫層在電池組充電過程中阻擋鈉離子遷移至固體電解質之表面,此又引起電池中之電阻增加,導致電極過早極化及電池充電不完全,亦即電池組電容損失。
鈉-硫電池組之另一問題為:在固體電解質破裂或受損情況下,尤其電池組處於充電狀態下,液態鈉與液態硫直接接觸,典型地在例如300℃至400℃之高溫下及尤其直接在固體電解質破裂或受損部位直接接觸,發生強放熱反應,引起例如硫突然汽化及電池中之壓力迅速增大,導致其損壞或毀壞及其內含物釋放,該內含物可與周圍氛圍劇烈反應且因此最終損壞或毀壞其他電池或甚至整個電池組。
GB 1,347,990 A描述鈉-硫型可再充電電化學發電機,其具有作為陰極材料之熔融硫、作為陽極材料之熔融鈉、β-氧化鋁固體電解質(「鈉β氧化鋁」)及與硫熔融物(陰極材料)接觸之石墨氈電極,其中石墨氈電極藉由厚度為幾微米之多孔層與固體電解質分隔,該多孔層為例如α-氧化鋁之電絕緣材料。
GB 1,347,990 A未揭示電絕緣材料經鹼金屬聚硫化物浸漬,較佳在發電機首次充電前浸漬。
US 4,084,041描述鈉-硫電池組,其具有熔融硫及/或熔融聚硫化物(陰極空間)、熔融鈉(陽極空間)、β-氧化鋁固體電解質(「β-氧化鋁)」及與熔融硫及固體電解質接觸之石墨氈電極,其中一些電極塗有電絕緣氧化鋁,從而在電極未填充滿陰極空間之整個容積之情況下獲得特定的最大歐姆電阻。US 4,084,041未揭示部分地經電絕緣氧化鋁塗覆之石墨氈電經鹼金屬聚硫化物浸漬,極較佳在電池組首次充電前浸漬。
J.L.Sudworth,A.R.Tilley在「The Sodium Sulfur Battery」,Chapman and Hall有限公司,1985(ISBN 0412 164906),第189頁,第1至3行中,在「The sulfur electrode」章節中提及可將厚度為1mm之α-氧化鋁纖維層(「ICI有限公司的Saffil低密度墊」)配置於碳氈與平板電池之固體電解質之間。Sudworth及Tilley未揭示α-氧化鋁層已經鹼金屬聚硫化物完全浸漬。
本發明之一目標為提供一種具有固體電解質之電化學裝置,其不具有先前技術之缺點,且在固體電解質受損或破裂情況下,尤其在電池首次充電前,釋放的熱量較少,且因此在電化電池中且最終在整個電池組中提供更高安全性,同時仍使電池具有良好的內部電阻。
該目標係藉由以下達成:如本文中所主張及所述之電極單元,其在下文中亦稱為「本發明電極單元」;如本文中所主張及所述之電化學裝置,其在下文中亦稱為「本發明電化學裝置」;如本文中所主張及所述之用於製造非電子導電中間層S的方法;如本文中所主張及所述之用於電化學裝置之首次充電的方法;及如本文中所主張及所述之非電子導電中間 層S用於電極單元中的用途。
本發明電極單元位於電化學裝置中之熔融陰極材料空間內,該電化學裝置包含選自由元素硫及鹼金屬陽極材料之聚硫化物(此聚硫化物較佳如下文中所定義)組成之群的熔融陰極材料空間及熔融鹼金屬陽極材料空間(後者較佳如下文中所定義),二者藉由固體電解質彼此分隔,其中電極單元包含直接與固體電解質相鄰之多孔固態電極,及介於固態電極與固體電解質之間的非電子導電中間層S,且此中間層S在電化學裝置首次充電前已由形成鹼金屬陽極材料之鹼金屬之聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀,尤其選自鈉之鹼金屬陽極材料之鹼金屬,且x視相關鹼金屬而定且對於Na而言為2、3、4或5、較佳為3、4或5、尤其為4,且對於Li而言為2、3、4、5、6、7、8、較佳為3、4、5、6、7或8且對於K而言為2、3、4、5、6、較佳為3、4或5、尤其為5;或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物。此聚硫化物組成物在下文中亦稱為「本發明聚硫化物組成物」。
在本文中,「完全」意謂本發明聚硫化物組成物幾乎完全地依完整開口孔隙率存在於形成非電子導電中間層S之起始材料中。開口孔隙率如下測定:以習用方式(例如藉由測定重量及容積)來測定形成中間層S之起始材料之容積密度。形成中間層S之起始材料之固有密度以習用方式測定或發現於文獻中,且開口孔隙率如下計算:1-該起始材料樣品之容積密度/形成樣品之該起始材料之固有密度。就說明而言,開口孔隙率為例如形成中間層S的起始材料之纖維之間的中間空間。形成非電子導電中間 層S之起始材料在本文中詳細描述。
所用陰極材料典型地為可與陽極材料發生化學反應之材料;典型地,其在電化學裝置之操作條件下熔融。
熔融陰極材料係選自由元素硫及鹼金屬陽極材料(換言之,形成鹼金屬陽極材料之鹼金屬)之聚硫化物組成之群。較佳熔融陰極材料為單獨元素硫或元素硫與形成鹼金屬陽極材料之鹼金屬之聚硫化物的組合。
適用的形成鹼金屬陽極材料之鹼金屬之聚硫化物較佳包括(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀,尤其選自鈉之鹼金屬陽極材料之鹼金屬,且x視鹼金屬而定且對於Na而言為2、3、4或5、較佳為3、4或5、尤其為4,且對於Li而言為2、3、4、5、6、7、8、較佳為3、4、5、6、7或8,且對於K而言為2、3、4、5、6、較佳為3、4或5、尤其為5,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物,或(C)特定鹼金屬硫化物Met2S與元素硫及/或(A)或(B)中提及之聚硫化物Met2Sx之混合物。
可將熔融陰極材料以熔融形式(熔融固體)或以固體形式,較佳以熔融形式引入本發明電化學裝置中,且在其充電/放電及操作過程中,典型在300℃至400℃範圍內之溫度下,呈液體、熔融狀態。
鹼金屬陽極材料係選自由鋰、鈉及鉀、較佳由鈉、鉀、尤其由鈉組成之群。
在本發明之上下文中,熔融鹼金屬陽極材料典型地由陰極材料電解形成,但亦可以固體形式引入本發明電化學裝置中,且在其充電、 放電及操作過程中,典型在300℃至400℃之溫度下,呈液體、熔融狀態。
選自由鋰、鈉及鉀、較佳由鈉、鉀、尤其由鈉組成之群的熔融陽極材料典型地儲存於與陽極空間連接且位於實際電化電池外部的容器中。在電化電池之放電狀態下,此儲集容器一般幾乎為空的;且在電化電池之充電狀態下,此儲集容器一般幾乎為充滿的。
熔融陽極材料典型地與外部電路電接觸,典型地經由合適的集電裝置與外部電路電接觸。
分隔熔融陰極材料空間與熔融鹼金屬陽極材料空間之固體電解質典型地為多晶陶瓷材料,其對於與鹼金屬陽極材料對應之鹼金屬離子、較佳對於鋰離子或鈉離子或鉀離子、更佳對於鈉離子或鉀離子、尤其對於鈉離子具有離子電導性。
非常合適的多晶陶瓷材料包含氧化鋁單元及希望離子具導電性之鹼金屬(較佳為鋰或鈉或鉀、更佳為鈉或鉀、尤其為鈉)的鹼金屬氧化物單元。
在具有鋰作為鹼金屬陽極材料之本發明電化學裝置中,適用固體電解質材料之實例包括以下:摻鋰鈣鈦礦、具有通式Li2+2xZn1-xGeO4之LIS1CON型化合物、Li-β-氧化鋁、具有石榴石結構之鋰離子導電固體電解質,例如如WO 2009/003695 A或WO 2005/085138 A中所述之彼等材料。
在具有鉀作為鹼金屬陽極材料之本發明電化學裝置中,適用材料之實例包括以下:具有β"-Al2O3結構之固體多晶鉀離子導體,如EP 1 672 098 A2(包括[0013]、[0016]至[0019]及相關實施例)中所述,該文獻之揭示內容以引用之方式明確併入本文中。
在具有鈉作為鹼金屬陽極材料之本發明電化學裝置中,較佳選擇為含鈉氧化鋁。
含鈉氧化鋁(亦稱為「鋁酸鈉」)為已知的。其在專家中及在文獻中亦被稱為β-氧化鋁或β-Al2O3;參見例如Ullmann's Encyclopedia of Industrial Chemistry,第6版,2000 Electronic Release,Wiley,「Aluminium Oxide」第1.6項下。鋁酸鈉中Na2O:Al2O3之莫耳比典型地在1:1至1:11範圍內。
術語「β-氧化鋁」在專家中及在文獻中尤其用於具有六邊形晶體結構、理想地具有P63/mmc空間群之鋁酸鈉。
具有六邊形晶體結構、但理想地具有R/3m空間群之鋁酸鈉被稱作β"-氧化鋁。
術語「β-氧化鋁」用於下文中,其意欲包涵β-氧化鋁及β"-氧化鋁兩者,較佳包涵後者。另外,本文中所用之術語「β-氧化鋁」意欲包涵β-氧化鋁與β"-氧化鋁之任何混合物或相混合物,較佳包涵其中β"-氧化鋁之比例大於90重量%、更佳大於95重量%之混合物或相混合物。
固體電解質之幾何形狀,較佳β-氧化鋁之幾何形狀可高度變化,例如具有多邊形或圓形或橢圓形橫截面幾何形狀之多邊形、扁平體或實心棒,或例如矩形、正方形、多邊形、橢圓形、圓形之任何橫截面幾何形狀之長空心體,其可敞開或一端封閉。
非常合適的固體電解質成形體為例如任何橫截面幾何形狀(例如矩形、正方形、多邊形、橢圓形、圓形)之棒,該等棒較佳具有圓柱形幾何形狀。進一步較佳的固體電解質成形體為具有例如矩形、正方形、多邊形、橢圓形、圓形之任何橫截面幾何形狀之長空心體,特別較佳地為 圓柱形成形體,亦即管,其可在兩端敞開或較佳在一端封閉。
固體電解質(較佳為β-氧化鋁)極其較佳為一端封閉之圓柱形管。
本發明電極單元之一個組件為多孔固態電極。其一般為導電的(電子導電),且在上文詳述之陰極材料空間內直接與固體電解質相鄰。典型地,多孔固態電極與上文詳述之典型熔融陰極材料及外部電路電接觸,典型地經由合適的集電裝置電接觸。
典型地,多孔固態電極亦對上文詳述之熔融陰極材料具有實質耐受性。在此上下文中「實質耐受性」意謂形成多孔固態電極之材料不以毀壞性或腐蝕性方式與熔融陰極材料發生化學或電化學反應。
非常適用於多孔固態電極之材料為例如非晶碳、石墨、玻璃碳(glassy carbon)(亦被稱作「玻璃碳(vitreous carbon)」),較佳為石墨氈、石墨泡沫(亦被稱作「玻璃碳泡沫」)。特別較佳為石墨氈,其為已知的且描述於例如J.L.Sudworth,A.R.Tilley,「The Sodium Sulfur Battery」,Chapman and Hall有限公司,1985(ISBN 0412 164906),第5.3.1及5.3.2章,第159至164頁中。
用於多孔固態電極之材料(較佳為石墨或石墨氈)可經部分或完全改質,從而使上述熔融聚硫化物對其的濕潤優於熔融元素硫。舉例而言,如例如US 4,084,041中所述,用於多孔固態電極之材料(較佳為石墨或石墨氈)出於此目的而部分地或實質上完全地經元素週期表第1族、第2族或第3族之硫化物或氧化物(諸如氧化鋁(Al2O3))浸漬。
多孔固態電極可完全或部分地填充陰極材料空間。較佳地, 多孔固態電極部分地填充陰極材料空間且直接與固體電解質相鄰,在空間上僅藉由下文詳述之非電子導電中間層S與其分隔,從而典型地產生以下結構:固體電解質/中間層S/多孔固態電極,例如β-氧化鋁固體電解質/非電子導電中間層S/由石墨氈構成之多孔固態電極。
多孔固態電極(較佳為石墨或石墨氈)覆蓋固體電解質面向陰極材料一側之表面,典型地為完全或部分地覆蓋,例如表面積之50%至100%之程度、較佳為表面積之90%至100%之程度在計算中典型地不包括固體電解質之基底區域,例如一端封閉之圓柱管之基底。
吸附本發明聚硫化物化合物以形成非電子導電中間層S之材料(在本文中亦稱作「起始材料」)係選自氧化鋁(Al2O3)、二氧化矽(例如玻璃纖維)、鋁與矽之混合氧化物、矽酸鹽及鋁矽酸鹽。此等材料在例如25℃、1標準大氣壓之標準條件下之電導率幾乎為零。
用於非電子導電中間層S之起始材料及非電子導電中間層S自身為典型多孔的,一般具有(i)範圍介於50%至99.99%、較佳80%至99%、更佳90%至95%之開口孔隙率,開口孔隙率如下計算:1-(樣品之容積密度/形成樣品之材料之密度)×100;及(ii)藉由光學顯微學之方法所量測的範圍典型介於1微米至10微米之平均孔隙直徑。
典型地,非電子導電中間層S之基體為扁平結構(例如編織物、氈或墊)之纖維,其選自上述材料、較佳選自氧化鋁纖維(例如來自Saffil之Saffil®)及/或二氧化矽纖維(例如玻璃纖維)。
非電子導電中間層S之厚度典型地在0.5mm至5mm、較佳1.0mm至3mm範圍內,更佳在1mm至2mm範圍內。
非電子導電中間層S配置於多孔固態電極與固體電解質之間,且幾乎與固體電解質表面齊平。
非電子導電中間層S典型地幾乎覆蓋固態電極面向固體電解質之全部面積。
非電子導電中間層S在電化學裝置首次充電前已由形成鹼金屬陽極材料之鹼金屬之聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀、尤其選自鈉之鹼金屬陽極材料之鹼金屬,且x視相關鹼金屬而定且對於Na而言為2、3、4或5、較佳為3、4或5、尤其為4且對於Li而言為2、3、4、5、6、7、8、較佳為3、4、5、6、7或8且對於K而言為2、3、4、5、6、較佳為3、4或5、尤其為5;或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物。本發明聚硫化物組成物較佳均質地分佈在整個非電子導電中間層S上。
一般而言,即使在電化學裝置首次充電後,例如在其操作或放電或再充電期間,非電子導電中間層S亦包含本發明聚硫化物組成物。
非常適於形成包含本發明聚硫化物組成物之中間層S的方法為如上所述浸漬非電子導電中間層S之起始材料,例如氧化鋁纖維及/或Saffil®纖維。較佳地,此浸漬在幾乎無水及幾乎無氧或非氧化條件下完成。
在用於形成包含本發明聚硫化物組成物之中間層S的一個較佳具體實例中,程序如下:中間層S之起始材料(例如氧化鋁纖維及/或Saffil®纖維)較佳以結構類似於紙片之形式施加至固體電解質(例如本文中所述之在一端封閉之圓柱形管)面向陰極空間之表面,在所提及之圓柱形管情況下, 例如藉由捲繞來施加。使用電極單元及如此製備之固體電解質組裝電化學裝置,且在陰極空間中產生減壓,例如藉由抽出其中存在之至少一些氣體來產生減壓;陰極空間中之壓力隨後為例如10毫巴至20毫巴(絕對值)。隨後,將待形成陽極材料之本發明鹼金屬聚硫化物組成物典型地以熔融形式,較佳自儲集容器轉移入保持在減壓下之陰極空間中。在此情況下,儲集容器中之本發明聚硫化物組成物典型地首先處於高於陰極空間之壓力下。較佳的本發明聚硫化物組成物為例如(i)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4或5;或(ii)選自(i)之聚硫化物混合物。
此程序一般使得非電子導電中間層S及多孔固態電極完全浸漬,其中「完全」正如上文所定義。在此調節(典型地稱為「首次填充」)後,本發明電化學裝置可典型地藉由施加電流或電壓來充電。
非常適用於本發明電極單元及包含該電極單元之本發明電化學裝置的具體實例描述於下文中。
在本文中,固體電解質為一端封閉之β-氧化鋁圓柱形管,其例如具有20mm至60mm範圍內之內徑;及0.05m至2m範圍內之長度,例如0.5m至2m範圍內之長度;及0.5mm至3mm範圍內之壁厚。在此具體實例中,在此固體電解質內為熔融鹼金屬陽極材料鈉。
在此具體實例中,一端封閉之此圓柱形固體電解質的外部為較佳由氧化鋁纖維(例如來自Saffil之Saffil®)或二氧化矽(例如玻璃纖維)組成的非電子導電中間層S,在首次充電前,該中間層S較佳包含(i)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4;或(ii)選 自(i)之聚硫化物之混合物。在此具體實例中,此非電子導電中間層S之厚度典型地在0.5mm至5mm、較佳1.0mm至3mm之範圍內,更佳地在1mm至2mm範圍內。圍繞一端封閉之圓柱形固體電解質外部的此中間層S與如上文所述之多孔固態電極鄰接,該多孔固態電極之材料已於上文中描述且較佳為石墨或石墨氈。
一般而言且在此具體實例中,多孔固態電極經由電子導體(例如集電體或電化學裝置自身之金屬電池外殼)與外部電路連接。
典型地且在此具體實例中,多孔固態電極被一般由金屬(例如不鏽鋼)製造之裝置(例如陰極空間之金屬容器壁)圍繞。
元件符號清單
非常適用於本發明電極單元及本發明電化學裝置之上述具體實例舉例展示於圖1中,元件符號具有以下意義:
1 置換器主體
2 多孔固態電極,例如由石墨氈構成
3 固體電解質,例如由β-氧化鋁構成
4 陰極空間,例如包含熔融鈉聚硫化物及硫
5 陽極空間,例如包含熔融鈉金屬
6 集電體
7 中間層S,例如經本發明聚硫化物組成物浸漬之Saffil®
8 電池外殼
本發明亦提供用於製造本發明電極單元中之非電子導電中間層S的方法,其中形成非電子導電中間層S之多孔起始材料經受小於1 標準大氣壓之壓力,例如10毫巴至20毫巴(絕對值);且經本發明之熔融聚硫化物組成物浸漬。
在此上下文中,用於非電子導電中間層S之較佳起始材料為氧化鋁纖維及/或Saffil®纖維,較佳呈扁平形式,例如呈編織物、氈或其類似物形式。在此上下文中,本發明聚硫化物組成物較佳為例如(i)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4或5;或(ii)選自(i)之聚硫化物之混合物。
非常適用於製造本發明電極單元中之非電子導電中間層S的此類方法如下實施:將用於非電子導電中間層S之起始材料施加至固體電解質面向陰極空間之表面。隨後將固態電極施加至中間層S。用電極單元及如此製備之固體電解質組裝電化學裝置,且在陰極空間中產生減壓,例如10毫巴至20毫巴(絕對值)。隨後,將待形成陽極材料之本發明之鹼金屬聚硫化物組成物典型地以熔融形式轉移入保持在減壓下之陰極空間中。
較佳的本發明聚硫化物組成物為例如(i)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4或5;或(ii)選自(i)之聚硫化物之混合物。
用於製造本發明電極單元中之非電子導電中間層S之方法的一個具體實例描述於下文中:將用於非電子導電中間層S之起始材料(例如氧化鋁纖維及/或Saffil®纖維)較佳以結構類似於紙片之形式,施加至固體電解質(例如如本文中所述之一端封閉、較佳由β-氧化鋁製成之圓柱形管)面向陰極空 間之表面,在所提及之圓柱形管情況下,例如藉由捲繞來施加。隨後將較佳由石墨氈構成之固態電極施加至中間層S。用電極單元及如此製備之固體電解質組裝電化學裝置,且在陰極空間中產生減壓,例如藉由抽出其中所存在之至少一些氣體來產生減壓;陰極空間中之壓力隨後為例如10毫巴至20毫巴(絕對值)。隨後,將待形成陽極材料之本發明之鹼金屬聚硫化物組成物典型地以熔融形式,較佳自儲集容器轉移入保持在減壓下之陰極空間中。在此情況下,儲集容器中之本發明聚硫化物組成物典型地首先處於高於陰極空間之壓力下。此處較佳的本發明聚硫化物組成物為例如(i)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4或5;或(ii)選自(i)之聚硫化物之混合物。
此程序一般使得中間層S及多孔固態電極完全浸漬,其中「完全」正如上文所定義。在此調節(典型地稱為「首次填充」)後,電化學裝置可典型地藉由施加電流或電壓來充電。
本發明亦提供包含本發明電極單元之電化學裝置。此電化學裝置可為可再充電電池組以供電能,其亦稱為「蓄電池」或「二次電池」;或可為電解池,其例如用於由如本文中所定義之對應聚硫化物Met2Sx製備鹼金屬。本發明電化學裝置如本文中所述。
較佳的本發明電化學裝置被稱為鈉-硫電池或鈉-硫電池組。其描述於例如Ullmann's Encyclopedia of Industrial Chemistry,第4卷,D.Berndt,D.Spahrbier,第7.2.2.2.章,第608頁至609頁(2003)。
本發明鈉-硫電池之一個變體構築如下(變體1)且展示於例如圖1中,其中元件符號具有以上提及之意義。
固體電解質為如上所述之一端封閉之圓柱形管,其由如上所述之材料構成,較佳由β-氧化鋁構成。
變體1中之陽極空間為一端封閉之圓柱形固體電解質管內部,其中存在熔融鹼金屬陽極材料鈉。較大量之熔融鹼金屬陽極材料鈉典型地儲存在與陽極空間連通且位於實際電化電池外部之容器中。在電化電池之放電狀態下,此儲集容器一般幾乎為空的;且在電化電池之充電狀態下,此儲集容器一般幾乎為充滿的。典型地在一端封閉之圓柱形管內部以同軸形式沿著熔融鈉配置的為另一實心或空心圓柱體(「置換器」,圖1中之元件符號1),其尺寸類似於、但小於一端封閉之圓柱形固體電解質管,從而形成環形間隙,其中熔融鹼金屬陽極材料鈉存在於固體電解質內壁與置換器外壁之間。典型地,置換器係由金屬製造,例如鋁、鋼、不鏽鋼或對所提及之鹼金屬具有耐受性的其他金屬。
如例如圖1中所示(元件符號8),變體1中之陰極空間始於一端封閉之圓柱形固體電解質管之外表面,且在外部以例如鋼、不鏽鋼、鍍鉻鋁或其他材料(較佳為耐腐蝕材料)之外殼為界。
如上所述,施加至一端封閉之圓柱形固體電解質管之外表面的首先為非電子導電中間層S,且在非電子導電中間層S之上施加多孔固態電極,例如圖1中元件符號2(多孔固態電極)及元件符號7(非電子導電中間層S)所展示。
變體1中之熔融陰極材料係選自(A)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4;或(B)選自(A)之聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物;或(C)Na2S與元 素硫及/或(A)或(B)中提及之聚硫化物Na2Sx之混合物。
變體1中之較佳熔融陰極材料為單獨元素硫或與以上提及之聚硫化物Na2Sx中之一或多者的組合。
熔融陰極材料及熔融陽極材料兩者典型地以導電方式與電路連接。
變體1被稱為「中心鈉電池」,其中鈉陽極材料在固體電解質內且上文在變體1中所述的熔融陰極材料圍繞固體電解質。
本發明鈉-硫電池之另一變體(變體2)具有與變體1幾乎相同的結構,但陰極空間以及熔融陰極材料(後者如針對變體1所述)在固體電解質內部,典型地不具有置換器。在變體2中,陽極空間以及熔融鈉圍繞固體電解質且以金屬外殼為界。變體2被稱為「中心硫電池」。
在本發明之上下文中,較佳為變體1,亦即中心鈉電池。
本發明電化學裝置典型地在300℃至400℃範圍內之溫度下操作。
本發明電化學裝置(較佳為變體1之電化學裝置)典型地為蓄電池,但其亦可用作電解池。
若本發明電化學裝置用作電解池,則鹼金屬硫化物Met2S及/或鹼金屬聚硫化物Met2Sx(視情況與元素硫組合)典型地首先裝填於陰極空間中,其中各者如本文中所描述及定義。固體電解質對於相應鹼金屬離子具有離子電導性,且陽極空間與陰極空間以導電方式經由電路連接。
整合於電路中之電壓源典型地傳送電流通過本發明電化學裝置,且在陰極空間中將鹼金屬硫化物Met2S及/或鹼金屬聚硫化物Met2Sx 分解成相應元素鹼金屬,同時硫沈積於陽極空間中,其中Met2S及Met2Sx如本文中所定義及描述,較佳地其中作為鹼金屬之Met=鋰、鈉、鉀。
本發明亦提供用於如本文中所定義之電化學裝置之首次充電的方法,其包含首先用呈熔融物形式之聚硫化物化合物(I)裝填熔融陰極材料空間,該聚硫化物化合物(I)包含:(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀、尤其選自鈉之所要鹼金屬陽極材料之鹼金屬,且x視鹼金屬而定且對於Na而言為2、3、4或5、較佳為3、4或5、尤其為4,且對於Li而言為2、3、4、5、6、7、8、較佳為3、4、5、6、7或8,且對於K而言為2、3、4、5、6、較佳為3、4或5、尤其為5,或(B)選自(A)之同一鹼金屬之聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物,或(C)特定鹼金屬硫化物Met2S與元素硫及/或(A)或(B)中提及之聚硫化物Met2Sx之混合物;及另外在熔融陽極材料空間中安裝電子導電裝置,其安裝方式為使其至少在下部區域中接觸固體電解質面向該陽極材料之表面,使陰極空間及陽極空間與電路連接且傳送電流通過此電化學裝置,使得該聚硫化物化合物(I)發生電解分解,在該陰極空間中形成元素硫且在該陽極空間中形成金屬性鹼金屬。
在本發明電化學裝置作為蓄電池操作的情況下,如本文中所述安裝於容納熔融鹼金屬陽極材料之空間中的為電子導電裝置,其安裝方式為使得其至少在下部區域中接觸固體電解質面向陽極材料之表面且建立電接觸。此裝置可為例如上述置換器,其具有安裝於其表面之至少一部分上的導電、典型地具金屬性、彈性的元件(例如由不鏽鋼或鋁製成),此等元件與固體電解質之內表面接觸。
固體電解質對於聚硫化物化合物(I)之相應鹼金屬離子具有離子電導性。
陽極空間與陰極空間以導電方式經由電路連接,使得整合於電路中之電壓源傳送電流通過本發明電化學裝置,從而使得聚硫化物化合物(I)發生電解分解,在陰極空間中形成元素硫且在陽極空間中形成金屬性鹼金屬、較佳形成鈉。從而,典型地將電化電池充電。
本發明電化學裝置之首次充電及後續操作典型地在300℃至400℃範圍內之溫度下進行。
以此方式首次充電之本發明電化學裝置可隨後充當蓄電池且釋放電能送至消費者。在其已放電後,其可如上所述反覆再充電。
用於供首次充電用之方法的較佳電化學裝置為作為變體1之上述本發明鈉-硫電池,其展示於例如圖1中。用於電化學裝置首次充電之此較佳方法如上所述進行,但具有以下差異:固體電解質為如上所述之一端封閉之圓柱形管,其由β-氧化鋁構成。
陽極空間在一端封閉之圓柱形管內部,其中熔融鹼金屬陽極材料鈉在電池充電過程中產生。
電子導電裝置係以同軸形式配置於一端封閉之圓柱形管內,該裝置呈實心或空心圓柱體形式(「置換器」,圖1中之元件符號1),尺寸類似於、但小於一端封閉之圓柱形管之尺寸,從而在固體電解質內壁與置換器外壁之間形成環形間隙,且置換器至少在下部區域中,在至少一個點處,例如經由彈性元件接觸固體電解質之內表面,從而形成電接觸。 置換器典型地由金屬製造,例如鋁、鋼、不鏽鋼或對所提及之鹼金屬具有耐受性的其他金屬。
如例如圖1中(元件符號8)所示,變體中之陰極空間始於一端封閉之圓柱形管之外表面,且在外部以例如鋼、不鏽鋼、鍍鉻鋁或其他材料(較佳為耐腐蝕材料)之外殼為界。
如上文所述,施加至一端封閉之固體電解質圓柱形管之外表面的首先為非電子導電中間層S,且在非電子導電中間層S之上施加多孔固態電極,例如圖1中元件符號2(多孔固態電極)及元件符號7(非電子導電中間層S)所展示。
熔融陰極材料係選自(A)純聚硫化物Na2Sx,其中x=2、3、4或5、較佳3、4或5、尤其4;或(B)選自(A)之聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物;或(C)Na2S與元素硫及/或(A)或(B)中提及之聚硫化物Na2Sx之混合物。較佳熔融陰極材料為以上提及之組分(A)或(B)。
熔融陰極材料及熔融陽極材料兩者以導電方式與電路連接。
本申請案亦提供非電子導電中間層S用於電化學裝置之電極單元中的用途,該裝置包含(i)固體電解質,其分隔熔融陰極材料空間及熔融鹼金屬陽極材料空間;及(ii)多孔固態電極,其藉由非電子導電中間層S與固體電解質分隔,其中中間層S在電化學裝置首次充電前已由形成鹼金屬陽極材料之鹼金屬之聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀,尤其選自鈉之鹼金屬陽極材料之鹼金屬,且x視相關鹼金屬而定且對於Na而言為2、3、4或5、較 佳為3、4或5、尤其為4,且對於Li而言為2、3、4、5、6、7、8、較佳為3、4、5、6、7或8且對於K而言為2、3、4、5、6、較佳為3、4或5、尤其為5,或(B)選自(A)之一種鹼金屬與相同鹼金屬之聚硫化物彼此間的混合物。
本發明之優點為:在固體電解質破裂或受損情況下,尤其在電池組充電狀態下,本發明電化學裝置防止或減少液態鈉與液態硫直接接觸(例如在諸如300℃至400℃之高溫下及尤其直接在固體電解質之破裂或受損部位直接接觸)、發生較強放熱反應,該放熱反應引起例如硫突然汽化及電池中之壓力迅速增大,導致電池損壞或毀壞及其內含物釋放,該內含物可與周圍氛圍劇烈反應且因此最終將損壞或毀壞其他電池或甚至整個電池組;同時完整本發明電化學裝置之內部電阻仍保持較低,不論非電子導電中間層S。
1‧‧‧置換器主體
2‧‧‧多孔固態電極
3‧‧‧固體電解質
4‧‧‧陰極空間
5‧‧‧陽極空間
6‧‧‧集電體
7‧‧‧中間層S
8‧‧‧電池外殼
圖1展示非常適用於本發明電極單元及本發明電化學裝置之具體實例,
實施例 實施例1:用於比較
在充電狀態下,故意毀壞不具有中間層S之鈉-硫電池
標準鈉-硫電池(「中心鈉電池」)由圓柱形固體電解質構築,該圓柱形固體電解質由β"-氧化鋁構成,在底部封閉且具有5.6cm之內徑、0.2cm之壁厚及50cm之長度,其中在軸向中心位置安置由1.4404不鏽鋼(直 徑5.5cm,長度45.5cm)製成之實心圓柱形置換器主體,在置換器主體外表面與固體電解質內表面之間形成環形間隙,該環形間隙為陽極空間。直接位於固體電解質該外表面上的為5mm厚之石墨氈電極層及用於與此電極產生電接觸之裝置,亦即集電體。此電極單元/固體電解質容納於內徑為10.8cm、由不鏽鋼製成之圓柱形金屬外殼中之幾乎軸向的中心位置,且固體電解質外表面與金屬外殼之間的空間為陰極空間。
將電池加熱至300℃。藉助於真空泵抽空陰極空間且隨後用約5kg熔融液態硫填充。陽極空間不處於減壓下且經由溢流系統裝填45g來自外部儲集容器之熔融鈉。溫度及壓力之量測點配置於陰極空間中之不同點處。在金屬外殼之基底處安裝T形管線,在其垂直支路中具有在10巴表壓下爆裂之爆裂盤。可切斷的管線水平支路係用於向陰極空間填充硫。
液壓泵用以將在該等條件下相對於鈉幾乎為惰性之高沸點油抽入已幾乎完全充滿液態鈉之陽極空間,且因此壓力亦施加於固體電解質之內表面上。在約80巴壓力下,固體電解質因破裂而受到毀壞。當固體電解質破裂時,鈉及硫直接接觸且發生劇烈反應而形成熱及壓力。
在固體電解質破裂後,電池上部中之溫度在第一秒內上升至超過1200℃。電池中之一些點處的溫度突然上升致使如此大量的硫在幾毫秒內汽化,產生10巴之局部壓力。因此,在第一秒期間電池內之總壓力達到至少11巴,其為使爆裂盤爆裂之壓力。
實施例2:本發明
在充電狀態下,故意毀壞具有中間層S之鈉-硫電池
實驗配置類似於實施例1,但在固體電解質之外表面上具有 1mm厚之纏結狀多晶氧化鋁纖維層,其可以Saffil®紙購自Saffil。此層與5mm厚之石墨氈電極層直接接合,此接合由與此電極產生電接觸之裝置提供。
將電池加熱至300℃。藉助於真空泵使陰極空間達到約20毫巴(絕對值)之壓力且隨後裝填約5kg熔融液態Na2S5(五硫化二鈉),且因此中間層S及多孔固態電極經Na2S5浸漬。在填充有氮氣之陽極空間中,初始(在實驗開始時)不存在鈉;隨後藉由傳送電流通過電池且電化學分解五硫化二鈉而將其填充鈉。以此方式,將電池充電。
溫度及壓力之量測點配置於陰極空間中之不同點處。將電池充電達至80%,亦即在開始時所引入之80%五硫化二鈉(Na2S5)經電化學轉化成元素鈉及元素硫。
隨後如上文在實施例1中所述,藉由80巴之液壓毀壞固體電解質,且觀測到的反應不太劇烈。
電池內之溫度在幾分鐘期間逐漸升高且在幾個點處僅上升至約470℃。電池內之壓力在一分鐘內僅上升0.6巴(絕對值),且爆裂盤保持完整。電池內之壓力增加仍在鈉-硫電池之正常操作壓力範圍內。
此實驗展示中間層S在鈉-硫電池之固體電解質毀壞時防止不可控制及爆炸性的反應,且因此提高此類電池之安全性。
1‧‧‧置換器主體
2‧‧‧多孔固態電極
3‧‧‧固體電解質
4‧‧‧陰極空間
5‧‧‧陽極空間
6‧‧‧集電體
7‧‧‧中間層S
8‧‧‧電池外殼

Claims (10)

  1. 一種電化學裝置用的電極單元,包含(i)固體電解質,其分隔選自由元素硫及鹼金屬陽極材料之聚硫化物組成之群的熔融陰極材料空間及熔融鹼金屬陽極材料空間;及(ii)多孔固態電極,其位於該陰極材料空間內且直接與該固體電解質鄰接,在該固態電極與該固體電解質之間存在非電子導電中間層S,其中此中間層S在電化學裝置首次充電前已由聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之該鹼金屬陽極材料之鹼金屬,且x視該鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之該等聚硫化物彼此間的混合物。
  2. 如申請專利範圍第1項之電極單元,其中該中間層S之厚度在0.5mm至5mm範圍內。
  3. 如申請專利範圍第1項或第2項之電極單元,其中該非電子導電中間層S之基體為選自氧化鋁(Al2O3)、二氧化矽、鋁與矽之混合氧化物、矽酸鹽及鋁矽酸鹽之纖維的扁平結構。
  4. 如申請專利範圍第1項或第2項之電極單元,其中該固體電解質為一端封閉之圓柱形成形體。
  5. 如申請專利範圍第3項之電極單元,其中該固體電解質為一端封閉之圓柱形成形體。
  6. 一種電化學裝置,其包含如申請專利範圍第1項至第5項所定義之電極單元。
  7. 如申請專利範圍第6項之電化學裝置,其中該電化學裝置為鈉-硫電池。
  8. 一種用於製造如申請專利範圍第1項至第5項中所定義之電極單元中之非電子導電中間層S的方法,其包含使形成該非電子導電中間層S之多孔起始材料經受小於1標準大氣壓之壓力;及將其用形成鹼金屬陽極材料之鹼金屬之熔融聚硫化物組成物浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之該鹼金屬陽極材料之鹼金屬,且x視該鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之該等聚硫化物彼此間的混合物。
  9. 一種用於如申請專利範圍第6項及第7項中所定義之電化學裝置之首次充電的方法,其包含首先用呈熔融物形式之聚硫化物化合物(I)裝填熔融陰極材料空間,該聚硫化物化合物(I)包含:(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之該所要鹼金屬陽極材料之鹼金屬,x視該鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之該等聚硫化物彼此間的混合物及/或在各情況下與元素硫的混合物,或(C)特定鹼金屬硫化物Met2S與元素硫及/或(A)或(B)中提及之該等聚硫化物Met2Sx的混合物;及另外在該熔融陽極材料空間中安裝電子導電裝置,其安裝方式為使其至少在下部區域中接觸固體電解質面向該陽極材料之表面,使陰極空間及陽極空間與電路連接,且傳送電流通過此電化學裝置,使得該聚硫化物化合物(I)發生電解分解,在該陰極空間中形成元素硫且在該陽極空間中形成金屬性鹼金 屬。
  10. 一種非電子導電中間層S用於電化學裝置之電極單元中的用途,該電化學裝置包含(i)固體電解質,其分隔如申請專利範圍第1項中所定義之熔融陰極材料空間及熔融鹼金屬陽極材料空間;及(ii)多孔固態電極,其藉由非電子導電中間層S與該固體電解質分隔,其中該非電子導電中間層S在該電化學裝置首次充電前已由形成該鹼金屬陽極材料之該鹼金屬之聚硫化物組成物完全浸漬,該組成物包含(A)純聚硫化物Met2Sx,其中Met=選自鋰、鈉、鉀之該鹼金屬陽極材料之鹼金屬,x視該鹼金屬而定且對於Na而言為2、3、4或5且對於Li而言為2、3、4、5、6、7、8且對於K而言為2、3、4、5、6,或(B)選自(A)之同一鹼金屬之該等聚硫化物彼此間的混合物。
TW104103862A 2014-02-07 2015-02-05 電化學裝置用的電極單元 TWI711200B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14154255 2014-02-07
EP14154255.5 2014-02-07

Publications (2)

Publication Number Publication Date
TW201539837A true TW201539837A (zh) 2015-10-16
TWI711200B TWI711200B (zh) 2020-11-21

Family

ID=50064493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103862A TWI711200B (zh) 2014-02-07 2015-02-05 電化學裝置用的電極單元

Country Status (13)

Country Link
US (1) US10629959B2 (zh)
EP (1) EP3103157B1 (zh)
JP (1) JP6671291B2 (zh)
KR (1) KR102355603B1 (zh)
CN (1) CN106165185B (zh)
AU (1) AU2015215105B2 (zh)
BR (1) BR112016018080B1 (zh)
CA (1) CA2938903C (zh)
ES (1) ES2829924T3 (zh)
PT (1) PT3103157T (zh)
SG (1) SG11201606500WA (zh)
TW (1) TWI711200B (zh)
WO (1) WO2015117870A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182480A1 (de) * 2015-12-14 2017-06-21 Basf Se Vorrichtung zur speicherung elektrischer energie sowie verfahren zu deren montage und inbetriebnahme und zu deren betrieb
EP3203573A1 (de) * 2016-02-03 2017-08-09 Basf Se Elektrochemische zelle und vorrichtung zur speicherung elektrischer energie umfassend mindestens zwei elektrochemische zellen
TWI782162B (zh) * 2018-01-16 2022-11-01 德商巴斯夫歐洲公司 以多硫化物浸漬的多孔材料製造的鑄模的生產方法
WO2019170074A1 (en) * 2018-03-08 2019-09-12 Yi Cui Solid electrolyte-based molten lithium electrochemical cells
CN116344832A (zh) * 2023-05-31 2023-06-27 中国华能集团清洁能源技术研究院有限公司 一种复合集流体及其制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2110813A5 (zh) 1970-10-30 1972-06-02 Comp Generale Electricite
FR2309051A1 (fr) 1975-04-24 1976-11-19 Comp Generale Electricite Generateur electrochimique sodium-soufre
IT1066389B (it) * 1976-01-30 1985-03-04 Ford Motor Co Cella o batteria elettrica secondaria con elettrodo a polisolfuro bagnabile
US3993503A (en) * 1976-01-30 1976-11-23 Ford Motor Company Secondary battery or cell with composite electrode
JPS60235368A (ja) * 1984-05-08 1985-11-22 Yuasa Battery Co Ltd ナトリウム−硫黄電池
JP2664161B2 (ja) * 1987-09-30 1997-10-15 株式会社日立製作所 ナトリウム−硫黄電池
JPH01221869A (ja) 1988-02-29 1989-09-05 Ngk Insulators Ltd 多素繊維体への硫黄の含浸方法
EP0421159A1 (en) 1989-10-03 1991-04-10 Hughes Aircraft Company Sodium-sulfur thermal battery
US4968568A (en) * 1989-10-03 1990-11-06 Hughes Aircraft Company Thermal battery with composite anode
JPH0665074B2 (ja) 1990-07-19 1994-08-22 日本碍子株式会社 ナトリウム一硫黄電池用正極の製造方法および製造装置
JP2772408B2 (ja) 1992-08-20 1998-07-02 株式会社日立製作所 ナトリウム溶融塩電池
JP3417985B2 (ja) 1993-09-24 2003-06-16 株式会社日立製作所 ナトリウム−硫黄電池
JPH0896844A (ja) 1994-09-28 1996-04-12 Hitachi Ltd ナトリウム−硫黄電池
JP3193319B2 (ja) 1997-03-24 2001-07-30 日本碍子株式会社 ナトリウム−硫黄電池
JPH11329484A (ja) 1998-05-07 1999-11-30 Hitachi Ltd ナトリウム−硫黄2次電池
JP2002008712A (ja) 2000-06-20 2002-01-11 Hitachi Ltd ナトリウム硫黄電池及びそれを用いたモジュール
JP2003178798A (ja) * 2001-12-10 2003-06-27 Hitachi Ltd ナトリウム硫黄電池
JP4289948B2 (ja) 2003-08-25 2009-07-01 日本碍子株式会社 ナトリウム−硫黄電池
JP2005122948A (ja) 2003-10-15 2005-05-12 Hitachi Ltd ナトリウム硫黄電池
JP2005197139A (ja) 2004-01-09 2005-07-21 Hitachi Ltd ナトリウム硫黄電池
DE102004010892B3 (de) 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemisch stabiler fester Lithiumionenleiter
EP1723080B1 (de) 2004-03-06 2014-06-18 Basf Se Chemisch stabiler fester lithiumionenleiter
GB2421238A (en) 2004-12-16 2006-06-21 Basf Ag Solid polycrystalline potassium ion conductor having beta-alumina structure
DE102007030604A1 (de) 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
CN103270624A (zh) * 2010-08-24 2013-08-28 巴斯夫欧洲公司 用于在电化学电池中使用的电解质材料
JP2014505980A (ja) * 2011-01-13 2014-03-06 ビーエーエスエフ ソシエタス・ヨーロピア リチウム−硫黄電池用の電極を製造する方法
EP2661781A1 (de) * 2011-02-14 2013-11-13 Basf Se Elektrodenmaterialien und verfahren zu ihrer herstellung
DE102011120959A1 (de) * 2011-02-19 2012-08-23 Volkswagen Ag Metall-Schwefel-Batteriesystem

Also Published As

Publication number Publication date
KR20160119206A (ko) 2016-10-12
AU2015215105A1 (en) 2016-09-15
PT3103157T (pt) 2020-10-26
BR112016018080B1 (pt) 2022-02-22
SG11201606500WA (en) 2016-09-29
US20160351970A1 (en) 2016-12-01
WO2015117870A1 (de) 2015-08-13
CA2938903C (en) 2022-09-20
TWI711200B (zh) 2020-11-21
CA2938903A1 (en) 2015-08-13
CN106165185A (zh) 2016-11-23
EP3103157A1 (de) 2016-12-14
KR102355603B1 (ko) 2022-01-26
EP3103157B1 (de) 2020-08-12
US10629959B2 (en) 2020-04-21
JP2017505980A (ja) 2017-02-23
CN106165185B (zh) 2020-11-27
BR112016018080A8 (pt) 2019-12-31
ES2829924T3 (es) 2021-06-02
JP6671291B2 (ja) 2020-03-25
AU2015215105B2 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
TWI711200B (zh) 電化學裝置用的電極單元
US3679480A (en) Electrical cell assembly
KR101908322B1 (ko) 나트륨 이온 전도성 세라믹 분리판을 갖는 고체-상태 나트륨계 2차 전지
US4945012A (en) Copper chloride cathode for a secondary battery
KR20170028424A (ko) 리튬 제조
EP3262702A1 (en) Electrochemical cell with bipolar faradaic membrane
AU2008266715A1 (en) Energy storage device and cell configuration therefor
US10601062B2 (en) Sodium metal batteries with intercalating cathode
EP3090457B1 (en) Secondary metal chalcogenide batteries
KR101834726B1 (ko) 나트륨 이차전지
KR20140012109A (ko) 용융염 전지
JP5471905B2 (ja) 溶融塩電池
EP3443143A1 (en) Molten alkali metal-aluminum secondary battery
GB2052135A (en) Salt composition cable as a fused electrolyte in accumulators
CN106711464B (zh) 一种多管式钠硫电池
JPH0680593B2 (ja) アルカリ金属―硫黄電池
US10665902B2 (en) Magnesium and beta alumina current collector
US20150372352A1 (en) Electrochemical cells