TW201343935A - 沃斯田鐵型合金 - Google Patents

沃斯田鐵型合金 Download PDF

Info

Publication number
TW201343935A
TW201343935A TW102101449A TW102101449A TW201343935A TW 201343935 A TW201343935 A TW 201343935A TW 102101449 A TW102101449 A TW 102101449A TW 102101449 A TW102101449 A TW 102101449A TW 201343935 A TW201343935 A TW 201343935A
Authority
TW
Taiwan
Prior art keywords
alloy
present
alloys
content
ductility
Prior art date
Application number
TW102101449A
Other languages
English (en)
Other versions
TWI551699B (zh
Inventor
Guo Cai Chai
Jan Hoegberg
Sofia Aekesson
Urban Forsberg
Original Assignee
Sandvik Intellectual Property
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property filed Critical Sandvik Intellectual Property
Publication of TW201343935A publication Critical patent/TW201343935A/zh
Application granted granted Critical
Publication of TWI551699B publication Critical patent/TWI551699B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

本發明揭示一種沃斯田鐵型合金,其包含(以重量%計):C:0.01-0.05 Si:0.05-0.80 Mn:1.5-2 Cr:26-34.5 Ni:30-35 Mo:3-4 Cu:0.5-1.5 N:0.05-0.15 V:≦0.15其餘為Fe及不可避免之雜質,特徵在於40≦%Ni+100*%N≦50。

Description

沃斯田鐵型合金
本發明係關於根據申請專利範圍第1項之前言的沃斯田鐵型合金。本發明亦係關於包含本發明之沃斯田鐵型合金的用於燃燒設備之構件。
基於生質燃燒的發電被視為可持續性及碳中和的,且正成為愈加重要之能量來源。
生質燃燒之問題係在於所用廣泛範圍之生質燃料的燃燒產物具有腐蝕性且會造成在生質發電設備中之構件上的沈積。尤其遭影響的是生質發電設備中以及習知蒸汽鍋爐中的過熱器、再熱器及蒸發器。生質發電設備之另一個問題在於構件中的材料因發電設備中之高溫及高壓而開始潛變。如今,生質設備係於150-200巴(bar)之壓力及500-550℃之溫度下操作。今後,生質發電設備之溫度預期將甚至高於如今的溫度,達到600-650℃。此將對發電設備之結構部件的耐熱腐蝕性及潛變強度提出甚至更高要求。
已試圖提高鋼之耐腐蝕性。舉例而言,US4876065及WO0190432描述經設計用於石油及天然氣工業中腐蝕性環境中的鋼。
研究已進一步顯示,具有高Mo含量之沃斯田鐵型不銹鋼展 示良好的耐高溫腐蝕性:James R.Keisler,Oak ridge National laboratory,NACE Corrosion 2010,第10081期。
然而,此等鋼不呈現適用於生質發電設備的必要潛變強度。
因此,本發明之一個目標係在於獲得呈現高耐腐蝕性及高潛變強度之沃斯田鐵型合金。本發明之一個目標亦為獲得用於包含本發明合金的蒸汽鍋爐設備之構件。
根據本發明,由包含以下(以重量%計)之沃斯田鐵型合金達成此目標:C:0.01-0.05
Si:0.05-0.80
Mn:1.5-2
Cr:26-34.5
Ni:30-35
Mo:3-4
Cu:0.5-1.5
N:0.05-0.15
V:0.15
其餘為Fe及不可避免之雜質,特徵在於40%Ni+100*%N50
本發明之沃斯田鐵型合金具有良好的耐高溫腐蝕性,尤其是良好的耐火側腐蝕性。藉由平衡合金中鎳與氮之添加以致滿足條件40%Ni +100*%N50,從而在合金中進一步達成高潛變強度及高延展性。良好的耐高溫腐蝕性以及高潛變強度使得本發明之沃斯田鐵型合金極適於用作蒸汽鍋爐中結構部件之材料。本發明合金尤其適用於在處於高溫及壓力下之腐蝕性條件下操作的生質發電設備中。
較佳地,該沃斯田鐵型合金滿足以下要求:40%Ni+100*%N45。該合金即呈現極佳的潛變強度及高延展性。當該材料在蒸汽鍋爐中使用時是有利的,因為其允許在鍋爐啟動及停爐期間材料之高熱塑性膨脹及收縮。因此,該材料可經受循環加熱及冷卻而不會裂開。
較佳地,矽(Si)在沃斯田鐵型合金中之含量為0.3-0.55 wt%。由於脆性σ相(sigma phase)之最低程度形成及含氧夾雜物之最低程度形成,進而在合金中達成極高潛變強度。
較佳地,碳(C)在該沃斯田鐵型合金中之含量為0.01-0.018 wt%,以使耐腐蝕性最佳化。
本發明亦係關於包含本發明之沃斯田鐵型合金的用於燃燒設備,較佳為用於生質發電設備或生質蒸汽鍋爐之構件。
該構件可為例如過熱器或再熱器或蒸發器,較佳為該過熱器、再熱器或蒸發器之管道,且其中該構件處於其操作位置時經受煙道氣及高熱。作為一替代例,本發明可因此被定義為燃燒設備,較佳為生質發電設備,該設備包含鍋爐,較佳為生質蒸汽鍋爐,該鍋爐包含構件,較佳為過熱器管、再熱器管或蒸發器管,該構件配置於該鍋爐中且經受在該鍋爐操作期間由該鍋爐產生之煙道氣及熱,其中該構件包含根據本發明之合金。
圖1:關於合金組成之表。
圖2:展示本發明合金及比較合金在600℃下之潛變測試之結果的圖。
圖3:展示本發明合金及比較合金在650℃下之潛變測試之結果的圖。
本發明之沃斯田鐵型合金包含以下合金元素:
碳(C)
碳為沃斯田鐵穩定元素且應因此以至少0.01 wt%之量包括於本發明合金中。碳對於藉由形成碳氮化物使材料之潛變強度提高而言更為重要。然而,在鉻存在下,碳形成碳化鉻,從而增大晶粒間腐蝕之風險。高碳含量進一步降低可焊接性。為使碳化鉻之形成減至最低且為了確保良好的可焊接性,碳含量不應超過0.05 wt%。為更進一步抑制碳化鉻之形成,碳含量較佳應在0.01-0.018 wt%之範圍內。
矽(Si)
矽係用作鋼生產中的去氧元素。然而,高矽含量對可焊接性有害。為確保鋼中之低氧含量且進而幾乎沒有夾雜物,矽含量應為至少0.05 wt%。然而,矽含量不應超過0,80 wt%,從而確保鋼之可焊接性。已發現,當矽含量在0.30-0.55 wt%之範圍內時,在本發明合金中達成極高的潛變強度。咸信當矽含量超過0.55 wt%時,σ相之形成增加。σ相降低本發明合金之延展性且由此亦降低潛變強度。低於0.30 wt%時,潛變強度因含氧夾雜物形成之增加而降低。
錳(Mn)
錳如同Si一樣,為去氧元素,且其亦有效改良熱加工性。需要限制錳的最大含量以控制本發明合金於室溫下之延展性及韌性。因此,錳含量應在1.50-2.0 wt%之範圍內。
鉻(Cr)
鉻為有效提高耐火側腐蝕性及耐蒸汽氧化性之元素。為達成足夠的耐熱腐蝕性以便用作例如生質燃燒發電設備中之鍋爐管,需要至少26%之鉻含量。然而,若鉻高於34.5%,則鎳含量必須進一步增加,因為較高Cr含量會增大形成諸如σ相之金屬間相的風險。鉻含量因此應在26.0 wt%-34.5 wt%之區間內。在本發明之情況下,極佳材料性質係以26.0-29.0 wt%範圍內之鉻含量獲得,因此該範圍被視為較佳範圍或至少為達成本發明之技術效果的甚至更有限之範圍。
鎳(Ni)
鎳為出於確保本發明合金中之穩定沃斯田鐵結構以便抑制如σ相之金屬間相形成之目的的必需元素。σ相為硬質及脆性的金屬間相,其具有鉻及鉬且在高溫下形成。σ相對鋼之延展性及伸長性具有消極衝擊。藉由使合金中的沃斯田鐵相穩定,σ相之形成得以最少化。鎳因此對於確保鋼具有足夠延展性及伸長性而言很重要。鎳亦對本發明合金之耐腐蝕性具有積極作用,因為其促進鈍化Cr氧化物薄膜形成,該薄膜抑制氧化物進一步生長,從而抑制(s c.)結垢。鎳含量在本發明合金中應為至少30 wt%,以便確保結構穩定性、耐腐蝕性及延展性。然而,鎳為相對較昂貴之合金元素且為了維持低生產成本,鎳含量應受到限制。鎳進一步降低 合金中氮之溶解性且因此鎳含量不應超過35 wt%。
鉬(Mo)
鉬被納入本發明合金中以提高鍋爐管火側之耐熱腐蝕性。添加Mo進一步提高本發明合金之總體耐腐蝕性。然而,Mo為昂貴的元素且促使σ相沈澱並因此招致鋼之韌性退化。為確保鋼之良好耐熱腐蝕性,鉬含量應為至少3 wt%。為避免σ相沈澱,鉬之上限為4 wt%。
銅(Cu)
添加銅可藉由沈澱富銅相(copper rich phase)來提高潛變強度,該富銅相細微且均勻地沈澱於基體中。然而,過量之銅造成可加工性降低。高含量之銅亦使得延展性及韌性降低。因此,銅在本發明合金中之含量應在0.5-1.5 wt%之區間內。在本發明之情況下,尤其良好的結果係以0.8-1.2 wt%範圍內之銅含量獲得,該範圍至少由於此原因而被視為較佳範圍或至少為達成本發明之技術效果的甚至更有限之範圍。
氮(N)
氮對沃斯田鐵結構具有強穩定作用且因此減少σ相之形成。此情況對鋼之延展性具有積極作用。在本發明合金中,氮之主要作用係在於與碳一起形成碳氮化物形式之沈澱。小的碳氮化物粒子通常在鋼之晶粒邊界處沈澱且中止鋼之晶粒內差排之傳播。此極大地提高鋼之耐潛變性。氮含量在本發明合金中應為至少0.05 wt%,從而確保穩定的沃斯田鐵結構且形成足量碳氮化物。然而,若存在大量的氮,則會出現氮化物之主要沈澱,從而降低本發明合金之延展性及韌性。因此,氮在本發明合金中之含量應限制為0.15 wt%。
釩(V)
添加釩、鈦或鈮係經由MX相之沈澱促使改良潛變斷裂強度。然而,過量之釩會降低焊接性及熱加工性。因此本發明合金允許之釩量為0.15 wt%。
磷(P)及硫(S)
磷及硫通常以在本發明合金之原材料中的雜質形式納入且在含量高時將引起焊縫裂開。因此,磷不應超過0.035%。硫不應超過0.005%。
要求:40%Ni+100*%N50
在本發明合金中,鎳含量與氮含量應保持平衡以滿足以下要求:40%Ni+100*%N50。已證實,在此區間內達成極良好的潛變強度及延展性。咸信良好的潛變強度為鎳與氮之增效作用的結果。較佳地,鎳含量與氮含量應保持平衡以滿足以下要求:40%Ni+100*%N45。
如上所述,氮形成碳氮化物,其藉由提高合金之潛變應變來增強潛變強度。然而,潛變強度受任何脆性相(諸如σ相)的消極影響。添加鎳及氮抑制鋼中σ相之形成且由此提高合金之斷裂伸長率或延展性。此將減小應力集中及可能的裂紋萌生及傳播。因此,此情況使得潛變強度提高。
實施例
在下文中,本發明合金將參考具體實施例來描述。
藉由習知鋼製造方法製備10份熱鋼材(steel heat)。個別熱鋼材之組成展示於表1中。製備熱材所依據的習知冶金製程如下:藉由AOD方法熔融-熱軋-擠壓-冷變形(cold pilgring/cold deformation)-溶液退火-水淬 火。熱擠壓之後的中空棒狀材料接著以40與80%之間的冷變形量進行冷變形,隨後取決於尺寸而在1050至1180℃之溫度下進行溶液退火。下表展示詳情。
合金1、7至9為比較樣品且含有相對較低濃度之氮。合金2、3及10為比較樣品且含有相對較高之氮濃度。合金4至6為滿足以下要求之本發明樣品:40%Ni+100*%N50。合金1及10之矽含量低。
製備各熱鋼材之測試樣品。樣品經受潛變測試以測定其潛變性質。潛變測試在兩個不同溫度:600℃及650℃下,藉由對各樣品施加恆定應力並測定各樣品之斷裂時間及斷裂伸長率來執行。斷裂伸長率為直至斷裂為止的長度增加率,以各樣品標稱長度之百分比表示。施加的應力等於合金之潛變斷裂強度。潛變斷裂強度係定義為將在給定溫度下在給定時間內引起材料斷裂之應力。
根據習知測試方法執行潛變測試且習知數學模型用於外推結果。
圖2展示與比較合金1、7及9之潛變強度相比,本發明合金4至6在600℃下之潛變強度。圖3展示與比較合金1、8及9相比,本發明合金4至6在650℃下之潛變強度。由圖1及圖2清晰可見,本發明合金在給定潛變應力下展示比比較合金更長的斷裂時間。
來自潛變測試之一些其他結果展示於表2及3中。
表2展示在600℃下各合金之斷裂時間及潛變強度或施加應力。表2進一步展示斷裂伸長率,亦即直至斷裂為止的長度增加率,以各樣品標稱長度之百分比表示。
由測試結果可得出結論:當考慮到潛變強度(亦即施加應力)之量值時,本發明合金4至6展示最長斷裂時間。合金4展示在160 MPa 之施加應力下117561小時之峰值。合金4至6更展示極高斷裂伸長率。
咸信合金4至6中之長斷裂時間結果係取決於添加之氮與鎳之增效作用。添加氮藉由間隙溶液強化且亦藉由因形成碳氮化物所致的沈澱加強而延長斷裂時間。在材料中沈澱的密集的小碳氮化物有效阻止在合金材料之晶粒間的差排移動且因此提高抗變形性。添加鎳以及氮抑制消極影響延展性的諸如σ相之金屬間相之形成,且因此提高材料之延展性。提高的延展性減少應力集中,減少裂紋萌生及裂紋傳播。此等性質之增效作用產生極高的潛變強度。
在表2及3中以斷裂伸長率表示的高延展性在材料於蒸汽鍋爐中使用時更有利,因為其允許在鍋爐啟動及停爐期間材料之高熱塑性膨脹及收縮。因此,材料可經受循環加熱及冷卻而不會裂開。
比較合金1至3、9及10具有相對較高的斷裂伸長率,參見例如比較合金2及3,其分別呈現71%及72%之斷裂伸長率。然而,此等合金呈現比本發明合金更短的斷裂時間。咸信在合金1至3、9及10中的斷裂時間較短係歸因於此等合金含有相對較少量之氮。低氮含量使得與本發明合金相比較少碳氮化物在此等材料中沈澱。由於合金1至3、9及10幾乎不含碳氮化物,所以差排可更容易地在此等材料間移動。此又造成材料之較高應變率,亦即材料變形加快。
比較合金7及8呈現相當高的抗潛變性,以在給定施加應力下的較長斷裂時間來表示。然而,應注意,此等合金之較長斷裂時間係在較低應力(亦即150 MPa)下測定,相比而言,本發明合金係在160 MPa之應力下評估。因此,比較合金7及8之斷裂時間比本發明合金4及6之斷裂 時間短。咸信合金7及8之短斷裂時間係由金屬間相沈澱所誘導之脆性造成。如表2中所示,合金7及8分別具有僅38%及46%之斷裂伸長率。
表3展示在650℃之溫度下在一些所施加負載下的潛變測試結果。
表3展示本發明合金4至6具有比比較合金更佳之潛變性質,以斷裂時間、潛變強度及斷裂伸長率表示。所有合金在650℃下之延展性(亦即斷裂伸長率)與在600℃下之延展性相比較低。延展性之降低係因以下事實造成:在較高溫度下形成較多沈澱及在較高溫度下晶粒生長較快。

Claims (6)

  1. 一種沃斯田鐵型合金,其包含(以重量%計):C:0.01-0.05 Si:0.05-0.80 Mn:1.5-2 Cr:26-34.5 Ni:30-35 Mo:3-4 Cu:0.5-1.5 N:0.05-0.15 V:0.15其餘為Fe及不可避免之雜質,特徵在於40%Ni+100*%N50。
  2. 如申請專利範圍第1項之沃斯田鐵型合金,其中40%Ni+100*%N45。
  3. 如前述申請專利範圍中任一項之沃斯田鐵型合金,其中Si:0.3-0.55。
  4. 如前述申請專利範圍中任一項之沃斯田鐵型合金,其中C:0.01-0.018。
  5. 一種用於燃燒設備之構件,特徵在於該構件包含如申請專利範圍第1至4項中任一項之沃斯田鐵型合金。
  6. 如申請專利範圍第5項之用於燃燒設備之構件,其中該構件為過熱 器或再熱器或蒸發器。
TW102101449A 2012-01-18 2013-01-15 沃斯田鐵型合金 TWI551699B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12151566.2A EP2617858B1 (en) 2012-01-18 2012-01-18 Austenitic alloy

Publications (2)

Publication Number Publication Date
TW201343935A true TW201343935A (zh) 2013-11-01
TWI551699B TWI551699B (zh) 2016-10-01

Family

ID=47844258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102101449A TWI551699B (zh) 2012-01-18 2013-01-15 沃斯田鐵型合金

Country Status (15)

Country Link
US (2) US9587295B2 (zh)
EP (1) EP2617858B1 (zh)
JP (1) JP6227561B2 (zh)
KR (2) KR102094655B1 (zh)
CN (2) CN104066862A (zh)
CA (1) CA2863508C (zh)
DK (1) DK2617858T3 (zh)
ES (1) ES2543046T3 (zh)
HU (1) HUE026095T2 (zh)
IN (1) IN2014KN01489A (zh)
MX (1) MX337955B (zh)
PL (1) PL2617858T3 (zh)
TW (1) TWI551699B (zh)
UA (1) UA112886C2 (zh)
WO (1) WO2013107763A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617858B1 (en) * 2012-01-18 2015-07-15 Sandvik Intellectual Property AB Austenitic alloy
CN105066096A (zh) * 2015-08-05 2015-11-18 上海锅炉厂有限公司 一种700℃超超临界机组锅炉的集箱
CN108472701B (zh) * 2015-12-30 2020-02-18 山特维克知识产权股份有限公司 生产双相不锈钢管的方法
JP7058601B2 (ja) * 2015-12-30 2022-04-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ オーステナイトステンレス鋼管の製造方法
CN109154038A (zh) 2016-05-20 2019-01-04 山特维克知识产权股份有限公司 包含预氧化的镍基合金的合金体
JP6941003B2 (ja) * 2017-08-17 2021-09-29 日本冶金工業株式会社 Fe−Ni−Cr−Mo合金およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3716665A1 (de) 1987-05-19 1988-12-08 Vdm Nickel Tech Korrosionsbestaendige legierung
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
US5378427A (en) * 1991-03-13 1995-01-03 Sumitomo Metal Industries, Ltd. Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
DE4210997C1 (zh) * 1992-04-02 1993-01-14 Krupp Vdm Gmbh, 5980 Werdohl, De
JP2987732B2 (ja) * 1993-03-25 1999-12-06 新日本製鐵株式会社 熱間圧延で表面疵の発生しないCr−Ni系ステンレス合金の製造方法
JP3534886B2 (ja) * 1995-03-24 2004-06-07 日新製鋼株式会社 耐ポケットウエーブ性に優れたオーステナイト系ステンレス鋼板及びその製造方法
CN1117882C (zh) * 1999-04-19 2003-08-13 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材
SE520027C2 (sv) 2000-05-22 2003-05-13 Sandvik Ab Austenitisk legering
SE525252C2 (sv) * 2001-11-22 2005-01-11 Sandvik Ab Superaustenitiskt rostfritt stål samt användning av detta stål
JP2005023353A (ja) 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd 高温水環境用オーステナイトステンレス鋼
US7028478B2 (en) * 2003-12-16 2006-04-18 Advanced Combustion Energy Systems, Inc. Method and apparatus for the production of energy
EP2682494B1 (en) 2004-06-30 2019-11-06 Nippon Steel Corporation Method for manufacturing an Fe-Ni alloy pipe stock
CN100577844C (zh) * 2005-04-04 2010-01-06 住友金属工业株式会社 奥氏体类不锈钢
KR101121325B1 (ko) * 2006-03-02 2012-03-09 수미도모 메탈 인더스트리즈, 리미티드 내수증기 산화성이 뛰어난 강관 및 그 제조 방법
TW200827483A (en) * 2006-07-18 2008-07-01 Exxonmobil Res & Eng Co High performance coated material with improved metal dusting corrosion resistance
JP4288528B2 (ja) 2007-10-03 2009-07-01 住友金属工業株式会社 高強度Cr−Ni合金材およびそれを用いた油井用継目無管
JP2009167502A (ja) * 2008-01-18 2009-07-30 Daido Steel Co Ltd 燃料電池セパレータ用オーステナイト系ステンレス鋼
JP4462452B1 (ja) 2008-12-18 2010-05-12 住友金属工業株式会社 高合金管の製造方法
US9130199B2 (en) * 2009-07-23 2015-09-08 Jfe Steel Corporation Stainless steel for fuel cell having good corrosion resistance and method for producing the same
AU2012234641B2 (en) * 2011-03-28 2015-01-29 Nippon Steel Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
EP2617858B1 (en) * 2012-01-18 2015-07-15 Sandvik Intellectual Property AB Austenitic alloy

Also Published As

Publication number Publication date
KR20140117417A (ko) 2014-10-07
ES2543046T3 (es) 2015-08-14
PL2617858T3 (pl) 2015-12-31
TWI551699B (zh) 2016-10-01
CA2863508C (en) 2021-05-04
CA2863508A1 (en) 2013-07-25
HUE026095T2 (en) 2016-05-30
EP2617858A1 (en) 2013-07-24
CN104066862A (zh) 2014-09-24
MX2014008621A (es) 2014-08-29
US9587295B2 (en) 2017-03-07
KR20200003246A (ko) 2020-01-08
BR112014017637A2 (zh) 2017-06-20
JP6227561B2 (ja) 2017-11-08
US10487378B2 (en) 2019-11-26
US20140348699A1 (en) 2014-11-27
EP2617858B1 (en) 2015-07-15
DK2617858T3 (en) 2015-10-05
MX337955B (es) 2016-03-29
UA112886C2 (uk) 2016-11-10
WO2013107763A1 (en) 2013-07-25
US20170121796A1 (en) 2017-05-04
BR112014017637A8 (pt) 2017-07-11
JP2015506415A (ja) 2015-03-02
KR102094655B1 (ko) 2020-03-27
IN2014KN01489A (zh) 2015-10-23
CN108517453A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
KR102368928B1 (ko) 고크롬 내열철강
US10487378B2 (en) Austenitic alloy
CN102409257B (zh) 一种奥氏体系耐热钢及其制造方法
WO2018151222A1 (ja) Ni基耐熱合金およびその製造方法
KR20150023935A (ko) 높은 사용 온도에서 우수한 크리프 강도 및 내산화성 및 내식성을 갖는 오스테나이트계 강 합금
JP5838933B2 (ja) オーステナイト系耐熱鋼
US10883160B2 (en) Corrosion and creep resistant high Cr FeCrAl alloys
CN102498225A (zh) Ni基合金材料
JP5846076B2 (ja) オーステナイト系耐熱合金
CN104152818A (zh) 一种双相不锈钢及其制备方法
JPH01275739A (ja) 延性,靭性に優れた低Si高強度耐熱鋼管
JP6547599B2 (ja) オーステナイト系耐熱鋼
JP6955322B2 (ja) 加工性、高温強度および時効後の靱性に優れたオーステナイト系耐熱鋼
JP2013044013A (ja) 時効後靭性に優れた高強度オーステナイト系耐熱鋼
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP2014012877A (ja) オーステナイト系耐熱合金
JP6825514B2 (ja) オーステナイト系耐熱合金部材
JP2013067843A (ja) 優れた高温強度を有するオーステナイト系耐熱鋼とその製造方法
JP5705847B2 (ja) 応力緩和割れに対する高耐性を有する耐熱オーステナイト鋼
WO2016136839A1 (ja) フェライト系耐熱鋼及びその製造方法