TW200827483A - High performance coated material with improved metal dusting corrosion resistance - Google Patents

High performance coated material with improved metal dusting corrosion resistance Download PDF

Info

Publication number
TW200827483A
TW200827483A TW96125722A TW96125722A TW200827483A TW 200827483 A TW200827483 A TW 200827483A TW 96125722 A TW96125722 A TW 96125722A TW 96125722 A TW96125722 A TW 96125722A TW 200827483 A TW200827483 A TW 200827483A
Authority
TW
Taiwan
Prior art keywords
metal
coating
weight
layer
metal layer
Prior art date
Application number
TW96125722A
Other languages
Chinese (zh)
Inventor
Kenneth E Bagnoli
G Phillip Anderson
Trikur Anantharaman Ramanrayanan
Chang-Min Chun
Original Assignee
Exxonmobil Res & Eng Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Res & Eng Co filed Critical Exxonmobil Res & Eng Co
Publication of TW200827483A publication Critical patent/TW200827483A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/14Coatings characterised by the materials used by ceramic or vitreous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

High performance coated metal compositions resistant to metal dusting corrosion and methods of providing such compositions are provided by the present invention. The coated metal compositions are represented by the structure (PQR), wherein P is an oxide layer at the surface of (PQR), Q is a coating metal layer interposed between P and R, and R is a base metal. P includes alumina, chromia, silica, mullite or mixtures thereof. Q includes Ni and Al, and at least one element selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au and mixtures thereof. R is selected from the group consisting of carbon steels, low chromium steels, ferritic stainless steels, austenetic stainless steels, duplex stainless steels, Inconel alloys, Incoloy alloys, Fe-Ni based alloys, Ni-based alloys and Co-based alloys. Advantages exhibited by the disclosed coated metal compositions include improved metal dusting corrosion resistance at high temperatures in carbon- supersaturated environments having relatively low oxygen partial pressures. The coated metal compositions are suitable for use in syngas generation process equipment.

Description

200827483 九、發明說明 【發明所屬之技術領域】 本發明係有關用於合成氣產生製程材料的領域。μ # 別是有關暴露於腐蝕性反應物及碳過飽和環境的材料。 更特別是’本發明係有關用於控制反應器系統、氣體 體熱交換器系統及暴露於高碳活性及較低氧活性的合成m 製程管材及配管裝置中之金屬粉塵腐蝕性的塗覆材料,組成 物及方法。 【先前技術】 最豐富的化石燃料之一爲天然氣,其主要爲甲院。在 涉及甲烷轉化成如液態烴的高價値產物、如乙烯的化學藥 品或電力產生的高溫製程中,經常會遇到涉及非常高碳活 性及較低氧活性的環境條件。許多其他合成氣產生製程中 也會遇到相似的環境。在許多合成氣產生製程中,例如甲 院變合成氣、焦炭變合成氣、煤變合成氣、重油及瀝青變 合成氣的轉化,將遇到具有高碳活性及較低氧活性的環境 。用於此製程中的高溫反應器材料、熱交換器材料及合成 氣管材及配管材料在使用時將被金屬粉塵的習知極具侵鈾 形式的腐蝕損壞。金屬粉塵爲Fe、Ni及Co爲底的合金在 具有較低(約1〇_1()至約1〇_2()大氣壓)氧分壓的碳過飽和 (碳活性> 1 )環境中3 5 0至1 0 5 範圍的溫度下經歷的 一種不利形式的高溫腐鈾。此形式的腐蝕的特徵爲整塊金 屬崩解成粉末或粉塵。今日市面上可購得的大部分合金都 -5- 200827483 會被此腐蝕製程剝蝕。 儘管將許多高溫合金設計成在低氧分壓環境下的氧化 鉻(Cr203 )原位表面膜的形式,但是氧化鉻會在氧存在 之下在高溫(即> 1 000°C )下反應而形成Cr〇3,其係蒸氣 且將蒸發而導致鉻貧乏合金。該鉻貧乏合金無法形成保護 性氧化鉻膜,因此碳將從碳活性超過1的高度還原性富含 碳的環境進入合金內。這將導致金屬粉塵腐蝕。 鋁及矽爲強氧化物形成物且可添加至高溫合金以經由 形成氧化鋁及氧化矽的原位表面膜而改善耐腐飩性。然而 ,過量添加這些元素,預期其具有優異的耐腐蝕性,一般 都在使用該合金的高溫下導致不良的機械強度。由此,含 有過量鋁及矽的合金無法用於合成氣產生製程的構成成分 〇 文獻中揭示用於控制金屬粉塵腐蝕的方法涉及氣態抑 制劑的使用,例如H2s。經由H2S來抑制具有兩個缺點。 一個爲H2s傾向毒化用於烴轉化製程的大多數觸媒。其次 ,H2S必須從排出流被移除,其會實質上增加製程成本。 准予Ramanarayanan等人的美國專利案號 6,692,838 揭示耐金屬粉塵的組成物及用於防止金屬粉塵在暴露於碳 過飽和環境的金屬表面上之方法。該組成物包含(a )合 金,及(b)合金上的保護性氧化物塗層。該合金包括合 金化金屬及基底金屬,其中該合金化金屬包含鉻及錳的混 合物,且該基底金屬包含鐵、鎳及鈷。在此以引用方式將 美國專利案號6,6 92,83 8的全文倂入本文。 200827483 准予Ramanarayanan等人的美國專利案號 6,737,175 揭示耐金屬粉麈的合金組成物及用於抑制暴露於碳過飽和 環境的金屬表面的金屬粉麈腐蝕之方法。該方法包含以銅 爲底的合金構成表面或或塗覆表面。在此以引用方式將美 國專利案號6,737,175的全文倂入本文。 准予Chun等人之2005年,5月10日申請的美國專 利申請案號1 1 / 1 2 6 5 G07也揭示用於防止金屬粉塵在暴露於 碳過飽和環境的金屬表面上之合金組成物及方法。該合金 包括合金(PQR)及該合金(PQR)表面上的多層(至少 三層)氧化物膜,其中該合金(PQR)包括選自Fe、Ni、 Co及其混合物的金屬(P )、包含Cr、Μη及任何Al、Si 或Al/Si的合金化金屬(Q)及合金化元素(R)。該多層 氧化物膜係於碳過飽和環境中使用該合金組成物時在原位 形成。在此以引用方式將美國專利申請案號1 1/1 26,007的 全文倂入本文。 所需爲耐金屬粉塵腐蝕的新穎合金及塗覆材料。更特 別的是,需要先進的塗覆材料組成物,其中塗覆的金屬在 低(約1(Γ1()至約1(Γ2()大氣壓)氧分壓的碳過飽和(碳活 性> 1 )環境中耐金屬粉塵腐蝕且包括提供具有所需的高溫 強度及其他性質,如蠕變強度及韌性,的塗覆材料之基底 金屬。此先進的塗覆材料組成物應該能形成外部保護性氧 化物層以扮作碳進入的擴散阻障層而阻止碳轉移。 【發明內容】 200827483 根據此揭示內容,一種有利的抗金屬 效塗覆材料組成物包含:(PQR ),其中 面上的氧化物層,Q爲介於P與R之間的 R爲基底金屬,其中P包含氧化鋁、氧化 莫來石(mullite)、或其混合物,Q包含 少一種選自 Cr、Si、Mn、Fe、Co、B、C 、As、In、Sn、Sb、Pb、Sc、La、Y、C e V、 Nb、Ta、Mo、W、Ru、Rh、Ir、Pd、 Au之元素或其混合物,及R係選自碳鋼 體不銹鋼、沃斯田鐵不銹鋼、雙相不i Inconel)合金、因科洛依(Incoloy)合金 合金、Ni-爲底的合金或Co-爲底的合金。 此揭示內容的另一個方面係有關一種 屬組成物(PQR)防止暴露於碳過飽和環 的金屬粉塵腐蝕之有利方法,其中P爲( 氧化物層,Q爲介於P與R之間的塗覆金 底金屬,其中P包括氧化鋁、氧化鉻、二 、或其混合物,Q包括Ni及A1,及至少 、Mn、Fe、Co、B、C、N、P、Ga、Ge、 、Pb、Sc、La、Y、Ce、Ti、Zr、Hf、V、 W、 Ru、Rh、Ir、Pd、Pt、Cu、Ag 或 Au 物,及R係選自碳鋼、低鉻鋼、鐵素體不 不銹鋼、雙相不銹鋼、英高鎳合金、因呆 Ni爲底的合金、Ni -爲底的合金或Co -爲 粉塵腐蝕性之高 P爲(PQR)表 塗覆金屬層,且 鉻、二氧化矽、 Ni及A1,及至 、N、P、Ga、Ge 、Ti、Zr、Hf、 Pt、Cu、Ag 或 、低鉻鋼、鐵素 I鋼、英高鎳( 、Fe-Ni爲底的 藉由高效塗覆金 境下之金屬表面 PQR)表面上的 屬層,且R爲基 氧化矽、莫來石 一種選自Cr、Si As、In、Sn、Sb ‘ Nb、Ta、Mo、 之元素或其混合 銹鋼、沃斯田鐵 丰洛依合金、F e · 底的合金;其中 -8 - 200827483 該方法包含提供具有(PQR)的金屬表面之步驟。 許多優點源於包含(PQR )的有利的高效塗覆材料組 成物,其中p爲(PqR)表面上的氧化物層,Q爲介於P 與R之間的塗覆金屬層,且R爲在此所揭示的基底金屬層 及其用途/應用。 例如,在此揭示內容的例示具體例中,包含(PQR ) 的高效塗覆材料組成物在含有相對較低氧分壓的碳過飽和 環境中在高溫下顯示改良之抗金屬粉塵腐鈾性。 在另一個此揭示內容的例示具體例中,包含(PQR) 的高效塗覆材料組成物顯示形成熱力學安定、緩慢生長、 附著的鈍性氧化物膜能力而能扮作碳進入的擴散阻障層。 在另一個此揭示內容的例示具體例中,包含(PQR) 的高效塗覆材料組成物不會毒化大多數用於烴轉化製程的 觸媒。 在另一個此揭示內容的例示具體例中,包含(PQR) 的高效塗覆材料組成物將產生該表面氧化物或層的改善黏 著力,其將增進耐碎裂性。 在另一個此揭示內容的例示具體例中,包含(PQR) 的高效塗覆材料組成物將產生碳過飽和環境中減少的碳沈 積。 在另一個此揭示內容的例示具體例中,當該包含( PQR)的高效塗覆材料組成物暴露於具有低氧分壓之金屬 粉塵環境時其表面上的氧化物層(P)將形成。200827483 IX. INSTRUCTIONS OF THE INVENTION [Technical Field to Be Invented] The present invention relates to the field of process materials for syngas generation. μ # is a material that is exposed to corrosive reactants and carbon supersaturated environments. More particularly, the present invention relates to coating materials for controlling reactor systems, gas heat exchanger systems, and metal dust corrosion in synthetic m process pipes and piping devices exposed to high carbon activity and lower oxygen activity. , composition and method. [Prior Art] One of the most abundant fossil fuels is natural gas, which is mainly a hospital. In high temperature processes involving the conversion of methane to high-priced hydrazine products such as liquid hydrocarbons, chemicals such as ethylene, or electricity, environmental conditions involving very high carbon activity and lower oxygen activity are often encountered. A similar environment is encountered in many other syngas generation processes. In many syngas generation processes, such as conversion of syngas, coke to syngas, coal to syngas, heavy oil, and bitumen to syngas, an environment with high carbon activity and low oxygen activity will be encountered. The high temperature reactor materials, heat exchanger materials, and synthetic gas tubing and piping materials used in this process will be damaged by the corrosion of metal dust in the form of intrusive uranium. Metal dust is Fe, Ni and Co-based alloys in a carbon supersaturated (carbon active > 1 ) environment having a low (about 1 〇 1 () to about 1 〇 2 () atmosphere) oxygen partial pressure. An unfavorable form of high temperature uranium that is experienced at temperatures ranging from 50 to 1 0 5 . This form of corrosion is characterized by the collapse of the entire piece of metal into powder or dust. Most of the alloys available on the market today -5-200827483 will be ablated by this corrosion process. Although many superalloys are designed in the form of an in-situ surface film of chromium oxide (Cr203) in a low oxygen partial pressure environment, chromium oxide reacts at high temperatures (i.e., > 1 000 ° C) in the presence of oxygen. Cr〇3 is formed which is vapor and will evaporate resulting in a chromium-poor alloy. The chromium-poor alloy does not form a protective chromium oxide film, so the carbon will enter the alloy from a highly reductive carbon-rich environment with a carbon activity of more than one. This will cause corrosion of the metal dust. Aluminum and niobium are strong oxide formers and can be added to the superalloy to improve corrosion resistance via the in-situ surface film forming alumina and yttria. However, excessive addition of these elements is expected to have excellent corrosion resistance, and generally causes poor mechanical strength at high temperatures using the alloy. Thus, alloys containing excess aluminum and bismuth cannot be used in the composition of the synthesis gas generation process. 方法 The methods disclosed in the literature for controlling metal dust corrosion involve the use of gaseous inhibitors, such as H2s. Suppression via H2S has two drawbacks. One is the most catalytic agent for H2s to poison the hydrocarbon conversion process. Second, H2S must be removed from the effluent stream, which can substantially increase process costs. U.S. Patent No. 6,692,838 to Ramanarayanan et al. discloses a metal dust resistant composition and a method for preventing metal dust from being exposed to a metal surface of a carbon supersaturated environment. The composition comprises (a) a gold alloy, and (b) a protective oxide coating on the alloy. The alloy includes an alloyed metal and a base metal, wherein the alloyed metal comprises a mixture of chromium and manganese, and the base metal comprises iron, nickel, and cobalt. The entire disclosure of U.S. Patent No. 6,6,92,83, hereby incorporated herein by reference. U.S. Patent No. 6,737,175 to Ramanarayanan et al. The method comprises forming a surface or a coated surface with a copper-based alloy. The entire disclosure of U.S. Patent No. 6,737,175 is incorporated herein by reference. U.S. Patent Application Serial No. 1 1 / 1 2 6 5 G07, filed on May 10, the entire disclosure of which is incorporated herein by reference in its entirety, the disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of . The alloy includes an alloy (PQR) and a multilayer (at least three layers) oxide film on the surface of the alloy (PQR), wherein the alloy (PQR) comprises a metal (P) selected from the group consisting of Fe, Ni, Co, and mixtures thereof, including Cr, Μη and any Al, Si or Al/Si alloying metal (Q) and alloying element (R). The multilayer oxide film is formed in situ when the alloy composition is used in a carbon supersaturated environment. The entire disclosure of U.S. Patent Application Serial No. 1 1/1,26, 007 is incorporated herein by reference. New alloys and coating materials that are resistant to metal dust corrosion are required. More particularly, there is a need for advanced coating material compositions in which the coated metal is at a low (about 1 (Γ1() to about 1 (Γ2() atmosphere) oxygen partial pressure carbon supersaturation (carbon activity > 1) Metallic dust corrosion in the environment and includes the base metal of the coating material providing the required high temperature strength and other properties such as creep strength and toughness. This advanced coating material composition should form an external protective oxide. The layer prevents carbon transfer by acting as a diffusion barrier layer that carbon enters. [Abstract] According to this disclosure, an advantageous metal-resistant coating material composition comprises: (PQR), wherein the oxide layer on the surface , Q is a base metal between P and R, wherein P comprises alumina, mullite, or a mixture thereof, and Q comprises one less selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, As, In, Sn, Sb, Pb, Sc, La, Y, C e V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Au elements or mixtures thereof, and R series Selected from carbon steel body stainless steel, Worthite iron stainless steel, duplex non-inconel alloy, Incoloy Incoloy alloy, Ni-based alloy or Co-based alloy. Another aspect of this disclosure is an advantageous method for preventing corrosion of metal dust exposed to a carbon supersaturated ring by a genus composition (PQR), wherein P is (oxide layer, Q is a gold-coated metal between P and R, wherein P comprises alumina, chromium oxide, di, or a mixture thereof, Q includes Ni and A1, and at least, Mn, Fe , Co, B, C, N, P, Ga, Ge, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag or Au and R are selected from carbon steel, low chromium steel, ferritic stainless steel, duplex stainless steel, Inco high nickel alloy, Ni-based alloy, Ni-based alloy or Co-corrosion High P is a (PQR) coated metal layer, and chromium, cerium oxide, Ni and A1, and to, N, P, Ga, Ge, Ti, Zr, Hf, Pt, Cu, Ag or, low chromium a genus layer on the surface of steel, ferritic I steel, and high-nickel nickel (Fe-Ni as the base of the metal surface PQR under high-efficiency coating), and R is a ruthenium oxide or a mullite selected from the group consisting of Cr, S i As, In, Sn, Sb 'Nb, Ta, Mo, an element thereof or a mixed rust steel thereof, a Worthite iron alloy, an alloy of F e · bottom; wherein -8 - 200827483 the method includes providing (PQR) Steps of the metal surface. Many advantages stem from the advantageous high-efficiency coating material composition comprising (PQR), where p is the oxide layer on the (PqR) surface and Q is the coating metal between P and R Layer, and R is the base metal layer disclosed herein and its use/application. For example, in an illustrative embodiment of this disclosure, a high efficiency coating material composition comprising (PQR) exhibits improved resistance to metal dust uranium at elevated temperatures in a carbon supersaturated environment containing a relatively low oxygen partial pressure. In another illustrative embodiment of this disclosure, a highly effective coating material composition comprising (PQR) exhibits the ability to form a thermodynamically stable, slowly growing, adherent, passive oxide film capable of acting as a diffusion barrier for carbon entry. . In another illustrative embodiment of this disclosure, a high efficiency coating material composition comprising (PQR) does not poison most of the catalyst used in the hydrocarbon conversion process. In another exemplary embodiment of this disclosure, a high efficiency coating material composition comprising (PQR) will result in improved adhesion of the surface oxide or layer which will enhance chip resistance. In another illustrative embodiment of this disclosure, a high efficiency coating material composition comprising (PQR) will result in reduced carbon deposition in a carbon supersaturated environment. In another exemplary embodiment of this disclosure, the oxide layer (P) on the surface thereof will be formed when the high-efficiency coating material composition containing (PQR) is exposed to a metal dust environment having a low oxygen partial pressure.

在另一個此揭不內容的例示具體例中,該包含(PQR 200827483 )的高效塗覆材料組成物表面上的氧化物層(p)將在碳 過飽和環境中使用合金時在原位形成。 在另一個此揭示內容的例示具體例中,該包含(PQR )的高效塗覆材料組成物表面上的氧化物層(P )將在經 由使該合金暴露於碳過飽和且低氧分壓之環境或經控制的 低氧分壓之環境下而使用之前形成。 在另一個此揭示內容的例示具體例中,該包含(PQR )的高效塗覆材料組成物表面上的塗覆金屬層(Q)具有 低多孔性。 包含(PQR )的高效塗覆材料組成物的另一個優點爲 若該保護性表面氧化物層(P )在該組成物用於碳過飽和 環境中時裂解,該保護性表面氧化物層(P )將在裂解時 重組以修護該氧化物層藉以在使用時保護該合金免於受到 金屬粉塵影響。 所揭示之包含(PQR )的高效塗覆材料組成物可應用 於使用時的任何時間與碳過飽和環境接觸的合成氣製程設 備’該設備包括反應器、氣體/氣體熱交換器及合成氣產 生製程管材及配管。 所揭示之包含(PQR )的高效塗覆材料組成物可提供 至表面以經由:1 )由(PQR )來構成該設備,2 )共擠押 Q及R以形成該裝置的表面’或3)將Q塗覆在R上以形 成暴露於金屬粉塵環境的設備表面來保護。 此揭示內容及包含(PQR)的高效塗覆材料組成物及 其有利應用及/或用途的各種不同優點、特徵及屬性從下 10- 200827483 列的詳細說明將顯而易見,特別是結合隨附的圖形來閱讀 時。 【實施方式】 本發明係有關一種能形成安定氧化鋁表面膜的高效塗 覆材料。本發明耐金屬粉塵腐蝕的高效塗覆材料組成物與 先前技藝不同之處在於包含表面氧化物層、位於該表面氧 化物層之一側上的塗覆金屬及相對於該氧化物層的塗覆金 屬側上的基底金屬。更特別的是,本發明的塗覆金屬與先 前技藝不同之處在於產生該表面氧化物膜或層的黏著力, 其將增進耐碎裂性。本發明的塗覆金屬也與先前技藝不同 之處在於產生該基底金屬的改善黏著力,其將改善塗覆完 整性。此外,本發明的塗覆金屬相對於先前技藝將在碳過 飽和環境中產生降低的碳沈積。 本發明的高效塗覆金屬組成物就當作暴露於碳過飽和 環境的金屬表面之金屬粉塵的保護性塗層而言相對於先前 技藝合金組成物將提供顯著的優點。所揭示的高效塗覆金 屬組成物之有利性質及/或特徵係,至少部分,以該塗覆 金屬表面上所形成的氧化鋁膜結構爲底,該氧化鋁膜包括 ,尤其是,改善的耐金屬粉塵腐鈾性、降低的碳沈積、降 低毒化用於烴轉化製程的觸媒的傾向、改善原位形成的表 面氧化物膜黏著力、改善的耐碎裂性、暴露於碳過飽和環 境之前及之時改善的容易形成性。 本發明的耐金屬粉麈腐触的高效塗覆金屬組成物係藉 200827483 由式(PQR )來表示。p爲包含氧化鋁、氧化鉻、二氧化 矽、莫來石、或其混合物的氧化物層。P形成該高效塗覆 材料組成物的外表面層’且因此該層直接接觸碳過飽和及 低氧分壓環境。毗鄰該氧化物層p的是塗覆金屬,Q包含 Ni 及 A1,及至少一'種選自 Cr、Si、Mn、Fe、Co、B、C、 N、P、Ga、Ge、As、In、Sn、Sb、Pb、Sc、La、Y、Ce、 Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、Pd、Pt 、Cu、Ag或Au之元素或其混合物。位於該塗覆金屬層Q 的相對側的是選自碳鋼、低鉻鋼、鐵素體不銹鋼、沃斯田 鐵不銹鋼、雙相不銹鋼、英高鎳合金、因科洛依合金、 Fe-Ni爲底的合金、Ni -爲底的合金或Co -爲底的合金的基 底金屬R。In another illustrative embodiment of this disclosure, the oxide layer (p) on the surface of the high efficiency coating material composition comprising (PQR 200827483) will be formed in situ when the alloy is used in a carbon supersaturated environment. In another illustrative embodiment of this disclosure, the oxide layer (P) on the surface of the high efficiency coating material composition comprising (PQR) will be exposed to carbon supersaturation and a low oxygen partial pressure environment. Or formed under controlled low oxygen partial pressure environment before use. In another illustrative embodiment of this disclosure, the coated metal layer (Q) on the surface of the high-efficiency coating material composition comprising (PQR) has low porosity. Another advantage of a highly effective coating material composition comprising (PQR) is that if the protective surface oxide layer (P) is cleaved when the composition is used in a carbon supersaturated environment, the protective surface oxide layer (P) The oxide layer will be reconstituted upon cleavage to protect the alloy from metal dust during use. The disclosed high-efficiency coating material composition comprising (PQR) can be applied to a syngas processing apparatus that is in contact with a carbon supersaturated environment at any time during use. The apparatus includes a reactor, a gas/gas heat exchanger, and a syngas generation process. Pipe and piping. The disclosed high efficiency coating material composition comprising (PQR) can be provided to the surface via: 1) consisting of (PQR) to form the device, 2) coextruding Q and R to form the surface of the device 'or 3) The Q is coated on the R to form a surface of the device exposed to the metal dust environment for protection. The disclosure and the various advantages, features and attributes of the highly effective coating material composition comprising (PQR) and its advantageous applications and/or uses will be apparent from the detailed description of the column 10-200827483, in particular in conjunction with the accompanying graphics. Come to read. [Embodiment] The present invention relates to a highly efficient coating material capable of forming a surface film of a stable alumina. The high-efficiency coating material composition resistant to metal dust corrosion of the present invention differs from the prior art in that it comprises a surface oxide layer, a coating metal on one side of the surface oxide layer, and a coating relative to the oxide layer. Base metal on the metal side. More particularly, the coated metal of the present invention differs from prior art in that it produces an adhesion of the surface oxide film or layer which will enhance chipping resistance. The coated metal of the present invention is also different from the prior art in that it produces an improved adhesion of the base metal which will improve coating integrity. Moreover, the coated metal of the present invention will produce reduced carbon deposition in a carbon supersaturated environment relative to the prior art. The highly efficient coating of the metal composition of the present invention provides significant advantages over prior art alloy compositions as a protective coating for metal dust exposed to metal surfaces in a carbon supersaturated environment. The advantageous properties and/or characteristics of the disclosed high-efficiency coated metal composition are, at least in part, based on the structure of the aluminum oxide film formed on the surface of the coated metal, the aluminum oxide film including, in particular, improved resistance Metal dust uranium, reduced carbon deposition, reduced tendency to poison catalysts used in hydrocarbon conversion processes, improved in situ formed surface oxide film adhesion, improved chip resistance, exposure to carbon supersaturated environments, and The improvement is easy to form. The highly effective coating metal composition of the metal powder resistant ruthenium of the present invention is represented by the formula (PQR) by 200827483. p is an oxide layer comprising aluminum oxide, chromium oxide, cerium oxide, mullite, or a mixture thereof. P forms the outer surface layer ' of the high efficiency coating material composition' and thus the layer is in direct contact with the carbon supersaturation and low oxygen partial pressure environment. Adjacent to the oxide layer p is a coating metal, Q comprises Ni and A1, and at least one species selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In Or an element of Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag or Au or mixture. Located on the opposite side of the coated metal layer Q is selected from the group consisting of carbon steel, low chromium steel, ferritic stainless steel, Worthite iron stainless steel, duplex stainless steel, Inco high nickel alloy, Incoloy, Fe-Ni Base metal R of the underlying alloy, Ni-based alloy or Co-based alloy.

外部氧化層P 該氧化物層P,在該塗覆金屬Q上,在該塗覆材料用 於碳過飽和環境中時在原位形成。或者,氧化物層P,在 該塗覆金屬Q上,在經由使該塗覆材料暴露於碳過飽和且 低氧分壓之環境下於使用之前形成。或者,氧化物層p, 在該塗覆金屬Q上,在經由使該塗覆材料暴露於經控制的 低氧分壓之環境下於使用之前形成。 該氧化物層P爲包含氧化鋁、氧化鉻、二氧化砍、莫 來石、或其混合物的氧化物層且可含有一些由構成塗覆金 屬Q及基底金屬R的元素所形成的雜質氧化物。較佳的氧 化物層P爲氧化錕。該氧化層P的厚度介於至少約1 nm -12- 200827483 至約1 00 μπι,較佳爲至少約1 〇 nm至約50 μηι,更佳爲至 少約lOOnm至約ΙΟμηι。 在此所說明的氧化物層ρ,在該塗覆金屬Q上’係經 由使該塗覆材料暴露於金屬粉塵環境而形成在該塗覆金屬 表面上。金屬粉塵環境的非限定例子爲氣態50CO : 50Η2 混合物。該金屬粉塵可進一步含有其他如CH4、ΝΗ3、Ν2 、02、He、Ar或烴之氣體且能在該塗覆金屬Q上形成安 定的氧化物層P,該氧化物層P包含氧化鋁、氧化鉻、二 氧化矽、莫來石、或其混合物。因此,該保護性氧化物層 可在類似暴露於金屬粉塵環境的反應條件之下在使用該合 金之時或之前被形成。該金屬粉塵環境的較佳溫度範圍爲 約3 5 0 °C至約1200°C,較佳爲約550°C至約1 200°C。典型 的暴露時間介於約1小時至約500小時,較佳爲約1小時 至約3 00小時,且更佳爲約1小時至約100小時。 在此所說明的氧化物層P,在該塗覆金屬Q上,也可 在經由使該塗覆材料暴露於經控制的低氧分壓之環境下被 形成在該塗覆金屬表面上。經控制的低氧分壓環境的非限 定例子爲氣態H20 : H2混合物及氣態C02 : CO混合物。 該經控制的低氧分壓環境可進一步含有其他如CH4、NH3 、N2、02、He、Ar或烴之氣體且能在該塗覆金屬Q上形 成安定的氧化物層P,該氧化物層P包含氧化鋁、氧化鉻 、二氧化矽、莫來石、或其混合物。因此,該保護性氧化 物層係於該合金用於金屬粉塵環境之前被形成。該經控制 的低氧分壓環境的較佳溫度範圍爲約3 5 0 °C至約1 2 0 0 °C, -13- 200827483 較佳爲約5 5 0 °C至約1 2 0 0 °C。典型的暴露時間介於約1小 時至約5 0 0小時’較佳爲約1小時至約3 0 0小時,且更佳 爲約1小時至約1 0 0小時。External Oxide Layer P The oxide layer P is formed on the coated metal Q in situ when the coating material is used in a carbon supersaturated environment. Alternatively, the oxide layer P is formed on the coating metal Q prior to use by exposing the coating material to carbon supersaturation and low oxygen partial pressure. Alternatively, an oxide layer p, formed on the coated metal Q, prior to use, by exposure of the coating material to a controlled low oxygen partial pressure. The oxide layer P is an oxide layer containing aluminum oxide, chromium oxide, oxidized chopped mullite, mullite, or a mixture thereof and may contain some impurity oxides formed of elements constituting the coating metal Q and the base metal R . The preferred oxide layer P is ruthenium oxide. The oxide layer P has a thickness of at least about 1 nm -12 - 200827483 to about 100 μπι, preferably at least about 1 〇 nm to about 50 μηι, more preferably at least about 100 nm to about ΙΟμηι. The oxide layer ρ described herein is formed on the coated metal surface by exposing the coating material to a metal dust environment. A non-limiting example of a metal dust environment is a gaseous 50CO: 50Η2 mixture. The metal dust may further contain other gases such as CH4, ΝΗ3, Ν2, 02, He, Ar or hydrocarbons and form a stable oxide layer P on the coating metal Q, the oxide layer P comprising alumina, oxidized Chromium, cerium oxide, mullite, or a mixture thereof. Thus, the protective oxide layer can be formed at or before the use of the alloy under reaction conditions similar to exposure to a metal dust environment. The metal dust environment preferably has a temperature in the range of from about 305 ° C to about 1200 ° C, preferably from about 550 ° C to about 1 200 ° C. Typical exposure times range from about 1 hour to about 500 hours, preferably from about 1 hour to about 300 hours, and more preferably from about 1 hour to about 100 hours. The oxide layer P described herein, on the coated metal Q, may also be formed on the coated metal surface by exposing the coating material to a controlled low oxygen partial pressure. A non-limiting example of a controlled low oxygen partial pressure environment is a gaseous H20:H2 mixture and a gaseous CO2:CO mixture. The controlled low oxygen partial pressure environment may further contain other gases such as CH4, NH3, N2, 02, He, Ar or hydrocarbons and form a stable oxide layer P on the coating metal Q, the oxide layer P comprises aluminum oxide, chromium oxide, cerium oxide, mullite, or a mixture thereof. Therefore, the protective oxide layer is formed before the alloy is used in a metal dust environment. Preferably, the controlled low oxygen partial pressure environment has a temperature in the range of from about 350 ° C to about 1 20 ° C, and -13 - 200827483 is preferably from about 5 50 ° C to about 1 2 0 0 °. C. Typical exposure times range from about 1 hour to about 50,000 hours, preferably from about 1 hour to about 30,000 hours, and more preferably from about 1 hour to about 1000 hours.

塗覆金屬層Q 該塗覆金屬Q包括Ni及A1的混合物,及至少一種選 自 Cr、Si、Μη、Fe、C ο、B、C、N、P、Ga、Ge、As、In 、Sn ' Sb、Pb、Sc、La、Y、Ce、Ti、Zr、Hf、V、Nb、 Ta、Mo、W、Ru、Rh、Ir、Pd、Pt、Cu、Ag 或 Au 之元素 或其混合物。本發明的塗覆金屬組成物就當作暴露於碳過 飽和環境的金屬表面之金屬粉塵的保護性塗層而言相對於 先前技藝合金組成物將提供顯著的優點。有關非限定例子 ,如Sc、La、Y或Ce的合金化元素將提供改善之在原位 所形成的表面氧化物膜的黏著力,其將增進耐碎裂性。如 Ga、Ge、As、In、Sn、Sb、Pb、Pd、Pt、Cu、Ag 或 Au 之合金化元素將提供降低的碳沈積,因爲這些元素對表面 碳轉移反應不具催化性。 該塗覆金屬Q包含約4重量%至約70重量%的鋁,較 佳爲約4重量%至約50重量%的鋁,且更佳爲約4重量% 至約3 0重量%的鋁。在較佳具體例中,該塗覆金屬Q包 括該塗覆金屬Q中比該基底金屬R中小量的Fe。該塗覆 金屬層Q包含少於約12重量%的Fe,較佳爲約10重量% 的Fe,且更佳爲約8重量%的Fe。包含比12重量%多很 多的Fe之塗覆金屬層Q將造成在碳過飽和且低氧分壓環 14- 200827483 境中不良的耐金屬粉塵腐蝕性。充當該塗覆金屬層成分的 Ni也會降低粉塵腐蝕速率,而其約比在純Fe中的粉塵腐 蝕速率低1個等級。 本發明的塗覆金屬具有低多孔性,其有助於在碳過飽 和環境中的改善碳沈積耐性。該塗覆金屬層Q包含少於約 8體積%的多孔性,較佳爲約3體積%的多孔性,更佳爲約 2體積%的多孔性,又更佳爲約1體積%的多孔性。該塗覆 金屬層中過量的多孔性將作爲金屬粉塵環境中腐蝕性氣體 轉移至該塗覆金屬及基底金屬表面的途徑。該碳轉移將啓 動該塗覆金屬層中的碳沈澱及該塗層/基底金屬界面處的 塗覆金屬脫層。因此有利的是達到含有最小量多孔性的塗 覆金屬層。 該低多孔性塗覆金屬層可經由如 CVD、MOCVD、 PVD、漿液塗覆、包埋法(pack cementation)、覆焊法及 粉末電漿焊接的塗覆法來建立。該塗覆金屬層可經後段退 火或雷射熔融以達到較高密度的塗覆。相對之下,如電漿 、HVOF及爆炸噴槍的傳統熱噴塗法將產生具有較高多孔 性的塗覆金屬層。該傳統熱噴塗法係經由衝擊將熔融或軟 化粒子施於基材上的方法。該塗覆經常含有源於以高速撞 擊冷卻表面而變平的小滴之快速固化的凹凸或薄板形晶粒 結構。幾乎無法確定所有粒子都具有精確的相同尺寸且達 到相同的溫度及速度。因此,熱噴塗法期間個別粒子衝撃 條件的變化將導致金屬陶瓷層的非均質結構,其包括過量 的多孔性。 -15- 200827483Coating metal layer Q The coating metal Q comprises a mixture of Ni and A1, and at least one selected from the group consisting of Cr, Si, Mn, Fe, C ο, B, C, N, P, Ga, Ge, As, In, Sn An element of Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag or Au or a mixture thereof. The coated metal composition of the present invention provides significant advantages over prior art alloy compositions as a protective coating for metal dust exposed to metal surfaces in a carbon supersaturated environment. For non-limiting examples, alloying elements such as Sc, La, Y or Ce will provide improved adhesion of the surface oxide film formed in situ, which will enhance chipping resistance. Alloying elements such as Ga, Ge, As, In, Sn, Sb, Pb, Pd, Pt, Cu, Ag or Au will provide reduced carbon deposition because these elements are not catalytic for surface carbon transfer reactions. The coating metal Q comprises from about 4% by weight to about 70% by weight aluminum, more preferably from about 4% by weight to about 50% by weight aluminum, and more preferably from about 4% by weight to about 30% by weight aluminum. In a preferred embodiment, the coating metal Q comprises a small amount of Fe in the coating metal Q than in the base metal R. The coated metal layer Q comprises less than about 12% by weight Fe, preferably about 10% by weight Fe, and more preferably about 8% by weight Fe. A coating metal layer Q containing much more than 12% by weight of Fe will cause undesirable metal dust corrosion resistance in the case of carbon supersaturation and low oxygen partial pressure ring 14-200827483. Ni, which acts as a component of the coated metal layer, also reduces the rate of dust corrosion, which is about one grade lower than the rate of dust corrosion in pure Fe. The coated metal of the present invention has low porosity which contributes to improved carbon deposition resistance in a carbon-saturated environment. The coating metal layer Q contains less than about 8% by volume of porosity, preferably about 3% by volume of porosity, more preferably about 2% by volume of porosity, and still more preferably about 1% by volume of porosity. . Excess porosity in the coated metal layer will act as a means of transferring corrosive gases in the metal dust environment to the coated metal and base metal surfaces. This carbon transfer will initiate the carbon precipitation in the coated metal layer and the delamination of the coating metal at the coating/base metal interface. It is therefore advantageous to achieve a coated metal layer that contains a minimum amount of porosity. The low porosity coating metal layer can be established by a coating method such as CVD, MOCVD, PVD, slurry coating, pack cementation, over-welding, and powder plasma welding. The coated metal layer can be post-fired or laser melted to achieve higher density coating. In contrast, conventional thermal spray methods such as plasma, HVOF, and explosive spray guns produce a coated metal layer with higher porosity. The conventional thermal spray method is a method of applying molten or softened particles to a substrate via impact. The coating often contains a rapidly solidified relief or sheet-like grain structure resulting from droplets that flatten at a high velocity impact on the cooling surface. It is almost impossible to determine that all particles are exactly the same size and reach the same temperature and speed. Thus, changes in the individual particle wash conditions during the thermal spray process will result in a heterogeneous structure of the cermet layer that includes excess porosity. -15- 200827483

本發明的高效塗覆材料組成物較佳具體例包括塗覆金 屬 Q,其包含:(1) Ni 及 A1,或(2) Ni、AlS:Cr。 該塗覆金屬組成物NiAl爲據稱爲β相的中間金屬相。該 NiAl塗層可經由如 CVD、MOCVD、PVD、漿液塗覆或包 埋法的方法施於基底金屬R。該β-NiAl的厚度介於約1 μηι至約300 μιη,較佳爲約1 μηι至約20 0 μχη,且更佳爲 約1 μπι至約1〇〇 μπι。該塗覆金屬組成物NiAl包含約17 重量%至約39重量%的A1,及約61重量%至約83重量% 的Ni。較佳地,塗覆金屬組成物NiAl包含約18重量%的 A1,及約82重量%的Ni。該塗覆金屬組成物NiCrAl可經 由如粉末電漿焊接的覆焊法施於基底金屬R。該NiCrAl 的厚度介於約100 μηι至約5 mm,較佳爲約100 μηι至約 4 mm,且更佳爲約100 μιη至約3 mm。該塗覆金屬組成物 NiCrAl包含約4重量%至約1 〇重量。/〇的A1,約1 5重量% 至約3 0重量%的C r,及約6 0重量%至約8 1重量%的N i。 較佳地,塗覆金屬Q包含約6重量%的A1、約25重量% 的Cr及約69重量%的Ni。Preferred specific examples of the high-efficiency coating material composition of the present invention include coated metal Q comprising: (1) Ni and A1, or (2) Ni, AlS: Cr. The coating metal composition NiAl is an intermediate metal phase which is said to be a β phase. The NiAl coating can be applied to the base metal R via a method such as CVD, MOCVD, PVD, slurry coating or embedding. The β-NiAl has a thickness of from about 1 μηι to about 300 μηη, preferably from about 1 μηι to about 20 0 μχη, and more preferably from about 1 μπι to about 1 μ μπι. The coating metal composition NiAl comprises from about 17% by weight to about 39% by weight of A1, and from about 61% by weight to about 83% by weight of Ni. Preferably, the coating metal composition NiAl comprises about 18% by weight of A1, and about 82% by weight of Ni. The coating metal composition NiCrAl can be applied to the base metal R by a welding method such as powder plasma welding. The NiCrAl has a thickness of from about 100 μηι to about 5 mm, preferably from about 100 μηι to about 4 mm, and more preferably from about 100 μηη to about 3 mm. The coating metal composition NiCrAl comprises from about 4% by weight to about 1% by weight. A1 of 〇, about 15% by weight to about 30% by weight of Cr, and about 60% by weight to about 81% by weight of Ni. Preferably, the coating metal Q comprises about 6% by weight of A1, about 25% by weight of Cr, and about 69% by weight of Ni.

基底金屬R 該基底金屬R係選自碳鋼、低鉻鋼、鐵素體不銹鋼、 沃斯田鐵不銹鋼、雙相不銹鋼、英高鎳合金、因科洛依合 金、Fe_Ni爲底的合金、Ni-爲底的合金或Co-爲底的合金 。該基底金屬R也可爲任何欲用於構成合成氣產生製程設 備之商業上可購得的合金。用於本發明的基底金屬R的非 -16- 200827483 限定例子係表示於表1中。這些基底金屬適於製造耐金屬 粉塵腐飩的有利高效塗覆材料(PQR)。Base metal R The base metal R is selected from the group consisting of carbon steel, low chromium steel, ferritic stainless steel, Worthite iron stainless steel, duplex stainless steel, Inco high nickel alloy, Incomoloy, Fe_Ni based alloy, Ni - a base alloy or a Co-based alloy. The base metal R can also be any commercially available alloy that is intended to be used in the synthesis gas generation process equipment. Non-16-200827483 exemplified examples of the base metal R used in the present invention are shown in Table 1. These base metals are suitable for the manufacture of a highly efficient coating material (PQR) resistant to metal dust rot.

-17- 200827483 表1-17- 200827483 Table 1

基底金屬 卜合金 UNS No. 合金組成ί重量%) 碳鋼 1018 G10180 Bal.Fe,0·6·0.9Μη,0.14-0.20C 4130 G41300 Bal.Fe, 0.35-0.60Mn, 0.80-1.15Cr, 0.27-0.34C 低絡鋼 T11 K11562 Bal.Fe:1.25Cr:0.5Mo, 0.5Si, 0.3Mn, 0.15C, 0.045P,0.045S Γ22 K21590 Bal.Fe:2.25Cr:l,0Mo, 0.5Si,0.3Mn,0.15C, 0.035P, 0.035S T5 S50100 Bal.Fe:5Cr:0.5Mo, 0.5Si, 0.3Mn, 0.15C, 0.04P, 0.03S T9 J82090 BaLFe:9Cr:1.0Si, 0.35Mn5 0.02C, 0.04P, 0.045S 鐵素體不銹鋼 409 S40900 Bal.Fe:10.5Cr:1.0Si, l.OMn, 0.5Ni, 0.5Ti, 0.08C, 0.045P, 0.045S 410 S41000 Bai.Fe:l 1.5Cr:0.15C, 0.045P, 0.03S 430 S43000 Bal.Fe:16.0Cr:1.0Si, l.OMn, 0.12C, 0.045P, 0.03S 沃斯田鐵不銹鋼 [304 S30400 BaLFe: 8Ni:18Cr:2.0Mn, 0.75Si, 0.08C, 0.04P, 0.03S 310 -------- S31000 BaI.Fe:19Ni:24Cr:2.0Mn, 1.5Si, 0.75M〇, 0.25C, 0.045P, 0.03S l2S3MA S30815 Bal.Fe:! lNi:21Cr:1.7Si, 0.04Ce, 0.17N, 0.08C RA85H S30615 Bal.Fe: 14.5Ni: 18.5Cr:3.5Si: 1.0A1, 0.2C 雙相不銹鋼 2205 -—- S32205 Bal.Fe:4.5Ni:22Cr:2.0Mn, l.OSi, 3.0M〇, 0.03C, 0.14N, 0.03P, 0.02S 2507 S32507 Bal.Fe:6Ni:24Cr:1.2Mn, 0.8Si, 3.0M〇, 0.5Cu, 0.03C, 0.2N, 0.035P, 0.02S 英筒錬合金 鎳 600 N06600 Bal.Ni:8.0Fe:25.5Cr, 0.08 央高罈601 N06601 Bal.Ni:14.4Fe:23.0Cr:0.3Mn:1.4Als 0.5Si, 0.1C -¾咼鎳 602CA N/A Bal.Ni:9.5Fe:25.0Cr:2.2Al, 0.18C 一英高鎳690 N06690 Bal.Ni:9.0Fe:29.0Cr:0.3Mn:1.4AI, 0.5Si, 0.1C 英高鎳693 N06693 Bal.Ni:4.0Fe:29.0Cr:3.1Al 英高鎳MA754 N/A BaLNi:9.0Fe:29.0Cr:0.3Mn:L4Al, 0.5Si, 0.1C 因科洛依合金 因科洛依800H N08810 Bal.Fe:33.0Ni:21.0Cr:0.8Mn:0.5Al:0.4Si:0.5Ti: 0.07C 因科洛依825 N08825 Bal.Ni:30.0Fe:21.5Cr:3.0Mo:2.2Cu:0.03C Fe-Ni爲底的合金 KHR-45A (35/45 Alloy) N/A Bal.Fe:43.6Ni:32.1Cr:1.0Mn:L7Si:0.9Nb:0.1Ti: 0.4C Ni-爲底的合金 海恩斯214 N07214 Bal.Ni:3.0Fe:2.0Co:16,0Cr:0,5Mn:4.5Al:0.2Si: 0,5Mo:0.5Ti:0.05C Co»爲底的合金 海恩斯188 R30188 Bal.Co:22.0Ni:22.0Cr:3.0Fe: 14.0W:0.04La: 0.1C MP35N R30035 Bal.Co:35.0Ni:20.0Cr:10.0Mo -18- 200827483 高效塗覆組成物的形成及應用方法 本發明也揭示一種防止暴露於碳過飽和環境下之金屬 表面的金屬粉塵腐鈾之方法。該方法必然伴有提供具有高 效塗覆金屬組成物的金屬表面,其中該材料組成物包含: (PQR),其中P爲(PQR)表面上的氧化物層,Q爲介 於P與R之間的塗覆金屬層,且R爲基底金屬,其中P 包括氧化鋁、氧化鉻、二氧化矽、莫來石、或其混合物, Q包括Ni及A1,及至少一種選自Cr、Si、Mn、Fe、Co、 B、C、N、P、Ga、Ge、As、In、Sn、Sb、Pb、Sc、La、 Y、Ce、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir 、Pd、Pt、Cu、Ag或Au之元素或其混合物,及R係選自 碳鋼、低鉻鋼、鐵素體不銹鋼、沃斯田鐵不銹鋼、雙相不 銹鋼、英高鎳合金、因科洛依合金、Fe-Ni爲底的合金、 Ni-爲底的合金或Co-爲底的合金。 在具有較低(約1〇_ια至約1(Γ2〇大氣壓)氧分壓的碳 過飽和(碳活性>1)環境中350至1050 °C範圍的溫度下 欲被保護的金屬表面可由高效塗覆材料構成,與該塗覆材 料共擠押,以該塗覆材料塗覆,或該三者的組合。在用於 提供本發明的高效塗覆材料組成物(PQR )——個具體例中 ,該組成物可用塗覆金屬Q及基底金屬R建構該製程設備 而形成。在用於提供本發明的高效塗覆材料組成物(PQR )另一個具體例中,該組成物可使用熟於此藝之士所習知 的鋼共擠押技術共擠押塗覆金屬Q及基底金屬R而形成。 在用於提供本發明的高效塗覆材料組成物(PQR)又另一 -19- 200827483 個具體例中,該組成物可由易受金屬粉塵影響的現存表面 製程設備表面形成,該表面係利用熟於此藝之士所習知的 塗覆技術以本發明的塗覆金屬Q塗覆該表面而由基底金屬 R製成。適合以在此所說明的塗覆金屬組成物來塗覆基底 金屬 R的例示性塗覆技術包括,但不限於,CVD、 MOCVD、PVD、漿液塗覆、包埋法、粉末電漿焊接、熱噴 塗及濺射。因而本發明的高效塗覆材料組成物(PQR )可 任意以在此所說明的高效塗覆材料組成物共擠押或塗覆構 成。 上述的保護性表面氧化物層P可在碳過飽和環境中操 作該單元時在原位形成。更明確地說,就用於形成塗覆金 屬及基底金屬組合(QR )的三個方法各者而言該保護性表 面氧化物層P可在暴露於金屬粉塵環境時使用該設備的期 間形成(原位形成)。或者,上述的保護性表面氧化物層 P可在經由使塗覆金屬及基底金屬組合(QR )暴露於碳過 飽和環境於該設備使用之前形成。一個例示性但非限定的 金屬粉塵環境爲使本發明的高效塗覆材料暴露於金屬粉塵 環境,如50CO-50H2混合物。或者,上述的保護性表面氧 化物層P可在經由使塗覆金屬及基底金屬組合(QR )暴 露於經控制的低氧分壓之環境於使用該設備之前形成。經 控制的低氧分壓環境的非限定例子爲使本發明的高效塗覆 材料暴露於氣態H20 : H2混合物及氣態C02 : CO混合物 。較佳溫度範圍爲約3 5 0°C至約120(TC,較佳爲約5 50°C 至約1 200°C。典型的暴露時間介於約1小時至約300小時 -20- 200827483 ,較佳爲約1小時至約1 0 0小時。因此,該保護性氧化物 層P可在該合金使用時或之前在彼等暴露於金屬粉麈環境 中的反應條件之下形成。 在此所說明之本發明的高效塗覆材料組成物(p Q R ) 可用於建構暴露於碳金屬粉塵環境的設備表面。第丨圖槪 略地例示用於保護合成氣產生設備的塗覆材料(PQR)用 途。有關非限定例子,合成氣製程管材或配管可被塗覆在 內徑、外徑或內外徑,取決於耐金屬粉塵腐蝕性的需要。 能由本發明的高效塗覆材料獲益的合成氣製程設備表面包 括在使用期間的任何時間與碳過飽和環境接觸的設備及反 應器。這些設備及反應器系統包括,但不限於,反應器、 氣體/氣體熱交換器或合成氣產生製程管材和配管。 申請人試圖揭示所有可合理預見的揭示主題的具體例 及應用。然而,可能無法預見仍視爲等效例的非實質修飾 。儘管本發明已結合指定的例示具體例來說明,但是很顯 然有鑑於前述說明許多變動、修飾及變化對熟於此藝之士 將顯而易見而不會悖離此揭示內容的精神及範圍。因此, 此揭示內容欲包含上述詳細說明的所有替代、修飾及變動 Ο 下列實施例將例示本發明及其優點而不會限制其範圍 測試方法 該塗覆材料(PQR )中的元素重量百分比之測定係藉 200827483 由標準能量分散式X-射線光譜儀(EDXS )來測定。/就胃 業上可購得的合金(英高鎳601及英高鎳693 )而言,〇 5 吋χ0·25吋χ0·06吋的矩形樣品係由合金薄片來製備。該 β-NiAl塗覆的英高鎳601樣品係經由包埋法來製備。在加 鋁(aluminizing)包埋製程之前對基底金屬,英高鎳6〇1 ’施行加鉻。擴散反應在800°C下進行以在該基底金屬, 英高鎳601,表面上形成δ-Ν^ΑΙ3相。在l〇79°C下進行後 繼熱處理以將該低熔融δ相轉化爲β-NiAl相,其中A1含量 介於約17至約39重量%。該NiCrAl-塗覆的英高鎳601 及NiCrAl-塗覆的合金3 5/45樣品係經由粉末電漿焊接法 來製備。有關比較例,該NiCrAl-塗覆的英高鎳601樣品 係經由空氣電漿噴塗、傳統熱噴塗法來製備。從該樣品切 出0· 5吋χθ.25吋的矩形樣品。將該試片面拋光成6〇〇粒 度磨光或Linde B (0.05微米氧化鋁粉末)磨光且在丙 酮中清潔。不同合金試片的腐蝕動力學係經由使該試片暴 露於5 5 0°C至約1 05 0°C的測試溫度下的50CO-50H2 (體積 % )環境至多300小時而硏究。使用cahn 1 000電子天平 來測量該試片的增碳。增碳爲金屬粉麈腐蝕的指標。該試 片的表面及斷面也使用掃描式電子顯微鏡(SEM)來檢視 實施例 實施例1 遵循上述測試方法,測試下列合金樣品:英高鎳60 1 -22- 200827483 (先前技藝)、英高鎳693 (先前技藝)、β-NiAl塗覆 的英高鎳601、NiCrAl-塗覆的英高鎳601及NiCrAl-塗覆 的合金35/45合金。重量測量結果示於第2圖中。第2圖 描述在50CO-50H2氣體混合物中在65 0°C下反應160小時 之後Linde B合金成品上由於碳沈積(金屬粉塵腐餓度Μ )的質量增益。經過金屬粉塵暴露之後,樣品表面被碳覆 蓋,其總是伴隨金屬粉塵腐蝕。在商業上可購得的先前技 藝合金(英高鎳601及英高鎳693 )表面上測到顯著量的 碳沈積。相對之下,本發明的塗覆材料(β_ΝίΑ1塗覆的英 高鎳601、NiCrAl-塗覆的英高鎳601及NiCrAl-塗覆的合 金3 5/45合金)上測到微不足道或很小量的碳沈積。 進一步經由該腐蝕表面的斷面S EM檢視來硏究金屬 粉塵的易感性。第3圖中的斷面SEM影像揭露在50CO-5〇H2氣體混合物中在6 5 0°C下反應160小時之後先前技藝 英高鎳6 0 1合金的特徵凹洞形態學。凹洞中見到碳沈積物 中的金屬粉塵。凹洞直徑爲約120微米及深度約20微米 。第4圖中的斷面SEM影像揭露在50CO-50H2氣體混合 物中在65 (TC下反應160小時之後先前技藝英高鎳693合 金的特徵凹洞形態學。凹洞中見到碳沈積物中的金屬粉塵 。凹洞直徑爲約20微米及深度爲約8微米。 實施例2 遵循上述測試方法,在50CO-50H2氣體混合物中在 1 05 0°C下測試β-NiAl塗覆的英高鎳601歷經300小時。第 -23- 200827483Base metal alloy UNS No. Alloy composition ί% by weight Carbon steel 1018 G10180 Bal.Fe,0·6·0.9Μη, 0.14-0.20C 4130 G41300 Bal.Fe, 0.35-0.60Mn, 0.80-1.15Cr, 0.27- 0.34C low-volume steel T11 K11562 Bal.Fe: 1.25Cr: 0.5Mo, 0.5Si, 0.3Mn, 0.15C, 0.045P, 0.045S Γ22 K21590 Bal.Fe: 2.25Cr: 1,0Mo, 0.5Si, 0.3Mn, 0.15C, 0.035P, 0.035S T5 S50100 Bal.Fe: 5Cr: 0.5Mo, 0.5Si, 0.3Mn, 0.15C, 0.04P, 0.03S T9 J82090 BaLFe: 9Cr: 1.0Si, 0.35Mn5 0.02C, 0.04P, 0.045S ferritic stainless steel 409 S40900 Bal.Fe: 10.5Cr: 1.0Si, l.OMn, 0.5Ni, 0.5Ti, 0.08C, 0.045P, 0.045S 410 S41000 Bai.Fe:l 1.5Cr:0.15C, 0.045 P, 0.03S 430 S43000 Bal.Fe: 16.0Cr: 1.0Si, l.OMn, 0.12C, 0.045P, 0.03S Vostian Iron Stainless Steel [304 S30400 BaLFe: 8Ni: 18Cr: 2.0Mn, 0.75Si, 0.08C , 0.04P, 0.03S 310 -------- S31000 BaI.Fe:19Ni:24Cr:2.0Mn, 1.5Si, 0.75M〇, 0.25C, 0.045P, 0.03S l2S3MA S30815 Bal.Fe:! lNi :21Cr:1.7Si, 0.04Ce, 0.17N, 0.08C RA85H S30615 Bal.Fe: 14.5Ni: 18.5Cr: 3.5Si: 1.0A1, 0.2C duplex stainless steel 2205 --- S32205 Bal.Fe:4.5Ni:22Cr :2.0Mn, l.OSi, 3.0M〇, 0.03C, 0.14N, 0.03P, 0.02S 2507 S32507 Bal.Fe:6Ni:24Cr:1.2Mn, 0.8Si, 3.0M〇, 0.5Cu, 0.03C, 0.2N, 0.035P, 0.02S English Barium alloy nickel 600 N06600 Bal.Ni: 8.0Fe: 25.5Cr, 0.08 Yanggao 601 N06601 Bal.Ni: 14.4Fe: 23.0Cr: 0.3Mn: 1.4Als 0.5Si, 0.1C -3⁄4 咼 Nickel 602CA N/A Bal.Ni: 9.5Fe: 25.0Cr: 2.2Al, 0.18C One inch high nickel 690 N06690 Bal. Ni: 9.0Fe: 29.0Cr: 0.3Mn: 1.4AI, 0.5Si, 0.1C Inco high nickel 693 N06693 Bal.Ni : 4.0Fe: 29.0Cr: 3.1Al Inch high nickel MA754 N/A BaLNi: 9.0Fe: 29.0Cr: 0.3Mn: L4Al, 0.5Si, 0.1C Incoloy alloy Incory 800H N08810 Bal.Fe: 33.0 Ni: 21.0Cr: 0.8Mn: 0.5Al: 0.4Si: 0.5Ti: 0.07C Incoloy 825 N08825 Bal. Ni: 30.0Fe: 21.5Cr: 3.0Mo: 2.2Cu: 0.03C Fe-Ni base alloy KHR-45A (35/45 Alloy) N/A Bal.Fe: 43.6Ni: 32.1Cr: 1.0Mn: L7Si: 0.9Nb: 0.1Ti: 0.4C Ni-based alloy Haines 214 N07214 Bal.Ni: 3.0Fe: 2.0Co: 16, 0Cr: 0, 5Mn: 4.5Al: 0.2Si: 0, 5Mo: 0.5Ti: 0.05C Co» as the base alloy Haines 188 R30188 Bal. Co: 22.0Ni: 22.0Cr: 3.0Fe: 14.0W: 0.04La: 0.1C MP35N R30035 Bal.Co: 35.0Ni: 20.0Cr: 10.0Mo -18- 200827483 High-efficiency coating Was formed and applied to a method of the present invention also discloses a method exposed to metal dusting of metal over the surface of the carbon saturation of the environment prevents corrosion of uranium. The method is necessarily accompanied by providing a metal surface having a highly efficient coating of a metal composition, wherein the material composition comprises: (PQR), wherein P is an oxide layer on the (PQR) surface and Q is between P and R a metal coating layer, and R is a base metal, wherein P comprises alumina, chromium oxide, ceria, mullite, or a mixture thereof, Q comprises Ni and A1, and at least one is selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag or Au elements or mixtures thereof, and R series selected from carbon steel, low chromium steel, ferritic stainless steel, Worthite iron stainless steel, duplex stainless steel, Inco Nickel alloy, Incomoloy, Fe-Ni based alloy, Ni-based alloy or Co-based alloy. The metal surface to be protected at a temperature in the range of 350 to 1050 ° C in a carbon supersaturated (carbon active > 1) environment having a low oxygen partial pressure of about 1 〇 1 α to 1 (Γ 2 〇 atmospheric pressure) can be efficiently used. a coating material composition, coextruded with the coating material, coated with the coating material, or a combination of the three. In the high-efficiency coating material composition (PQR) for providing the present invention - a specific example The composition may be formed by constructing the process equipment by coating the metal Q and the base metal R. In another specific example for providing the high-efficiency coating material composition (PQR) of the present invention, the composition may be used in The steel coextrusion technique known in the art is formed by co-extruding a coating metal Q and a base metal R. The high-efficiency coating material composition (PQR) for providing the present invention is another -19-200827483 In one embodiment, the composition may be formed from the surface of an existing surface processing apparatus susceptible to metal dust, the surface being coated with the coated metal Q of the present invention using coating techniques well known to those skilled in the art. The surface is made of base metal R. Suitable for use here. Exemplary coating techniques for coating the base metal R with a coated metal composition include, but are not limited to, CVD, MOCVD, PVD, slurry coating, embedding, powder plasma welding, thermal spraying, and sputtering. Thus, the high performance coating material composition (PQR) of the present invention can be optionally coextruded or coated with the high efficiency coating material composition described herein. The above protective surface oxide layer P can be in a carbon supersaturated environment. The unit is formed in situ when operating the unit. More specifically, the protective surface oxide layer P can be exposed to metal dust for each of the three methods used to form the coated metal and base metal combination (QR). The environment is formed during the use of the device (formed in situ). Alternatively, the protective surface oxide layer P described above may be formed prior to exposure of the coated metal and base metal combination (QR) to the carbon supersaturated environment prior to use of the device. An exemplary but non-limiting metal dust environment is to expose the high efficiency coating material of the present invention to a metal dust environment, such as a 50CO-50H2 mixture. Alternatively, the protective surface oxide described above Layer P may be formed prior to use of the apparatus by exposing the coated metal and base metal combination (QR) to a controlled low oxygen partial pressure. A non-limiting example of a controlled low oxygen partial pressure environment is to make the invention The high efficiency coating material is exposed to a gaseous H20:H2 mixture and a gaseous CO2:CO mixture. Preferably, the temperature range is from about 305 ° C to about 120 (TC, preferably from about 5 50 ° C to about 1 200 ° C. A typical exposure time is from about 1 hour to about 300 hours -20 to 200827483, preferably from about 1 hour to about 1000 hours. Thus, the protective oxide layer P can be used at or before the alloy is used. They are formed under exposure to conditions in a metal meal environment. The high performance coating material composition (pQR) of the present invention as described herein can be used to construct equipment surfaces that are exposed to a carbon metal dust environment. The figure 槪 schematically illustrates the use of a coating material (PQR) for protecting a syngas generating apparatus. For non-limiting examples, syngas process tubing or tubing can be applied to the inner, outer or inner and outer diameters, depending on the resistance to metal dust corrosion. The surface of the syngas process equipment that can benefit from the highly efficient coating materials of the present invention includes equipment and reactors that are in contact with the carbon supersaturated environment at any time during use. These equipment and reactor systems include, but are not limited to, reactors, gas/gas heat exchangers or syngas to produce process tubing and piping. Applicants attempt to disclose specific examples and applications of all disclosed subject matter that are reasonably foreseeable. However, it may not be possible to foresee an insubstantial modification that is still considered an equivalent. Although the present invention has been described in connection with the specific embodiments of the present invention, it is apparent that many changes, modifications and variations may be made without departing from the spirit and scope of the disclosure. Therefore, the disclosure is intended to cover all alternatives, modifications, and variations of the above detailed description. The following examples illustrate the invention and its advantages without limiting the scope of the method for determining the weight percent of elements in the coating material (PQR). It is determined by the standard energy dispersive X-ray spectrometer (EDXS) by 200827483. / For the commercially available alloys (Inco High Nickel 601 and Inco High Nickel 693), rectangular samples of 〇 5 吋χ 0·25 吋χ 0·06 系 are prepared from alloy flakes. The β-NiAl coated Inco nickel 601 sample was prepared by an embedding method. The base metal, Inco nickel 6〇1', was chromed prior to the aluminizing embedding process. The diffusion reaction was carried out at 800 ° C to form a δ-Ν^ΑΙ3 phase on the surface of the base metal, Inco-Chen 601. Subsequent heat treatment is carried out at 100 ° C to convert the low melting δ phase into a β-NiAl phase, wherein the A1 content is from about 17 to about 39% by weight. The NiCrAl-coated Inco nickel 601 and NiCrAl-coated alloy 3 5/45 samples were prepared by powder plasma welding. For the comparative example, the NiCrAl-coated Inco nickel 601 sample was prepared by air plasma spraying, conventional thermal spraying. A rectangular sample of 0·5 吋χ θ.25 切 was cut out from the sample. The test piece was polished to a 6-inch grain finish or Linde B (0.05 micron alumina powder) and cleaned in acetone. The corrosion kinetics of the different alloy test pieces were investigated by exposing the test piece to a 50 CO-50 H2 (% by volume) environment at a test temperature of 550 ° C to about 10,000 ° C for up to 300 hours. The carbonization of the test piece was measured using a cahn 1 000 electronic balance. Carbon addition is an indicator of corrosion of metal dust. The surface and cross section of the test piece were also examined using a scanning electron microscope (SEM). Example 1 Following the above test method, the following alloy samples were tested: Inco High Nickel 60 1 -22-200827483 (formerly known), Angkor Nickel 693 (previously crafted), beta-NiAl coated Inco nickel 601, NiCrAl-coated Inco nickel 601 and NiCrAl coated alloy 35/45 alloy. The weight measurement results are shown in Fig. 2. Figure 2 depicts the mass gain due to carbon deposition (metal dust rot) on the finished Linde B alloy after 60 hours of reaction at 65 °C in a 50CO-50H2 gas mixture. After metal dust exposure, the surface of the sample is covered with carbon, which is always accompanied by metal dust corrosion. Significant amounts of carbon deposition were detected on the surface of commercially available prior art alloys (Inco Crown 601 and Inco Nickel 693). In contrast, the coating material of the present invention (β_ΝίΑ1 coated Inco nickel 601, NiCrAl-coated Inco nickel 601, and NiCrAl-coated alloy 3 5/45 alloy) was found to be insignificant or small. Carbon deposition. Further, the susceptibility of the metal dust is examined through the cross-section S EM of the etched surface. The cross-sectional SEM image in Figure 3 reveals the characteristic cavity morphology of the prior art Inco high nickel 601 alloy after a 160 hour reaction at 60 °C in a 50CO-5〇H2 gas mixture. Metal dust in carbon deposits is seen in the cavity. The cavities have a diameter of about 120 microns and a depth of about 20 microns. The cross-sectional SEM image in Figure 4 reveals the characteristic cavity morphology of the prior art Inco high nickel 693 alloy after reacting at 65 (TC for 160 hours) in a 50 CO-50 H2 gas mixture. Metal dust. The diameter of the cavity is about 20 microns and the depth is about 8 microns. Example 2 The β-NiAl coated Inco high nickel 601 was tested at 50 ° C in a 50 CO-50 H 2 gas mixture following the above test method. After 300 hours. -23- 200827483

該氧化鋁層的厚度爲約5 何枓表面附近的EDXS線數據圖 Cr及Fe)以重量%計的濃度畫成 釆5圖描述在50CO-50H2氣體混 3 00小時之後本發明的高效塗覆材 °該氧化物層P由氧化鋁構成。 μηι。該塗覆金屬Q爲β-NiAl, 其中該Α1含量爲約18重量%。該p_NiA1層的厚度爲約55 φ μιη。該塗覆金屬Q中的Fe含量爲約9·8重量%。該β-NiAl/英高鎳601界面還觀察到約6 μηι厚度的富含cr層 。該基底金屬R爲英高鎳601。 第6圖爲在50CO-50H2氣體混合物中在1 050°C下測 試300小時之後該樣品(p_NiA1/英高鎳601)的表面及斷 面SEM影像。第6圖所例示爲氧化鋁層、塗覆金屬( NiAl )層及基底金屬(英高鎳601 )。 φ 實施例3 遵循上述測試方法,在50CO-50H2氣體混合物中在 1 050°C下測試NiCrAl-塗覆英高鎳601歷經3 00小時。第 7圖描述測試之前該塗覆材料表面附近的EDXS線數據圖 * 。將不同元素(Ni、Al、Cr及Fe)以重量%計的濃度畫成 離塗覆表面的距離函數。該塗覆金屬Q爲NiCrAl且包含 約6重量%的A1,約24重量%的Cr,約68重量%的Ni, 及約2重量%的Fe。該塗覆金屬NiCrAl的厚度爲約2.1 mm。該基底金屬R爲英高鎳601。第8圖爲在50CO-50H2 -24- 200827483 氣體混合物中在1 050 °C下測試3 00小時之後該樣品的表面 及斷面SEM影像。該氧化物層包含約3 μηι厚的氧化鋁層 及其他包含氧化鉻及氧化鋁-氧化鉻的氧化物。 實施例4The thickness of the aluminum oxide layer is about 5, and the EDXS line data near the surface of the surface is plotted in terms of the concentration by weight. 釆5 is a graph depicting the high-efficiency coating of the present invention after 50 hours of mixing with 50CO-50H2 gas for 30,000 hours. The oxide layer P is composed of aluminum oxide. Ηηι. The coating metal Q is β-NiAl, wherein the cerium 1 content is about 18% by weight. The thickness of the p_NiA1 layer is about 55 φ μιη. The Fe content in the coating metal Q was about 9.8 wt%. A thick layer of cr having a thickness of about 6 μηι was also observed at the β-NiAl/Incoal Nickel 601 interface. The base metal R is Inco Crown 601. Figure 6 is a SEM image of the surface and cross-section of this sample (p_NiA1/Inco High Nickel 601) after 300 hours at 1 050 °C in a 50CO-50H2 gas mixture. Figure 6 illustrates an aluminum oxide layer, a coated metal (NiAl) layer, and a base metal (Inco Crown 601). φ Example 3 Following the above test method, NiCrAl-coated Inco High Nickel 601 was tested at 50 °C to 50 ° C for 3 00 hours at 1 050 °C. Figure 7 depicts the EDXS line data plot near the surface of the coating material prior to testing. The concentration of the different elements (Ni, Al, Cr, and Fe) in % by weight is plotted as a function of the distance from the coated surface. The coating metal Q is NiCrAl and comprises about 6% by weight of A1, about 24% by weight of Cr, about 68% by weight of Ni, and about 2% by weight of Fe. The coated metal NiCrAl has a thickness of about 2.1 mm. The base metal R is Inco Crown 601. Figure 8 is a SEM image of the surface and section of the sample after testing at 050 °C for 300 hours in a 50CO-50H2 -24-200827483 gas mixture. The oxide layer comprises an alumina layer of about 3 μη thick and other oxides comprising chromium oxide and aluminum oxide-chromium oxide. Example 4

遵循上述測試方法,在50CO-50H2氣體混合物中在 1 05 0°C下測試NiCrAl-塗覆3 5/45合金3 00小時。第9圖 描述測試之前該塗覆材料表面附近的EDXS線數據圖。將 不同元素(Ni、A卜Si、Cr及Fe)以重量%計的濃度畫成 離塗覆表面的距離函數。該塗覆金屬Q爲NiCrAl且包含 約5重量%的A1,約26重量。/。的Cr,約65重量%的Ni、 約1重量%的Si及約3重量%的Fe。該塗覆金屬NiCrAl 的厚度爲約2·6 μιη。該基底金屬R爲35/4 5合金。第10 圖爲在50CO-50H2氣體混合物中在i〇50°C下測試300小 時之後該樣品的表面及斷面SEM影像。該氧化物層包含 約4 μιη厚的氧化鋁層。 實施例5 :高多孔性塗層的比較例 遵循上述測試方法,經由空氣電漿噴塗法,傳統熱噴 塗法來製備NiCrAlY-塗覆英高鎳601樣品。所用的 NiCrAlY粉末爲Praxair NI-278。該塗覆金屬包含約69.2 重量%的Ni,約23.2重量%的Cr,約6.9重量%的A1及 約0.7重量%的Y。該塗覆金屬NiCrAlY的厚度爲約200 μπι。該空氣電漿噴塗的NiCrAlY塗層在固化液滴之間含 -25- 200827483 有許多細孔且塗覆金屬與基底合金之間顯示不良的黏著力 。在50CO-50H2氣體混合物中在65 0°C下測試NiCrAlY-塗 覆英高鎳601歷經160小時。第11圖爲測試之後該樣品 的表面及斷面SEM影像。該塗覆金屬層中過量的多孔性 當作金屬粉塵環境中的腐餓性氣體轉移至該金屬及基底金 屬表面的途徑。該碳轉移將導致該塗覆金屬層中的內部碳 沈澱和凸出及塗層/基底金屬界面處的塗覆金屬脫層。該 碳沈積物中觀察到富含Ni的粒子,其係金屬粉塵腐蝕的 特徵。 【圖式簡單說明】 爲了輔助普通熟悉相關技藝之士完成及使用關此的主 題,對照隨附的圖形,其中: 第1圖描述用於保護合成氣產生製程設備的管材或配 管不同位置的本發明高效塗覆材料的槪略例示圖。 第2圖描述在50CO-50H2氣體混合物中在65〇°C下反 應160小時之後Linde B合金成品上由於碳沈積(金屬粉 塵腐鈾度量)的質量增益條狀圖。 第3圖描述在50CO-50H2氣體混合物中在650°C下反 應160小時之後未塗覆英高鎳601合金(先前技藝)的腐 蝕表面的斷面掃描式電子顯微(SEM)影像。 第4圖描述在50CO-50H2氣體混合物中在65 0°C下反 應160小時之後未塗覆英高鎳693合金(先前技藝)的腐 鈾表面的斷面SEM影像。 -26- 200827483 第5圖描述在50CO-50H2氣體混合物中在i〇5〇°C下 測試3 00小時之後本發明的高效NiAl-塗覆英高鎳6〇1材 料的EDXS線數據圖。 第6圖描述在50CO-50H2氣體混合物中在i〇50°C下 測試3 00小時之後本發明的高效NiAl-塗覆英高鎳6〇1材 料的表面及斷面SEM影像。 第7圖描述在50(3〇-5(^2氣體混合物中在l〇50°C下 測試3 00小時之前本發明的高效NiCrAl-塗覆英高鎳601 材料的EDXS線數據圖。 第8圖描述在50CO-50H2氣體混合物中在1 05 0Ϊ:下 測試3 00小時之後本發明的高效NiCrAl-塗覆英高鎳601 材料接近該塗覆表面的表面及斷面影像。 第9圖描述在5 0CO-50H2氣體混合物中在l〇50°C下 測試3 00小時之前本發明的高效NiCrAl-塗覆3 5/45合金 接近該塗覆表面的EDXS線數據圖。 第10圖描述在50CO-50H2氣體混合物中在l〇5〇°C下 測試300小時之後本發明的高效NiCrAl-塗覆3 5/45合金 接近該塗覆表面的表面及斷面影像。 第11圖描述在50CO-50H2氣體混合物中在605°C下 測試160小時之後本發明的高效NiCrAl-塗覆英高鎳601 材料(先前技藝)接近該塗覆表面的表面及斷面影像。 -27-The NiCrAl-coated 3 5/45 alloy was tested for 300 hours at 50 ° C in a 50 CO-50 H 2 gas mixture following the above test method. Figure 9 depicts the EDXS line data plot near the surface of the coating material prior to testing. The concentration of the different elements (Ni, A, Si, Cr, and Fe) in % by weight is plotted as a function of the distance from the coated surface. The coating metal Q is NiCrAl and contains about 5% by weight of A1, about 26 parts by weight. /. Cr, about 65 wt% Ni, about 1 wt% Si, and about 3% wt% Fe. The coated metal NiCrAl has a thickness of about 2·6 μm. The base metal R is a 35/45 alloy. Figure 10 is a SEM image of the surface and section of the sample after 300 hours of testing at 50 °C in a 50CO-50H2 gas mixture. The oxide layer comprises an alumina layer of about 4 μm thick. Example 5: Comparative Example of High Porosity Coating A NiCrAlY-coated Inco Nickel 601 sample was prepared by air jet spraying, conventional thermal spraying, following the above test method. The NiCrAlY powder used was Praxair NI-278. The coating metal comprises about 69.6% by weight of Ni, about 23.2% by weight of Cr, about 6.9 % by weight of A1, and about 0.7% by weight of Y. The coated metal NiCrAlY has a thickness of about 200 μm. The air plasma sprayed NiCrAlY coating contains a number of fine pores between the solidified droplets and a poor adhesion between the coated metal and the base alloy. NiCrAlY-coated Inco-Chen 601 was tested at 65 °C for 160 hours in a 50CO-50H2 gas mixture. Figure 11 is a SEM image of the surface and section of the sample after the test. Excess porosity in the coated metal layer acts as a means of transferring the hunger gas in the metal dust environment to the metal and substrate metal surfaces. This carbon transfer will result in internal carbon precipitation and bulging in the coated metal layer and delamination of the coating metal at the coating/substrate metal interface. Ni-rich particles were observed in the carbon deposits, which were characteristic of metal dust corrosion. [Simple description of the schema] In order to assist the general familiarity of the relevant craftsman to complete and use the theme of this, in accordance with the accompanying graphics, wherein: Figure 1 depicts the different positions of the pipe or piping used to protect the syngas generation process equipment. A schematic illustration of the invention of an efficient coating material. Figure 2 depicts a bar graph of mass gain due to carbon deposition (metal dust uranium metric) on the finished Linde B alloy after 160 hours of reaction at 65 °C in a 50 CO-50 H2 gas mixture. Figure 3 depicts a cross-sectional scanning electron microscopy (SEM) image of the etched surface of the Uncoated Nickel 601 alloy (previously crafted) after 160 hours of reaction at 650 ° C in a 50 CO-50 H 2 gas mixture. Figure 4 depicts a cross-sectional SEM image of the surface of the uranium uncoated with the Inco high nickel 693 alloy (previously crafted) after a 160 hour reaction at 65 °C in a 50CO-50H2 gas mixture. -26- 200827483 Figure 5 depicts the EDXS line data plot of the high efficiency NiAl-coated Ingone nickel 6〇1 material of the present invention after 300 hours of testing at 50 °C to 0 °C in a 50 CO-50 H2 gas mixture. Figure 6 depicts the surface and cross-sectional SEM images of the high efficiency NiAl-coated Ingone nickel 6〇1 material of the present invention after 300 hours of testing at 50 °C in a 50CO-50H2 gas mixture. Figure 7 depicts an EDXS line data plot of the high efficiency NiCrAl-coated Inco high nickel 601 material of the present invention at 50 (3 〇-5 (^2 gas mixture) at 100 ° C for 30 hours. The figure depicts the surface and cross-sectional image of the high-efficiency NiCrAl-coated Inco high-nickel 601 material of the present invention approaching the coated surface after 300 hours of testing in a 50CO-50H2 gas mixture at 30,000 hours. Figure 9 depicts The EDXS line data of the high-efficiency NiCrAl-coated 3 5/45 alloy of the present invention approaching the coated surface before testing at 100 ° C for 30 hours in a 0 CO-50 H 2 gas mixture. Figure 10 depicts the 50 CO- The high-efficiency NiCrAl-coated 3 5/45 alloy of the present invention is close to the surface and cross-sectional image of the coated surface after testing in a 50H 2 gas mixture at 100 ° C for 300 hours. Figure 11 depicts the gas at 50CO-50H2 The high-efficiency NiCrAl-coated Inco High Nickel 601 material of the present invention (previously crafted) in the mixture after testing at 605 ° C for 160 hours is close to the surface and cross-sectional image of the coated surface.

Claims (1)

200827483 十、申請專利範圍 1. 一種抗金屬粉麈腐鈾性之高效塗覆金屬組成物, 其包含(PQR),其中 P爲(PQR)表面上的氧化物層,Q爲介於P與R之 間的塗覆金屬層,且R爲基底金屬,其中 P包含氧化鋁、氧化鉻、二氧化矽、莫來石(mullite )、或其混合物, Q包含Ni及A1,及至少一種選自Cr、Si、Mn、Fe、 Cο、B、C、N、P、Ga、Ge、As、In、Sn、Sb、Pb、Sc、 La、Y、Ce、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh 、Ir、Pd、Pt、Cu、Ag或Au之元素或其混合物,及 R係選自碳鋼、低鉻鋼、鐵素體不銹鋼、沃斯田鐵不 銹鋼、雙相不銹鋼、英高鎳(Inconel )合金、因科洛依( Incoloy)合金、Fe-Ni爲底的合金、Ni-爲底的合金或Co- 爲底的合金。 2 ·如申請專利範圍第1項之塗覆金屬組成物,其中 該氧化層P爲氧化鋁。 3 ·如申請專利範圍第1項之塗覆金屬組成物,其中 該興化層P的厚度爲約1 nm至約100 μπι。 4.如申請專利範圍第1項之塗覆金屬組成物,其中 該塗覆金屬層q包含少於約12重量%的Fe。 5 ·如申請專利範圍第1項之塗覆金屬組成物,其中 該塗覆金屬層Q包含少於約3體積%的多孔性。 如申請專利範圍第5項之塗覆金屬組成物,其中 -28- 200827483 該塗覆金屬層Q包含少於約1體積%的多孔性。 7 .如申請專利範圍第4項之塗覆金屬組成物,其中 該塗覆金屬層Q包含約4重量%至約70重量%的鋁。 8 ·如申請專利範圍第7項之塗覆金屬組成物,其中 該塗覆金屬層Q爲NiAl。 9.如申請專利範圍第8項之塗覆金屬組成物,其中 該塗覆金屬層Q包含約17重量%至約39重量%的A1,及 約61重量°/❶至約83重量%的m。 1 〇.如申請專利範圍第9項之塗覆金屬組成物,其中 該塗覆金屬層Q的厚度爲約1 μιη至約3〇〇 μιη。 1 1 ·如申請專利範圍第7項之塗覆金屬組成物,其中 該塗覆金屬層Q爲NiCrAl。 1 2·如申請專利範圍第1 1項之塗覆金屬組成物,其 中該塗覆金屬層Q包含約4重量%至約重量%的A1, 約15重量%至約3〇重量%的Cr,及約60重量%至約81 重量%的N i。 1 3 .如申請專利範圍第1 2項之塗覆金屬組成物,其 中塗覆:$:屬層Q的厚度爲約μηι至約5 mm。 1 4·如申請專利範圍第1項之塗覆金屬組成物,其中 該塗覆金屬組成物(PQR)包含暴露於碳過飽和環境下的 合成氣產生製程設備之表面。 15.如申請專利範圍第14項之塗覆金屬組成物,其 中該合成氣產生製程設備係選自反應器、氣體/氣體熱交 換器或製程管材和配管。 -29- 200827483 16· —種藉由高效塗覆金屬組成物(PQR) 於碳過飽和環境下之金屬表面的金屬粉塵腐蝕之 中 P爲(PQR)表面上的氧化物層,Q爲介於 間的塗覆金屬層,且R爲基底金屬,其中 P包括氧化鋁、氧化鉻、二氧化矽、莫來石 合物, Q包括Ni及A1,及至少一種選自Cr、Si、 Co、B、C、N、P、Ga、Ge、As、In、Sn、Sb、 La、Y、Ce、Ti、Zr、Hf、V、Nb、Ta、Mo、W 、Ir、Pd、Pt、Cu、Ag或Au之元素或其混合物 R係選自碳鋼、低鉻鋼、鐵素體不銹鋼、沃 銹鋼、雙相不銹鋼、英高鎳合金、因科洛依合: 爲底的合金、Ni-爲底的合金或Co-爲底的合金; 其中該方法包含提供具有(PQR)的金屬表 〇 1 7 .如申請專利範圍第1 6項之方法,其中 層P爲氧化銘。 1 8 .如申請專利範圍第1 6項之方法,其中 層P的厚度爲約1 nm至約100 μηι。 19.如申請專利範圍第1 6項之方法,其中 該塗覆金屬組成物暴露於碳過飽和且低氧分壓之 控制的低氧分壓之環境下於使用該塗覆金屬組成 用之前在原位形成該氧化物層Ρ。 防止暴露 方法,其 Ρ與R之 、或其混 Mn、Fe、 P b、Sc、 、Ru、Rh ,及 斯田鐵不 fe、Fe-Ni 面之步驟 該氧化物 該氧化物 在經由使 環境或經 物時或使 -30- 200827483 2 〇 ·如申請專利範圍第1 9項之方法,其中該碳過飽 和且低氧分壓之環境係在約3 5 0 °C至1 2 0 0 °C的溫度下歷經 約1小時至約500小時的暴露時間爲氣態50CO : 50H2混 合物。 21.如申請專利fe圍第2〇項之方法,其中該碳過飽 和且低氧分壓之環境進一步包含選自ch4、NH3、N2、 、He、Ar、烴、或其混合物之氣體。200827483 X. Patent application scope 1. A high-efficiency coating metal composition resistant to metal powder ruthenium uranium, which comprises (PQR), wherein P is an oxide layer on the surface of (PQR), Q is between P and R Between the coated metal layers, and R is a base metal, wherein P comprises aluminum oxide, chromium oxide, ceria, mullite, or a mixture thereof, Q comprises Ni and A1, and at least one is selected from Cr , Si, Mn, Fe, Cο, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta , Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag or Au elements or mixtures thereof, and R series selected from carbon steel, low chromium steel, ferritic stainless steel, Worth iron stainless steel, double Phase stainless steel, Inconel alloy, Incoloy alloy, Fe-Ni based alloy, Ni-based alloy or Co-based alloy. 2. The coated metal composition of claim 1, wherein the oxide layer P is alumina. 3. The coated metal composition of claim 1, wherein the thickness of the layer C is from about 1 nm to about 100 μm. 4. The coated metal composition of claim 1 wherein the coated metal layer q comprises less than about 12% by weight Fe. 5. The coated metal composition of claim 1, wherein the coated metal layer Q comprises less than about 3% by volume of porosity. The coated metal composition of claim 5, wherein the coated metal layer Q comprises less than about 1% by volume of porosity. 7. The coated metal composition of claim 4, wherein the coating metal layer Q comprises from about 4% by weight to about 70% by weight aluminum. 8. The coated metal composition of claim 7, wherein the coating metal layer Q is NiAl. 9. The coated metal composition of claim 8 wherein the coated metal layer Q comprises from about 17% to about 39% by weight of A1, and from about 61% by weight to about 83% by weight of m. . The coated metal composition of claim 9, wherein the coated metal layer Q has a thickness of from about 1 μm to about 3 μm. The coating metal composition of claim 7, wherein the coating metal layer Q is NiCrAl. The coating metal composition of claim 11, wherein the coating metal layer Q comprises from about 4% by weight to about 3% by weight of A1, from about 15% by weight to about 3% by weight of Cr, And about 60% by weight to about 81% by weight of Ni. 1 3. A coated metal composition according to claim 12, wherein the coating: $: the layer Q has a thickness of from about μηι to about 5 mm. The coated metal composition of claim 1, wherein the coated metal composition (PQR) comprises a surface of a synthesis gas generating process apparatus exposed to a carbon supersaturated environment. 15. The coated metal composition of claim 14, wherein the syngas production process equipment is selected from the group consisting of a reactor, a gas/gas heat exchanger or a process tube and piping. -29- 200827483 16·—A metal oxide dust on the metal surface in a carbon supersaturated environment by high-efficiency coating of metal composition (PQR). P is the oxide layer on the (PQR) surface, Q is between Coating a metal layer, and R is a base metal, wherein P comprises alumina, chromium oxide, ceria, mullite, Q comprises Ni and A1, and at least one is selected from the group consisting of Cr, Si, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ir, Pd, Pt, Cu, Ag or The element of Au or a mixture of R is selected from the group consisting of carbon steel, low chromium steel, ferritic stainless steel, Wool steel, duplex stainless steel, Inco high nickel alloy, Incoloy: alloy as bottom, Ni-based An alloy or a Co-based alloy; wherein the method comprises providing a metal surface having (PQR). The method of claim 16 wherein the layer P is oxidized. 18. The method of claim 16, wherein the layer P has a thickness of from about 1 nm to about 100 μm. 19. The method of claim 16, wherein the coating metal composition is exposed to a low oxygen partial pressure controlled by carbon supersaturation and a low oxygen partial pressure, before the use of the coated metal composition The formation of the oxide layer Ρ. a method for preventing exposure, which is followed by a step of R, or a mixture thereof of Mn, Fe, Pb, Sc, Ru, Rh, and a sinter iron, and a Fe-Ni surface. Or the method of the present invention, or the method of claim 19, wherein the environment of the carbon supersaturation and low oxygen partial pressure is between about 350 ° C and 1 2 0 0 ° C. The exposure time of about 1 hour to about 500 hours at a temperature is a gaseous 50CO: 50H2 mixture. 21. The method of claim 2, wherein the carbon supersaturated and low oxygen partial pressure environment further comprises a gas selected from the group consisting of ch4, NH3, N2, He, Ar, hydrocarbons, or mixtures thereof. 22·如申請專利範圍第19項之方法,| + @中該經控制 的低氧分壓環境係在約3 50°C至120(TC的溫 烫下歷經約1 小時至約500小時的暴露時間爲氣態H2〇 : p 、 2進合物或氣 態C02 : CO混合物。 23.如申請專利範圍第22項之方法, 的低氧分壓環境進一步包含選自ch4、nh3 、Ar、烴、或其混合物之氣體。 24 ·如申請專利範圍第1 6項之方法, 屬層Q包含少於約12重量%的Fe。 25 ·如申請專利範圍第1 6項之方法, 屬層Q包含少於約3體積%的多孔性。 26·如申請專利範圍第25項之方法, 屬層Q包含少於約1體積%的多孔性。 27·如申請專利範圍第24項之方法, _中該經控制 、以2、〇2、He _中該塗覆金 _中該塗覆金 #中該塗覆金 _中該塗覆金 屬層Q包含約4重量%至約70重量%的鋁。 28·如申請專利範圍第27項之方法,> β中該塗覆金 屬層Q爲NiAl。 -31 - 200827483 2 9.如申請專利範圍第28項之方法,其中該塗覆金 屬層Q包含約1 7重量%至約3 9重量%的A1,及約6 1重 量%至約83重量%的Ni。 30.如申請專利範圍第29項之方法,其中該塗覆金 屬層Q的厚度爲約1 μιη至約3 00 μπι。 3 1 .如申請專利範圍第3 0項之方法,其中提供具有 (PQR)的金屬表面之步驟包含選自下述之步驟: a) 建構該高效塗覆金屬組成物(PQR)的金屬表面, b) 在該基底金屬層R上共濟押該金屬層Q, c) 在該基底金屬層R上塗覆該金屬層Q,及 d )步驟a ) 、b )及c )的組合。 3 2 .如申請專利範圍第3 1項之方法,其中該塗覆步 驟c)係選自CVD、MOCVD、PVD、漿液塗覆或包埋法( pack cementation ) 〇 3 3 .如申請專利範圍第3 2項之方法,其進一步包含 將該金屬層(Q)後段退火或雷射熔融的步驟。 34. 如申請專利範圍第27項之方法,其中該塗覆金 屬層Q爲NiCrAl。 35. 如申請專利範圍第34項之方法,其中該塗覆金 屬層Q包含約4重量%至約1 0重量%的A1,約1 5重量% 至約30重量%的Cr,及約60重量%至約81重量%的Ni。 36. 如申請專利範圍第35項之方法,其中該塗覆金 屬層Q的厚度爲約100 μιη至約5 mm。 37. 如申請專利範圍第36項之方法,其中提供具有 -32- 200827483 (PQR )的金屬表面之步驟包含選自下述之步驟: a) 建構該高效塗覆金屬組成物(PQR)的金屬表面, b) 在該基底金屬層R上共擠押該金屬層Q, c) 在該基底金屬層R上塗覆該金屬層Q,及 d )步驟a ) 、b )及c )的組合。 38·如申請專利範圍第37項之方法,其中該塗覆步 驟c )爲經由粉末電漿焊接。 3 9.如申請專利範圍第38項之方法,其進一步包含 將該金屬層(Q )後段退火或雷射熔融的步驟。 40.如申請專利範圍第16項之方法,其中該塗覆金 屬組成物(PQR)包含暴露於碳過飽和環境下的合成氣產 生製程設備之表面。 4 1·如申請專利範圍第40項之方法,其中該合成氣 產生製程設備係選自反應器、氣體/氣體熱交換器或製程 管材和配管。22. The method of claim 19, wherein the controlled low oxygen partial pressure environment is exposed to a temperature of from about 3 50 ° C to 120 (TC for about 1 hour to about 500 hours). The time is gaseous H2 〇: p, 2, or gaseous CO 2 :CO mixture. 23. The method of claim 22, wherein the low oxygen partial pressure environment further comprises a selected from the group consisting of ch4, nh3, Ar, hydrocarbon, or The gas of the mixture. 24. The method of claim 1, wherein the genus layer Q contains less than about 12% by weight of Fe. 25 · As in the method of claim 16 of the patent application, the genus layer Q contains less than A porosity of about 3% by volume. 26. The method of claim 25, wherein the genus layer Q comprises less than about 1% by volume of porosity. 27. The method of claim 24, _ Controlling, in 2, 〇 2, He _ in the coating gold _ in the coating gold # the coating metal layer _ wherein the coating metal layer Q comprises from about 4% by weight to about 70% by weight of aluminum. As in the method of claim 27, the coating metal layer Q in the β is NiAl. -31 - 200827483 2 9. Patent application The method of claim 28, wherein the coating metal layer Q comprises from about 17% by weight to about 39% by weight of A1, and from about 61% by weight to about 83% by weight of Ni. 30. The method of claim 29, wherein the coating metal layer Q has a thickness of from about 1 μm to about 300 μm. 3 1. The method of claim 30, wherein the step of providing a metal surface having (PQR) comprises It is selected from the steps of: a) constructing a metal surface of the highly efficient metal-clad composition (PQR), b) co-extending the metal layer Q on the base metal layer R, c) coating the base metal layer R The metal layer Q, and d) a combination of steps a), b) and c). The method of claim 31, wherein the coating step c) is selected from the group consisting of CVD, MOCVD, PVD, slurry coating or pack cementation 〇3 3 . The method of item 3, further comprising the step of annealing or laser melting the back portion of the metal layer (Q). 34. The method of claim 27, wherein the coated metal layer Q is NiCrAl. The method of claim 34, wherein the coating metal layer Q comprises from about 4% by weight to about 10% by weight of A1, from about 15% by weight to about 30% by weight of Cr, and about 60% by weight. % to about 81% by weight of Ni. The method of claim 35, wherein the coated metal layer Q has a thickness of from about 100 μm to about 5 mm. 37. The method of claim 36, wherein the step of providing a metal surface having -32-200827483 (PQR) comprises the step of: a) constructing the metal of the highly efficient coated metal composition (PQR) Surface, b) coextruding the metal layer Q on the base metal layer R, c) coating the metal layer Q on the base metal layer R, and d) a combination of steps a), b) and c). 38. The method of claim 37, wherein the coating step c) is by plasma welding. 3. The method of claim 38, further comprising the step of annealing or laser melting the back layer of the metal layer (Q). 40. The method of claim 16, wherein the coated metal composition (PQR) comprises a surface of a synthesis gas production process apparatus exposed to a carbon supersaturated environment. The method of claim 40, wherein the syngas generation process equipment is selected from the group consisting of a reactor, a gas/gas heat exchanger or a process tube and piping. -33--33-
TW96125722A 2006-07-18 2007-07-13 High performance coated material with improved metal dusting corrosion resistance TW200827483A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83169606P 2006-07-18 2006-07-18

Publications (1)

Publication Number Publication Date
TW200827483A true TW200827483A (en) 2008-07-01

Family

ID=38957075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96125722A TW200827483A (en) 2006-07-18 2007-07-13 High performance coated material with improved metal dusting corrosion resistance

Country Status (5)

Country Link
CN (1) CN101512674A (en)
AR (1) AR062083A1 (en)
CA (1) CA2657782A1 (en)
TW (1) TW200827483A (en)
WO (1) WO2008010965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551699B (en) * 2012-01-18 2016-10-01 聖地威克智慧財產公司 Austenitic alloy

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748008B2 (en) 2008-06-12 2014-06-10 Exxonmobil Research And Engineering Company High performance coatings and surfaces to mitigate corrosion and fouling in fired heater tubes
CN102971440B (en) * 2010-03-23 2015-04-22 西门子公司 Metallic bondcoat with a high gamma/gamma' transition temperature and a component
CN103080364B (en) 2010-08-26 2015-02-25 新日铁住金株式会社 Cr-containing austenite alloy pipe and production method for same
US8906511B2 (en) * 2010-10-21 2014-12-09 Exxonmobil Research And Engineering Company Alumina forming bimetallic tube and method of making and using
EP2629903A1 (en) * 2010-10-21 2013-08-28 ExxonMobil Research and Engineering Company Alumina forming bimetallic tube for refinery process furnaces and method of making and using
US20120128526A1 (en) * 2010-11-24 2012-05-24 Kulkarni Anand A Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component
CN102352142B (en) * 2011-04-07 2014-04-16 世林(漯河)冶金设备有限公司 High-temperature nano-grade anti-carburizing material and coating, and application thereof
FR2974581B1 (en) 2011-04-29 2013-05-31 Snecma PIECE COMPRISING A COATING ON A METAL SUBSTRATE IN SUPERALLIAGE, THE COATING COMPRISING A METAL SUB-LAYER
WO2013146034A1 (en) 2012-03-28 2013-10-03 新日鐵住金株式会社 Cr-CONTAINING AUSTENITIC ALLOY AND METHOD FOR PRODUCING SAME
KR101996712B1 (en) 2012-04-04 2019-07-04 닛폰세이테츠 가부시키가이샤 Cr-containing austenitic alloy
WO2016137726A1 (en) * 2015-02-23 2016-09-01 Sabic Global Technologies B.V. Methods for hydrogenation of carbon dioxide to syngas
CN104889597A (en) * 2015-05-09 2015-09-09 芜湖鼎瀚再制造技术有限公司 Co-Mn-Si-Fe nanometer welding layer for welding and preparation method
CN104946953A (en) * 2015-06-24 2015-09-30 安徽再制造工程设计中心有限公司 Co-Mn-Cr2O3-Ti coating material and preparation method
CN115427603A (en) * 2020-04-24 2022-12-02 诺维尔里斯公司 Thermally modified oxide-based pretreatment for metals and method for producing said metals
CN111362673B (en) * 2020-04-28 2023-10-10 新化县众一陶瓷有限公司 Preparation method of iron gray alumina wear-resistant ceramic
CN114147169B (en) * 2020-09-08 2022-12-20 中国科学院金属研究所 Method for improving interface stability of metal core coating
US11819815B2 (en) 2021-11-19 2023-11-21 Infinium Technology, Llc Catalytic reactor for the conversion of carbon dioxide and hydrogen to syngas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637437A (en) * 1970-06-03 1972-01-25 Catalytic Technology Corp Raney metal sheet material
US5176964A (en) * 1991-04-12 1993-01-05 Martin Marietta Corporation Diffuse black plasma sprayed coatings
US6153313A (en) * 1998-10-06 2000-11-28 General Electric Company Nickel aluminide coating and coating systems formed therewith
US6454992B1 (en) * 2000-09-29 2002-09-24 Ohio Aerospace Institute Oxidation resistant and low coefficient of thermal expansion NiA1-CoCrAly alloy
US6565672B2 (en) * 2001-08-31 2003-05-20 General Electric Company Fabrication of an article having a protective coating with a flattened, pre-oxidized protective-coating surface
CN1671944B (en) * 2001-10-24 2011-06-08 国际壳牌研究有限公司 Installation and use of removable heaters in a hydrocarbon containing formation
US6692838B2 (en) * 2002-03-15 2004-02-17 Exxonmobil Research And Engineering Company Metal dusting resistant alloys
US6737556B2 (en) * 2002-10-21 2004-05-18 Exxonmobil Chemical Patents Inc. Method and system for reducing decomposition byproducts in a methanol to olefin reactor system
SE526673C2 (en) * 2003-08-28 2005-10-25 Sandvik Intellectual Property Use of a metal sputtering resistant copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551699B (en) * 2012-01-18 2016-10-01 聖地威克智慧財產公司 Austenitic alloy

Also Published As

Publication number Publication date
AR062083A1 (en) 2008-10-15
WO2008010965A8 (en) 2008-09-12
WO2008010965A1 (en) 2008-01-24
CA2657782A1 (en) 2008-01-24
CN101512674A (en) 2009-08-19

Similar Documents

Publication Publication Date Title
TW200827483A (en) High performance coated material with improved metal dusting corrosion resistance
US8029914B2 (en) High performance coated material with improved metal dusting corrosion resistance
US7354660B2 (en) High performance alloys with improved metal dusting corrosion resistance
Wang et al. Microstructures, properties and high-temperature carburization resistances of HVOF thermal sprayed NiAl intermetallic-based alloy coatings
CN100482864C (en) Highly oxidation resistant component
JP5182669B2 (en) Multilayer alloy film, heat-resistant metal member having the same, and method for producing multilayer alloy film
US10207242B2 (en) Alumina forming refinery process tubes with mixing element
WO2007080856A1 (en) Metallic material having excellent metal dusting resistance
JP4692289B2 (en) Metal material with excellent metal dusting resistance
JP2007505210A (en) Composite material surface on steel substrate
JPWO2007114089A1 (en) Die for forming honeycomb structure and method for manufacturing the same
Brittan et al. Carburization resistance of cu-coated stainless steel in supercritical carbon dioxide environments
MXPA04008333A (en) Copper based alloy resistant against metal dusting and its use.
Subramanian et al. Supercritical-CO2 corrosion behavior of alumina-and chromia-forming heat resistant alloys with Ti
JPH11336563A (en) Gas collecting pipe for passing hot gas of gas turbine
JP2008214734A (en) Metallic material having excellent metal dusting resistance
Li et al. Inhibiting effect of Ni-Re interlayer between Ni-Al coating and steel substrate on interdiffusion and carburization
JP2014198902A (en) Bond coat system and coated component
JP5345419B2 (en) Method for forming high-temperature oxidation ceramic film and substrate with high-temperature oxidation ceramic film
US6692838B2 (en) Metal dusting resistant alloys
Pérez et al. Silicon/silicon oxide coating on AISI 304 stainless steel by CVD in FBR: analysis of silicides and adherence of coating
Agüero Progress in the development of coatings for protection of new generation steam plant components
JPS62500574A (en) Method of applying coatings to metals and products obtained thereby
US12000027B2 (en) Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance
US20220380871A1 (en) Bimetallic Materials Comprising Cermets with Improved Metal Dusting Corrosion and Abrasion/Erosion Resistance