TW201241846A - Permanent magnet and manufacturing method for permanent magnet - Google Patents

Permanent magnet and manufacturing method for permanent magnet Download PDF

Info

Publication number
TW201241846A
TW201241846A TW101116741A TW101116741A TW201241846A TW 201241846 A TW201241846 A TW 201241846A TW 101116741 A TW101116741 A TW 101116741A TW 101116741 A TW101116741 A TW 101116741A TW 201241846 A TW201241846 A TW 201241846A
Authority
TW
Taiwan
Prior art keywords
magnet
permanent magnet
sintering
organometallic compound
powder
Prior art date
Application number
TW101116741A
Other languages
English (en)
Other versions
TWI378477B (zh
Inventor
Izumi Ozeki
Katsuya Kume
Keisuke Hirano
Tomohiro Omure
Keisuke Taihaku
Takashi Ozaki
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW201241846A publication Critical patent/TW201241846A/zh
Application granted granted Critical
Publication of TWI378477B publication Critical patent/TWI378477B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

201241846 六、發明說明: 【發明所屬之技術領域】 . 明係關於一種永久磁石及永久磁石之製造方法。 【先前技術】 近年來,對於油電混合車或硬碟驅動器等中使用之永久 磁石電動機而言,要求小型輕量化、高輸出化及高效率 化而且,於上述永久磁石電動機實現小型輕量化、高輸 出化及高效率化時,對埋設於永久磁石電動機中之永久磁 石而言,要求磁特性之進一步提高。再者,作為永久磁 石’有鐵氧體磁石、Sm_Co系磁石、Nd-Fe-B系磁石、 Sm2FenNx系磁石等,尤其係殘留磁通密度較高iNd_Fe_B 系磁石適於作為永久磁石電動機用之永久磁石。 於此,作為永久磁石之製造方法,通常係使用粉末燒結 法。於此’粉末燒結法係首先將原材料進行粗粉碎,並利 用喷射磨機(乾式粉碎)或濕式珠磨機(濕式粉碎)製造已微 粉碎之磁石粉末。其後,將該磁石粉末放入模具,一面自 外部施加磁場,一面擠壓成形為所需之形狀。繼而,將成 形為所需形狀之固形狀之磁石粉末以特定溫度(例如Nd_
Fe-B系磁石為800°C〜1150。〇進行燒結,藉此製造永久磁 石。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利第3298219號公報(第4頁、第5頁) 【發明内容】 164208.doc 201241846 [發明所欲解決之問題] . 又’眾所周知永久磁石係藉由接近化學計量組成(例如 Nd-Fe-B系磁石中,Nd2Fei4B)而提高磁石特性。因此,進 行將製造永久磁石時之磁石原料之各元素之含量設為基於 化學什量組成之含量(例如Nd:26.7 wt%,Fe(電解鐵): 72·3 wt°/〇,B:l.〇 wt%)之處理。 於此’作為Nd-Fe-B系磁石之製造中產生之問題,可列 舉已燒結之合金中生成aFe之情況。作為原因,可列舉於 使用包含基於化學計量組成之含量之磁石原料合金而製造 永久磁石之情形時,製造過程中稀土類元素與碳或氧結 〇,導致稀土類元素相對化學計量組成不夠之狀態。進 而,若aFe在燒結後亦殘存於磁石中,則會導致磁石之磁 特性之下降》 因此,考慮使磁石原料中所含之稀土類元素之含量預先 多於基於化學計量組成之含量。然而,於該方法中,於粉 碎磁石原料後磁石組成產生大幅變動,故而粉碎後需要改 變磁石組成。 另一方面,眾所周知對於永久磁石之磁特性而言,由於 磁石之磁特性係根據單磁疇微粒子理論而導出,故若使燒 結體之晶體粒徑變微小’則基本上會提高磁性能。而且, 為了使燒結體之晶體粒徑變微小,需要使燒結前之磁石原 料之粒徑亦微小。 於此,作為粉碎磁石原料時使用之粉碎方法之一的濕式 珠磨粉碎係於容器中填充珠粒(介質)並使其旋轉,添加將 164208.doc 201241846 原料混合至溶劑而成之漿料’將原料礦碎而使其粉碎之方 法繼而藉由進行濕式珠磨粉碎,可將磁石原料粉碎至 微小之粒徑範圍(例如0.1 μΓη〜5〇μιη)為止。 然而’於如上述濕式珠磨粉碎般之濕式粉碎中,作為混 入磁石原料之溶劑’使用甲笨、環己烷、乙酸乙醋、甲醇 等有機溶劑。因此,即便於粉碎後進行真^乾料而使有 機溶劑揮發’亦會使C含有物殘留於磁石内。而且,因Nd 與碳之反應性非常高,故而若燒結步驟中c含有物殘留到 高溫為止,則會形成碳化物。其結果,存在因所形成之碳 化物而於燒結後之磁石之主相與晶界相之間產生空隙,無 法緻密地燒結磁石整體,使得磁性能顯著下降的問題。 又’即便於未產生空隙之情形時,亦存在因所形成之碳化 物而於燒結後之磁石之主相内析出aFe,使得磁石特性大 幅下降之問題。 本發明係為解決上述先前之問題點開發而成者,其目的 在於提供-種永久磁石及永久磁石之製造方法將濕式粉 碎中混人有有機溶劑之磁石粉末在燒結之前於氫氣環境下 進行預燒,藉此可預先減少磁石粒子所含之碳量,另一方 面’即便製造過㈣稀土類元素與氧或碳結合,亦不會使 稀土類元素相對化學計量組成不夠,可抑制燒結後之永久 磁石中生成otFe,從而可提高磁性能。 [解決問題之技術手段;| 為達成上述目的,本發明之永久磁石之特徵在於其係藉 由如下步驟製造而成:將由結構式M_(〇R)x(式中,Μ包括 164208.doc 201241846 稀土類元素Nd、Pr、Dy、Tb内之至少一種,R係含有烴之 取代基,既可為直鍵亦可為支鍵,x係任意之整數)所表示 之有機金屬化合物與磁石原料一併於有機溶劑中進行濕式 粉碎,獲得將上述磁石原料粉碎而成之磁石粉末,並且使 上述有機金屬化合物附著於上述磁石粉末之粒子表面藉 由將粒子表面上附著有上述有機金屬化合物之上述磁石粉 末成形而形成成形體;將上述成形體於氫氣環境下進行預 燒而獲得預燒體;以及對上述預燒體進行燒結。 又,本發明之永久磁石之特徵在於,形成上述有機金屬 化合物之金屬係於燒結後偏在於上述永久磁石之晶界。 又,本發明之永久磁石之特徵在於,上述結構式m_ (〇R)x2R係烷基。 又,本發明之永久磁石之特徵在於,上述結構式m_ (〇R)x之R係碳數為2〜6之烷基中之任一者。 又,本發明之永久磁石之特徵在於,燒結後所殘存之碳 量未達0.2 wt%。 又,本發明之永久磁石之製造方法之特徵在於包含如下 步驟.將由結構式M_(〇R)x(式中,吨括稀土類元素Nd、
Pr、Dy ' Tb内之至少一種,R係含有烴之取代基,既可為 直鍵亦可為支鍵,x餘意之整數)所表示之有機金屬化合 物與磁石原料一併於有機溶劑中進行濕式粉碎,獲得將上 述磁石原料粉碎而成之磁石粉末,並且使上述有機金屬化 合,附著於上述磁石粉末之粒子表面;藉由將粒子表面上 附著有上述有機金屬化合物之上述磁石粉末成形而形成成 I64208.doc 201241846 形體,將上述成形體於氫氣環境下進行預燒而獲得預燒 體;以及對上述預燒體進行燒結。 又,本發明之永久磁石之製造方法之特徵在於,上述結 構式M-(OR)x2R係烷基。 進而,本發明之永久磁石之製造方法之特徵在於,上述 結構式M-(〇R)x2R係碳數為2〜6之烷基中之任一者。 [發明之效果] 根據具有上述構成之本發明之永久磁石,將作為永久磁 石之製造步驟之濕式粉碎中混入有有機溶劑之磁石粉末之 成形體在燒結之前於氫氣環境下進行預燒,藉此可預先減 少磁石粒子所含之碳量。其結果,於燒結後之磁石之主相 與晶界相之間不會產生空隙,又,可緻密地燒結磁石整 體,且可防止保磁力下降。又,於燒結後之磁石之主相内 不會析出很多aF e ’不會大幅度降低磁石特性。 又,根據本發明之永久磁石,即便製造過程中稀土類元 素與氧或碳結合,亦不會使稀土類元素相對化學計量組成 不夠,可抑制燒結後之永久磁石中生成cxFe。又,由於粉 碎前後磁石組成不產生大幅變動,因此粉碎後不需要改變 磁石組成’可使製造步驟簡化。 又,根據本發明之永久磁石,例如於使用Dy、Tb作為M 之情形時,由於磁各向異性較高之Dy<Tb在燒結後偏在 於磁石之晶界’因此偏在於晶界之D”tTb抑制晶界之逆 磁疇之生成,藉此可提高保磁力。又,可使Dy*Tb之添 加量少於先前,可抑制殘留磁通密度之下降。 164208.doc 201241846 又’根據本發明之永久磁石,由於使用含有院基之有機 金屬化合物作為添加至磁石粉末之有機金屬化合物,因此 於氫氣環境下將磁石粉末進行預燒時,可容易進行有機金 屬化。物之熱分解。其結果,可更確實地減少預燒體中之 碳量。 、 又,根據本發明之永久磁石,由於使用含有碳數為2〜6 之烧基之有機金屬化合物作為添加至磁石粉末之有機金屬 化合物,因此於氫氣環境下將磁石粉末進行預燒時,可於 低溫下進行有機金屬化合物之熱分解。其結果,對於磁石 粉末整體而言可更容易進行有機金屬化合物之熱分解。 又根據本發明之永久磁石,由於燒結後所殘存之碳量 未達0.2 wt%,因此於磁石之主相與晶界相之間不會產生 空隙,又,可成為緻密地燒結磁石整體之狀態,且可防止 殘留磁通密度下降。又,於燒結後之磁石之主相内不會析 出很多aFe ’不會大幅度降低磁石特性。 又,根據本發明之永久磁石之製造方法,將濕式粉碎中 混入有有機溶劑之磁石粉末之成形體在燒結之前於氫氣環 境下進行預燒,藉此可預先減少磁石粒子.所含之碳量。其 結果,於燒結後之磁石之主相與晶界相之間不會產生空 隙’又’可緻密地燒結磁石整體,且可防止保磁力下降。 又’於燒結後之磁石之主相内不會析出很多aFe,不會大 幅度降低磁石特性。 又’根據本發明之永久磁石之製造方法,即便製造過程 中稀土類元素與氧或碳結合,亦不會使稀土類元素相對化 164208.doc 201241846 學°t量組成不夠,可抑制燒結後之永久磁石中生成aFe。 又,由於粉碎前後磁石組成不產生大幅變動,因此粉碎後 不需要改變磁石組成’可使製造步驟簡化。 又’根據本發明之永久磁石之製造方法,由於使用含有 烷基之有機金屬化合物作為添加至磁石粉末之有機金屬化 口物因此於氫乳環境下將磁石粉末進行預燒時,可容易 進行有機金屬化合物之熱分解。其結果,可更確實地減少 預燒體中之碳量。 進而,根據本發明之永久磁石之製造方法,由於使用含 有碳數為2〜6之烷基之有機金屬化合物作為添加至磁石粉 末之有機金屬化合物,因此於氫氣環境下將磁石粉末進行 預燒時,可於低溫下進行有機金屬化合物之熱分解。其結 果,對於磁石粉末整體而言可更容易進行有機金屬化合物 之熱分解。 【實施方式】 以下,關於本發明之永久磁石及永久磁石之製造方法經 具體化之實施形態,下面參照圖式而進行詳細說明。 [永久磁石之構成] 首先,對本發明之永久磁石丨之構成進行說明。圖丨係表 示本發明之永久磁石1之整體圖。再者,圖丨所示之永久磁 石1具有圓柱形狀,但永久磁石丨之形狀係根據成形時使用 之模腔之形狀而產生變化。 作為本發明之永久磁石1 ’例如使用Nd Fe B系磁石。 又,如圖2所示,永久磁石丨係作為有助於磁化作用之磁性 164208.doc •9- 201241846 相之主相11與非磁性且稀土類元素濃縮而成之低熔點之富 Μ相12(M包括作為稀土類元素之Nd ' pr、Dy、Tb内之至 少一種)共存之合金。圖2係將構成永久磁石丨之Nd磁石粒 子放大表示之圖。 於此’主相11成為作為化學計量組成之Nd2Fei4B金屬間 化合物相(Fe之一部分亦可被c〇取代)佔較高之體積比例之 狀態。另一方面,富Μ相12包含較相同之作為化學計量組 成之M2FeMB(Fe之一部分亦可被c〇取代)相比Μ之組成比率 更多之金屬間化合物相(例如,金屬間化合物 相)*又,於富Μ相12中,為提高磁特性,亦可少量含有 Co、Cu、Al、Si等其他元素。 而且’於永久磁石1中’富Μ相12承擔如下所述之作 用。 (1)嫁點較低(約600°C),燒結時成為液相,有助於磁石 之高密度化、即磁化之提高。(2)消除晶界之凹凸,減少逆 磁疇之新產生點(new creation site)而提高保磁力。(3)將主 相磁性絕緣並增加保磁力。 因此’若燒結後之永久磁石1中之富Μ相12之分散狀態 不良,則會導致局部燒結不良、磁性之下降,故而於繞結 後之永久磁石1中均勻地分散有富Μ相12將變得重要。 又’作為Nd-Fe-B系磁石之製造中產生之問題,可列舉 已燒結之合金中生成aFe之情況。作為原因,可列舉於使 用包含基於化學計量組成之含量之磁石原料合金而製造永 久磁石之情形時,製造過程中稀土類元素與氧或碳結合, 164208.doc •10- 201241846 導致稀土類元素相對化學計量組成不夠之狀態。於此, aFe係具有變形能且未被粉碎而殘存於粉碎機中,故而不 僅降低粉碎合金時之粉碎效率,而且亦對粉碎前後之組成 變動、粒度分佈造成影響。進而,若aFe在燒結後亦殘存 於磁石中,則會導致磁石之磁特性之下降。 而且’上述永久磁石1中之含有]^[(1或Μ之全稀土類元素 之含里較理想的是較基於上述化學計量組成之含量(26 7 wt〇/〇)多0.1 wt%〜10.0 wt%、更佳多〇」wt%〜5 〇 wt%之範圍 内。具體而s,將各成分之含量設為如下,即,Nd:25〜37 你1/。,]\4.〇.1〜1〇.〇#/。,8:1〜2以%’176(電解鐵):6〇〜75 wt%。將永久磁石i中之稀土類元素之含量設為上述範 圍,藉此可使富Μ相12均勻地分散至燒結後之永久磁石i 中。又,即便製造過程中稀土類元素與氧或碳結合,亦不 會使稀土類元素相對化學計量組成不夠,可抑制燒結後之 永久磁石1中生成〇^6。 再者,於永久磁石丨中之稀土類元素之含量少於上述範 圍之情形時’難以形成富_12。又,無法充分抑制aFe 之生成。另-方面,於永久磁石4之稀土類元素之組成 多於上述範圍之情形時,保磁力之增加停滯,且導致殘留 磁通密度下降,故不實用。 又,於本發明中,將粉碎開始時之磁石原料中之含有Nd 或Μ之全稀土類元素之Η設為基於上述化學計量組成之 含量(26.7 wt%)、或者較基於化學計量組成之含量更多之 量邀而如下所述利用珠磨機等將磁石原料進行濕式粉 164208.doc 201241846 碎時’於溶劑中添加*M_(0R)x(式中,Μ包括作為稀土類 兀素之Nd、pr、Dy、Tb内之至少一種,R係含有烴之取代 基’既可為直鏈亦可為支鏈,X係任意之整數)所表示之含 有Μ之有機金屬化合物(例如,乙醇鏑 '正丙醇鏑、乙醇軾 專)’並於濕式狀態下混合於磁石粉末。其結果,添加有 機金屬化合物後之磁石粉末中所含之稀土類元素之含量成 為較基於上述化學計量組成之含量(26 7 wt%)多〇」 wt%〜1〇·〇 wt%、更佳多〇」wt%〜5 〇 之範圍内。又, 藉由添加至溶劑中,可使含有M之有機金屬化合物分散於 溶劑中,從而可使含有Μ之有機金屬化合物均勻附著sNd 磁石粒子之粒子表面,可於燒結後之永久磁石丨中均勻地 分散有富Μ相12。 於此’作為滿足上述M-(0R)X(式中,包括作為稀土類 元素之心卜^⑺内之至少一種…系含有烴之取代 基,既可為直鏈亦可為支鏈,x係任意之整數)之結構式之 有機金屬化合物,有金厲醇鹽.金屬醇鹽係由通式 M(〇R)n(M:纟屬元素,R:有機基,n:金屬或半金^ 價數)所表示…作為形成金屬醇鹽之金屬或半金屬, 可列舉 Nd、Pr、Dy、Tb、W ' Mo、V、Nb、Tm
Ir、Fe、Co、Ni、Cu、Zn、Cd、A1、T
Ga、ln、Ge、Sb、 Y、丨抓化扣丨心等。其中,於本發明中, 兀具係宜使用作為 稀土類元素之Nd、pr、Dy、Tb。 又,對於醇鹽之種類,並無特別限 ^ 例如可列舉甲醇 鹽、乙醇鹽、丙醇鹽、異丙醇鹽、 ^ ^ 啜數為4以上 164208.doc 12· 201241846 之醉鹽等。其中’於本發”,如下所述根據利用低溫分 解抑制殘碳之目的,而使用低分子量者。X,由於碳數為 1之甲酵鹽容易分解且難以操作,因此尤其宜使用r中所含 之碳數為2〜6之醇鹽即乙醇鹽、甲醇鹽、4丙醇鹽、丙醇 鹽、丁醇鹽等。即,於本發明中,尤其是作為添加至磁石 粉末之有機金屬化合物’較理想的是使用由M_(OR)x(式 中’ Μ包括作為稀土類元素之_、pr、Dy、Tb内之至少一 種’ R係烧基’既可為直鍵亦可為支鍵,χ係任意之整數) 所表示之有機金屬化合物,更佳為使用__(〇r)x(式中, Μ包括作為稀土類元素之Nd、pr、Dy、几内之至少一種, R係碳數為2〜6之烷基中之任一者’既可為直鏈亦可為支 鏈,X係任意之整數)所表示之有機金屬化合物。 如上所述,於本發明中,於利用珠磨機等將磁石原料進 行濕式粉碎時,藉由溶劑巾添加有機金屬化合物而增加稀 土類7G素之含量。該方法係與粉碎前使磁石原料中所含之 稀土類/C素之含量預先多於基於化學計量組成之含量之方 法相比,具有粉碎前後磁石組成不產生大幅變動之優點。 因此’粉碎後不需要改變磁石組成。 又,若於適當之煅燒條件下煅燒藉由壓粉成形所成形之 成形體,則可防止Μ擴散滲透(固溶化)至主相丨丨内。藉 此,於本發明中,即便添加M,亦可將藉由M之取代區域 僅設為外殼部分。其結果,晶體粒整體(即,作為燒結磁 石整體)成為核心之Nc^Fe丨d金屬間化合物相佔較高之體 積比例之狀態。藉此,可抑制該磁石之殘留磁通密度(將 I64208.doc 13 201241846 外部磁場之強度設為〇時之磁通密度)之下降。 又,若將有機金屬卩合物混入有機溶劑中而㉟式添加至 磁石粉末,則即便藉由隨後進行真空乾燥等而使有機溶劑 揮發亦會使有機金屬化合物或有機溶劑等有機化合物殘 留於磁石心而且’因Nd與碳之反應性非常高,故而若燒 結步驟中C含有物殘留到高溫為±,則會形成碳化物。其 結果,存在因所形成之碳化物而於燒結後之磁石之主相與 晶界相(富Nd相)之間產生空隙,無法緻密地燒結磁石整 體,使得磁性能顯著下降的問題。然而,於本發明中,在 燒結之前進行下述氫預燒處理,藉此可預先減少磁石粒子 所含之碳量。 又,較理想的是將主相U之晶體粒徑設為〇」μιη〜5 〇 μη。再者,主相u與富河相12之構成係可藉由例如 SEM(SCanning Eiectr〇n Micr〇sc〇pe,掃描式電子顯微鏡) 或 TEM(Transmission Electron Microscope,穿透式電子顯 微鏡)或三維原子探針法(3D At〇m Pr〇be meth〇d)而確認。 又,若含有Dy或Tb作為Μ ,則可使Dy或Tb偏在於磁石 粒子之晶界。而且,偏在於晶界之Dy或Tb抑制晶界之逆 磁疇之生成,藉此可提高保磁力。又,可使Dy或Tb之添 加量少於先前’可抑制殘留磁通密度之下降。 [永久磁石之製造方法]^ 其次,對本發明之永久磁石1之第1製造方法,使用圖3 進行說明。圖3係表示本發明之永久磁石1之第丨製造方法 中之製造步驟之說明圖。 、 164208.doc • 14 - 201241846 首先,製造包含特定分率之Nd-Fe-B(例如Nd:32.7 wt°/。’ Fe(電解鐵):65.96 wt%,B:1.34 wt°/〇)之鑄錠。其 後’藉由捣碎機或粉碎機等而將鑄錠粗粉碎成200 μηι左右 之大小。或者,溶解鑄錠,利用薄片連鑄法(Strip Casting Method)製作薄片’利用氫壓碎法進行粗粉化。藉此,獲 得粗粉碎磁石粉末3 1。 接著,藉由利用珠磨機之濕式法而將粗粉碎磁 微粉碎成特定範圍之粒徑(例如〇1 μηι〜5 〇 μηι),並且將磁 石粉末分散至溶劑中,從而製作漿料42。再者,於濕式粉 碎時,相對於磁石粉末0.5 kg,使用曱苯4 kg作為溶劑。 又,於濕式粉碎巾,向磁石#末添加含有稀土類元素之有 機金屬化合物。藉此,可使含有稀土類元素之有機金屬化 合物與磁石粉末一併分散至溶劑中。再者,作為需溶解之 有機金屬化合物’較理想的是使用相當於m_(〇叫式中, Μ包括作為稀土類元素樣、卜巧、几内之至少 ^系碳數為2〜6之院基中之任—纟,既可為直鍵亦支 二X:任意之整數)之有機金屬化合_如,乙醇錦:ί =、乙醇錢等)…對於需添加之含有稀 將永久磁石中所含之稀土=制’但如上所述較佳 類7°素之含量設為較基於化學呷 量、组成之含量(26.7 wt%)多G」wt%〜 予什 峨〜5.0 wt%之範圍内。進而 · /。、更佳多(Μ 進行濕式粉碎後添加。 屬化合物係亦可於 再者,詳細的分散條件為如下。 J 64208.doc 15 201241846 但對於溶劑之種類 甲醇等醇類,乙酸 苯、甲笨、二甲苯 •分散裝置:珠磨機 •分散介質:氧化鍅珠粒 又’粉碎時使用之溶劑係有機溶劑 並無特別限制’可使用異丙醇、乙醇 乙酿等醋類’戊烷 '己烷等低級烴類 等芳香族類,酮類,彼等之混合物等 其後,將所生成之漿料42於成形之前藉由真空乾燥等事 前進行乾燥,取出已乾燥之磁石粉末43。其後,藉由成形 裝置50而將已乾燥之磁石粉末壓粉成形為特定形狀。再 者,於壓粉成形時,存在將上述已乾燥之微粉末填充至模 腔之乾式法、以及未將漿料42乾燥而填充至模腔之濕式 法,於本發明中,例示使用乾式法之情形。又’亦可使有 機溶劑或有機金屬化合物溶液於成形後之锻燒階段揮發。 如圖3所示,成形裝置5〇包括圓筒狀之鑄模51 '相對於 鑄模51沿上下方向滑動之下衝頭&以及相對於相同之鑄 模51沿上下方向滑動之上衝頭53 ’由該等包圍之空間構成 模腔54 » 又’於成㈣置50中’將_對磁場產生線_、56配置 :腔54之上下位置,對填充至模腔之磁石粉末μ施加 磁力線。將需施加之磁場設為例如i MA/m。 而於進行壓粉成形時,首先將已乾燥之磁石粉末 充至模腔54其後’驅動下衝頭52及上衝頭”,對填充 至模腔54之磁石粉末43沿箭頭61方向施加壓力而使其成 形。又,於加麼之同時,對填充至模腔54之磁石粉末43’ 164208.doc -16· 201241846 藉由磁場產生線圏55、56沿與加塵方向平行之箭祕方向 施加脈衝磁場。藉此,沿所需之方向定向磁場。再者,定 向磁場之方向係必須考慮對由磁石粉末43成形之永久磁石 1要求之磁場方向而決定。 又,於使用濕式法之情形時,亦可一面對模腔54施加磁 %,一面注入漿料,於注入途t或注入結束後,施加較最 初磁場更強之磁場而進行濕式成形。又,亦可以使施加方 向垂直於加壓方向之方式,配置磁場產生線圈55、56。 其次,於氫氣環境下以20(TC〜900°C、更佳為以400。〇〜 900 C (例如600 C)將藉由壓粉成形所成形之成形體71保持 數小時(例如5小時),藉此進行氫中預僥處理。將預燒中之 氫供給量設為5 L/min。於該氫中預燒處理中,進行使殘 存之有機化合物熱分解而減少預燒體中之碳量之所謂脫碳 (decarbonizing)。又,氫中預燒處理係於使預燒體中之碳 量未達0.2 wt%、更佳為未達〇 j wt%之條件下進行。藉 此’藉由隨後之燒結處理而可敏密地燒結永久磁石1整 體’不會降低殘留磁通密度或保磁力。 於此’存在藉由上述氫中預燒處理進行預燒之成形體71 中存在NdH3而容易與氧結合之問題,但於第1製造方法 中’成形體71係於氫預燒後不與外部氣體相接觸地移至下 述煅燒,故而不需要脫氫步驟。於煅燒中,脫去成形體中 之氫。 接著’進行將藉由氫中預燒處理進行預燒之成形體71進 行燒結之燒結處理。再者,作為成形體71之燒結方法,除 164208.doc -17. 201241846 一般之真空燒結以外,亦可利用將成形體71加壓之狀態下 進行燒結之加壓燒結等。例如,於利用真空燒結進行燒結 之情形時,以特定之升溫速度升溫至80〇1〜1080它左右為 止,並保持2小時左右。此期間成為真空煅燒,但真空度 較佳設為10 4 T〇rr以下,其後進行冷卻,並再次以6〇〇。〇〜 1000 C進行熱處理2小時《繼而,燒結之結果,製造永久 磁石1。 另一方面’作為加壓燒結’例如有熱壓燒結、熱均壓 (HIP, Hot Isostatic Pressing)燒結、超高壓合成燒結、氣 體加壓燒結、放電等離子(SPS ’ Spark p〗asma 結荨。其中’為抑制燒結時之磁石粒子之晶粒成長並且抑 制燒結後之磁石中產生之翹曲,較佳為利用沿單軸方向加 麼之單軸加愿燒結且藉由通電燒結進行燒結之SPS燒結。 再者,於利用SPS燒結進行燒結之情形時,較佳為將加壓 值設為30 MPa,於數Pa以下之真空氣體環境下以1(rc/min 上升至940°C為止,其後保持5分鐘》其後進行冷卻,並再 次以600°C〜1000。(:進行熱處理2小時。繼而,燒結之結 果,製造永久磁石1。 [永久磁石之製造方法2] 其次,對本發明之永久磁石1之其他製造方法即第2製造 方法,使用圖4進行說明。圖4係表示本發明之永久磁石夏 之第2製造方法中之製造步驟之說明圖。 再者,直至生成漿料42為止之步驟係與使用圖3既已說 明之第1製造方法中之製造步驟相同,因此省略說明。 164208.doc • 18 · 201241846 首先,將所生成之漿料42於成形之前藉由真空乾燥等事 前進行乾燥,取出已乾燥之磁石粉末43。其後,於氫氣環 境下以200°C〜900°C、更佳為以40(TC〜900。〇(例如600。〇將 已乾餘之磁石粉末4 3保持數小時(例如5小時),藉此進行氫 中預燒處理。將預燒中之氫供給量設為5 L/min。於該氫 中預燒處理中’進行使殘存之有機化合物熱分解而減少預 燒體中之碳量之所謂脫碳。又,氫中預燒處理係於使預燒 體中之碳量未達0.2 wt%、更佳為未達〇.1 wt%之條件下進 行。藉此’藉由隨後之燒結處理而可緻密地燒結永久磁石 1整體’不會降低殘留磁通密度或保磁力。 其次’於真空氣體環境下以200。(:〜600。(:、更佳為以 400 C ~600°C 1〜3小時保持藉由氫中預燒處理進行預燒之粉 末狀之預燒體82’藉此進行脫氫處理。再者,作為真空 度,較佳設為〇 · 1 Torr以下。 於此’存在於藉由上述氫中預燒處理進行預燒之預燒體 82中存在NdH3而容易與氧結合之問題。 圖5係將進行氫中預燒處理之Nd磁石粉末及未進行氫中 預燒處理之Nd磁石粉末分別暴露於氧濃度7 ppm及氧濃度 66 ppm之氣體環境時,表示相對於暴露時間之磁石粉末内 之氧量的圖。如圖5所示,若將進行氫中預燒處理之磁石 粉末放置於高氧濃度66 ppm之氣體環境,則以約1〇〇〇 sec 磁石粉末内之氧量自〇.4%上升至〇 8%為止。又,即便放置 於低氧濃度7 PPm之氣體環境,亦以約5000 sec磁石粉末内 之氧量自0.4%相同地上升至〇.8%為止。繼而,若Nd與氧 164208.doc -19· 201241846 結合’則成為殘留磁通密度或保磁力下降之原因。 因此’於上述脫氫處理中,將藉由氫中預燒處理所生成 之預燒體82中之NdH3(活性度大)階段性地變成NdH3(活性 度大)—NdH2(活性度小),藉此降低藉由氫中預燒處理而活 化之預燒體82之活性度。藉此’即便於將藉由氫中預燒處 理進行預燒之預燒體82於隨後移動到大氣中之情形時,亦 可防止Nd與氧結合’且不會降低殘留磁通密度或保磁力。 其後,藉由成形裝置50而將進行脫氫處理之粉末狀之預 燒體82壓粉成形為特定形狀。由於成形裝置5〇之詳細情況 與使用圖3既已說明之第1製造方法中之製造步驟相同,因 此省略說明》 其後,進行將已成形之預燒體82進行燒結之燒結處理。 再者’燒結處理係與上述第丨製造方法相同地,藉由真空 燒結或加壓燒結㈣行。由於燒結條件之詳細㈣與既已 說明之第1製造方法中之製造步驟相@ ’因此省略說明。 繼而,燒結之結果,製造永久磁石i。 冉者,於上述第2製造方法中 、 叫'八β仍个< 砸yfa 子進订氫中預燒處理’因此與對成形後之磁石粒子進行 中預燒處理之上述第i製造方法相比,具有對於殘存之 石粒子整體而言可更容易進杆 延仃有機化合物之熱分解之 點。即,與上述第1製诰 * 方去相比,可更確實地減少預 瓶甲之碳量。 成形體71係於氫預燒後 故而不需要脫氫步驟。 另一方面,於第1製造方法中, 不與外部氣體相接觸地移至煅燒, 164208.doc •20- 201241846 因此’與上述第2製造大止上 万法相比,可使製造步驟簡化。其 中’於上述第2製造方法占 、 去中,亦於氫預燒後不與外部氣體 _地進行炮燒之情形時,不需要脫氫步驟。 [實施例] 以下,對本發明之實施例,—面與比較例進行比較’-面進行說明。 (實施例1) 實施例1之敍磁石粉末之合金組成係較基於化學計量植 成之分率⑽26.7wt%,Fe(電解鐵):72 3 wt% Bi〇
Wt%)相比更提高之比率,例如以⑽計設為Nd/Fe/B= 32.7/65.96/1.34。又,作* 读麻紙rrtn士 作為珠磨粉碎時添加至溶劑之有機 金屬化合物’添加正丙醇鏑5 wt%…作為進行濕式粉 碎時之有機溶劑,使用甲苯。又,$ ^ 頂麂處理係藉由於氫氣 環境下以600°C將成形前之磁石粉末伴捭 不1示符5小時而進行。將 預燒中之氫供給量設為5 L/min。又,p 士 已成形之預燒體之 燒結係藉由.S P S燒結而進行。再者,胳甘a κ •將其他步驟設為與上 述[永久磁石之製造方法2]相同之步驟。 (實施例2) 將需添加之有機金屬化合物設為乙醇試。 實施例1相同。 、、係 (實施例3) 其他條件係與 將需添加之有機金屬化合物設為乙醇鋼 實施例1相同。 (實施例4) 164208.doc -21 · 201241846 代替SPS燒結,藉由真空燒結進行已成形之預燒體之燒 結。其他條件係與實施例1相同。 (比較例1) 將需添加之有機金屬化合物設為正丙醇鏑,不進行氫中 預燒處理而進行燒結。其他條件係與實施例丨相同。 (比較例2) 將需添加之有機金屬化合物設為乙醇铽,不進行氫中預 燒處理而進行燒結。其他條件係與實施例丨相同。 (比較例3) 將需添加之有機金屬化合物設為乙醯丙酮鏑。其他條件 係與實施例1相同β (比較例4) 於He氣體環境下進行預燒處理而非氫氣環境。又,代替 SPS燒結,藉由真空燒結進行已成形之預燒體之燒結。其 他條件係與實施例1相同。 (比較例5) 於真空氣體環境下進行預燒處理而非氫氣環境。又,代 替SPS燒結,藉由真空燒結進行已成形之預燒體之燒結。 其他條件係與實施例1相同。 (實施例與比較例之殘碳量之比較討論) 圖6係分別表示實施例1〜3及比較例之永久磁石之永 久磁石中之殘存碳量[wt〇/〇]之圖。 如圖6所示,可知實施例1〜3係與比較例1〜3相比可大幅 度減少殘存於磁石粒子中之碳量。尤其是,.於實施例1〜3 164208.doc •22· 201241846 中,可使殘存於磁石粒子中之碳量未達〇 2 wt%。 又,若將實施例1、3與比較例丨、2進行比較’則可知儘 B添加相同之有機金屬化合物,但進行氫中預燒處理之情 形係與未進行氫中預燒處理之情形相比,可大幅度減少^ 石粒子中之碳量。~,可知能夠進行藉由氫中預燒處理而 使有機化合物熱分解,從而減少預燒體中之碳量的所謂脫 碳作為其結果,可防止磁石整體之緻密燒結或保磁力之 下降。 又,若將實施例1〜3與比較例3進行比較,則可知於添加 由M-(〇r)x(式中,咐括作為稀土類元素之Nd pr、Dy、 Tb内之至少一種,R係含有烴之取代基,既可為直鏈亦可 為支鏈,X係任意之整數)所表示之有機金屬化合物之情形 時較添加其他有機金屬化合物之情形相比,可大幅度減 少磁石粒子中之碳量。# ’可知藉由將需添加之有機金屬 化合物設為由M-(〇R)x(式中,Μ&括作為稀土類元素之 Nd、Pr、Dy、Tb内之至少一種,R係含有烴之取代基,既 可為直鏈亦可為支鏈,χ係任意之整數)所表示之有機金屬 化合物,可於氫中預燒處理中容易進行脫碳。作為其結 果,可防止磁石整體之緻密燒結或保磁力之下降。又,尤 其疋作為需添加之有機金屬化合物,若使用含有烷基之有 機金屬化合物、更佳為含有碳數為2〜6之烷基之有機金屬 化C7物,則於氫氣環境下預燒磁石粉末時,可於低溫下進 行有機金屬化合物之熱分解。藉此,對於磁石粒子整體而 言可更容易進行有機金屬化合物之熱分解。 I64208.doc 23· 201241846 (實施例之永久磁石中之藉由XMA(X_ray Micr〇 Analyzer, χ射線微量分析儀)之表面分析結果討論) 對實施例1〜3之永久磁石,利用XMA進行表面分析。圖7 係表示實施例1之永久磁石之燒結後之SEM照片及晶界相 之元素分析結果之圖。圖8係實施例1之永久磁石之燒結後 之SEM照片及以與SEM照片相同之視野測繪Dy元素之分佈 狀態之圖。圖9係表示實施例2之永久磁石之燒結後之SEM 照片及晶界相之元素分析結果之圖。圖丨〇係表示實施例3 之永久磁石之燒結後之SEM照片及晶界相之元素分析結果 之圖。圖11係實施例3之永久磁石之燒結後之SEM照片及 以與SEM照片相同之視野測繪几元素之分佈狀態之圖。 如圖7、圖9、圖1〇所示,於實施例1〜3之各永久磁石 中’自晶界相檢測出作為氧化物或非氧化物之Dy。即,可 知實施例1〜3之永久磁石中,Dy自晶界相擴散到主相,於 主相粒子之表面部分(外殼),由Dy取代Nd之一部分而成之 相生成於主相粒子之表面(晶界)。 又’於圖8之測繪圖中,白色部分表示Dy元素之分佈。 若參照圖8之SEM照片與測繪圖,則測繪圖之白色部分 (即’ Dy元素)偏在分佈於主相之周圍附近。即,可知實施 例1之永久磁石中,Dy偏在於磁石之晶界。另一方面,於 圖11之測繪圖中,白色部分表示Tb元素之分佈。若參照圖 11之SEM照片與測繪圖,則測繪圖之白色部分(即’ Tb元 素)偏在分佈於主相之周圍附近。即,可知實施例3之永久 磁石中,Tb偏在於磁石之晶界。 I64208.doc -24- 201241846 根據上述結果,可知實施例1〜3中’可使Dy或Tb偏在於 磁石之晶界。 (實施例與比較例之SEM照片之比較討論) 圖12係表示比較例1之永久磁石之燒結後之SEM照片之 圖。圖13係表示比較例2之永久磁石之燒結後之SEM照片 之圖。圖14係表示比較例3之永久磁石之燒結後之SEM照 片之圖。 又,若將實施例1〜3與比較例1〜3之各SEM照片進行比 較,則於殘留碳量為固定量以下(例如0.2 wt%以下)之實施 例1〜3或比較例1中’基本上由鈦磁石之主相(Nd2Fei4B)91 及看作白色斑點狀之晶界相92形成有燒結後之永久磁石。 又’雖然少量,但亦形成有aFe相❶與此相對,於較實施 例1〜3或比較例1相比殘留碳量更多之比較例2、3中,除主 相91或晶界相92以外,形成有複數個看作黑色帶狀之aFe 相93。於此,aFe係由於燒結時殘留之碳化物所產生者。 即’因Nd與C之反應性非常高,故而如比較例2、3般,若 燒結步驟中有機化合物中之(2含有物殘留到高溫為止,則 形成碳化物。其結果,由於所形成之碳化物而於燒結後之 磁石之主相内析出aFe,大幅度降低磁石特性。 另一方面,於實施例i〜3中,如上所述使用適當之有機 金屬化合物,且進行氫中預燒處理,藉此可使有機化合物 熱分解而預先燒去(減少碳量)所含之碳。尤其是,將預燒 時之溫度设為2〇〇它〜900。〇、更佳為設為4〇〇。〇〜9〇〇。(:,藉 此可燒去必要量以上之所含碳,可使燒結後殘存於磁石内 164208.doc 25· 201241846 之碳量未達0.2 wt%,更佳為未達〇.i wt%。繼而,於殘存 於磁石内之碳量未達〇·2 wt%之實施例卜3中,於燒結步驟 t幾乎不會形成有碳化物,不存在如比較例2、3般形成複 數個aFe相93之虞。其結果,如圖7〜圖u所示,可藉由燒 結處理緻密地燒結永久磁石丨整體。又,於燒結後之磁石 之主相内不會析出很多aFe,不會大幅度降低磁石特性。 進而,亦可僅使有助於提高保磁力之Dy或Tb選擇性地偏 在於主相晶界。再者,於本發明中,根據如此藉由低溫分 解抑制殘碳之觀點而言,作為需添加之有機金屬化合物, 較佳使用低分子量者(例如,含有碳數為2〜6之烷基者卜 (基於氫中預燒處理之條件之實施例與比較例之比較討論) 圖15係表示對實施例4及比較例4、5之永久磁石,變更 預燒溫度之條件而製造之複數個永久磁石中之碳量[wt%] 之圖。再者,力圖15令表示將預燒十之氫及氦之供給量設 為1 L/min並保持3小時之結果。 如圖15所示,可知與1^氣體環境或真空氣體環境下進行 預燒之情形相比,於氫氣環境下進行預燒之情形時,可更 大幅度減少磁石粒子中之碳量。又,根據圖15,可知若將 於氫氣環境下預燒磁石粉末時之預燒溫度設為高溫,則可 更大幅度減少碳量’尤其是藉由設為400°C〜9〇〇°C而可使 碳量未達0.2 wt%。 再者’若未添加醇鹽而進行濕式珠磨,並未進行氮預燒 而進行燒結’則殘存碳係於使用甲苯作為溶劑之情形時成 為12_啊’錢㈣己糾為㈣丨之情料成為31_ 164208.doc -26- 201241846 ppm °另—方面’若進行氫預燒,則於使用曱苯或環己烷 之情形時,均可將殘存碳量降低至3〇〇 ppm左右。 再者’於上述實施例及比較例1〜5中,使用[永久磁 石之製造方法2]之步驟中製造之永久磁石,但於使用[永久 磁石之製造方法1]之步驟中製造之永久磁石之情形時,亦 可獲得相同之結果。 如上說明般’於本實施形態之永久磁石1及永久磁石1之 製&方法中,將已粗粉碎之磁石粉末與相當於M_(〇R)x(式 中Μ包括作為稀土類元素之\(;1、?]"、〇丫、丁13内之至少一 種,R係含有烴之取代基,既可為直鏈亦可為支鏈,χ係任 意之整數)之有機金屬化合物一併於溶劑中藉由珠磨機進 行粕碎,使有機金屬化合物均勻地附著於磁石粒子表面。 其後,於氫氣環境下以20(rc〜9〇〇t將已壓粉成形之成形 體保持數小時,藉此進行氫巾預燒處理。接著,藉由進行 真空燒結或加壓燒結而製造永久磁石〖。藉此,即便於使 用有機溶劑而將磁石原料進行濕式粉碎之情形時,亦可在 燒結之前使殘存之有機化合物熱分解而預先燒去(減少碳 量)磁石纟子所含之石炭,故而燒結步驟中幾乎不會形成有 碳化物。其結果,於燒結狀磁主相與晶界相之間不 會產生空隙,又,可緻密地燒結磁石整體,且可防止保磁 力下降。X,於燒結後之磁石之主相内不會析出很多 aFe ’不會大幅度降低磁石特性。 又’尤其是作為需添加之有機金屬化合物,若使用含有 烷基之有機金屬化合物、更佳為含有碳數為2〜6之烷^之 164208.doc -27- 201241846 有機金屬化合物,則於氫氣環境下預燒磁石粉末或成形體 時’可於低溫下進行有機金屬化合物之熱分解。藉此,對 於磁石粉末整體或成形體整體而言可更容易進行有機金屬 化合物之熱分解。 進而’將成形體或磁石粉末進行預燒之步驟係藉由於尤 佳為20(TC~90(TC、更佳為40(rc〜9〇〇〇c之溫度範圍内將成 形體保持特定時間而進行,因此可燒去必要量以上之磁石 粒子中之所含碳。 其結果,燒結後殘存於磁石之碳量未達〇 2 wt%、更佳 為未達0.1 wt%,因此於磁石之主相與晶界相之間不會產 生空隙,又,可設為緻密地燒結磁石整體之狀態,且可防 止殘留磁通密度下降,又,於燒結後之磁石之主相内不會 析出很多otFe,不會大幅度降低磁石特性。 又,於利用珠磨機進行濕式粉碎時,向磁石粉末以濕式 狀態添加由M-(〇R)x(式中,Μ包括作為稀土類元素之Nd、 P” Dy、Tb内之至少一種,R係含有烴之取代基既可為 直鏈亦可為支鏈,X係任意之整數)所表示之有機金屬化合 物,藉此使有機金屬化合物均勻地附著於磁石之粒子表面 後,進行成形及燒結,因此即便製造過程中稀土類元素與 氧或碳結合,亦不會使稀土類元素相對化學計量組成不 夠可抑制燒結後之永久磁石中生成aFe 〇又,由於粉碎 前後磁石組成不產生大幅變動,因此粉碎後不需要改變磁 石組成,可使製造步驟簡化。 又,尤其是第2製造方法中,由於對粉末狀之磁石粒子 164208.doc •28- 201241846 進行預燒,因此與對成形後之磁石粒子進行預燒之情形相 比,對於殘存之磁石粒子整體而言可更容易進行有機化合 物之熱分解。即,可更確實地減少預燒體中之碳量。又, 於預燒處理後進行脫氫處理,藉此可降低藉由預燒處理而 活化之預燒體之活性度。藉此,防止隨後磁石粒子與氧結 合’且不會降低殘留磁通密度或保磁力。 再者,當然本發明並不限定於上述實施例,於不脫離本 發明之主旨之範圍内可進行各種改良、變形。 又,磁石粉末之粉碎條件、混煉條件、預燒條件、脫氫 條件、燒結條件等並不限定於上述實施例所揭示之條件。 又’關於脫氫步驟,亦可省略。 再者,於上述實施例中,作為將磁石粉末進行濕式粉碎 之手段,使用濕式珠磨機,但亦可使用其他濕式粉碎方 式。例如’亦可使用Nanomizer等。 又,於上述實施例1〜4中,作為添加至磁石粉末之有機 金屬化合物,使用正丙醇鏑、乙醇鏑或乙醇铽,但若係由 M-(OR)xU中’ M包括作為稀土類元素之训、pr、以、几 内之至少一種,R係含有烴之取代基,既可為直鏈亦可為 支鏈,X係任意之整數)所表示之有機金屬化合物,則亦可 為其他有機金屬化合物。例如,亦可使用含有碳數為7以 上之烷基之有機金屬化合物或包含除烷基以外之含有烴之 取代基之有機金屬化合物。 【圖式簡單說明】 圖1係表示本發明之永久磁石之整體圖; 164208.doc •29· 201241846 圖2係將本發明之永久磁石之晶界附近放大表示之 圖; 饵式 圖3係表示本發明之永久磁石之第丨製造方法中之製造 驟之說明圖; &' 圖4係表示本發明之永久磁石之第2製造方法中之製造步 驟之說明圖; 圖5係表示進行氫中預燒處理之情形與未進行之情形時 之氧量變化之圖; 圖6係表示實施例!〜3及比較例i〜3之永久磁石之永久磁 石中之殘存碳量之圖; 圖7係表示實施例1之永久磁石之燒結後之SEM照片及晶 界相之元素分析結果之圖; 圖8係實施例丨之永久磁石之燒結後之SEM照片及以與 SEM照片相同之視野測繪Dy元素之分佈狀態之圖; 圖9係表示實施例2之永久磁石之燒結後之SEM照片及晶 界相之元素分析結果之圖; 圖1 〇係表示實施例3之永久磁石之燒結後之SEM照片及 晶界相之元素分析結果之圖; 圖11係實施例3之永久磁石之燒結後之SEm照片及以與 SEM照片相同之視野測繪Tb元素之分佈狀態之圖; 圖12係表示比較例1之永久磁石之燒結後之SEM照片之 圖; 圖13係表示比較例2之永久磁石之燒結後之SEM照片之 圖; 164208.doc -30- 201241846 之 更 圖14係表示比較例3之永久磁石之燒結後之SEM照片 圖;及 圖1 5係表示對實施例4及比較例4、5之永久磁石,變 預燒溫度之條件而製造之複數個永久磁石中之碳量之圖 【主要元件符號說明】 1 永久磁石 11 主相 12 富Μ相 31 粗粉碎磁石粉末 42 漿料 43 磁石粉末 50 成形裝置 51 鑄模 52 下衝頭 53 上衝頭 54 模腔 55、56 磁場產生線圈 61、62 箭頭 71 成形體 82 預燒體 91 主相 92 晶界相 93 aFe相 D 粒徑 d 厚度 164208.doc •31 ·

Claims (1)

  1. 201241846 七、申請專利範圍: 1-—種永久磁石,其特徵在於其係藉由如下步驟製造而 成: 將由結構式M-(OR)x (式中’Μ包括稀土類元素Nd、Pr、Dy、Tb内之至少一 種,R係含有烴之取代基,既可為直鏈亦可為支鏈,父係 任意之整數) 所表示之有機金屬化合物與磁石原料一併於有機溶劑 中進行濕式粉碎,獲得將上述磁石原料粉碎而成之磁石 粉末,並且使上述有機金屬化合物附著於上述磁石粉末 之粒子表面; 藉由將粒子表面上附著有上述有機金屬化合物之上述 磁石粉末成形而形成成形體; 將上述成形體於氫氣環境下進行預燒而獲得預燒體, 以及 儿, 對上述預燒體進行燒結。 2. 3. 4. 5. 述有機金屬化合物 石之晶界。 如請求項1之永久磁石,其中形成上 之金屬係於燒結後偏在於上述永久磁 如=項!之永久磁石’其中上述結構式中之r係貌基。 如“項3之永久磁石,其中上述結構式令 2〜6之烷基中之任一者。 厌致為 如請求項!至4中任一項之永久磁石,其中燒結 之碳量未達0.2 wt%。 斤殘存 6,-種永久磁石之製造方法,其特徵在於包含如下步驟 I64208.doc 201241846 將由結構式M-(〇R)x (式中,Μ包括稀土類元㈣、pr、〜、几内之至少一 種’ R係含有烴之取代基’既可為直鍵亦可為支鍵,讀 任意之整數) 所表示之有機金屬化合物與磁石原料一併於有機溶劑 中進行濕式粉碎,獲得將上述磁石 尽科粉碎而成之磁石 :,並且使上述有機金屬化合物附著於上述磁石粉末 之粒子表面; 冬 藉由將粒子表面上附著有上述有 4有機金屬化合物之上述 磁石粉末成形而形成成形體; 上足 以:上述成形體於氮氣環境下進行預燒而獲得預燒體; 對上述預燒體進行燒結。 其中上述結構式中 其中上述結構式中 7.如請求項6之永久磁石之製造方法 之R係烷基。 8·如請求項7之永久磁石之製造方法 之R係碳數為2〜6之烧基中之任一者 164208.doc
TW101116741A 2010-03-31 2011-03-31 Permanent magnet and manufacturing method for permanent magnet TW201241846A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084206 2010-03-31

Publications (2)

Publication Number Publication Date
TW201241846A true TW201241846A (en) 2012-10-16
TWI378477B TWI378477B (zh) 2012-12-01

Family

ID=44762540

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100111451A TW201212058A (en) 2010-03-31 2011-03-31 Permanent magnet and manufacturing method for permanent magnet
TW101116741A TW201241846A (en) 2010-03-31 2011-03-31 Permanent magnet and manufacturing method for permanent magnet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100111451A TW201212058A (en) 2010-03-31 2011-03-31 Permanent magnet and manufacturing method for permanent magnet

Country Status (7)

Country Link
US (1) US9053846B2 (zh)
EP (1) EP2503563B1 (zh)
JP (2) JP4923152B2 (zh)
KR (1) KR101201021B1 (zh)
CN (1) CN102549680A (zh)
TW (2) TW201212058A (zh)
WO (1) WO2011125591A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417632B2 (ja) 2008-03-18 2014-02-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP4865919B2 (ja) * 2010-03-31 2012-02-01 日東電工株式会社 永久磁石及び永久磁石の製造方法
US9048014B2 (en) * 2010-03-31 2015-06-02 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2011125584A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
WO2011125588A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5011420B2 (ja) * 2010-05-14 2012-08-29 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5908246B2 (ja) * 2011-09-30 2016-04-26 日東電工株式会社 希土類永久磁石の製造方法
JP5908247B2 (ja) * 2011-09-30 2016-04-26 日東電工株式会社 永久磁石の製造方法
CN103650072B (zh) 2011-12-27 2016-08-17 因太金属株式会社 NdFeB系烧结磁体
US9396851B2 (en) 2011-12-27 2016-07-19 Intermetallics Co., Ltd. NdFeB system sintered magnet
CN105206372A (zh) * 2011-12-27 2015-12-30 因太金属株式会社 NdFeB系烧结磁体
WO2013100010A1 (ja) 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石
US9963344B2 (en) * 2015-01-21 2018-05-08 National Technology & Engineering Solution of Sandia, LLC Method to synthesize bulk iron nitride
CN109923629A (zh) * 2016-11-09 2019-06-21 Tdk株式会社 稀土磁铁的制造方法
CN112750612B (zh) * 2020-02-17 2022-08-05 北京京磁电工科技有限公司 钕铁硼表面渗透铽或镝的工艺方法
CN112768169B (zh) * 2020-12-30 2023-01-10 包头天和磁材科技股份有限公司 预制品及其制备方法和耐腐蚀磁体的生产方法及用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JPH07263265A (ja) 1994-03-18 1995-10-13 Hitachi Metals Ltd 希土類金属間化合物永久磁石およびその製造方法
JP3393018B2 (ja) * 1996-08-23 2003-04-07 住友特殊金属株式会社 薄肉R−Fe−B系焼結磁石の製造方法
JP4525072B2 (ja) 2003-12-22 2010-08-18 日産自動車株式会社 希土類磁石およびその製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
TWI302712B (en) * 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same
JP2006270087A (ja) 2005-02-28 2006-10-05 Tdk Corp 希土類焼結磁石の製造方法
DE112006000070T5 (de) 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Seltenerdmetall-Sintermagnet und Verfahren zu seiner Herstellung
JP4635832B2 (ja) 2005-11-08 2011-02-23 日立金属株式会社 希土類焼結磁石の製造方法
US20100129538A1 (en) * 2007-03-30 2010-05-27 Tdk Corporation Process for producing magnet
JP5417632B2 (ja) 2008-03-18 2014-02-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5266523B2 (ja) 2008-04-15 2013-08-21 日東電工株式会社 永久磁石及び永久磁石の製造方法

Also Published As

Publication number Publication date
TWI378477B (zh) 2012-12-01
US20120181475A1 (en) 2012-07-19
JP2012119693A (ja) 2012-06-21
JP2011228664A (ja) 2011-11-10
JP4923152B2 (ja) 2012-04-25
TW201212058A (en) 2012-03-16
EP2503563A4 (en) 2012-11-07
KR101201021B1 (ko) 2012-11-14
CN102549680A (zh) 2012-07-04
JP4923163B1 (ja) 2012-04-25
TWI378476B (zh) 2012-12-01
EP2503563B1 (en) 2015-01-21
KR20120049347A (ko) 2012-05-16
US9053846B2 (en) 2015-06-09
WO2011125591A1 (ja) 2011-10-13
EP2503563A1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
TWI378477B (zh)
TWI374462B (zh)
TWI374459B (zh)
JP4865919B2 (ja) 永久磁石及び永久磁石の製造方法
TWI374461B (zh)
TW201212064A (en) Permanent magnet and manufacturing method for permanent magnet
TW201218219A (en) Permanent magnet, and method for manufacturing permanent magnet
TW201212066A (en) Permanent magnet and manufacturing method for permanent magnet
JP4865099B2 (ja) 永久磁石及び永久磁石の製造方法
TW201212054A (en) Permanent magnet and manufacturing method for permanent magnet
TWI374458B (zh)
TWI374460B (zh)
TW201330023A (zh) 永久磁石及永久磁石之製造方法
JP4923150B2 (ja) 永久磁石及び永久磁石の製造方法
JP5878325B2 (ja) 永久磁石の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees