TW201034965A - Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product - Google Patents

Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product Download PDF

Info

Publication number
TW201034965A
TW201034965A TW99105313A TW99105313A TW201034965A TW 201034965 A TW201034965 A TW 201034965A TW 99105313 A TW99105313 A TW 99105313A TW 99105313 A TW99105313 A TW 99105313A TW 201034965 A TW201034965 A TW 201034965A
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide fine
fine particles
mass
dispersion
Prior art date
Application number
TW99105313A
Other languages
English (en)
Inventor
Yoshio Tadakuma
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201034965A publication Critical patent/TW201034965A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

201034965 六、發明說明: 【發明所屬之技術領域】 本發明是關於用於製造需要高透明度之成形產品的 金屬氧化物微粒子;含有所述金屬氛化物微粒子之金屬氧 化物微粒子分散液;以及使用所述金屬氧化物微粒子分散 液得到的成形產品。 【先前技術】 目前光學材料的研究正在積極進行中。特別是在透鏡 領域中’極待開發出折射率高且耐熱性、耐光性、透明度、 成形性、輕質、对化學性、耐溶劑性等均優良的光學材料。 由於塑膠透鏡與由諸如玻璃等無機材料製成的透鏡 相比質量較輕且不易破裂,並且能形成多種形狀,故其不 僅被用作眼鏡片,而且現今亦用作諸如攜帶型攝影機 (portable camera)之透鏡及拾取器透鏡(扣成耶之 光學材料,並且正迅速變得普及。 分.杜夕j? 4 .
因此’為了降低透鏡之厚唐以及格敌装 射率隨位置而變化的材料,諸如所 種能自由調節折射率的技術。 201034965 ^^o^topn 質_,來增加樹二::;看之=料=樹脂基 二散;广,—引起之透射光的減= Ο
將粒度為15奈以nm)或更低之無機微粒子均勻分散於 樹脂基質中。細’由於粒度為15奈米或更低之—次粒子 極易聚集’故很難將其均勻分散於樹脂基質中。此外,馨 於透射絲著料魏厚度之光程長度喊弱,須限制益 機微粒子的添加量。因此,到目前為止,還無法在不降低 樹脂透明度之情況下’將高濃度錢微粒子分散於樹脂基 質中。 同%,PTL 5中提出一種金屬氧化物粉末,其具有〇j 微米(μιη)至2微米之平均粒徑、2平方公尺/公克(m2/g) 至20平方公尺/公克之BET比表面積,以及粒子表面上3 個/平方奈米(number/nm2)至8個/平方奈米之游離羥基 (isolated OH group)之基於數量(nUmber-based)的濃度。 然而,在此提議中,粒子之聚集無法得到充分控制。因此, 在目前情況下,極需進一步改進及研發。 引用清單 專利文獻 [PTL 1]曰本專利特許公開申請案(JP-A )第 2002-131502 號 [PTL2] JP-A 第 10-298287 號 [PTL 3] JP-A 第 2004-244444 號 5 201034965 33«4»pit [PTL 4] JP_a 第 2003-73559 號 [pTL 5] Jp_a 第 2005-139295 號 【發明内容】 技術問題 本發明旨在解決相關技術中之問題以及實現以下目 的本發明之目的在於:提供具有低含水量且可能抑制微 粒子聚集之金屬氧化物微粒子;可減少由光散射造成的混 濁度jhaze)且高度透明的金屬氧化物微粒子之分散液; 以及高度透明且耐濕熱性及耐光性均優良之成形產品。 問題之解決方案 為解決所述問題,本發明之發明者進行了一系列認真 檢驗,結果發現,當金屬氧化物微粒子之晶體結構包含金 紅石型結構(rutile structure ),且所有金屬氧化物微粒子中 所述金紅石型結構之存在率為30%或更高時,有可能降低 金屬氧化物微粒子之含水量,並由此抑制金屬氧化物微粒 子之聚集;亦發現包含所述金屬氧化物微粒子的金屬氧化 物微粒子之分散液使得可能降低由光散射造成之混濁度且 其高度透明;且發現使用所述金屬氧化物微粒子之分散液 得到的成形產品高度透明且财濕熱性及耐光性均優良。 本發明疋基於本發明之發明者的發現而獲得,並且解 決所述問題之手段如下。 <1> 一種具有結晶度之金屬氧化物微粒子,其包含 鈦’其中所述金屬氧化物微粒子之晶體結構包含金紅石型 结構’且所有所述金屬氧化物微粒子中所述金紅石型纟士構 201034965 的存在率為30%或更高,其中所述金屬氧化物微粒子的含 水量為12質量%或更低,且其中所述金屬氧化物微粒子的 等效球體平均一次粒徑(sphere-equivalent average primary particle diameter)為 1 奈米至 1〇 奈米。 <2>如<1>所述之金屬氧化物微粒子,其更包含錫及 鍅。 <3>如<1>或<2>所述之金屬氧化物微粒子,其中所有 ❹ 所述金屬氧化物微粒子中所述金紅石型結構的存在率為 60%或更高,其中所述金屬氧化物微粒子之含水量為5質 量%至10質量%,且其中所述金屬氧化物微粒子的等效球 體平均一次粒徑為3奈米至5奈米。 <4> 一種金屬氧化物微粒子之分散液,其包含0.1質 量%至20質量%如<1>至<3>中任一項所述之金屬氧化物 微粒子,其中在10毫米光程長度及450奈米波長下,所述 分散液之透光度為90%或更高。 <5> —種成形產品,其包含複合組成物,所述複合組 ❹ 成物含有如<4>所述之金屬氧化物微粒子之分散液以及樹 脂。 <6>如<5>所述之成形產品,其含水量為5質量%或 更低。 <7>如<5>或<6>所述之成形產品,其在589奈米波長 下具有1·60或更面之折射率,並且就i毫米厚度而言在 589奈米波長下具有77%或更高之透光度。 <8>如<5>至<7>中任—項所述之成形產品,其中所述 7 201034965 3384»ριί 金屬氧化物微粒子之含有量為2〇質量%或更高。 <9>如<5>至<8>中任—項所述之成形產品,其用作透 鏡基材(lens base material)。 本發明之有利效果 根據本發明’有可能解決相關技術中之問題,並實現 上述目的’即提供具有低含水量且可能抑制微粒子聚集之 金屬氧化物微粒子;可減少由光散射造成的混濁度且高度 透明的金屬氧化物微粒子之分散液;以及高度透明且耐濕 熱性及耐光性均優良之成形產品。 【實施方式】 (金屬氧化物微粒子) 本發明之金屬氧化物微粒子包含欽,且必要時包含其 他組分。 舉例而言,就所述其他組分可提及含有—種選自鋅 (Zn)、鍺(Ge)、锆(Zr)、铪(Hf)、矽(si)'錫(%)、 猛(Μη)、鎵(Ga)、|目(Mo)、銦(In)、銻(Sb)、鈕(Ta)、 飢(V)、紀(Y)及鈮(Nb)之金屬的金屬氧化物,或含 有兩種或兩種以上所述金屬之複合金屬氧化物。合意地, 金屬氧化物微粒子包含金屬氧化物或複合金屬氧。 金屬氧化物之實例包含氧化鋅(Zn〇)、二氧化鍺 (Ge02)、二氧化鈦(Ti〇2)、二氧化錯(Zr〇2)、二氧化給 (Hf02)、二氧化矽(Si〇2)、三氧化二錫(Sn2〇3)、三氧^ 二錳(Μη203 )、三氧化二鎵(Ga2〇3)、三氣化二鉬 (Mo203)、三氧化二銦(in2〇3)、三氧化二銻(Sb2〇3)、五 201034965 氧化二鈕(Ta205 )、五氧化二飢(V205 )、三氧化二釔(γ2〇3) 及五氧化二鈮(Nb205)。 複合金屬氧化物之實例包含鈦與錘之複合氧化物; 鈦、錯與铪之複合氧化物;鈦與鋇之複合氧化物;鈦與石夕 之複合氧化物;鈦、锆與矽之複合氧化物;鈦與錫之複合 氧化物;及鈦、錘與錫之複合氧化物。
在這些複合金屬氧化物中’合意地,鈦佔構成複合金 屬氧化物之所有金屬原子的60原子%或更高,且更合意 地,鈦及錫佔構成複合金屬氧化物之所有金屬原子的7〇 原子%或更高。這使得有可能獲得具有高折射率之金屬氧 化物微粒子的分散液。 合意地,複合金屬氧化物含有鈦、錫及鍅,且鈦及錫 佔構成複合金屬氧化物之所有金屬原子的7〇原子%至98 原子%,剩餘部分為鍅。 此外’金屬氧化物微粒子之表面可塗佈有光觸媒活性 (photocatalytic activity)較低之材料,或可摻雜有重組 (recombining)電子與電洞之金屬。 此類金屬氧化物之較佳實例包含加2、&〇2及响, 其中取因其折射率高而特別佳。另外,藉 出 金紅石型結構(mtlle st咖咖)之 氧 :二能進-步增加折射率。特別合意地,這種含二 = (_),且所述芯之表 面後盍有Zr〇2、Al2〇3、Si〇2或其類似物。 覆蓋率不受特別限制且可以根據目的進行適當選 9 201034965 擇,但其較佳為10°/Q至70¾,更佳為20°/。炱6〇°/°,尤佳為 遍至5〇%。應注意,覆蓋率意指殼層(覆蓋材料)之面 積對芯粒子之表面積之比率。 此處,可以藉由計算得出覆蓋率,所述計算涉及構成 殼層之氧化物之原料的調配值與合成金屬氧化物微粒子後 之反應速率的比較。 又,這些微粒子可為表面經矽烷耦合劑、鈦酸鹽耦合 劑或其類似物改質以達成諸如降低光觸媒活性、降低吸水 性等目的的金屬氧化物微粒子。 -結晶度· 、金屬氧化物微粒子具有結晶度。金屬氧化物微粒子不 必為議%結晶態’而可為具有晶體結構之區域與非晶形 區域之混合形式。 i:金:工石型!吉構即可’並且可根據目的適當地選擇晶體 、、·口冓。牛例而言,晶體結構亦可包含銳鈦礦型結構(_陵
形式。此外,晶體結構還 甘->6)7 日曲么4* «ϋ _ 晶體結構不受特別限制,只要當鈦為主要組分時,其 可包含由除鈦以外之其他金屬形
週富地選擇存在率;然而,其較佳 6〇/〇或更高,尤佳為8〇%或更高。 、π上箱稱的孖在率不 即可,並且可根據目的 其較佳為50%或更高,更佳為 石型結構之存在率 當所有金屬氧化物微粒子中金紅 201034965 小於30%時,金屬氧化物微粒子之含水量較高,以致無法 抑制金屬氧化物微粒子之聚集。相反,當所有金屬氧化物 微粒子中金紅石型結構的存在率在尤佳之範圍内時,則有 可能降低金屬氧化物微粒子之含水量,由此提供一個優 點,即,可出色地抑制金屬氧化物微粒子之聚集。又,在 i屬氧化物彳政粒子用作高折射率材料之情況下,提供一個 優點,即,結晶度較高且折射率隨金紅石型結構之存在率 Q 增加而增加。 此處,所有金屬氧化物微粒子中金紅石型結構的存在 率可計算如下。 在適當範圍内量測金屬氧化物微粒子之χ光繞射 (X-ray diffraction ),且將金紅石型結構之χ光繞射圖案與 由其他晶體結構產生之圖案以及與非晶形區域及 的圖案分離。並且藉由用金紅石型結構產生之圖案的面積 除以總面積,可能計算出金紅石型結構之存在率。這種分 析一般可使用X光繞射分析軟體進行。 Ο -含水量- 金屬氧化物微粒子之含水量不受特別限制,只要其為 12質量%或更低即可,並且可根據目的適當地選擇含水 量;然而,其較佳為5質量%至1〇質量。當含水量高於 12質量%時,金屬氧化物微粒子之聚集顯著,且可能=成 會引起光散射之粗的 (coarse)二次粒子。 可藉由添加酸及熱處理來調節金屬氧化物微粒子之 含水量。酸之實例包含羧酸、磷酸及膦酸,其中羧酸尤佳。 11 201034965 J3848pit 羧酸之實例包含乙酸。對於熱處理,溫度較佳為牝乞至9〇 C,且時間長度較佳為3〇分鐘或更長時間。 含水量視金屬氧化物微粒子之表面上羥基(〇H)之 禮、度而定,且可例如藉由卡爾費雪法(Karl Fischer meth〇d ) 進行量測。 -等效球體平均一次粒徑_ 金屬氧化物微粒子之等效球體平均一次粒徑不受特 別限制’只要其在1奈米至10奈米之範圍内即可,並且可 根,目的進行適當選擇;然而,其較佳在3奈米至5奈米 之範圍内。當等效賴平均—絲徑小於丨奈米時,將難 以獲仔足夠的結晶度,以致折射率可能降低。當等效球體 平句人粒4^大於10奈米g夺,由光散射造成的混濁度增 加’以致在將金屬氧化物微粒刊於光學組件的情況 可能得不到所需的透明度。 此處,可以例如使用x光繞射(x考碰ractlon, )設備或穿透式電子顯微鏡(t刪mission elect聰 miciOscope ’ TEM)量測等效球體平均—次粒徑。 -製造方法- 工 金屬氧化物微粒子(及其分散液) 並且可以使用任何已知的方i 猎由在含水反齡㈣,水_制料之 醇鹽,獲得所需金屬氧化物+ 皿次金屬烷 物微粒子之所需分^物破拉子及刀政有所述金屬氧化 金屬鹽之實例包含所需金屬之氣化物、淳化物、峨化 12 201034965 物,肖自文鹽、硫酸鹽以及有機酸鹽。有機酸鹽之實例包含 乙酉^鹽、丙酸鹽、環烷酸鹽、辛酸鹽、硬脂酸鹽及油酸鹽。 =烷醇鹽之實例包含所需金屬之曱醇鹽、乙醇鹽、丙醇 鹽及丁醇鹽。可例如使用Japanese J0urnal of Applied Physics,第 37 卷第 46〇3 46〇8 頁(i998 年);或 l哪⑽^ 第16卷(1),第241-246頁(2000年)中所述的方法,作為 合成此類金屬氧化物微粒子的方法。 體而° ’‘藉由溶膠形成法(sol formation method ) 合成金屬氧化物微粒子時,可能使用以下製程:首先形成 前驅體諸如氫氧化物),隨後利用酸或驗使前驅體脫水縮 合或解絮凝(defl_late) ’使得形成水凝膠,如使用四氣 化鈦作為原料合成氧化鈦微粒子的情形。在所述首先形成 前驅體之製程中,較佳依據終產物之純度,藉由諸如過遽 或離心分離之方法來分離純化所述前驅體。 除在水中水解原料外,亦可在有機溶劑中或在溶解有 熱塑性樹脂之有機溶劑中,製造金屬氧化物微粒子。這些 〇 方法中所用之溶劑不受特別限制,且可根據目的進行適當 選擇’其實例包含丙酮、2-丁酮、二氣甲烷、氯仿、甲苯、 乙酸乙酯、環己酮及苯曱醚。這些溶劑可單獨使用或組合 使用。 金屬氧化物微粒子所具有之晶體結構或非晶形結構 之類型視所用金屬氧化物之類型、溫度、pH值、觸媒等而 變化。在僅使用氧化鈦之情況下,當在水溶液中合成其微 粒子時,一般呈現銳鈦礦型晶體結構。在這種情況下,可 13 201034965 3i848pit 能藉由添加適量易於形成金紅石型結構之金屬氧化物 呈現金紅石型晶體結構。舉例而言’藉由使氧化鈦與氧化 錫共存’能更容易地獲得金紅石型結構。可以推斷出 是因為氧化錫具有金紅石型結構,且其晶格常數接近於氧 化鈦之金紅石型結構的晶格常數,由此其共存導致形成以 氧化錫充當怎的金紅石型複合氧化物。 (金屬氧化物微粒子之分散液) 本發明之金屬氧化物微粒子分散液包含上述本
之金屬氧化物錄子,魏包含水且必鱗包含其他^ D -量- 金屬氧化物微粒子之分散液巾所述金屬氧化物微粒 子的含有量不受特別限制,只要其為〇1質量%至2〇質 %即可’且所述量可根據目的適當地選擇;然而,其較佳 為1質量%至10質量%。當所述量小於G」質量%時,在 製造成形產品之情況下所需溶液的量將增加,以致藉由落 發等方式移除㈣之負荷較高,這可能導致成本增加。♦ =量超過20質量%時,各金屬氧化物微粒子之間的距ς 縮短,其容易發生聚集,以致時間穩g (temp_ υ stability)降低。 金屬氧化物微粒子之分散液較佳包含水,且水量 7〇質量%或更高,更宜為8G f量%或更高。當水量低於 7〇質量%時,例如在將金屬烧醇鹽用作金屬氧化物微粒子 之原料的情況下’視條件而定可能發生凝膠化,這使得難 以形成尺寸均勻之粒子,且透明度可能會降低。或者,當 14 201034965 將金屬鹽用作原料時,考慮到溶解性,不能降低水量。此 外,當水量較少時,無法在脫鹽過程中使用諸如電滲析元 件等元件,以致脫鹽操作可能受到限制。 -透光度- 金屬氧化物微粒子之分散液的透光度較佳為9〇%或 更咼。當透光度低於90%時,在分散液形成複合成形產品 Ο
之情況下,透光度降低,以朗述分散液實際上無法用作 光學構件。 透光度可例如以如下方式量測:將金屬氧化物微粒子 之分散液放於光程長度為10毫来之石英槽(quartz cdl) 中,亚在450奈米之波長了,使用紫外光可見光吸光光度 計UV-3100 (由SHIMADZU公司製造)量測所述分散液 之透光度。 (成形產品) 本發明之成形產品包含一種複合組成物,其含有本發 明之金屬氧化物微粒子分散液,亦含有樹脂,且必要時^ 有其他組分。 -含水量-
成形產品的含水量不受特別限制且可根據目的 適當選擇;然而,其較佳為5質量%或更低,更佳為〇5 質量%至2質量%。當含水量高於5質量%時,會因在高溫 條件下汽化而發生水膨脹及體積改變,使成形產品内: 生變形,導致成形產品之透明度因光散射而降低。X 此處,成形產品之含水量例如可如同對於金屬氧化物 15 201034965 33848pit 微粒子之情形藉由卡法量測。 -折射率_ 更古在Γ^ΐ波長下,成形產品之折射率較佳為^或 :降=的厚度及攝影單元(二=)= 折射:為約具折有射Τ射率。市售熱塑性樹脂的 即可達到所率低於㈣時,僅利用樹脂 P叮達_搞射率,峨軸本 Ο 料之成形產品毫無價值。 喊⑷复口材 Γ ΛΑ可1如利用波長為589奈米之光,使用阿貝折射号 ( Ab—tGmeter) (DR_M4,由 atag 造 量測折射率。 _透光度- 夕.# ίΓ9奈米之波長下’就1毫米厚度而言,成形產品 之透光度衫制關,並且可根據目的進行適當選擇; 然而,其較佳為77%或更高,更佳為8〇%或更高。當在, 奈米,長下,就1毫米厚度而言’成形產品之透光度為77% 或更高時,易於獲得具有優良特性之透鏡基材。 此處’以如下方式獲得厚度為1毫米時成形產品之透 光度值.製造厚度為1.G毫米之基板,並使用紫外光_可見 光吸光光度計(UV-3100,由SHIMADZU公司製造)量測 所述基板之透光度。 -量- 成幵> 產扣中五屬氧化物微粒子的含有量不受特別限 16 201034965 制且:根據目的進行適當選擇H其較佳為質量% 1更佳為3〇質量%至50質量%。當所述量低於20 貝’可能得不到具有足夠高折射率的成形產品。 <複合組成物> 、f成本發明成形產品之複合組成物含有作為必需組 分的樹脂及本發明之金屬氧化物微粒子;必要時,所述複 合組成物可以含有其他麵之機及/或添加劑,諸如分散 ❹ 劑、增塑劑、脫模劑等。 複合組成物的玻璃轉移溫度(glass transition temperature)較佳為 1 ⑻。C至 400〇C、更佳為 130。〇至 38〇 °C。當玻璃轉移溫度為10(rc或更高時,易於獲得足夠耐 熱性。當玻璃轉移溫度為400T:或更低時,成形過程之執 行趨於容易。 -樹脂_ 树月曰不受特別限制並且可以根據目的進行適當選 擇。其實例包含熱塑性樹脂及可固化樹脂(curable resin)。 〇 -熱塑性樹脂- 熱塑性樹脂不受特別限制並且可以根據目的進行適 當選擇。其實例包含.聚(甲基)丙稀酸醋、聚苯乙稀、聚 醯胺、聚乙烯醚、聚乙烯酯、聚乙稀基味唾 (polyvinylcarbazol)、聚烯烴、聚酯、聚碳酸酯、聚胺基甲 酸酉日、聚硫胺甲酸S日(polythiourethane)、聚釀亞胺、聚醚、 聚硫醚、聚醚酮、聚礙及聚醚硬。這些樹脂可單獨使用戋 組合使用。 17 201034965 33848pif 較佳使用在末端或侧鏈具有能與金屬氧化物微粒子 形成化學鍵的官能基之熱塑性樹脂作為所述熱塑性樹脂, 因為這類熱塑性樹脂能防止金屬氧化物微粒子聚集並由此 實現金屬氧化物微粒子之均勻分散。所述官能基之適合實 例包含由下式表示之官能基。 〇R11 or13 —'P —OR12 —〇— p—〇R14
Π II 0 、 ο 在上式中,Rn、R12、R13及R14各獨立地表示氫原子、 〇 經取代或未經取代之烷基、經取代或未經取代之烯基、經 取代或未經取代之炔基、經取代或未經取代之芳基、 -S=3H、-〇S〇3H、_c〇2h 或 si(〇Ri5)miRl63 如(其中 Rl5 及 R各獨立地表示氫原子、經取代或未經取代之烷基、經取 代或未經取代之烯基、經取代或未經取代之炔基,或經取 代或未經取代之芳基,且ml表示1至3的整數)。 — 此處,化學鍵之實例包含共價鍵、離子鍵、配位鍵及 虱,。在存在多個官能基之情況下,這些官能基可以為能 ◎ 與,屬氧化物微粒子形成不同化學鍵的官能基。當將熱塑 陡祕月曰與金屬氧化物微粒子一起混合於有機溶劑中時,由 …、塱脂之官能基是否能與金屬氧化物微粒子形成化學 ^來判斷所述官能基是否能形成化學鍵。熱塑性樹脂之全 或。卩分g能基可與金屬氧化物微粒子形成化學鍵。 5熱塑性樹脂之質量平均分子量較佳為1,000至 5〇〇,_ ’更佳為3,_至300,_,甚至更佳為1(),_至 18 201034965 1_卜t f量平均分子量為獅,_或更 =當質量平均分子量為〗,_或更高時’機械強 一此處熱塑性樹|旨之質量平均分子量為以聚苯乙稀當 量表示的分子質量,其細藉助於示差制H (differential ctometer)進行,使用四氫。夫喃作為溶劑,且使用配有
例如 TSKGEL GMHXL、TSKGEL G4000HXL 及 TSKGEL ❹G2000HXL (均為由TOSOH公司製造之產品的名稱)之管 柱的凝膠滲透層析(Gel Permeation Chromatgraphy,GPC ) 分析儀。 在熱塑性樹脂中,每一聚合物鏈中與金屬氧化物微粒 子鍵結之官能基的平均數量較佳為〇丨至2〇個,更佳為 0.5至,10個,甚至更佳為〗至5個。當每一聚合物鏈之官 ,基平均數置為20個或更少時,熱塑性樹脂將與多個金屬 氧化物微粒子配價(coordinate),由此使得防止溶液狀態 中出現高黏度及凝膠化趨於容易。當每一聚合物鏈之官能 〇 基平均數量為ο·1個或更多時,往往易於穩定分散金屬氧 化物微粒子。 熱塑性樹脂的玻璃轉移溫度較佳為肋乞至40(rc、更 佳為130°c至38(TC。使用玻璃轉移溫度為80。(:或更高之 熱塑性樹脂能較容易地獲得具有足夠耐熱性之光學組件。 使用玻璃轉移溫度為400°C或更低之熱塑性樹脂能較容易 地進行成形加工。 --可固化樹脂-- 19 201034965 3384iSpit 在樹脂為可固化樹脂的情況下,可利用藉由熱或活性 能量射線(active energy ray)之作用使可固化樹脂固化的 已知機制。可固化樹脂的具體實例包含具有自由基反應性 基團(radical reactive group)(例如不飽和基團,諸如(曱 基)丙烯醯基、苯乙稀基及稀丙基)、陽離子反應性基團 (cationic reactive group )(例如環氧基、氧雜環丁基 (oxetanyl)、環硫基(episulfide)及噁唑基)或反應性矽烧 基(例如烷氧基矽烷基)之單體及預聚物。 此外,亦宜使用含硫可固化樹脂,其描述於JP_A第 05-148340 號、第 05-208950 號、第 06-192250 號、第 07-252207 號、第 09-110979 號、第 09-255781 號、第 10-298287 號、第 2001-342252 號、第 2002-131502 號等中。 —添加劑— 除樹脂及金屬氧化物微粒子外’就均勻分散性、成形 時之 k動丨生、脫模性(releasability )、耐候性(weatherability ) 等而言,亦可將添加劑混入複合組成物中。此外,除所述 樹脂外’亦可添加不具有所述官能基之樹脂。儘管這種樹 脂之類型不受特別限制,但其較佳具有與上述樹脂類似之 光學特性、熱特性及分子質量。 添加劑之混合比例視目的而變化;然而,以金屬氧化 物微粒子及熱塑性樹脂之總量計,添加劑之量較佳為5〇 質量%或更低,更佳為30質量%或更低,尤佳為20質量% 或更低。 …表面處理劑___ 20 201034965 jjo^opir 在本發明t,如稍後將描述,當將分散於水或醇溶劑 中之金屬氧化物微粒子與樹脂混合時,除所述樹脂外亦可 添加粒子表面處理劑,以例如實現以下目的:增強於有機 溶劑中之取代特性(substitutionaI properties)或萃取性 (extractability);增加於樹脂中之均勻分散性;降低微粒子 Ο ο 之吸水性;或增強耐候性。表面處理劑之質量平均分子量 較佳為50至50,000,更佳為100至2〇 〇〇〇,甚至更佳二 200 至 10,〇〇〇。 較佳使用具有以下通式〇)所表示之結構的化合物 作為表面處理劑。 A-B (通式(1 )) 乂 在通式(1)中,A表示能與本發明中之金屬氧化物 微粒子之表面形成化學鍵的官能基,且B表示聚合物或具 有1至30個碳原子之單價基團,其可與主要由本發明樹脂 才Ϊ成之樹脂基質相容或反應。此處,化學鍵之實例包含共 價鍵、離子鍵、配位鍵及氫鍵。 ,A所表示之官能基的較佳實例與上文提及之能與微粒 子形成化學鍵且欲引入樹脂中之官能基的適合實例相類 似。 、 挤同時’就相容性而言’ B之化學結構宜與構成樹脂基 貝之主要樹脂的化學結構相同或相似。在本發明中,尤其 為了=現高折射率,B之化學結構以及樹脂之化學結構宜 具有芳環。 表面處理劑不受特別限制並且可以根據目的進行適 201034965 33848pif 當選擇。其實例包含對辛基苯曱酸、對丙基苯甲酸、乙酸、 丙酸、環戊烷羧酸、填酸二苯曱酯、填酸單苯曱酯、鱗酸 二苯酯、磷酸二-α-萘酯、苯基膦酸、苯基膦酸單苯基酯、 KAYAMER ΡΜ-21 (產品名;由 Nippon Kayaku 有限公司 製造)、KAYAMER PM-2 (產品名;由 Nippon Kayaku 有 限公司製造)、苯磺酸、萘磺酸、對辛基苯磺酸,以及jp_A 第 05-221640 號、第 09-100111 號、第 2002_187921 號等中 所述的矽烷耦合劑。 這些表面處理劑可單獨使用或組合使用。表面處理劑 之總莖(以質里计)較佳為金屬氧化物微粒子之〇 倍至 2倍’更佳為0.03倍至1倍,尤佳為〇 倍至〇 5倍。 …增塑劑… 當本發明樹脂之玻璃轉移溫度較高時,複合組成物之 成形不一定會容易。因此,可使用增塑劑來降低複合組成 物之成形溫度。當添加增塑劑時,以構成透明成形產品之 複合組成物的總量計,增塑劑之量較佳為i質量%至5〇質 量%,更佳為2質量%至30質量%,尤佳為3質量%至2〇 質量%。 增塑劑的選擇需多加考慮,使得就與樹脂之相容性、 财候性、、增塑作用等而言,整體上達到有利平衡,且由於 增塑劑視其他組絲定,故無法明姑出最適宜材料。但 有 = 之化合物較佳,且其典型實例包 含具有乂下通式(2)所表不之結構的化合物。 22 201034965
B^-O
Ο— 在通式⑺+,B1及獨立地表示H(2) 個碳原子之烧基或絲絲,且m表示j、。至18 一以下二價鍵結基團。 衣不任 —c— s— S〇2^ Ό—
在通式(2)所表示之化合物中,以及妒各 任何烷=任何芳基烷基,限制條件為其具有6至a = 原子。I、具有少於6個碳原子時,其分子質量過小,= 致在聚合祕化溫度下可能發生轉,並形成泡沐。 具有超過18個碳原子時,與聚合物之相容性可能田" 致增塑劑之添加無法獲得充分作用。 ,以 B1及B2之實例包含直鏈烷基,諸如正己基、正辛基、 正癸基、正十二烷基、正十四烷基、正十六烷基及正十八 烷基;支鏈烷基,諸如2-己基癸基及具甲基支鏈的十八烷 基;及芳基烷基,諸如苯曱基及2_苯基乙基。 通式(2)所表示之化合物的具體實例包含以下化合 物,其中W-l (KP-L155,產品名,由Kao公司製造)較 佳。 23 201034965 JJ848plt W-1
CbH^-Q—^~~S —^ 0~〇3Ηΐ7 W-2 W-3 W-4
Ci〇H21-Q—S —Q-Ci〇H2i CsH^-O—S—^~^-0-〇βΗι7 C8H17-〇
W-5
Or 〇-C8H-i7 h2c-o
Ο 除上述組分外,亦可將已知脫模劑(諸如經改質矽油) 添加至複合組成物中,以改進成形性;且可將已知防降解 劑(degradation preventing agent)(諸如基於受阻紛、胺、 磷、硫醚等者)添加至複合組成物中,以改進耐光性及/ 或減少熱降解。當將所述試劑混入複合組成物中時,以複 合組成物之總固體含量計,其量宜為約0.1質量%至約5 質量%。 Ο -複合組成物之製造方法_ 將本發明中所用之金屬氧化物微粒子與側鏈具有官 能基之樹脂鍵結,且分散於樹脂中。 本發明中所用之金屬氧化物微粒子具有小粒徑及高 表面^,以致其若分離成固體形式,則就難以再分散。因 此且將金屬氧化物微粒子與樹脂混合,以在分散於^ 3 ’⑴在表面處理劑存在下表面處理金屬氧化物微粒子, 24 201034965 將經表面處理的金屬氧化物微粒子萃取至有機溶劑中, 將經萃取之金屬氧化物微粒子與樹脂均勻混合,由此製得 由金屬氧化物微粒子與樹脂構成之複合組成物的方法; (2 )使用能均勻分散或溶解金屬氧化物微粒子及樹脂的溶 劑,將金屬氧化物微粒子與樹脂均勻混合在一起,由此= 得由金屬氧化物微粒子及樹脂構成之複合組成物的方法。 在藉由方法(1)製造由金屬氧化物微粒子與樹脂構 0 成之複合組成物的情況下,使用水不溶性溶劑作為有機溶 劑,諸如曱苯、乙酸乙酯、甲基異丁基酮、氯仿、二氯乙 烷、氯苯或曱氧基苯。樹脂與將微粒子萃取至有機溶劑中 所用之表面處理劑可為相同類型或不同類型。較佳所用表 面處理劑之實例包含關於上文所提及之表面處理劑已說明 者。 當將樹脂與萃取至有機溶劑中的金屬氧化物微粒子 此合時,可視需要加入添加劑,諸如增塑劑、脫模劑、其 他類型聚合物等。 〃 Ο 在使用方法(2)之情況中,溶劑之較佳實例包含親 水性極性溶劑’諸如二甲基乙酸胺、二甲基甲酿胺、二甲 f職、苯甲醇、環己醇、乙二醇單曱醚、1-甲氧基-2-丙醇、 第二丁酵、乙酸及丙酸,其可單獨使用或組合使用;及所 述極性溶劑與水不溶性溶劑之混合溶劑 ,所述水不溶性溶 齊J諸如為氯仿、二氯乙貌、二氣甲烧、乙酸乙醋、甲基乙 =、甲基異丁基_、甲苯、氣苯及甲氧基苯。此處,除 Μ月曰外’必要時亦可添加以下物質:分散劑、增塑劑、脫 25 201034965 33848pit 模劑或其他類型之聚合物。當使用分散於水/曱醇中之微粒 子時,較佳程序如下:添加在高於水/甲醇之沸點 I溶解熱塑性樹脂之親水性溶劑,隨後濃縮水/甲醇並將其 蒸餾去除,以便用極性有機溶劑置換微粒子之分散液,隨 後將微粒子與樹脂混合。在此過程巾,可添加表面處理劑。 ^由方法(1)或(2)製得的複合組成物之溶液可直接 洗錄成形(cast-molding)以獲得透明成形產品;然而,在 ^發月中特別適宜藉由諸如濃縮、冷柬乾燥或自某種弱 命劑(poor solvent)再沈澱之技術,移除溶液中之溶劑, 隨後藉由諸如射出成形(injection molding)或壓縮成形 (c〇mpressi〇n m〇lding)之技術使粉末狀固體含量成形。 藉由使複合組成物成形,可製造出本發明之成形產 品。在本發明之成形產品中,具有上文提及之折射率及光 學特性的成形產品較為有利。 古又,本發明之成形產品特別適宜用作最大厚度為Q1 毫米或更向之高折射率光學組件,較佳用作厚度為0.1毫 米至5亳米之光學組件,更佳用作厚度為i毫米至3毫米 之透明組件。 由於利用溶液洗鱗法(solution casting )進行製造時, 難以移除溶劑,故藉由此法一般不易製造出所述厚度之成 形產品,然而’使用本發明之複合組成物使得可能便利成 形且易於形成複雜形狀,諸如非球形表面,且利用金屬氧 化物微粒子之高折射率特性而提供具有優良透明度之材 26 201034965 JJOHOpil 利用本發明之成形產品的光學組件不受特別限制,只 要其為利用本發明複合組成物之優良光學特性所得到的光 學組件即可’並且其可以根據目的適當地選擇。其適合的 實例包含透鏡基材,尤其透光性光學組件(所謂的被動型 光學組件(passive optical component))。裝備有所述光學 組件之功能元件的實例包含顯示元件(例如液晶顯示器及 電漿顯示器)、投影元件(例如高射投影機(〇verhead 0 Pr〇jector ’ 0HP)及液晶投影機)、光纖通信元件(例如光 波導及光學放大器)及攝影元件(諸如攝影機及錄影機)。 在光學功能元件中,被動型光學組件之實例包含透鏡、稜 鏡、稜鏡片、面板、膜、光波導、光碟以及發光二極體(Light Emitting Diode,LED )密封劑。 本發明之成形產品特別適用作透鏡基材。所述透鏡基 材具有高折射率、良好透光度及質輕之特性,且具有優良 的光學特性。又,藉由適當調整構成複合組成物之單體的 類型,及/或所分散之金屬氧化物微粒子之量,可能自由地 〇 調整透鏡基材的折射率。 術語“透鏡基材”意謂能實現透鏡功能之單一構件。根 據透鏡之使用環境、用途等,可在透鏡基材之表面上及/ 或在透鏡基材之周緣提供膜、構件等。舉例而言,在透鏡 土材之表面上,可形成保濩膜、抗反射膜、硬塗膜(hard-coat film)或其類似物。此外,可藉由將透鏡基材之周邊置入 基材f持框架(h〇lding frame)或其類似物中來進行固定。 應注思,所述膜和框架為添加至本發明所述之透鏡基材之 27 201034965 33848pif 構件木且不同於本發明所述之透鏡基材本身。 用作基材料透鏡時,可將透鏡基材本身單獨 如上文靜可將膜 '框架等添加至透鏡基材以構成 受特:=;明::=r透鏡的類型及形狀不 光1元件之透鏡、雷射之透鏡、拾取器之透 ΐ透r、°nbGani咖咖)之透鏡、攜帶型攝影機 見、位攝影機之透鏡、0Hp之透鏡、微透鏡陣列等。 實例 下文將說明本發明之實例。然而,應注意,本發明無 确如何都不受這些實例所限制。 在以下實例中,X光繞射光譜及質量平均分子量之 測如下。 <量測X光繞射(XRD)光譜> X光繞射(XRD)光譜是在23t下,使用自峋咖 公司製造之RINT1500(X光源:Cu_Ka射線;波長:1 5418 埃(人))量測。 <量測質量平均分子量> μ將質量平均分子量計算為以聚笨乙烯當量表示的分 子質量,其偵測藉助於示差折射器進行,使用四氫呋喃作 為;谷劑’且使用配有TSKGEL GMHXL、TSKGEL G4〇〇OHxL 及 TSKGEL G2〇〇〇HXL (均為由 t〇s〇h 公司 製造之產品的名稱)管柱之GPC分析儀。 (實例1) 28 201034965 人全粒仅分餘1 (藉自勝欽複 二f 配(eGmp_d)賴得的複合金屬氧 化物彳政粒子之分散液)- 在室溫下,伴隨麟將_73莫耳(m =2毫升(mL)乙醇混合,且滴加2毫升濃鹽酸,i 付透明讀。另外,在室溫下,將G G14
,錫f解於1G1.3公克水中’製得溶液。將所述溶液混:ί 在:起,並在室溫下麟—段時間,由此獲得透明溶液。 將透明^液放^保持在7(rc之水浴中,隨後在勝下加熱 60/刀麵’由此獲得具有—定透明度的勤色混濁溶膠 外,古將在室溫下藉由G.G236莫耳Μ合氧錯溶解於 50宅升水中所製得的水溶液歷時4()分鐘添加至在水浴中 加熱之所述溶膠卜添加水溶液後,保持溫度在崎,使 混合物老化80分鐘。此後,藉由降溫至室溫,獲得透明溶 膠(分散液)。 對於金屬氧化物微粒子之分散㈣χ光繞射(xrd) 分析顯示,金屬氧化物微粒子具有金紅石型結構。 向分散液中添加4毫升乙酸,並將混合物攪拌3〇分 鐘。此後’藉由超濾、使混合物脫鹽,以將金屬氧化物微粒 子之濃制至4質量%,並由此獲得金屬氧化物微粒子 分散液1。 (實例2) -製備金屬氧化物微粒子之分散液2_ 遵循與實例1相同之程序,但添加〇 〇〇95莫耳五水合 29 201034965 33848pif 四氣化錫來替代添加0.0142莫耳五水合四氯化錫。由此獲 得金屬氧化物微粒子之濃度為4質量%之透明的金屬氧化 物微粒子分散液2。 對於金屬氧化物微粒子之分散液的χ光繞射(XRd) 为析顯不,少1金屬氧化物微粒子具有銳鈦礦型結構,而 其他金屬乳化物微粒子具有金紅石型結構。 (實例3) ° •表備金屬乳化物彳政粒子之分散液3 _ 在室溫下’伴隨授拌將0.0473莫耳四異丙醇欽與8毫 升乙酸混合。另外,在室溫下’將_59莫耳五水合四氯 化錫溶解於6〇公克水t,製得雜。將㈣絲混合在— 起丄亚在室溫下攪拌-段賴,由此獲得透明溶液。將 明溶液滴加至6〇毫升保持在5叱之水中,隨後攪拌3 鐘;此後,升溫至8(TC,並在溫度達到8〇。〇後3〇分鐘, _加2毫升紐’由此獲得添加有贿之溶液。$分鐘後, 另=在室溫下藉由0._5莫耳八水合氧氣化錯溶解於 水中所製得的水溶液歷時4G分鐘添加至經加敎的 酸之所述溶液(溶膠)t。添加水溶液後,;持 二0 c ’使混合物老化8〇分鐘。此後,藉由降溫至 至/皿’獲得透明溶膠(分散液)。 對於金屬氧化物微粒子之分散液的χ域射(χ 刀斤,示,金屬氧化物微粒子具有金紅石型結構。 藉由超濾、使分散液脫鹽,以將金屬氧化物微粒子 度调至4質量%,並由此獲得金屬氧化物微粒子之分散液 30 201034965 (比較實例1) -製備金屬氧化物微粒子之分散液4- 遵循與實例1相同之程序,但不添加五水合四氯化 錫。由此獲得金屬氧化物微粒子之濃度為4質量%之微白 色混濁但透明的金屬氧化物微粒子分散液4。 。 t 對於金屬氧化物微粒子之分散液的χ光繞射(xrd) 分析顯示,金屬氧化物微粒子具有銳鈦礦型結構。 (比較實例2) -製備金屬氧化物微粒子之分散液5_ 遵循與實例1相同之程序,但在超濾前根本 酸。由此獲得金屬氧化物微粒子之濃度為4質 = 的金屬氧化物微粒子分散液5。 ° 對於金屬氧化物微粒子之分散液的χ光 分析顯示,金屬氧化物微粒子具有金紅石型結 (比較實例3) 〇 -製備金屬氧化物微粒子之分散液6· 古在室溫下,伴隨攪拌將〇〇473莫耳四異两 :在乙室下合2滴加2毫升漢鹽酸,獲得透明溶液、。另 公克水中皿制二.〇〇591莫耳五水合四氣化錫溶解於101.3 縣液。將所述溶液齡在—起,並在室溫 壓^中H間’由此獲得透明溶液。將透液放入耐 獲==隨=隨 为外,將在室溫下藉由0,0236莫耳八水 201034965 33H4Hpit 合氧氯化錯溶解於5〇亳升水中所製得的水溶液歷時仙分 鐘添加至在水浴中加熱之所述乳白色溶膠令。添加水溶液 後’保持溫度在80t,使混合物老化8〇分鐘。此後,辞 由降溫至室溫,獲得透明溶膠(分散液)。 曰 對於金屬氧化倾粒子之分散液的1光前(xrd) 刀析顯示,金屬氧化物微粒子具有金紅石型結構。 向为散液中添加4毫升乙酸,並將混合物攪拌3〇分 鐘。,後,藉由超遽使混合物脫鹽,以將金屬氧化物微粒 子之濃度調至4質量%,並由此獲得金屬氧化物微粒子之 分散液6。 接著,針對所得各金屬氧化物微粒子之分散液丨至6 中所含的金屬氧化物微粒子,計算所有金屬氧化物微粒子 中金紅石型結構的存在率、含水量及等效球體平均一次粒 挫:。結果顯不於表1中。 又’如下文所述,量測所得各金屬氧化物微粒子之分 散液1至6的透光度。結果顯示於表1中。 〈計算所有金屬氧化物微粒子中金紅石型結構之存在 率> 使用RINT 2000系列X光繞射儀(由Rigaku公司製 造)所用的分析軟體“結晶度、多峰分離法(crystalUnity, multiple peak separation method ) M ,以下述方式計算金紅 石型結構之存在率。 將預定量之樣品放於專用樣品架上,從在量測中 (2Θ-20。至80。)使用X光繞射儀獲得的繞射圖案中移除與 32 201034965 背景相關之信號’由此將繞射圖案分成結晶組分之圖案與 非晶形組分之圖案,並計算出各別圖案所伯之面積。在結 晶峰中包含除金紅石型結構狀其她分的情況下,用僅 源自金紅石型結構之峰組分的面積除以所有組分(非晶形 組分+所有結晶組分)之面積,由此計算出金紅石麼結 構之存在率。 <量測含水量> 0 ,電滲析、域或該似方法適t鑛金屬氧化物 微粒子之分散液中不必要的鹽,隨後乾燥分散液,並使其 在溫度及相對濕度分別調至25°C及80%之氛圍中靜置24 小時,由此製得樣品。使用Hiranuma Sangyo有限公司製 造的卡爾費雪設備(AQUACOUNTERAQV-2100),在150 °C下量測各樣品之含水量。 <量測等效球體平均一次粒徑> 使用由Hitachi有限公司製造之H-9000UHR穿透式電 子顯微鏡(H-9000UHR TRANSMISSION ELECTRON C) MICROSCOpE)(加速電壓:200千伏(kv);觀察期間之 真空度:7·6χ1〇·9帕),量測各金屬氧化物微粒子分散液中 所含金屬氧化物微粒子之平均一次粒徑。 <量測透光度> 使用紫外光-可見光吸光光度計UV-3100 (由 SHIMADZU公司製造),量測在10毫米光程長度及450 奈米波長下’各金屬氧化物微粒子分散液之透光度。 33 201034965 33848pif
等效球體平 '次粒徑 分散液之透 光度
(製造實例1) -製造金屬氧化物微好之咖_二曱基乙醯胺分散液 1- 向藉由將h2公克對辛基苯甲_加至500公克N,N,_ 二甲基乙醯胺中所製備之溶液中,添力口·公克實⑴之 金屬氧^微:子3液卜隨後減壓濃縮混合物,直至 混合物重約500公克或更輕,以姑^ substit論Π)。此後,藉由添力σ NN/T^劑取代(S〇lvent 濃度,由此製得含有15質量%偏;^基乙醯胺來調節 二甲基乙雜綠液1 U卩,藉由物難子之聯 散於Ν,Ν,-二甲基乙醯胺中所獲得的八丑’虱化物微粒子分 (製造實例2至6) 〃畋液)。 -製造金屬氧化物微粒子之_ 2至6- 曱基乙酿胺分散浴 遵循與製造實例1相同之程库 汴’但使用實例2及34 34 201034965 微粒子分散液2及3以及比較實例1至3之金 物^L+ti子分散液4至6,來替代實例1之金屬氧化 物2子为散液1。由此製得金屬氧化物微粒子之N,N,· 二曱基乙醯胺分散液2至6。 (合成實例1) -合成熱塑性樹脂_ ο ο 八吞=4η! 5 Λ克笨乙歸、2,5()公克丙烯酸^羧乙醋及2·5 Tn , + . 度 〇口名 V-6〇 卜由 Wako Pure Chemicals ;:ΓΓ二:1製造)溶解於麗公克乙酸乙醋中, 月t葬* I下於鼠喊圍中實現聚合,由此合成熱塑性樹 3^〇Γ IT" 5 i 59。 阿貝折射器量測,熱塑性樹脂之折射率為 (實例4至6及比較實例4至6) -製備材料組成物及製造透明成形產品_ 將熱塑性樹脂、正辛基苯甲酸及Kp_U55添加至製造 實例1至6之各金屬氧化物微粒子风怀_二曱基乙醯胺分散 液1至6中,使得金屬氧化物微粒子之固體含量:熱塑性樹 月曰.正辛基苯曱酸:KP-L155的質量比為41.7 : 53.1 : 12.5 : 5。均勻攪拌並混合所述混合物,隨後在加熱下減壓濃縮二 甲基乙酿胺溶劑。 使漢縮之殘餘物經歷熱壓縮成形(溫度:,壓 力:13.7兆帕’時間:2分鐘),製得厚度為1毫米之透明 成形產品(透鏡基材)。 35 201034965 33848pif 接著,如下所述來評估各成形產品之特性。結果顯示 於表2中。 <量測成形產品之含水量> 粉碎各成形產品’且如關於金屬氧化物微粒子所說 明,使其在溫度及相冑濕度分別調至25〇c及8〇%的氛圍中 靜置24小時,由此製得樣品。使用Hirarmma Sangyo有限 a司衣的卡爾費雪設備(aqUAC〇unter AQV-2^0),在15〇ΐ下量測各樣品之含水量。 〈量測成形產品之折射率> 利用波長為589奈米之光,使用阿貝折射器(DR_M4, 由ATAGO有限公製造)量測各成形產品之折射率。 <量測成形產品之透光度> 如,廿:里測各成形產品之透光度:製得u毫米厚之基 光可見光吸光光度計(UV_3100,由 之透光度。公司製造)’在589奈米波長下量測所述基板 <δ平估成形產品之耐濕熱性> 高溫產品之耐濕熱性,藉由使成形產品在 …怿件(溫度:65艺,濕度:9〇%) 8 產'==;品之時間降解。藉由目測觀察判斷成形 成形產口 ’來進估。在具有良㈣濕熱性之 產品中二到任何破裂,而在耐濕屬性不良之成形 干片。貞綱料,且在極端情況下,成形產品碎裂成若 36 201034965 JJd 分 δρίΐ <評估成形產品之耐光性> 如下置測各成形產品之耐光性:製得1毫米厚之透明 成升y產σ口’並使用曰光儀(sunshine weather meter ) (S300(H) ’ 由 Suga Test Instruments 有限公司製造),對藉 由將濾光器(SC-39,由FUJIFILM公司製造)放於透明成 形產品之模擬陽光施加側上而製成的光學組件連續施加模 擬陽光168小時。針對由著色引起的45〇奈米波長之透光 度改變,來評估耐光性。 當用施加模擬陽光後之透光度除以施加前透光度所 得到的值為0.9或更高時,實際上不存在問題。 使用紫外光-可見光吸光光度計UV-3100 (由 SHIMADZU公司製造)量測透光度。 表2 樣品 分散 液 成形產 品之含 水量 成形產 品之折 射率 1毫米厚之 成形產品 之透光度 成形產 品之耐 濕熱性 成形產品之财光性 (施加後之透光度/ 施加前之透光度) 實例 4 貧例 1 1.2% 1.67 86% 未發現 破裂 1 貫例 5 貫例 2 1.4% 1.66 84% 未發現 破裂 0.9 實例 6 實例 3 1.3% 1.68 85% 現 破裂 0.9 比較 實例 4 比較 實例 1 5.5% 1.63 75% 發現破 裂 0.6 比較 實例 5 比較 實例 2 無法 測 量 無法量 測 無法量測 無法量 測 無法量測 37 201034965 33848pif 比較 實例 6 比較 實例 3 0.9% 無法量 測 0% 未發現 破裂 無法量測 工業實用性 藉由使含有本發明之金屬氡化物微粒子分散液與樹 脂之複合組成物成形而獲得的成形產品同時具有良好透光 度及質輕之特性,使得可能相對較容易地提供例如能自由 調節折射率之透鏡。此外,所述成形產品亦使得可能提供 例如具有良好機械強度、耐熱性及耐光性的透鏡。因此, 本發明之成形產品可祕提供㈣解組件 如眼鏡鏡片、光學儀器之透鏡、光電元件 例 透鏡 '拾取ϋ之透鏡、機観影機之魏:田射之 ^透鏡、數位攝影機之透鏡、QHp ^攝影機 =透鏡基材,且因此本發明之成形產品鏡陣列等 用性。 /、有車又鬲的工業實 【圖式簡單說明】 益 【主要元件符號說明】
Ml 38

Claims (1)

  1. 201034965 七、申請專利範圍: I 一種具有結晶度之金屬氧化物微粒子,包括: 鈦, 其中所述金屬氧化物微粒子之晶體結構包含金紅石 型結構’以及所有所述金屬氧化物微粒子中所述金紅石型 結構之存在率為30%或更高, 其中所述金屬氧化物微粒子的含水量為12質量%或 ^ 更低,以及 〇 其中所述金屬氧化物微粒子的等效球體平均一次粒 徑為1奈米至10奈米。 2. 如申請專利範圍第〗項所述之具有結晶度之金屬 氧化物微粒子’其更包括錫及錯。 3. 如申請專利範圍第丨項所述之具有結晶度之金屬 氧化物微粒子,其中所有所述金屬氧化物微粒子中所述金 紅石型結構的所述存在率為60%或更高,其中所述金屬氧 化物微粒子之所述含水量為5質量%至1〇質量%,以及其 〇 中所述金屬氧化物微粒子的所述等效球體平均一次粒徑為 3奈米至5奈米。 4. 一種金屬氧化物微粒子之分散液,包括: 0.1質量%至20質量%具有結晶度之金屬氧化物微粒 子,其包括鈥, 其中所述金屬氧化物微粒子之晶體結構包含金紅石 型結構,以及所有所述金屬氧化物微粒子中所述金紅石型 結構之存在率為30%或更高, 39 201034965 33848pif 其中所述金屬氧化物微粒子的含水量為12挤旦。 更低, ‘貝里%或 其中所述金屬氧化物微粒子的等致球體平均—^ : 徑為1奈米至10奈米,以及 =人粒 其中在10毫米光程長度及450奈米波長下,所述分 散液之透光度為90%或更高。 77 5. —種成形產品’包括·
    複合組成物,其含有金屬氧化物微粒子之分散液,及 樹脂, 其中所述金屬氧化物微粒子之分散液包括〇.丨質量% 至20負置%具有結晶度之金屬氧化物微粒子,所述金屬氧 化物微粒子包括欽, 其中所述金屬氧化物微粒子之晶體結構包含金紅石 型結構’以及所有所述金屬氧化物微粒子中所述金紅石型 結構之存在率為30%或更高,
    其中所述金屬氧化物微粒子的含水量為12質量%或 更低, 其中所述金屬氧化物微粒子的等效球體平均一次粒 徑為1奈米至10奈米,以及 其中在10毫米光程長度及450奈米波長下,所述分 散液之透光度為90%或更高。 6. 如申請專利範圍第5項所述之成形產品’其中所述 含水量為5質量%或更低。 7. 如申請專利範圍第5項所述之成形產品,其中在 40 201034965 JJOHOpil 589奈米波長下具有1.60或更高之折射率,以及就1毫米 厚度而言,在589奈米波長下具有77%或更高之透光度。 8. 如申請專利範圍第5項所述之成形產品,其中所述 金屬氧化物微粒子之含有量為20質量%或更高。 9. 如申請專利範圍第5項所述之成形產品,其用作透 鏡基材。
    41 201034965 四、 指定代表圖: (一) 本案之指定代表圖:無 (二) 本代表圖之元件符號簡單說明: 無 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: Ο 無
TW99105313A 2009-02-25 2010-02-24 Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product TW201034965A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042878A JP2010195636A (ja) 2009-02-25 2009-02-25 金属酸化物微粒子、金属酸化物微粒子分散液、及び成形体

Publications (1)

Publication Number Publication Date
TW201034965A true TW201034965A (en) 2010-10-01

Family

ID=42105919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99105313A TW201034965A (en) 2009-02-25 2010-02-24 Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product

Country Status (3)

Country Link
JP (1) JP2010195636A (zh)
TW (1) TW201034965A (zh)
WO (1) WO2010098366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748766B (zh) * 2019-11-25 2021-12-01 南韓商凱斯科技股份有限公司 含水量可控的無機氧化物分散液及其製備方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272145B (zh) 2012-05-11 2018-01-23 日产化学工业株式会社 膜形成用组合物
JP5704133B2 (ja) * 2012-07-19 2015-04-22 信越化学工業株式会社 コアシェル型正方晶系酸化チタン固溶体水分散液、その製造方法、紫外線遮蔽性シリコーンコーティング組成物、及び被覆物品
JP5889261B2 (ja) * 2013-10-18 2016-03-22 第一稀元素化学工業株式会社 酸化ジルコニウム−酸化チタン複合ゾル及びその製造方法
WO2021220919A1 (ja) * 2020-05-01 2021-11-04 東京応化工業株式会社 改質金属酸化物微粒子の製造方法、改質金属酸化物微粒子分散液の製造方法、及び固体物品の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740714B2 (ja) 1991-08-08 1998-04-15 三井東圧化学株式会社 メルカプト化合物及びその製造方法
JP3115371B2 (ja) 1991-09-03 2000-12-04 ホーヤ株式会社 光学材料用重合体及びその製造方法
JP2844405B2 (ja) 1992-02-17 1999-01-06 信越化学工業株式会社 疎水性酸化チタン微粒子の製造方法
TW225535B (zh) 1992-11-10 1994-06-21 Hoechst Ag
US5608115A (en) 1994-01-26 1997-03-04 Mitsui Toatsu Chemicals, Inc. Polythiol useful for preparing sulfur-containing urethane-based resin and process for producing the same
JP3491660B2 (ja) 1995-08-16 2004-01-26 三菱瓦斯化学株式会社 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JP3474330B2 (ja) 1995-10-03 2003-12-08 Jsr株式会社 反応性シリカ粒子、その製法および用途
JPH09255781A (ja) 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP3465528B2 (ja) 1997-04-22 2003-11-10 三菱瓦斯化学株式会社 新規な光学材料用樹脂
JP3995427B2 (ja) 2000-03-27 2007-10-24 三井化学株式会社 新規なポリチオールを含有する重合性組成物、及びそれを重合させてなる樹脂、並びにレンズ
JP4910253B2 (ja) 2000-10-11 2012-04-04 Jsr株式会社 硬化性組成物およびその硬化物
JP3730107B2 (ja) 2000-10-26 2005-12-21 Hoya株式会社 プラスチックレンズの製造方法
JP4485717B2 (ja) 2001-09-04 2010-06-23 三井化学株式会社 熱可塑性材料組成物、及びそれを含んで構成される光学部品
JP2003147090A (ja) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp ナノ粒子含有熱可塑性樹脂組成物成形体及びその製造方法
JP4249996B2 (ja) 2003-02-10 2009-04-08 日東電工株式会社 ポリカルボジイミド共重合体からなるレンズ材料
JP4192073B2 (ja) 2003-11-06 2008-12-03 電気化学工業株式会社 シリカ粉末の製造方法
JPWO2007052580A1 (ja) * 2005-11-02 2009-04-30 三井化学株式会社 酸化物超微粒子を含有する樹脂組成物
JP4749200B2 (ja) * 2006-03-31 2011-08-17 三井化学株式会社 高屈折率樹脂組成物
JP5016347B2 (ja) * 2007-03-29 2012-09-05 富士フイルム株式会社 金属酸化物微粒子分散物及びその製造方法
JP2009078946A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp コア−シェル型金属酸化物粒子及びその製造方法
JP5422393B2 (ja) * 2007-12-17 2014-02-19 三井化学株式会社 重合性組成物、該重合性組成物から得られる透明部材およびその用途
JP5701474B2 (ja) * 2008-06-13 2015-04-15 富士フイルム株式会社 無機微粒子分散液、有機無機複合組成物、成形体および光学部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748766B (zh) * 2019-11-25 2021-12-01 南韓商凱斯科技股份有限公司 含水量可控的無機氧化物分散液及其製備方法

Also Published As

Publication number Publication date
WO2010098366A1 (en) 2010-09-02
JP2010195636A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5096014B2 (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
US8158688B2 (en) Dispersion liquid of metal oxide fine particles, and molding products using the same
JP5701474B2 (ja) 無機微粒子分散液、有機無機複合組成物、成形体および光学部品
TW201034965A (en) Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product
CN101379137A (zh) 有机-无机混合组合物、制备该组合物的方法、模制品和光学元件
TW200914254A (en) Optical lens, optical system unit and optical device
JPWO2009025127A1 (ja) 光学用樹脂材料及び光学素子
JP4485717B2 (ja) 熱可塑性材料組成物、及びそれを含んで構成される光学部品
TW201012759A (en) Dispersion liquid of metal oxide fine particles, and molded products using the same
JP5345295B2 (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
JP2009227835A (ja) 有機無機複合組成物、成型品の製造方法および光学部品
JP5588608B2 (ja) 有機無機複合材料とその成形体、光学部品およびレンズ
JP2009227836A (ja) 有機無機複合組成物、成型品の製造方法および光学部品
TW201000533A (en) Organic-inorganic hybrid composition and method for producing same, shaped article and optical component
JP2010031186A (ja) 有機無機複合材料、その製造方法および光学部品
JP2008239920A (ja) 金型成形用樹脂組成物および成形体
JP2010043191A (ja) 光学部品およびプラスチックレンズ
JP2009217114A (ja) 光学部品
JP2007093893A (ja) 光学部品
JP2009179770A (ja) 有機無機複合材料および光学物品
TW200911902A (en) Organic-inorganic hybrid composition and optical component
TW201016778A (en) Thermoplastic resin, organic-inorganic hybrid composition and optical parts
KR102357623B1 (ko) 다중 코팅 구조를 갖는 고반사 입자 및 그의 제조방법
JP2009179769A (ja) 有機無機複合材料および光学物品
TW201238758A (en) Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation