TW201238758A - Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation - Google Patents

Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation Download PDF

Info

Publication number
TW201238758A
TW201238758A TW100109923A TW100109923A TW201238758A TW 201238758 A TW201238758 A TW 201238758A TW 100109923 A TW100109923 A TW 100109923A TW 100109923 A TW100109923 A TW 100109923A TW 201238758 A TW201238758 A TW 201238758A
Authority
TW
Taiwan
Prior art keywords
titanium oxide
core
film
group
polyimine
Prior art date
Application number
TW100109923A
Other languages
Chinese (zh)
Other versions
TWI432324B (en
Inventor
Yang-Yen Yu
Wen-Chen Chien
Wen-Chang Chen
Tsung-We Tsai
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100109923A priority Critical patent/TWI432324B/en
Publication of TW201238758A publication Critical patent/TW201238758A/en
Application granted granted Critical
Publication of TWI432324B publication Critical patent/TWI432324B/en

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and the method for preparing the same. The method comprises coating colloidal silica with titania precursor under Stober condition and then hydrolyzing to obtain a silica-titania core-shell nanoparticle, then dehydrating and esterifying the silica-titania core-shell nanoparticle with polyimide having carboxyl group via spin-coating process to obtain a polyimide/silica-titania hybrid film.

Description

201238758 六、發明說明: 【發明所屬之技;^領域】 本發明係有關-種可溶性?純亞胺 奢米微粒之混成薄膜及其製造方法。/、 氧化鈦核欣 【先前技術】 ° 有機無機混成材料由於其優於古撼七從搞^ η ΐ介電性料被轉為高溫聚合物 難處理且因此展現不良的加工性。以 氟ί單體(例如4,4、(六氟亞丙基)二苯 y好機械性質ij雕備之具二= 亞胺及無機填充劑為主之混成材料將可解決黏附 虚益混成材料已被廣泛研究。聚醒亞胺 厂…、广匕3氧化石夕、層狀氧化石夕如蒙脫石 ΪΓΓΓΓ义1te))或雲母、氮化鋁、氧化鈦、鈦酸鋇及碳奈米 報導。所製備之混成材料顯示當併入適宜無 if充劑時可達成顯著之熱錢性、機械強度及物理性質。而 聚釀亞胺-氧化石夕及聚酿亞胺_氧化鈦混成材 於各種顧,包含_化之電子裝置、光波導之材料、 si南折^之材料、具有高透明度之材料、具有非線性光學 /生^、,,電(bw-k)材料、光伏裝置及燃料電池。通常,聚醯 氧化梦或聚酿亞胺·氧化欽混成材料可分別使用聚(酿胺 =)^ΑΑ)聽化抑氧紐胸物,如四乙氧魏姐氧化欽 依據溶凝膠⑽调製程製備。_,聚醯亞胺及氧化石夕或氧 201238758 化鈦之相溶性預期並不佳。基於此理由,多數報導之混成材料 隨著無機含量增加而快速變霧濁。此現象一部分是由於隨著經 由溶凝胳製程製備之混成材料中顆粒的增加而使顆粒尺寸快 速膨,之故。改善此兩相間之相溶性以及無機顆粒尺寸之減少 已可藉由使用偶合劑(coupling agent)製備混成材料而達成。氧 化矽及氧化鈦前驅物已成功被使用於製備具有高光學透明 ,、、配位及折射率之混成材料;然而,所報導之混成材料粒徑 …、法精確控制,該粒徑對光學應用極具重要性。再者,留在兮 混成材料中之額外偶合劑可能影響重要的熱/機械/光學性質;; -可能的解財法躲錢混讀辦使 鈦’而不自金狀氧化物未添加額外‘辭: 氧化石夕或氧化鈦無機網絡結構。 而^ίϊίΐί可Λ用兩種或多種不同材料形成核及殼層 材料。相較於單一奈米顆粒,核殼奈求顆粒有許 iiiif材料’可容易地控制多種物理及化學性質,包 =發=匕:光學性質。在具有不同折射率 P會發生先予反射。抗反射(AR)塗層已廣泛使用於 電腦螢幕、顯示器及其他需要抑制反 。溶凝膠塗覆對在大面積《ίϊ; 物術具有數個優 塗佈性;5日ra ύ 減低成本、良好光學性能、室溫 ㈣繼_層製 【發明内容】 及以下収(Π)衫之氧胺單= (IHR所示之__)中與 201238758 比為聚酿亞胺:氧化;^夕_氧化鈦核殼奈米微粒在 :9〇至9〇 : 之範圍内:201238758 VI. Description of the Invention: [Technology of the Invention] Field of the Invention The present invention relates to a mixed film of a soluble, pure imine, luxury rice microparticle and a method for producing the same. /, Titanium Oxide [Previous Technology] ° Organic-inorganic hybrid materials are difficult to process due to their superiority to the 撼 撼 ΐ dielectric material being converted into a high-temperature polymer and thus exhibit poor processability. The fluorocarbon monomer (for example, 4,4, (hexafluoropropylene) diphenyl y good mechanical properties ij engraved with two = imine and inorganic filler-based mixed materials will solve the problem of adhesion of the benefits of mixed materials Has been extensively studied. Polymethane Imine Plant..., Hirose 3 Oxide Oxide, Layered Oxide Oxime such as Montmorillonite Decoction 1te)) or Mica, Aluminum Nitride, Titanium Oxide, Barium Titanate and Carbon Nano Report. The prepared hybrid material shows that significant hot money, mechanical strength and physical properties can be achieved when incorporated into a suitable no-filler. The poly-imine-oxidized stone and the poly-imine-titanium oxide are mixed in various materials, including the electronic device, the material of the optical waveguide, the material of the Si Nan, the material with high transparency, and the non- Linear optics / raw materials, electrical, (bw-k) materials, photovoltaic devices and fuel cells. Usually, polyphosphonium oxide or poly-imine and oxidized mixed materials can be used respectively to make polyoxygenated neonatal chest, such as tetraethoxy Wei sister oxidized capsule according to sol gel (10) Process preparation. _, polyimine and oxidized stone or oxygen 201238758 Titanium compatibility is not expected. For this reason, most of the reported hybrid materials rapidly become hazy as the inorganic content increases. This phenomenon is partly due to the rapid expansion of the particle size as the particles in the mixed material prepared by the lysing process are increased. Improving the compatibility between the two phases and the reduction in the size of the inorganic particles can be achieved by preparing a mixed material using a coupling agent. Cerium oxide and titanium oxide precursors have been successfully used to prepare hybrid materials with high optical transparency, coordination, and refractive index; however, the reported particle size of the hybrid material is precisely controlled by the method, and the particle size is applied to the optical application. Very important. Furthermore, the additional coupling agent remaining in the ruthenium blending material may affect important thermal/mechanical/optical properties; - Possible remedy for the money to avoid the addition of titanium to the 'golden oxides without adding extra' Words: Inorganic network structure of oxidized stone or titanium oxide. And ^ίϊίΐί can form core and shell materials from two or more different materials. Compared to a single nanoparticle, the core shell has a iiiif material that can easily control a variety of physical and chemical properties, including = 匕: optical properties. Pre-reflection occurs when P has a different refractive index. Anti-reflective (AR) coatings have been widely used in computer screens, displays and other applications where suppression is required. The lyophilized coating has a number of excellent coating properties in a large area; the material has a good coating property; 5 days ra ύ reduced cost, good optical performance, room temperature (four) followed by _ layer system [invention content] and the following collection (Π) Oxygenamine single = (I_ indicated __) and 201238758 ratio of poly nitrite: oxidation; ^ _ _ titanium oxide core shell nanoparticle in the range: 9〇 to 9〇:

(I) _上述中,R代表羧基(-COOH),Ar、Ar,及Ar”可相同或不 同且分別代表伸苯基、伸萘基、伸聯笨基、之基(其 中X代表可經鹵素取代之Cl_4伸烷基、苯基_〇、_〇_、_C〇_、 _s-、-so-或-S〇2_基)’ m代表i至30的數值,較好為2至1〇 的數值;(I) _ In the above, R represents a carboxyl group (-COOH), and Ar, Ar, and Ar" may be the same or different and each represents a phenyl group, a naphthyl group, and a stretching group, wherein X represents a Halogen-substituted Cl_4 alkyl, phenyl_〇, _〇_, _C〇_, _s-, -so- or -S〇2_yl)' m represents a value of i to 30, preferably 2 to 1 The value of 〇

^依據本發批可雜《亞贿氧切·氧化财Μ太半 ί ίί成f膜,藉由改變其氧切·氧 ΐ學裝置射率。其折射率甚至可高達L753何利用於 酿亞胺與氧切氧化鈦核殼 ,其包括在Stober條件下,以 ,本發明又有關一種可溶性聚 奈米微粒之混成薄膜之製造方法 201238758 氧化鈦前驅物包覆膠體氧化矽,獲得氧化矽-氧化鈦前驅物核 殼奈米微粒後,使氧化鈦前驅物進行水解形成氧化矽_氧化鈦 奈米,粒,再利用氧化鈦上所具有之羥基與具有羧酸基之聚醯 亞胺藉由旋轉塗佈法進行脫水酯化反應,而獲得聚醯亞胺/氧 化石夕-氧化鈦核殼奈米微粒之混成薄膜。 具體而言,本發明之可溶性聚醯亞胺與氧化矽_氧化鈦核 殼奈米微粒之混成薄膜之製造方法包括下列步驟:⑷以烷氧化 ^酸性斜下包覆氧化⑦,獲得吨切為核且以烧氧化欽 為喊之氧化矽-烷氧化鈦核殼奈米顆粒,隨後進行水解,獲得 氧化梦-氧佩滅奈米雛;⑼使具有紐基之雜亞胺盘 (,步驟所得之氧切鈦赌奈米顆減合,藉由塗^ f-基材上進行塗佈並加熱’ 聚醯亞耻所含之誠基盘 ΐ 殼奈米顆粒上帶有之經基進行脫水醋化^ μ 胺與氧姆'"氧化鈦核殼奈米微粒之混成薄膜。 之旦中’上述步驟⑷中’氧化赠烧氧化欽 1 1Ϊ1 于水解後之氧化石夕與氧化鈦以重量比計在1 : 8至 上· Α之越圍内。 【實施方式】 氧化鈦(Ti(0R,)4,並中^下;其中氧化鈦之前驅物的烷 解於__中直鍵或分支舰基)較好先溶 異,但A 了總&从生ϋ用的醇類端視所欲反應的烷氧化鈦而 相互的醇類與燒氧化鈦在反應期間產生醇 步驟(b)中且舰吴之丁氧化鈦時’溶劑係使用丁醇。 顆粒之重亞胺與氧化石夕氧化欽核殼奈米 終用途所需之折射率而定。0:90之範圍廣泛變化,端視最 為使二使:之具有羧酸基之聚醯亞胺 文酐進仃酸酐,以二酸酐莫耳當量/二 201238758 量之比大於1之比例,進行酸酐開環縮合反應獲得末 八有酸酐基之聚醯胺酸之後,再藉由酸酐基與含羧酸之芳族 胺反應J獲得末端具有羧酸基之聚醯胺酸,隨後進行醯亞胺 ^匕,獲得具有羧酸基之聚醯亞胺。該等製程為熟知本技蓺者所 W知’例如可利用如下製造流程製得: w 反應圖1^ According to this batch of miscellaneous, "A bribes and oxygen oxides are too thin to become a film, by changing the rate of oxygen cut oxygen. The refractive index can even be as high as L753, which is utilized in the yttrium and oxygen-cut titanium oxide core shell, which is included in the Stober condition, and the invention relates to a method for producing a mixed film of soluble nano-particles 201238758 After coating the colloidal cerium oxide to obtain the cerium oxide-titanium oxide precursor core-shell nanoparticle, the titanium oxide precursor is hydrolyzed to form cerium oxide-titanium oxide nanoparticle, and then the hydroxyl group on the titanium oxide is used. The poly(imine) having a carboxylic acid group is subjected to a dehydration esterification reaction by a spin coating method to obtain a mixed film of polyimine or oxidized cerium-titanium oxide core-shell nanoparticles. Specifically, the method for producing a mixed film of the soluble polyimine and the cerium oxide-titanium oxide core-shell nanoparticle of the present invention comprises the following steps: (4) coating the oxidation with an alkoxylation under acidic tilting to obtain a ton of cut The ruthenium oxide-alkoxide titanium oxide core-shell nanoparticle granulated with the oxidized oxidized nucleus, followed by hydrolysis to obtain the oxidized dream-oxygen-enhanced naphthalene; (9) the hetero-imine disc with the nucleus The oxygen cut titanium gamma nanometer is reduced by coating and heating on the substrate, and heating the base of the base ΐ 奈 奈 所 进行 进行 进行A compound film of yttrium and oxymium's titanium oxide core-shell nano-particles. In the above step (4), 'oxidation of oxidized oxidized oxime 1 1Ϊ1 after hydrolysis, oxidized stone sulphate and titanium oxide by weight ratio In the case of 1:8 to the top of the 。 。 。 。 。 。 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛 氧化钛Base) is better to dissolve first, but A total & alcohol from the sputum used to treat the desired titanium alkoxide The titanium oxide is produced during the reaction to produce the alcohol in the step (b) and in the case of the titanium oxide of the ship, the solvent is based on the butanol. The weight of the heavy imine of the particle and the refractive index of the final use of the oxide oxide The range of 0:90 is widely changed, and the end-view is most effective: the carboxylic acid-based polyimide anhydride is added to the phthalic anhydride, and the ratio of the dianhydride molar equivalent/second 201238758 is greater than 1. After the acid anhydride ring-opening condensation reaction is carried out to obtain the poly-decanoic acid of the terminal acid anhydride group, the polyamic acid having a carboxylic acid group at the terminal is obtained by reacting an acid anhydride group with a carboxylic acid-containing aromatic amine, followed by sulfimine. That is, a polyimine having a carboxylic acid group is obtained. These processes are known to those skilled in the art, for example, can be obtained by the following manufacturing process: w Reaction Figure 1

上述中’ R代表羧基(-COOH) ’ Ar、Ar,及Ar”可相同或不 同且分別代表伸苯基、伸萘基、伸聯苯基、_ph_x_ph_之基(其 中X代表可經鹵素取代之CM伸烷基、-〇-苯基_〇、_〇_、_c〇_、 -S-、-SO-或_s〇2_基),m代表1至30的數值,較好為2至川 201238758 的數值;且x/y>l。 本發明中製備具有羧酸基之聚醯亞胺之芳族二酸酐實例 可舉例如(但不限於)4,4,-(六氟亞異丙基)二對苯二曱酸酐 (6FDA)、苯均四酸二酐、4,4,_氧基二酞酸酐、3,3,,4,4,_聯苯四 羧酸二酐、3,3’,4,4,-二苯曱酮四羧酸二酐、伸乙基四羧酸二 酐、丁烧四竣酸二酐、環戊烧四緩酸二酐、均苯四羧酸二酐、 2,2’,3,3’-二苯曱酮四羧酸二酐、2,2,,3,3,_聯苯四羧酸二酐、2,2_ 雙(3,4-二羧基苯基)丙烷二酐、2,2_雙(2,3_二羧基苯基)丙烷二 酐、雙(3,4-二羧基苯基)醚二酐、雙(3,4_二羧基苯基)砜二酐、 U-雙(2,3-二羧基苯基)乙烷二酐、雙(2,3_二羧基苯基)曱烷二 酐、雙(3,4-二羧基苯基)甲烷二酐、4,4,_(對_苯二氧基)二酞酸 二酐、4:4’·(間-苯二氧基)二酞酸針、2,3,6,7_萘四羧酸二酐、 1二4,5,8-萘四羧酸二酐、1,2,5,6_萘四羧酸二酐、ι,2,3,4_苯四羧 酉夂一酐、3,4,9,1〇-二萘喪苯四魏酸二針、2,3,6,7-蒽四敫酸二針 及1,2,7,8-菲四羧酸二酐等。該等芳族二酸酐可單獨使用一種 或以多種之混合物使用。 本發明中製傷具有跋酸基之聚醯亞胺之芳族二胺實例可 舉例如(但不限於)4,4,-(六氟亞異丙基)二苯胺(6FpDA)、對_苯 ^二,、4,4’-氧基二苯胺、雙(4_胺基苯氧基)苯、以雙斤 =基^氧基)苯、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、雙[4_(4_ ,基苯氧基)苯基;μ風、1,3-雙(3·胺基苯氧基)苯、4,4,:雙(4-胺基 苯氧基>3,3’-二羥基聯苯、雙[4_(3_胺基苯氧基)苯基]甲烷、u_ 雙[4_〇胺基苯氧基)苯基]乙烧、以雙㈣3·胺基苯氧基)苯 乙烧j,2-雙[4-(3_胺基苯氧基)苯基]丙烧、2,2,-雙[4-(3-胺基苯 基)苯基]丁烷、2,2_雙[4-(3-胺基苯氧基)苯基]-1,1,1,3,3,3_六 一丙烧4,4 -雙(3-胺基苯氧基)聯苯、雙[4_(3_胺基苯氧基)苯基] 酮、雙[4-(3-胺基苯氧基)苯基]硫醚、雙[4_(3_胺基苯氧基)苯基 亞=、雙[4-(3·胺基苯氧基)苯基]硬、雙[4_(3_胺基苯氧基)苯 醚等。上述雙胺可單獨使用一種或以多種混合使用。 本發明中製備具有羧酸基之聚醯亞胺之含羧酸之芳族胺 201238758 可為例如4-胺基苯曱酸。 胺酸具有紐基之聚齡義在f知製造聚酿 劑存在^ ^打絲合反應’―般在對反應無不良影響之溶 ,在周圍溫度至90°C之溫度,較好在30至75°C之溫 ίίΞ内進行進行。所用溶劑一般為非質子極性溶劑,其種類 與厂特別_ ’只要不與反應物及產物反應即可。具體實例可 二^ Ν,Ν-一甲基乙醯胺①jy^)、Ν_曱基咖各烧酮、 =ri7M_(DMF)、四氫°㈣(通)、二魏、氣仿 ^ \Τί、—虱甲烷等。其中較好使用N•甲基吡咯烷酮(NMP) 及,2一甲基乙醯胺(DMAc)。該等溶劑可使用一或多種。 隨後之醯亞胺化反應亦可在對反應無良 在下,在升溫之溫度,較好在12(^富 150-180C之溫度範圍内進行。所用的溶劑可使用上述製備聚 醯,^中所列的溶劑。各步驟中所用的溶劑可相同亦可不同, 但就操作便利性而言,較好使用相同溶劑系統。 本發明方法中於基材上塗佈所製得之聚醯亞胺氧化石夕-氧 化鈦核殼奈米顆粒之混成薄膜之成膜方法可利用本技藝悉知 之塗佈方法,包含例如滾塗(rolling c〇ating)、流塗(打 coating}、含浸塗佈法(dip coating〆、喷霧塗佈法(spray c〇ating)、 旋轉塗佈法(spin coating)、簾塗法(curtain coating)等,其中以 獲付均勻薄膜之觀點而言’較好使用旋轉塗佈法。 本發明方法中使聚醯亞胺上所含之羧酸基與氧化矽_氧化 鈦核殼奈米顆粒上帶有之羥基進行脫水酯化反應係利用使塗 佈膜升溫固化之方法,其係一般用於製備混成材料薄膜之烘烤 步驟’宜採用多段式升溫烘烤法’藉多段式升溫烘烤可使其中 所含之溶劑缓慢蒸發,可避免薄膜龜裂。所採用之多階段烘烤 法包含(但不限於)例如在50-7(TC烘烤15-25分鐘,再於 140-160°C之溫度烘烤15-25分鐘,接著移入高溫爐並通氮氣 下在290-310°C之溫度固化數小時,最後在390-420°C之溫度 固化數小時。 201238758 ,茲舉例氧化鈦前驅物為四丁氧化鈦,以及聚醯亞胺係由 4」4田敦亞異丙基)二苯胺(6FpDA)、4,4六氟亞異丙基)二苯 ‘=2^_=_酸(4屢靡_,說明本發 反應圖1.製備氧化 '氧化鈦核殼奈米顆粒之流程圖In the above, 'R represents a carboxyl group (-COOH) 'Ar, Ar, and Ar" may be the same or different and each represents a phenyl, anthracene, a phenyl group, a _ph_x_ph_ group (wherein X represents a halogen-substituted group) CM alkyl group, -〇-phenyl_〇, _〇_, _c〇_, -S-, -SO- or _s〇2_ group), m represents a value of 1 to 30, preferably 2 The value of Zhichuan 201238758; and x/y>l. Examples of the aromatic dianhydride which produces the polyamidiamine having a carboxylic acid group in the present invention may, for example, but not limited to, 4,4,-(hexafluoroisophthalene) Propyl)di-p-phthalic anhydride (6FDA), pyromellitic dianhydride, 4,4,-oxydiphthalic anhydride, 3,3,4,4,_biphenyltetracarboxylic dianhydride, 3 , 3',4,4,-dibenzophenone tetracarboxylic dianhydride, ethyltetracarboxylic dianhydride, butadiene tetracarboxylic acid dianhydride, cyclopentanic acid dianhydride, pyromellitic acid Dihydride, 2,2',3,3'-dibenzophenone tetracarboxylic dianhydride, 2,2,3,3,_biphenyltetracarboxylic dianhydride, 2,2_bis (3,4- Dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(3,4_two Carboxyphenyl)sulfone dianhydride, U-bis(2,3-dicarboxyl) Ethylphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)decane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 4,4,_(p-benzene) Oxy)diruthenic dianhydride, 4:4'·(m-phenyldioxy)dicarboxylic acid needle, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1 2 4,5,8- Naphthalene tetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, iota, 2,3,4-benzenetetracarboxylic phthalic anhydride, 3,4,9,1 fluorene-diphthalene Two needles of benzoic acid, two needles of 2,3,6,7-indenic acid, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, etc. The aromatic dianhydrides may be used alone or in combination. A mixture of various kinds is used. In the present invention, an example of the aromatic diamine having a phthalic acid group-containing polyimine is exemplified by, but not limited to, 4,4,-(hexafluoroisopropylidene)diphenylamine (6FpDA). ), p-Benzene^, 4,4'-oxydiphenylamine, bis(4-aminophenoxy)benzene, bis(=ethoxy)benzene, 2,2-bis[4- (4-Aminophenoxy)phenyl]propane, bis[4_(4_, phenoxy)phenyl; μ wind, 1,3-bis(3·aminophenoxy)benzene, 4,4 ,: bis(4-aminophenoxy) 3,3'-dihydroxybiphenyl, bis[4_(3-aminophenoxy)phenyl]methane, u_bis[4_nonylaminophenoxy Phenyl ] Ethylene, bis(tetra) 3 ·aminophenoxy) phenylethyl ketone j, 2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2,-bis[4-( 3-aminophenyl)phenyl]butane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3_hexa-propan 4,4-bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]one, bis[4-(3-aminophenoxy)phenyl] Thioether, bis[4-(3-aminophenoxy)phenyl], bis[4-(3.aminophenoxy)phenyl] hard, bis[4_(3-aminophenoxy) Phenyl ether and the like. The above diamines may be used singly or in combination of plural kinds. The carboxylic acid-containing aromatic amine which produces the polyamidimine having a carboxylic acid group in the present invention 201238758 may be, for example, 4-aminobenzoic acid. The acidity of the amine has the kinetics of the nucleus. In the case of the production of the granules, there is no effect on the reaction, and the temperature is at a temperature of 90 ° C, preferably 30 to 30. Perform the temperature within 75 °C. The solvent used is generally an aprotic polar solvent, the type of which is specific to the plant as long as it does not react with the reactants and products. Specific examples can be ^, Ν-monomethyl acetamide 1jy ^), Ν 曱 曱 咖 各 = =, = ri7M_ (DMF), tetrahydro ° (four) (pass), two Wei, gas imitation ^ \Τί , - methane and so on. Among them, N-methylpyrrolidone (NMP) and 2-methylacetamide (DMAc) are preferably used. These solvents may be used in one or more. Subsequent hydrazine imidization reaction can also be carried out under the reaction temperature, preferably at a temperature of 12 (Fu-150-180 C). The solvent used can be prepared by using the above-mentioned preparation. The solvent used in the step may be the same or different in the respective steps, but in terms of handling convenience, the same solvent system is preferably used. In the method of the present invention, the polyimide obtained by coating the substrate is oxidized. The film forming method of the mixed film of the Shixi-titanium oxide core-shell nano-particles can be carried out by a coating method known in the art, and includes, for example, rolling coating, flow coating (coating), and impregnation coating method ( Dip coating 〆, spray coating, spin coating, curtain coating, etc., in which the spin coating is preferably used from the viewpoint of obtaining a uniform film In the method of the present invention, a method for dehydrating and esterifying a carboxylic acid group contained on a polyfluorene imine and a hydroxyl group carried on a cerium oxide-titanium oxide core-shell nanoparticle is used to cure the coating film by heating , which is generally used for preparing baking of mixed material film It is advisable to use a multi-stage heating bake method. The multi-stage heating bake can slowly evaporate the solvent contained therein to avoid film cracking. The multi-stage baking method used includes, but is not limited to, for example, at 50. -7 (TC baking for 15-25 minutes, then baking at 140-160 ° C for 15-25 minutes, then moving into a high temperature furnace and curing at 290-310 ° C for several hours under nitrogen, finally at 390 It is cured at a temperature of -420 ° C for several hours. 201238758 , for example, the titanium oxide precursor is tetrabutyl titanate, and the polyimide is made of 4"4 tian isopropyl isopropyl) diphenylamine (6FpDA), 4, 4 Hexafluoroisopropylidene)diphenyl'=2^_=_acid (4 repeated 靡_, indicating the reaction of the present invention. Figure 1. Flow chart for preparing oxidized titanium oxide core-shell nanoparticles

乂)HH〇-((Si〇2)V〇H 十 縮合乂)HH〇-((Si〇2)V〇H ten condensation

+ H2〇 HCI+ H2〇 HCI

BuO BuO BuOBuO BuO BuO

BU0N^BU0 at.n BuO Ti BuO^ Λ BUO^I, I bBU° T,. 0 ^Ti—BuOBU0N^BU0 at.n BuO Ti BuO^ Λ BUO^I, I bBU° T,. 0 ^Ti—BuO

〆〇 &U〇 Ti BuO〆· ' Λ BuO _ BuO 0 I〆〇 &U〇 Ti BuO〆· ' Λ BuO _ BuO 0 I

BuOBuO

0-~^S 丨 02)^_〇—了Bu〇 BuO. 8u0 BuO’ 'BuO0-~^S 丨 02)^_〇—Bu〇 BuO. 8u0 BuO’ 'BuO

8uO—H 201238758 反應圖2.製備聚醯亞胺/氧化矽_氧化鈦奈米顆粒混成薄膜之 流程圖8uO-H 201238758 Reaction Scheme 2. Preparation of Polyimide/Iron Oxide_Titanium Oxide Nanoparticles Mixed Film

6FDA6FDA

6FpDA ^T1 於ΝΜΡ中在室溫下8小時6FpDA ^T1 in sputum for 8 hours at room temperature

聚醯胺酸 2HQ 丄 在室溫下16小時 W.Polylysine 2HQ 丄 16 hours at room temperature W.

熱酿亞胺化: 0 CFj 於·《夕油中在18〇。〇 8小時Hot-bulk imidization: 0 CFj is in the "night oil at 18 〇. 〇 8 hours

旋轉塗佈 , 加熱 ‘ 6〇°C、20 分鐘 100°C、20 分鐘 150°C、20 分鐘 300°C、卯分鐘 (真空下) , 在DM^c中: 在室溫的下1 攪拌2小時 -h2o ' ? τί1Spin coating, heating '6 ° ° C, 20 minutes 100 ° C, 20 minutes 150 ° C, 20 minutes 300 ° C, 卯 minutes (under vacuum), in DM ^ c: at room temperature 1 stirring 2 Hour -h2o ' ? τί1

ο-η*·〇·Ο-η*·〇·

〇—Ti-o-{(Sl〇j). 0〇—Ti-o-{(Sl〇j). 0

本發明將以下列實施例具體說明本發明,惟該等實施例僅 用以說明之目的,而非用以限制本發明之範圍。 實施例 使用材料 4,4’-(六氟異亞丙基)二苯二曱酸酐(6FDA,99〇/〇)及4,4,-(六 201238758 氣異亞丙基)二苯胺(6FpDA,99%)係獲自Chriskev (Lenea, USA)。4-胺基苯曱酸(4ABA,99%)、苯胺(99.5%)及四氫呋南 (THF,99.9%)係獲自 ACROS(Geel,比利時)。曱醇(MeOH, 98%)係獲自Mallincrodt。所有單體為購得且未純化直接使用。 1-曱基-2-吡咯啶酮(NMP,99.9%)、1,3_二氯苯(DCB,99.9%) 及N,N’-二曱基乙醯胺(dmac,99.5%)獲自 TEDIA(Fairfield, USA)。正丁氧化鈥(Ti(〇Bu)4,99%)獲自 ACROS(Ged,比利 時)。膠體氧化矽(日產化學工業公司,12-15nm,30wt%於異丙 醇中)及SilecsRXC530 (Silecs)係以獲得狀態使用。 實施例1-具有末端羧酸基之可溶聚醯亞胺之合成(6FDA_ 6FpDA-COOH) 利用溶液醯亞胺化技術合成具有末端羧酸基之有機可溶 聚醯亞胺(6FDA- 6FpDA-COOH)。分子量及末端官能基係由反 應物化學計量加以控制。首先,將2.01克(0.006莫耳)之4,4,-(六 氟異亞丙基)二苯胺(6FpDA)添加於1〇〇毫升三頸圓底燒瓶内 並使用29.1毫升NMP溶解該反應物。接著在氮氣吹拂下缓慢 添加5.331克(0.012莫耳)4,4’-(六氣異亞丙基)二苯二甲酸酐 (6FDA)於上述溶液中並劇烈攪拌。使混合物在室溫反應8小 時。接著,於上述溶液中添加1.6457克(0.012莫耳)4_胺基苯 曱酸(4ABA)及7.2毫升1,3-二氯苯。在室溫持續攪拌反應物 16小時後,形成20wt%聚(醯胺酸)(PAA)。接著PAA溶液在 180 C碎油〉谷中再酿亞胺化8小時並冷卻至室溫。均質 6FDA-6FpDA-4ABA-COOH溶液以500毫升曱醇沉殿並再溶 解於30毫升中兩次。回收灰白色沉澱且於15〇。〇真空中乾燥 24 小時,獲得 2.136 克 6FDA-6FpDA-4ABA-C00H(產率: 23.8%)。使用滴定法測定6FDA-6FpDA-4ABA-C00H之平均 酸值為14mg KOH/O.5g-聚醯亞胺。由該酸值估算之平均分子 里約為4000。由GPC估算之重量平均分子量為4276而聚分 政才曰數為1.31。發現若在聚醯亞胺合成之前藉由昇華/冷凝步 驟將 6FDA、6FpDA 及 4ABA 分別在 244-247°C、195-198°C^_ 12 201238758 187-189°(:純化,6卩〇八-6卩1)〇八-4八3入-(:0011之產率可改声至 約 50%。 ^ 使用下述程序製備6FDA-6FpDA_4ABA-CO〇H薄膜:將 0.5 克 6FDA-6FpDA-4ABA-COOH 溶解於 5 毫升 DMAc' 中同 時攪拌。以〇.45μιη PTFE過濾器過濾後,以1000rpm旋轉塗 佈於石夕晶圓上20秒。接著薄膜在60。〇加熱板上烘烤1〇分鐘 且在150jC又烘烤30分鐘以蒸發溶劑。為了與聚醯亞胺_氧化 鈦混成薄膜(PST10-PST90)比較,將此 6FDA-6FpDA-4ABA- COOH固化薄膜稱為PST0。觀察到此PST0之FTIR光譜之特 性峰如了 : 3434cm-1 (COOH)、1788(^((^0)、1726(^(^0)、 1610(^(0¾)、1517^^(¾¾)、143801^(¾¾)、1370cm-1 (CN)〇 實施例2-聚醯亞胺/SiCVTiO2核殼奈米顆粒混成薄膜之合成 用以製備合薄膜之組成列於下表1,且稱為ρ8τχ(χ表 示在該混成薄膜中氧化矽-氧化鈦奈米顆粒之加%之理論量)。 使用PST5〇為例,首先’將克(2 5χ1〇-2莫耳)之Ti(〇Bu)4、 0.625克(1.04X10·2莫耳)膠體氧化矽及1〇毫升丁醇添加於2〇 毫升圓底燒瓶中並攪拌30分鐘。接著於上述溶液中滴加〇.45 克去離子水及0.1克鹽酸(HC1 37wt%)歷時2小時。以針筒於 上述合物中滴加〉谷於2.5宅升DMAc之0.2克(1 736><10-4莫 ,之6FDA-6FpDA-COOH。接著使混合物在室溫授拌3〇分^ 獲得PST50前驅物溶液。此前驅物溶液經〇 45叫過遽 器過濾並以2000rpm旋轉塗佈於矽晶圓上2〇秒。所得 PI/SiOrTi〇2混成薄膜(PST1 〇_PST5〇)再以水熱過程藉由浸於 沸水中處理,並回流12小時。上述製程後,該薄膜在1〇(rc 加熱板上乾燥以移除殘留水。使用各種技術如ftir、tga、 DSC、SEM、TEM、AFM、UV_Vis及n&k檢視所製備之聚醯 亞胺/Si02-Ti02核殼混成材料。 13 201238758 編號 6FDA 6FpDA 4-ABA 複合物(Si〇,-TiCM PST0 40 20 40 0 tsj Λ5. 3 W ^Wl/0^ PST10 36 18 36 10 ' X 15 PST20 32 16 32 20 15 PST30 28 「14 28 30 15 PST40 24 12 「24 40 15 PST50 20 10 20 50 15 實施例3-三層抗反射薄膜之製備 製備二層抗反射薄膜之實驗程序描述如下。將所得之聚醯 亞胺/氧化矽-氧化鈦前驅物溶液pST50(第一層)以4〇〇〇rpm之 速严旋轉塗佈於FEA玻璃基材上30秒。接著經塗佈之薄膜在 60°C熱板上固化20分鐘、在i〇(TC固化2〇分鐘、在15(rc固 化20分鐘及在30(TC固化60分鐘。第一層溫度冷卻至室溫後, 將聚醯亞胺/氧化鈦前驅物PST9〇(第二層)以7〇〇rpm轉速旋轉 塗佈於第一層上30秒。接著經塗佈之薄膜在6〇〇c熱板上固化The present invention will be specifically described by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. The examples used materials 4,4'-(hexafluoroisopropylidene)diphenyl phthalic anhydride (6FDA, 99 〇 / 〇) and 4, 4, - (six 201238758 isopropylidene) diphenylamine (6FpDA, 99%) was obtained from Chriskev (Lenea, USA). 4-Aminobenzoic acid (4ABA, 99%), aniline (99.5%) and tetrahydrofuran (THF, 99.9%) were obtained from ACROS (Geel, Belgium). Sterols (MeOH, 98%) were obtained from Mallincrodt. All monomers were purchased and used directly without purification. 1-Mercapto-2-pyrrolidone (NMP, 99.9%), 1,3-dichlorobenzene (DCB, 99.9%) and N,N'-dimercaptoacetamide (dmac, 99.5%) were obtained from TEDIA (Fairfield, USA). Barium butoxide (Ti(〇Bu) 4, 99%) was obtained from ACROS (Ged, Belgium). Colloidal cerium oxide (Nissan Chemical Industries, Inc., 12-15 nm, 30% by weight in isopropyl alcohol) and Silecs RXC530 (Silecs) were used to obtain the state. Example 1 - Synthesis of Soluble Polyimine with Terminal Carboxylic Acid Group (6FDA_ 6FpDA-COOH) Synthesis of Organic Soluble Polyimine with Terminal Carboxyl Group Using Solution Iridium Amine Technology (6FDA-6FpDA- COOH). The molecular weight and terminal functional groups are controlled by the stoichiometry of the reactants. First, 2.01 g (0.006 mol) of 4,4,-(hexafluoroisopropylidene)diphenylamine (6FpDA) was added to a 1 ml three-necked round bottom flask and the reaction was dissolved using 29.1 ml of NMP. . Next, 5.331 g (0.012 mol) of 4,4'-(hexa-isopropylidene)diphthalic anhydride (6FDA) was slowly added under nitrogen purge to the above solution and stirred vigorously. The mixture was allowed to react at room temperature for 8 hours. Next, 1.6457 g (0.012 mol) of 4-aminobenzoic acid (4ABA) and 7.2 ml of 1,3-dichlorobenzene were added to the above solution. After stirring the reaction for 16 hours at room temperature, 20 wt% poly(proline) (PAA) was formed. The PAA solution was then re-imidized in 180 C of oil > trough for 8 hours and cooled to room temperature. The homogenized 6FDA-6FpDA-4ABA-COOH solution was immersed in 500 ml of sterol and re-dissolved in 30 ml twice. The off-white precipitate was recovered and taken at 15 Torr. After drying in a vacuum for 24 hours, 2.136 g of 6FDA-6FpDA-4ABA-C00H (yield: 23.8%) was obtained. The average acid value of 6FDA-6FpDA-4ABA-C00H was determined by titration to be 14 mg KOH/0.5 g of polyimine. The average molecular weight estimated from this acid value is about 4,000. The weight average molecular weight estimated by GPC was 4,276 and the polyunion was 1.31. It was found that 6FDA, 6FpDA and 4ABA were respectively 244-247 ° C, 195-198 ° C ^ _ 12 201238758 187-189 ° (purification, 6 卩〇8) by sublimation/condensation step before polyimine synthesis. -6卩1)〇八-4八三入-(: The yield of 0011 can be changed to about 50%. ^ Prepare 6FDA-6FpDA_4ABA-CO〇H film using the following procedure: 0.5 g 6FDA-6FpDA-4ABA -COOH was dissolved in 5 ml of DMAc' while stirring. After filtering with a 45.45μιη PTFE filter, it was spin-coated on Shishi wafers at 1000 rpm for 20 seconds. Then the film was baked on a 60 ° hot plate for 1 minute. And baking at 150 jC for 30 minutes to evaporate the solvent. This 6FDA-6FpDA-4ABA-COOH cured film was referred to as PST0 in comparison with the polyimine-titanium oxide mixed film (PST10-PST90). The characteristic peaks of the FTIR spectrum are as follows: 3434cm-1 (COOH), 1788(^((^0), 1726(^(^0), 1610(^(03⁄4), 1517^^(3⁄43⁄4), 143801^(3⁄43⁄4) , 1370cm-1 (CN) 〇 Example 2 - Polyimine / SiCVTiO2 core-shell nanoparticle mixed film synthesis The composition used to prepare the film is listed in Table 1 below, and is called ρ8τχ (χ indicates Mixed film The theoretical amount of addition of cerium oxide-titanium oxide nanoparticles is as follows. Using PST5 〇 as an example, firstly, the gram (2 5 χ 1 〇 - 2 m) Ti (〇Bu) 4, 0.625 g (1.04 X 10 · 2 Mol) colloidal cerium oxide and 1 ml of butanol were added to a 2 ml round bottom flask and stirred for 30 minutes. Then, 0.45 g of deionized water and 0.1 g of hydrochloric acid (HC1 37 wt%) were added dropwise to the above solution. 2 hours. 0.2 g of 2.5 liters of DMAc (1 736 >< 10-4 Mo, 6FDA-6FpDA-COOH) was added dropwise to the above mixture with a syringe. The mixture was then allowed to mix at room temperature. 〇分^ Obtain the PST50 precursor solution. The precursor solution was filtered through a crucible 45 and sprayed on a crucible wafer at 2000 rpm for 2 sec. The resulting PI/SiOrTi〇2 mixed film (PST1 〇_PST5〇) It is further treated by immersion in boiling water in a hydrothermal process and refluxed for 12 hours. After the above process, the film is dried on a 1 〇 hot plate to remove residual water. Various techniques such as ftir, tga, DSC, SEM, TEM, AFM, UV_Vis, and n&k inspection of polyimine/SiO 2 -Ti02 core-shell hybrid materials. 13 201238758 No. 6FDA 6FpDA 4-ABA Complex ( Si〇,-TiCM PST0 40 20 40 0 tsj Λ5. 3 W ^Wl/0^ PST10 36 18 36 10 ' X 15 PST20 32 16 32 20 15 PST30 28 "14 28 30 15 PST40 24 12 "24 40 15 PST50 20 10 20 50 15 Example 3 - Preparation of a three-layer antireflection film The experimental procedure for preparing a two-layer antireflection film is described below. The obtained polyimine/cerium oxide-titanium oxide precursor solution pST50 (first layer) was spin-coated on the FEA glass substrate at a speed of 4 rpm for 30 seconds. The coated film was then cured on a 60 ° C hot plate for 20 minutes at 〇 (TC curing for 2 〇 minutes, at 15 (rc curing for 20 minutes and at 30 (TC curing for 60 minutes. The first layer temperature was cooled to the chamber). After the temperature, the polyimine/titanium oxide precursor PST9(R) (second layer) was spin-coated on the first layer at 7 rpm for 30 seconds. The coated film was then placed on a 6 〇〇c hot plate. Curing

20分鐘、在100 〇固化20分鐘、在i5〇°c固化20分鐘及在3〇〇°C 固化60分鐘。第二層溫度冷卻至室溫後,將F_矽氧烷溶液(第 二層)以3500rprn速度旋轉塗佈於第二層上秒。接著塗佈之 薄膜在200°C加熱板上固化5分鐘。該製程與在基材 上製備抗反射薄膜相同,但在加熱板上之固化溫度為在6〇。〇 加熱20分鐘及在l〇〇°c加熱2小時。獲得三層抗反射薄膜。 特徵化: ' 使用Perkin Elmer Spectrum One分光計在雙重拋光之矽晶 圓上獲得所製得薄膜之傅理葉紅外線(FTIR)光譜。在連接於一 個折射率偵測器(獲自Schambeck SFD GmbH)之Lab Alliance RI2000儀器(一管柱,MIXED-D,獲自Polymer實驗室)上進行 凝膠滲透層析(GPC)分析。所有GPC分析係使用聚合物-N,N-二甲基甲醯胺(DMF)溶液,以流速lmL/mim在70°C進行,且 以聚苯乙烯標準進行校正。使用粒徑儀(Malvern儀器)進行粒 徑分布之測定。此利用在633nm He/Ne雷射二極體之背散射光 14 201238758 測量顆粒使_態光散射(DLS)之布朗運動。使用Malve 體所用之非負的最小平方卿LS)自所測量之自動校正數據叶 算體積累算之相當球形顆粒粒徑分布。在連續氮流動下使用 TA 儀器 Q50 及 Q20 DSC/RCS9〇 系統,分取 2〇t:/min 及 10°C/min之加熱速率進行熱比重分析(TGA)及差分掃描熱量 計(DSC)。無機材料之粒徑及所製備薄膜之微結構利用高解析 透射電子顯微鏡(HRTEM,JEOL,JEM-2100)檢視。在X_射線 繞射儀(XRD,PANalyticd,X,pert pro MpD)上使用 CuKa 輻射(1.5406埃),以相當於在室溫下自旋轉陽極產生器之聚焦 束之強度,進行X-射線繞射。混成薄膜之破碎表面以曰= H-2400掃瞄電子顯微鏡(SEM)檢視。使用原子力顯微鏡(Veec〇 DI3100 AFM)探測塗佈薄膜之表面形態。使用Jasc〇 v_65〇 UV/Vis/NIR分光計測量塗佈在石英基板上之薄膜透射度。使 用橢圓儀(GES-5E SOPRA)測量所製備薄膜在19〇_9〇〇nm,範圍 内之折射率(η)及消光係數(k)。同時測定所製備薄膜之厚度 (h)。表2列出所製備之聚醯亞胺/氧化鈦材料pST〇_pST1〇〇 = 性質。使用光學薄膜設計軟體(Thin Film View,T0H0 TSUSH〇 INC.)理論上研究該三層抗反射薄膜以獲得最佳薄膜反射性且 因此獲得最佳層厚度及折射率。表3列出分別在FEA玻璃及 PMMA(聚甲基丙烯酸曱酯)基材上所製備之三層抗反射薄膜 之性質。 結果及討論 1·聚醯亞胺-氧化鈦混成薄膜性質 利用FTIR分析確認聚(醯胺酸)、聚醯亞胺及pj/Si〇2_Ti〇2 混成材料之形成。圖1說明在雙重拋光矽晶圓上之ρι及 PI/Si〇2-Ti〇2薄膜之FTIR光譜。由圖1可觀察到胺基㈣邱及 羥基(OH)之3400-3100(^1吸收’及在1680cm-1之醯胺羰基之 吸收。聚(醯胺酸)加熱後轉化成聚醯亞胺。聚(醯胺酸)熱醯亞 胺化成酿胺環係藉由光譜中1680cm-1消失及1785cm-1(C=0 asy,str.)、1725cm-1(C=Oasy,str.)及 1368cm-丨(C-Nstr)之醯亞 15 201238758 胺基吸收峰出現而確認。上述峰為醯亞胺基之吸 ,Η薄臈及PI/Si〇2_Ti〇2混成薄膜之光譜中。導入益機= 在400-850cm·範圍(相當於Ti-〇_Ti網絡)及92〇_1100cm·〗(相當 於Si-0-Ti及Si-0-Si,網絡)之範圍觀察到強的寬廣吸收$ 等可藉由增加Si〇2_Ti〇2核-殼奈米微粒含量而增強。 ^ 2.形態學分析 曰强 ,2說明對PST0_PST50及Si〇rTi〇2核殼溶液黏度及剪 ϋ隨剪切速率之變化。結果顯輯有樣品之剪城力血煎 切速率大致成_增加且因此所製備之聚醯亞胺及聚酿^ /SiCVTi〇2溶液之行為類似布朗塑膠流體。聚醯亞胺psT 聚醯亞胺/SiOrTi〇2 (PST10-PST50及PST100)溶液由剪切岸力 及剪切速率之比例所計算之黏度危2_4厘泊 下’黏度幾乎固定。Si(VTi〇2含量對黏度之影響並不明顯,Curing for 20 minutes at 100 Torr, 20 minutes at i5 °C and 60 minutes at 3 °C for 20 minutes. After the second layer temperature was cooled to room temperature, the F_oxime solution (second layer) was spin-coated on the second layer at a speed of 3500 rpm for a second. The coated film was then cured on a 200 ° C hot plate for 5 minutes. The process was the same as the preparation of the antireflective film on the substrate, but the curing temperature on the hot plate was 6 Torr.加热 Heat for 20 minutes and heat at l ° °c for 2 hours. A three-layer antireflection film was obtained. Characterization: 'The Fourier Infrared (FTIR) spectrum of the resulting film was obtained on a double polished twin circle using a Perkin Elmer Spectrum One spectrometer. Gel permeation chromatography (GPC) analysis was performed on a Lab Alliance RI2000 instrument (a column, MIXED-D, available from Polymer Laboratories) connected to a refractive index detector (available from Schambeck SFD GmbH). All GPC analyses were carried out using a polymer-N,N-dimethylformamide (DMF) solution at a flow rate of 1 mL/mim at 70 ° C and corrected for polystyrene standards. The particle size distribution was measured using a particle size meter (Malvern instrument). This uses the backscattered light of the 633 nm He/Ne laser diode 14 201238758 to measure the Brownian motion of the particles to _state light scattering (DLS). The non-negative least squares LS used by the Malve body is used to calculate the equivalent spherical particle size distribution from the measured auto-corrected data. Thermal specific gravity (TGA) and differential scanning calorimetry (DSC) were performed using a TA instrument Q50 and Q20 DSC/RCS9〇 system under continuous nitrogen flow at a heating rate of 2〇t:/min and 10°C/min. The particle size of the inorganic material and the microstructure of the prepared film were examined using a high-resolution transmission electron microscope (HRTEM, JEOL, JEM-2100). Using X-ray diffraction on an X-ray diffractometer (XRD, PANalyticd, X, pert pro MpD) using CuKa radiation (1.5406 angstroms) at a temperature equivalent to the intensity of the focused beam from the rotating anode generator at room temperature Shoot. The fracture surface of the hybrid film was examined by a 曰=H-2400 scanning electron microscope (SEM). The surface morphology of the coated film was examined using an atomic force microscope (Veec® DI3100 AFM). The transmittance of the film coated on the quartz substrate was measured using a Jasc® v_65® UV/Vis/NIR spectrometer. The refractive index (η) and the extinction coefficient (k) of the prepared film in the range of 19 Å to 9 Å were measured using an ellipsometer (GES-5E SOPRA). The thickness (h) of the prepared film was also measured. Table 2 lists the properties of the prepared polyimine/titanium oxide material pST〇_pST1〇〇 = . The three-layer antireflection film was theoretically studied using an optical film design software (Thin Film View, T0H0 TSUSH〇 INC.) to obtain optimum film reflectivity and thus to obtain an optimum layer thickness and refractive index. Table 3 lists the properties of the three-layer antireflection film prepared on the FEA glass and PMMA (poly(methacrylate) substrate, respectively. Results and discussion 1. Polyetherimine-titanium oxide mixed film properties The formation of poly(proline), polyimine and pj/Si〇2_Ti〇2 mixed materials was confirmed by FTIR analysis. Figure 1 illustrates the FTIR spectra of ρι and PI/Si〇2-Ti〇2 films on a double-polished germanium wafer. From Figure 1, it can be observed that the amine (iv) and hydroxyl (OH) 3400-3100 (^1 absorption ' and the absorption of the indole carbonyl at 1680 cm-1. Poly (proline) heated to convert to polyimine Poly(proline) ruthenium imine to chiral amine ring system disappears by 1680 cm-1 in the spectrum and 1785 cm-1 (C=0 asy, str.), 1725 cm-1 (C=Oasy, str.) and 1368cm-丨(C-Nstr) 醯 15 15 201238758 The amine-based absorption peak appeared and was confirmed. The above peaks are the absorption of the quinone imine group, and the spectrum of the thin film of PI/Si〇2_Ti〇2 is mixed. Machine = strong broad absorption observed in the range of 400-850 cm· (corresponding to Ti-〇_Ti network) and 92〇_1100 cm· (equivalent to Si-0-Ti and Si-0-Si, network) $ can be enhanced by increasing the content of Si〇2_Ti〇2 core-shell nanoparticles. ^ 2. Morphological analysis is bare, 2 indicates the viscosity and shear of the PST0_PST50 and Si〇rTi〇2 core-shell solutions. The change in rate. The results show that the shear rate of the shearing force of the sample is roughly increased _ and thus the prepared polyimine and polystyrene/SiCVTi〇2 solution behaves like a brown plastic fluid. psT polyimine / SiOrTi〇2 (PS The viscosity of the solution of T10-PST50 and PST100) calculated from the ratio of shearing shore force and shear rate is 2_4 centipoise. The viscosity is almost fixed. Si (the effect of VTi〇2 content on viscosity is not obvious,

t所製叙減奈米錄之均自分散。所製叙氧化欽殼之 …晶^由拉曼(Raman)光譜偵測。圖3說明H及pi/Si〇2_T 光譜。圖中亦顯示純的Si〇2_Ti〇2核殼奈米微 ^之先严供比較。如圖3所示,觀察到銳欽石廣在观咖]、 515=及640(^之特徵峰。並未觀察到結晶相之其他特徵峰 f f欽礦)。該等結果顯示結晶氧化鈦經水熱製程後 M相為純減礦。此外,轉銳贿帶之強度隨 广米微粒之百分比增加而增加。該等結果顯示Si〇2_Ti〇2奈米 微粒已成功地滲入該聚醯亞胺基質中。 4顯示自聚醯亞胺(PST〇)、聚醯亞胺/ Si〇2_Ti〇2及純的 」(PST1〇〇)薄膜製備之粉末之圖形。就PST0而 二巧在20=10〜20。範圍觀察到極寬峰。此寬峰係假設由於聚 醯^之非晶形相。當混成材料中氧化♦•氧化鈦含量增加, ^ 2Θ 23〜28範圍内氧化欽結晶峰強度逐漸增力口。在psT则 到Γ步增強之氧化鈦結晶,其具有7個明顯結晶 峰 Ρ 25.23、37.13。、37.82。、38.51。、48.06。、53.98。及 55.05。, 分別對應於銳鈦礦氧化鈦相之(1〇1)、(1〇3)、(〇〇4)、(ιΐ2)、 16 201238758 约為18nm。峰之較瘩官庠θ丄日日八j此成材枓 曰位之X射錢由於源自氧化鈦小奈米微粒 曰曰粒之X-射線政射。該Debye_Sche膽程式如下: dThe t-reported naomi records are self-dispersive. The crystals of the oxidized shells were detected by Raman spectroscopy. Figure 3 illustrates the H and pi/Si〇2_T spectra. The figure also shows that the pure Si〇2_Ti〇2 core-shell nano-micro is the first to be compared. As shown in Fig. 3, it was observed that the sharp peaks of the sharp crystals were observed, 515 = and 640 (the characteristic peaks of ^. No other characteristic peaks of the crystal phase f f Qin mine were observed). These results show that the M phase is purely reduced ore after the hydrothermal process of the crystalline titanium oxide. In addition, the intensity of the sharp bribery belt increases with the percentage of the wide-grain particles. These results show that Si〇2_Ti〇2 nanoparticles have successfully penetrated into the polyimide matrix. 4 shows a pattern of powder prepared from polyimide (PST〇), polyimine/Si〇2_Ti〇2, and pure (PST1〇〇) film. As far as PST0 is concerned, it is 20=10~20. A very wide peak was observed in the range. This broad peak is assumed to be due to the amorphous phase of poly. When the content of oxidized ♦•TiO2 in the mixed material increases, the intensity of the oxidized crystallization peak in the range of ^ 2Θ 23~28 gradually increases. At psT, it is a step-enhanced titanium oxide crystal with 7 distinct crystalline peaks Ρ 25.23, 37.13. 37.82. 38.51. 48.06. , 53.98. And 55.05. Corresponding to anatase titanium oxide phase (1〇1), (1〇3), (〇〇4), (ιΐ2), 16 201238758, respectively, is about 18 nm. The peak of the 瘩 庠 庠 丄 丄 八 八 八 八 八 j j j j j j X X X X X X X X X X X X X X X X X X X X X X X The Debye_Sche program is as follows: d

kX βο,ο^θ 晶^為峰位 (不朱0十)。圖5顯不塗佛在石々曰圓 ΗΙΐϋ旦處^之Si〇2_Ti〇2核殼奈米微粒薄膜之kX βο, ο^θ crystal ^ is the peak position (not 0 0). Figure 5 shows that it is not painted in the stone circle. The Si〇2_Ti〇2 core-shell nanoparticle film

〇.35·晶格條紋及4如直徑之奈米結晶均句J散於整;固J 晶格間距。該等結果與测分析令所獲得者;=101) 繞射圖形亦顯示該奈求結晶與銳鈦鑛Ή〇二,,二)J 由影像估算之無機區域之大小為18 2 = (b)說明 光政射知失。此外,發現氧化鈦殼在氧切上 nm:如圖5_ 5(e)所示。應注意未經過水熱製程之^為^ 核殼奈米顆粒中未觀察到銳鈦礦奈米結晶。該等结果顯^ 2 礦J米結晶經由水熱處理而形成在該膜上。圖6 “评由柿用 動態光散射(DLS)方法獲得之膠體&〇2及Si〇2_Ti〇 =軏冰 =積分率粒徑分布。該圖顯示92 4%核殼顆粒之 此結果對應於自聰、咖M及彻所得ί 1 Μ、FESEM及XRD分析,所製備之氧化石夕-氧化欽核私太 粒_為18_2Gnm。她於最娜體氧切ΐ2_ΐ5=ς 平均粒徑,可估算氧化赌之厚度約2_4·。此符合自财 影像所得之氧碰殼2.5nm。理論上,氧切_氧 ,,射率隨氧化鈦殼厚度增加而增加。因 又將衫響H/SievnO2混成薄膜之光學性質且因此影響抗反& 17 201238758 ί。曰irti發明中,不同薄膜組成中之氧化鈦殼厚度均相 化石夕氧化ϋί成缚膜光學性質之主要因素為混成薄膜中氧〇.35·lattice stripe and 4 nanometer crystals of diameter are all scattered in the whole; solid J lattice spacing. The results obtained by the measurement and analysis instructions; = 101) The diffraction pattern also shows that the crystal is crystallized with anatase ,2, and the second is J. The size of the inorganic region estimated by the image is 18 2 = (b) Explain that Guangzheng is aware of the loss. In addition, it was found that the titania shell was on the oxygen cut nm: as shown in Fig. 5-5(e). It should be noted that no anatase nanocrystals were observed in the core-shell nanoparticles without a hydrothermal process. These results show that the J m crystals are formed on the film by hydrothermal treatment. Figure 6 “Composition of colloid & 〇2 and Si〇2_Ti〇=軏冰=integral rate particle size distribution obtained by dynamic light scattering (DLS) method of persimmon. This figure shows that this result of 92 4% core-shell particles corresponds to The self-contained, coffee M and the well-derived ί 1 Μ, FESEM and XRD analysis, the prepared oxidized stone oxime-oxidized nucleus granules _ is 18_2Gnm. She is the most common body oxygen enthalpy 2_ΐ5 = ς average particle size, can be estimated The thickness of the oxidized gambling is about 2_4·. This is in accordance with the oxygen-carrying shell obtained from the wealth image 2.5nm. Theoretically, the oxygen-cutting-oxygen, the irradiance increases with the increase of the thickness of the TiO2 shell, because the H/SievnO2 is mixed. The optical properties of the film and thus the anti-reverse & 17 201238758 ί 曰irti invention, the thickness of the titanium oxide shell in different film compositions is the most important factor in the optical properties of the film.

Siof τίο 顆,之比例。® 7顯示所製備之聚醯亞胺/ 4膜之FE-SEM顯微照片,⑷PST100及 齡混朗财驗奈_紅健分布相當 iL tt f顯凝聚。甚至在PST100之例中該粒:小二 用=ϋ較佳之材料可被視為均質奈米複合物,其可使 方法胁且:! *之紐。本發日种,_及hci量及其添加 由於〜=備核聽構之叫-取奈米顆粒具重要性。在藉 添/σ H2〇及HC1之稀酸性介質中,si〇H及 鬥夕之ί對縮合速率比將形成氧化鈦顆粒之T_U)4 二、’’ δ更顯著。反應時間為控制核殼粒徑及粒徑分布之另一 顯°。通常,若反應時間超過2小時,則粒徑及其分布將 圖;8為簡〇、PST3〇及pST5〇混成薄臈之娜圖。該 ^說明1亥核殼奈米顆粒如何在混成薄膜中均勻分布。衍生自 酉’亞胺薄膜(PST0)及混成薄膜(pST1〇_pST5〇)之其他从以^ ,列於下表2。PST0-PST100薄膜之平均粗糙度㈨及平均平 ^根粗糙度⑹之值分別在0 418_7 378围及〇 527_9 157咖之 範圍。該表顯示Ra& \隨著Si(VTi〇2核殼奈米顆粒含量捭 增加。在各_作條件下,翁粗财及厚度之比例仍^ 1.92/。以下。結果顯示所製備之混成薄臈平坦度良好,且該Siof τίο, the ratio. ® 7 shows FE-SEM micrographs of the prepared polyimine / 4 film, (4) PST100 and age mixed with the yin _ _ red health distribution is equivalent to iL tt f condensed. Even in the case of the PST 100, the granules: the second preferred material can be regarded as a homogeneous nanocomposite, which can be used as a method. The date of this issue, the amount of _ and hci and its addition. Because of the == preparation of the nuclear structure - the importance of taking nano particles. In the dilute acidic medium in which /σ H2〇 and HC1 are added, the ratio of the concentration of si〇H and 斗夕之之 to the T_U)4 ′′ δ of the titanium oxide particles is more remarkable. The reaction time is another factor that controls the particle size and particle size distribution of the core shell. Generally, if the reaction time exceeds 2 hours, the particle size and its distribution will be shown; 8 is a simple diagram of PST3〇 and pST5〇 mixed into a thin 臈. This illustrates how the 1 nucleocapsid nanoparticle is evenly distributed in the mixed film. Others derived from 酉' imine film (PST0) and mixed film (pST1〇_pST5〇) are listed in Table 2 below. The average roughness (9) and the average flat root roughness (6) of the PST0-PST100 film were in the range of 0 418_7 378 and 527 527_9 157 coffee, respectively. The table shows that Ra & \ with Si (VTi〇2 core shell nanoparticle content 捭 increased. Under each _ condition, the ratio of Weng coarse and thickness is still 1.92 /. Below. The results show that the prepared mixture is thin臈 flatness is good, and

士的表面粗糖度可減少對波導裝置之損害。該等結果進而確認 本發明之混成材料塗佈成薄膜之可行性。及SEM 提示聚醯亞敎賴與恥2_聊赌奈米·鍵結 致混成材料形態學之重要性。 18 201238758 表2-所製備PST0及PST10-PST50混成材料之性質The surface roughness of the stone can reduce damage to the waveguide device. These results further confirmed the feasibility of coating the mixed material of the present invention into a film. And SEM tips for the 醯 醯 与 耻 耻 耻 耻 _ _ _ 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌 赌18 201238758 Table 2 - Properties of PST0 and PST10-PST50 blends prepared

PSTO h(nm)* 'Rt (nm)b ^h-1 (*) /¾ (nm)b R^h-1 (X)ACcy 7*d vcf (N2) rd(*C)d(air) Rwsoo* (wt%XN2) RWj〇〇e ^Cutoff^ (nm) 413 0.418 0100 0 527 013 263 497 496 PST10 psno 3S6 1453 0408 1845 0513 507 480 Π633* Vdh 357 265 1575 26.92 11 5 252 1560 27.53 272 1.113 0409 1442 0530 352 S09 466 52 22 7 254 1581 25.73 PST30 PST40 PST50 238 2Π7 0 889 2 729 1146 354 512 459 2330 1617PSTO h(nm)* 'Rt (nm)b ^h-1 (*) /3⁄4 (nm)b R^h-1 (X)ACcy 7*d vcf (N2) rd(*C)d(air) Rwsoo* (wt%XN2) RWj〇〇e ^Cutoff^ (nm) 413 0.418 0100 0 527 013 263 497 496 PST10 psno 3S6 1453 0408 1845 0513 507 480 Π633* Vdh 357 265 1575 26.92 11 5 252 1560 27.53 272 1.113 0409 1442 0530 352 S09 466 52 22 7 254 1581 25.73 PST30 PST40 PST50 238 2Π7 0 889 2 729 1146 354 512 459 2330 1617

2001 364 517 454 65 42 5 249 1 654 24.65 162 2 849 1758 3 568 2203 370 521 451 a.所製備薄膜厚度 cb· S 賴之平均粗财及平均平方根粗縫度 【· ί 之發生5%重量損失時之溫度 f. 截取波長 g. 在633mn之折射率及 其中 nC、ndAnF 分別為在 C(656nm)、d(589_ 3.熱分析 圖9說明6FDA-6FpDA-COOH(PSTO)及聚醯亞胺/別〇2_ ?〇2 J成材料PSTIO-PSTSO在10。。/分鐘之加熱速率下,於氮 驗中之TGA肖線。所有研究之材料在高於柄代之執分解 溫度(5%重量損失)均展現良好之熱安定性。表2中之psT〇及 m3ST5。混1材料之熱分解溫度(Td)分別A 537。。及 • Ο在800C之殘留物隨著si〇2-Ti〇j量增加而增加 =在混成材射已成魏併人雜。職驗中較高 2比,留物(相較於理論值)可能是由於聚合物基團之錐 /、_f订TGA後之聚合物前物黑色部分雜财基基團 捉於無機基質中。如表2所示,僅有p謂在2机具 盈所有混成材料PSTlo_psT50中均未觀 疋由於無機基團已固定該聚合物鏈段且因 可if 驗數據確認添加氧化石夕-氧化鈦奈米顆粒 曰加g。此熱为析顯示所製備之薄膜具有優異熱抗性,且 250 173S 2334 19 201238758 在聚醯亞胺及氧化矽-氧化鈦核殼奈米顆粒間並未發生相分 離。 4.光學性質 圖10說明PST0及PST10-PST100混成薄膜之UV-可見光 譜之透射率。UV區域中混成薄膜之截取波長歸因於聚醯亞胺 之發色團。對應之區帶端因氧化矽-氧化鈦含量而紅移,如表2 所示。此區帶偏移通常見於尺寸小於20ΠΠ!之si〇2_Ti〇2核殼 奈米顆粒。此顯示已獲得高度均勻之聚醯亞胺_奈米結晶氧化 鈦混成材料’且所有混成薄膜顯示低的截取波長及高的光學透 明度。在其二胺基團中之巨大拉電子基CF3之該聚醯亞胺混成 材^之光顏色可被解釋為聚合物鏈之CTC形成減少’歸因於 其高立體阻礙及較低之誘發效果。QP3基對薄膜透明度之另一 正,效果為因C-F鍵之低偏極化所致之弱化分子間分散力。此 顯示在所製備之聚醯亞胺-氧化鈦混成材料中呈有夺米尺 ,。圖11說明PSTO、PST1〇〇及PST系列混成薄膜在爆8〇〇: 波長之折射率變化及綠係數變化。其幅_示折 貝數隨著氧姆_氧化鈦含量之變化。如圖U所示,在如啦 身矽·氧化鈦含量而線性增加,提示水解前驅物 ϋ f ίΐί職TK)_Ti、轉,導致職之折射率。 有麟之可溶雜亞胺可成功地 ,560^3X20^ li58;,pST3 T^ f ^ m崩,pr〇 為⑺5,ps™g 為 。 PST90 0 ^ 制其光學利用性。在300德龜髮缺陷’其將限 零’提示所製備之混成薄膜 20 201238758 學透明度。因此明顯避免散 (7)計算而得: 、、.。阿貝數(Vd)之值可由下式 戶以之混成溥膜之\在24 ) 成溥膜具有良好光學分散性。 ㈤,、顯不所I備之混 5.多層抗反射塗層 途,混成薄膜於光學裝置中具有潛在用 射塗層。圖12⑻及(b)分別顯示在FEA玻璃及 示今1材*^二層抗反射薄膜之歧棚譜。射插圖顯 抗Λ射塗層結構。下表3列出所製備之三層抗反射薄 $,_及ΡΜΜΑ基材上之性f βΕΑ光倾璃具有^ :工亂(η-1.0)之折射率㈣.518),I致在可見光範圍平均約 W之反神,而ΡΜΜΑ(η=1.57個具有約8%之平均反射 该反射率明|員藉由以SilecsRXC53〇、psT5〇&psT9〇分別作 ,第二層、第二層及第三層所構成之三層抗反射塗層而減低。 為了經由調整光相而降低反射率,而將該三層結構之光學厚度 (物理厚度X折射率)設計為0.25¾、〇.5&及〇.25λ〇 (λ〇=550ηηι;)。 自模擬軟體(Thin Film View,TOHO TSUSHO INC)所得之 SilecsRXC 530、PST50及PST90所設計之薄膜厚渡及折射率, 對於FEA玻璃分別為103.6nm及丨·3丨3、丨2〇nm及丨8 i、63 〇4nm 及 1.64。就 PMMA 基材而言,SilecsR XC 530、PST50 及 PST90 所設計之薄膜厚渡及折射率分別為l〇3.6nm及1.313、120nm 及1.8卜及63.04nm及1.64。此實驗之薄膜厚度及反射率示於 圖12之插圖中。SilecsRXC 530、PST50及PST90之此實驗之 薄膜厚渡及折射率,對於FEA玻璃基材而言分別為l〇5.8nm 及 1.313、198.5nm 及 1·94、56nm 及 1.84。對於 PMMA 基材 而言,SilecsR XC 530、PST50及PST90之此實驗之薄膜厚渡 21 201238758 及折射率,分別為 1〇3.6nm 及 1.313、120nm 及〗.814、63.04nm f 1.64。此等結果顯示對於薄膜厚度、折射率及平均反射率之 實驗值與理論值相當接近,以及對FEA玻璃及PMMA之良好 再,性。如圓12所示,AR塗層在玻璃及PMMA基材上之反 分別為G·356及G.495%。所得反射率明顯低於 i 及PMMA基材。賴備之抗反機層之表面 硬J在二別為吻及lkg貞載下之硬度分別為犯及4h。由 十字線試驗,該混成薄膜及基材(FEA玻璃及PMMA)間之黏箬 性質分別如於肋·9及植臟9標料所述/者 此提不所製備之混成薄膜對潛在鮮裝置應 硬度及黏附性。 復/、录面 [表3]2001 364 517 454 65 42 5 249 1 654 24.65 162 2 849 1758 3 568 2203 370 521 451 a. The thickness of the prepared film cb· S depends on the average coarse and the average square root sag [· ί 5% weight loss Temperature f. interception wavelength g. refractive index at 633mn and its nC, ndAnF are at C (656nm), d (589_ 3. thermal analysis Figure 9 illustrates 6FDA-6FpDA-COOH (PSTO) and polyimine / 别〇2_ 〇2 J material PSTIO-PSTSO at a heating rate of 10 / min, the TGA slash in the nitrogen test. All materials studied at a higher than the decomposition temperature of the handle (5% weight The loss) shows good thermal stability. The psT〇 and m3ST5 in Table 2. The thermal decomposition temperature (Td) of the mixed material is A 537. and • The residue at 800C follows si〇2-Ti〇 The amount of j increases and increases = in the mixed material shot has become Wei and people mixed. Higher than 2 in the job test, the residue (compared to the theoretical value) may be due to the cone of the polymer group /, _f after the TGA The black moiety of the polymer precursor is captured in the inorganic matrix. As shown in Table 2, only p is not observed in the PSTlo_psT50 of all the hybrid materials of the 2 machine tools. The inorganic group has immobilized the polymer segment and it has been confirmed by the available data that the addition of the oxidized oxide-titanium oxide nanoparticle is added with g. This heat shows that the prepared film has excellent heat resistance, and 250 173S 2334 19 201238758 Phase separation did not occur between polyimine and cerium oxide-titanium oxide core-shell nanoparticles. 4. Optical properties Figure 10 illustrates the UV-visible spectrum transmittance of PST0 and PST10-PST100 hybrid films. The intercepting wavelength of the mixed film is attributed to the chromophore of the polyimine. The corresponding zone end is red-shifted due to the cerium oxide-titanium oxide content, as shown in Table 2. This zone shift is usually found in sizes less than 20 ΠΠ. Si〇2_Ti〇2 core-shell nanoparticle. This shows that a highly uniform polyimine-nanocrystalline titanium oxide hybrid material has been obtained and all of the hybrid films exhibit low intercept wavelength and high optical transparency. The color of the polyamidimide mixture of the large electron-donating group CF3 in the diamine group can be interpreted as a decrease in the CTC formation of the polymer chain due to its high steric hindrance and lower induced effect. QP3 Base-to-film transparency The effect is the weakened intermolecular dispersion force due to the low polarization of the CF bond. This shows that there is a rice ruler in the prepared polyamidimide-titanium oxide mixed material. Fig. 11 illustrates PSTO, PST1〇 〇 and PST series of mixed film in explosion 8 〇〇: wavelength change in refractive index and green coefficient. The width of the sheet is shown as a function of the oxymium-titanium oxide content. As shown in Fig. U, it increases linearly in the content of titanium oxide, such as the content of titanium oxide, suggesting that the hydrolysis precursor ϋf ΐ 职 职 职Ti, turn, resulting in the refractive index of the job. The soluble imide of arsenic can be successfully obtained, 560^3X20^ li58;, pST3 T^ f ^ m collapse, pr〇 is (7) 5, and psTMg is . PST90 0 ^ makes its optical usability. At 300 d's turtle hair defect 'it will be limited to zero', the prepared mixed film 20 201238758 is transparent. Therefore, it is obvious to avoid the calculation of (7): , , . The value of the Abbe number (Vd) can be obtained by mixing the enamel film of the following formula into a ruthenium film with good optical dispersion. (5), mixed with the preparation of the composite 5. Multi-layer anti-reflective coating, the mixed film has a potential coating in the optical device. Fig. 12 (8) and (b) show the gravitational spectrum of the FEA glass and the two-layer antireflective film of the present invention. The shot shows an anti-spray coating structure. Table 3 below lists the prepared three-layer anti-reflective thin $, _ and 性 上 ΡΜΜΑ ΡΜΜΑ ΡΜΜΑ ΡΜΜΑ ΡΜΜΑ ΡΜΜΑ ΡΜΜΑ : : : : 工 工 工 工 工 工 工 工 η η η η η η η η η η η η η η η η η η η The range is about the anti-God of W, and ΡΜΜΑ (η=1.57 has an average reflection of about 8%. The reflectivity is clearly defined by SilecsRXC53〇, psT5〇&psT9〇, second layer, second layer And the three-layer anti-reflective coating composed of the third layer is reduced. In order to reduce the reflectance by adjusting the optical phase, the optical thickness (physical thickness X refractive index) of the three-layer structure is designed to be 0.253⁄4, 〇.5&amp ; and 〇.25λ〇(λ〇=550ηηι;). The film thickness and refractive index of the Silecs RXC 530, PST50 and PST90 obtained from the simulation software (Thin Film View, TOHO TSUSHO INC) are 103.6 for the FEA glass, respectively. Nm and 丨·3丨3, 丨2〇nm and 丨8 i, 63 〇4nm and 1.64. For PMMA substrates, the film thickness and refractive index of SilecsR XC 530, PST50 and PST90 are respectively l〇 3.6 nm and 1.313, 120 nm and 1.8 b and 63.04 nm and 1.64. The film thickness and reflectance of this experiment are shown in the inset of Figure 12. The film thickness and refractive index of this experiment for lecsRXC 530, PST50 and PST90 are l〇5.8nm and 1.313, 198.5nm and 1.94, 56nm and 1.84 for FEA glass substrates, respectively. For PMMA substrates The films of SilecsR XC 530, PST50 and PST90 have a thickness of 21 201238758 and refractive indices of 1〇3.6nm and 1.313, 120nm and 〗 814, 63.04nm f 1.64. These results show that for film thickness and refraction The experimental values of the rate and average reflectance are quite close to the theoretical values, and the good reproducibility of FEA glass and PMMA. As shown by circle 12, the inverse of the AR coating on the glass and PMMA substrates is G·356 and G.495%. The obtained reflectivity is significantly lower than that of i and PMMA substrates. The hardness of the surface of the anti-anti-machine layer of the anti-machine layer is 2 min for the kiss and lkg贞 respectively. The adhesive properties of the mixed film and the substrate (FEA glass and PMMA) are respectively as described in the rib 9 and the viscera 9 standard. The mixed film prepared by the method should be hardness and adhesion to the potential fresh device. Sex. / Recording surface [Table 3]

Ϊ上述可知,本發明之利用具有羧酸端基之可溶性聚_ ^發明所製得之混成賴亦帶有優異之熱 古 成多層抗反射塗層時,具有優里之之混成薄膜製作 於光學裝置贿巾。 表面硬度及黏而可利用 【圖式簡單說明】 22 201238758 圖1說明在雙重拋光矽晶圓上之PI及PI/Si02-Ti02薄膜之 FTIR光譜。 圖2說明對PST0-PST50及Si02-Ti02核殼溶液黏度及剪 切應力隨剪切速率之變化。 圖3說明PI及PI/Si02-Ti02混成薄膜之拉曼光譜。 圖4顯示自聚醯亞胺(PST0)、聚醯亞胺/Si02_Ti02及純的 Si〇2_Ti〇2(PSTl〇〇)薄膜製備之粉末之XRD圖形。 圖5顯示塗佈在矽晶圓上且經由水熱製程處理之 SiOrTi〇2核殼奈米微粒薄膜之hrtem影像及對應之電子繞 射圖形。 圖6顯示藉由使用動態光散射(dls)方法獲得之膠體別〇2 及SiOrTi〇2核殼溶液之體積分率粒徑分布。 圖7顯示所製備之聚醯亞胺/ SiOrTi02混成薄膜之 FE-SEM顯微照片。 、 圖8為PST10、PST30及PST50混成薄膜之afM圖。 圖9說明6FDA-6FPDA-COOH(PSTO)及聚醯亞胺 /Si〇2_Ti〇2混成材料PST10-PST50在1(TC/分鐘之加熱速率 下’於氮氣流中之TGA曲線。 — * 圖10說明PST0及PST10-PST100混成薄膜之爪^可見氺 譜之透射率。 光 圖11說明PST0、PST100及PST系列混成薄膜再 3〇〇-80〇nm波長之折射率變化及消光係數變化。 圖12⑻及(b)分別顯示在FEA玻璃及PMMA基材上之三 層抗反射薄膜之光反射圖譜。 一 【主要元件符號說明】 23ΪIn view of the above, in the present invention, the mixed polyimide obtained by using the soluble carboxylic acid end group has an excellent thermal ancient multilayer anti-reflective coating, and the mixed film having the superior is made in the optical device. Bribe towel. Surface hardness and adhesion can be utilized [Simple description of the diagram] 22 201238758 Figure 1 illustrates the FTIR spectra of PI and PI/SiO 2 -TiO 2 films on double polished tantalum wafers. Figure 2 illustrates the change in viscosity and shear stress with shear rate for PST0-PST50 and SiO2-Ti02 core-shell solutions. Figure 3 illustrates the Raman spectrum of PI and PI/SiO 2 -Ti02 mixed films. Figure 4 shows XRD patterns of powders prepared from polyimide (PST0), polyimide/SiO 2 -Ti02, and pure Si〇2_Ti〇2 (PSTl®) films. Fig. 5 shows a hrtem image of a SiOrTi〇2 core-shell nanoparticle film coated on a tantalum wafer and treated by a hydrothermal process, and a corresponding electron diffraction pattern. Figure 6 shows the volume fraction size distribution of colloidal oxime 2 and SiOrTi〇2 core-shell solution obtained by dynamic light scattering (dls) method. Fig. 7 shows an FE-SEM micrograph of the prepared polyimine/SiOrTiO 2 mixed film. Figure 8 shows the afM diagram of the PST10, PST30 and PST50 hybrid films. Figure 9 illustrates the TGA curve of the 6FDA-6FPDA-COOH (PSTO) and polyimine/Si〇2_Ti〇2 blends PST10-PST50 at 1 (heating rate of TC/min' in a nitrogen stream. - * Figure 10 The transmittance of the visible film of PST0 and PST10-PST100 mixed film is shown. Fig. 11 shows the change of refractive index and the extinction coefficient of the PST0, PST100 and PST series mixed films at a wavelength of 3〇〇-80〇nm. Figure 12(8) And (b) the light reflection spectrum of the three-layer anti-reflection film on the FEA glass and the PMMA substrate, respectively.

Claims (1)

201238758 七、申請專利範圍·· 1.—種可;谷性聚醯亞胺與氧化石夕_氧化鈦核殼奈米微粒之滿成 薄膜二其包括以下述式(I)表示之聚醯亞胺單元以及以下述式 (Π)表示之氧化矽-氧化鈦核殼奈米微粒單元,以式①中R戶斤 示之羧基與式(Π)中與Ti上之OH彼此鍵結’其重量比為聚 醯亞胺.氧化石夕•氧化鈦核殼奈米微粒在10 : 90至90 : 1〇之 範圍内:201238758 VII. Scope of Application for Patenting·· 1. Kind of glutamic acid and oxidized stone _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And a cerium oxide-titanium oxide core-shell nanoparticle unit represented by the following formula (Π), wherein the weight ratio of the carboxyl group represented by R in the formula 1 to the OH in the formula (Π) and Ti is ' Polyimide. Oxidized oxide oxide • Titanium oxide core-shell nanoparticles in the range of 10:90 to 90:1〇: (I) •上述中’ R代表羧基(-COOH),Ar、Ar,及Ar”可相同或不 同且分別代表伸苯基、伸萘基、伸聯苯基、之基(其 中X代表可經鹵素取代之Cl_4伸烷基、苯基_〇、_〇_、_c〇f、 -S-、-SO-或-S〇r基),m代表!至30的數值;(I) • In the above, 'R represents a carboxyl group (-COOH), and Ar, Ar, and Ar may be the same or different and each represents a phenyl, anthracene, a phenyl group, and a group thereof (wherein X represents a Halogen substituted Cl_4 alkyl, phenyl_〇, _〇_, _c〇f, -S-, -SO- or -S〇r), m represents a value from ! to 30; 2.如,請專利範圍第1項之可溶性聚醯亞胺與氧化矽_氧化鈦 核忒奈米微粒之混成薄膜,其中以式①所示之聚醯亞胺中, m為2至1〇的數值。 3·如申請專利範圍第1項之可溶性聚醯亞胺與氧化矽-氧化鈦 核,奈米微粒之混成薄膜,其中式(11)所示之氧化矽_氧化鈦 核设奈米微粒中,·以氧化石夕與氧化鈦之重量比在1 : 8 25之範圍。 24 201238758 4· 一種如申請專利範圍第〗至3項中任一項之 ,氧化矽-氧化鈦核殼奈米微粒之混成薄膜之製造方其, 括下列步驟 (a)在酸性條件下,诚氧化鈦包覆氧切,獲得以氧 J核士以絲錄綠之氧辦_絲條核殼奈麵粒 後進行水解’獲得氧化石夕_氧化鈦核殼奈米顆粒,其中氧化: 與炫氧化鈦之使用量係使得水解後之氧化梦對氧化欽 旦 比在1 : 8至1 : 25之範圍;及 、 置 (b)使具有羧酸基之聚醯亞胺與(a)步驟所得之氧化矽氧化 ,核殼奈米雛’以輯亞胺:氧切_氧聽減奈米顆粒 重量比為90 : 10〜1〇 ·· 90之範圍混合,藉由塗佈法在一基材 上進行塗佈並加熱’利用聚醯亞胺上所含之羧酸基與氧^石夕-氧化鈦核殼奈米顆粒上帶有之羥基進行脫水酯化反/應,獲得 聚醯亞胺與氧化矽氧化鈦核殼奈米微粒之混成薄.膜。又 5. 如申請專利範圍第4項之製造方法,其中步驟⑻之垸氧化欽 為以式(Ti(OR’)4表示,其中尺,為c】6直鏈或分支鏈烷基。 6. 如申請專利範圍第4項之製造方法,其中步驟(b)中使用之具 有羧酸基之聚醯亞胺為使芳族二胺與芳族二羧酸酐, 莫耳當量/二胺莫耳當量之tbA於丨之_,進行酸酐開= 合反應獲得末端具有酸酐基之聚醯胺酸之後,再藉由酸酐基 與含羧酸之芳族胺反應,獲得末端具有羧酸基之聚醯胺酸, 隨後進行醯亞胺化,獲得具有羧酸基之聚醯亞胺。 7. 如申清專利|&圍第4項之製造方法,其中步驟⑼之脫水酉旨化 反應係以多階段烘烤進行。 252. For example, a mixed film of soluble polyimine and cerium oxide-titanium oxide nano-nanoparticles in the first aspect of the patent range, wherein m is 2 to 1 in the polyimine of formula 1 The value. 3. A mixed film of a soluble polyimine and a cerium oxide-titanium oxide core or a nanoparticle according to the first aspect of the patent application, wherein the cerium oxide-titanium oxide core represented by the formula (11) is provided in the nanoparticle, · The weight ratio of oxidized stone to titanium oxide is in the range of 1: 8 25 . 24 201238758 4· A method for producing a mixed film of cerium oxide-titanium oxide core-shell nanoparticle according to any one of claims 1-3 to 3, comprising the following steps (a) under acidic conditions, The titanium oxide is coated with oxygen to obtain oxygen, and the oxygen is used to obtain the oxidized stone and the titanium oxide core-shell nanoparticle, wherein the oxidation: The amount of titanium oxide used is such that the oxidized dream after hydrolysis is in the range of 1:8 to 1:25; and (b) the polyimine having a carboxylic acid group and the step (a) are obtained. The cerium oxide is oxidized, and the core-shell nanomolecules are mixed in the range of 90:10~1〇··90 by weight ratio of 90:10~1〇··90 by coating method on a substrate by coating method. Coating and heating is carried out by using a carboxylic acid group contained on the polyimine and a hydroxyl group carried on the oxo-titanium oxide core-shell nanoparticle to carry out dehydration and esterification reaction to obtain a polyimine It is mixed with cerium oxide titanium oxide core-shell nanoparticle to form a thin film. 5. The method of manufacture according to claim 4, wherein the oxime oxidation of the step (8) is represented by the formula (Ti(OR') 4, wherein the ruth is c 6 straight or branched alkyl groups. The manufacturing method of claim 4, wherein the polyamidiamine having a carboxylic acid group used in the step (b) is an aromatic diamine and an aromatic dicarboxylic anhydride, molar equivalent/diamine molar equivalent After tbA is carried out, an acid anhydride is opened to obtain a polyamic acid having an acid anhydride group at the end, and then an acid anhydride group is reacted with an aromatic amine containing a carboxylic acid to obtain a polyamine having a carboxylic acid group at the terminal. The acid is subsequently subjected to hydrazine imidation to obtain a polyimine having a carboxylic acid group. 7. The method for producing a carboxylic acid group according to claim 4, wherein the dehydration reaction of the step (9) is in multiple stages. Baking is carried out. 25
TW100109923A 2011-03-23 2011-03-23 Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation TWI432324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109923A TWI432324B (en) 2011-03-23 2011-03-23 Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109923A TWI432324B (en) 2011-03-23 2011-03-23 Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation

Publications (2)

Publication Number Publication Date
TW201238758A true TW201238758A (en) 2012-10-01
TWI432324B TWI432324B (en) 2014-04-01

Family

ID=47599325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109923A TWI432324B (en) 2011-03-23 2011-03-23 Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation

Country Status (1)

Country Link
TW (1) TWI432324B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716825A (en) * 2022-01-05 2022-07-08 中国地质大学(北京) Polyimide composite material and preparation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716825A (en) * 2022-01-05 2022-07-08 中国地质大学(北京) Polyimide composite material and preparation and application thereof

Also Published As

Publication number Publication date
TWI432324B (en) 2014-04-01

Similar Documents

Publication Publication Date Title
Yu et al. High transparent polyimide/titania multi-layer anti-reflective hybrid films
Liou et al. Highly flexible and optical transparent 6F-PI/TiO 2 optical hybrid films with tunable refractive index and excellent thermal stability
TWI537315B (en) Polyimide film
US7803896B2 (en) Polyimide-titania hybrid materials, their preparation, and film prepared from the materials
TWI542610B (en) Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide film prepared from these solutions, and use of polyimide film
Wang et al. Synthesis, properties, and anti-reflective applications of new colorless polyimide-inorganic hybrid optical materials
TWI316530B (en) Coating composition for film with low refractive index and film prepared therefrom
Liou et al. Flexible nanocrystalline‐titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability
Yen et al. Flexible, optically transparent, high refractive, and thermally stable polyimide–TiO 2 hybrids for anti-reflection coating
Yu et al. Synthesis of soluble polyimide/silica–titania core–shell nanoparticle hybrid thin films for anti-reflective coatings
Tsai et al. Synthesis and characteristics of polyimide/titania nano hybrid films
Liu et al. High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals
Yu et al. High transparent soluble polyimide/silica hybrid optical thin films
KR20180134376A (en) Polyimide powder and method for producing the same
Yu et al. Highly transparent polyimide/nanocrystalline-titania hybrid optical materials for antireflective applications
JP6930530B2 (en) Polyimide resin composition, its manufacturing method, and polyimide film
WO2005123837A1 (en) Colorless transparent polyimide composite film and method for producing same
Liaw et al. Preparation and characterization of poly (imide siloxane)(PIS)/titania (TiO2) hybrid nanocomposites by sol–gel processes
Wang et al. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly (methyl methacrylate)/zirconia/titania with incorporating networks
Chang et al. Synthesis and properties of photosensitive polyimide–nanocrystalline titania optical thin films
Dinari et al. Thermal, mechanical and optical transport properties of nanocomposite materials based on triethoxysilane-terminated polyimide and TiO 2 nanoparticles
Tsai et al. Novel solution-processable optically isotropic colorless polyimidothioethers–TiO 2 hybrids with tunable refractive index
Agrawal et al. Fabrication of hollow titania microspheres with tailored shell thickness
TW201238758A (en) Soluble polyimide/silica-titania core-shell nanoparticle hybrid thin film and its preparation
Atabaki et al. Fabrication of a new polyimide/titania (TiO2) nanocomposite thin film by the sol-gel route