TW200910469A - Manufacturing method of semiconductor power device - Google Patents

Manufacturing method of semiconductor power device Download PDF

Info

Publication number
TW200910469A
TW200910469A TW097122393A TW97122393A TW200910469A TW 200910469 A TW200910469 A TW 200910469A TW 097122393 A TW097122393 A TW 097122393A TW 97122393 A TW97122393 A TW 97122393A TW 200910469 A TW200910469 A TW 200910469A
Authority
TW
Taiwan
Prior art keywords
oxide film
forming
trench
high concentration
region
Prior art date
Application number
TW097122393A
Other languages
English (en)
Inventor
Tae-Pok Rhee
Original Assignee
Tae-Pok Rhee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tae-Pok Rhee filed Critical Tae-Pok Rhee
Publication of TW200910469A publication Critical patent/TW200910469A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

200910469 六、發明說明: 【發明所屬之技術領域】 本發明是有關一種功率半導體裝置,特別是一種用 於功率電子裝置之溝槽型功率半導體裝置及該功率半 導體裝置之製造方法。 本發明是主張韓國專利第10-2007-58974號申請案 之優先權,其專利名稱為:溝槽型功率半導體裝置及其 製造方法。藉由參照該韓國專利申請案之全部並結合至 ( 本發明申請案中。 【先前技術】 一般而言,功率半導體裝置是指半導體可控制功 率,並使該功率之轉換或控制能從一瓦特至十億瓦特的 範圍。眾所皆知的功率半導體例子包含一整流二極管 (rectifying diode )、一雙極電晶體(bipolar transistor )、 一閘流體(thyristor )、一 GTO、一 DIAC、一 TRIAC、 ^ 一功率M0SFET、一絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor,IGBT )、一 智能功率模組 (Intelligent Power Module,IPM)等等。 在功率半導體裝置之中,金屬氧化物半導體場效電 晶體(Metal Oxide Semiconductor Field Effect Transistor,MOSFET )對於減小裝置的尺寸大小特別地 有效,由於減小了或是棄置了 JFET區,因此,比起使 用一平面的功率MOSFET時,能更加減低其導通電阻 200910469 (〇n-resistance,Ron )。一種傳統的製造一溝槽型功率半 導體裝置的方法’包含連續地形成一第一導電型低濃度 磊晶層(epitaxial layer )以及一護環區在一第一導電型 局濃度半導體基底上。 二後’ 一第一導電型本體區是形成於其上,並利用 蝕刻光罩(etching mask)將在該本體區之一氧化膜圖 案形成為一閘極溝槽圖案,再將該氧化膜圖案加以蝕 刻’並且在該磊晶層上形成一溝槽孔。
接著’生成一犧牲氧化層(sacrificial〇xidefilm) 後再將它移除,然後生成一閘極氧化膜,並在溝槽中注 入多晶矽摻雜至一高濃度。 ,接著,執行形成閘極電極之微影(photolithography ) 製程及蝕刻製程,因而形成一閘極。另外,一第二導電 型向濃度源極是藉由微影技術及離子佈才直而形成,缺後 再執行熱擴散處理,以界定該第二導電型之通道區域。 最後’-第-導電型高濃度源極是藉由微影技術及 離子佈植而形成,然後,形成—絕緣體於其上。此外, ^閑極電極之上方部分及源極區形成一接觸孔,然 傻’進行一金屬製程,於杲 办 與旦 1 蜀絲α A成了產品的製造。通常 微衫製程要處理七次。 雖然此製造方法是有助益的,因為可有效地製造出 ㈣刪FET更小的m而,其缺點卻在 ,技術的難以實現。此外,由於競爭力的提昇,急 而發展一種簡化製造過程的方法。 為了這個目的,做過各種不同的嘗試來簡化該製 200910469 粒。事實上,不容易達到既能簡化製造過程而又不會劣 化裝置之特性。 【發明内容】 口此本發明是基於解決上述在先前技術上所產生 的問題而製成。本發明是提供—種功率半導體裝置的製 方法,其中利用一溝槽型來實現一高密度裝置,並簡 單地β又计出商品,並且其製造過程經簡化,以確保在 ^具有良好裝配特性的多通道驅動IC的製造能穩定執行。 根據本發明所述之溝槽型功率半導體裝置之製造 方法中,可包含生成一第一型磊晶層102在一第一型高 濃度矽基1〇1上,並生成一厚度在5000 A - 10000 A範 圍的最初氧化膜103;施加光阻1〇4在該最初氧化膜1〇3 上並執行微,以(photolithography )及顯影(development) 製程,因而形成一溝槽圖案;利用該溝槽圖案蝕刻該最 初氧化膜103之曝露區(exp〇sed area ),移除該光阻 {j 104 ’形成一屏蔽氧化膜(screen oxide film) 105使離 子佈植(ion implantation)在該磊晶層i〇2之曝露區, 然後一第一型本體區1 〇6是藉由離子佈植及一驅入製程 (drive-in process)來形成;一第一型高濃度源極區1〇7 疋藉由離子佈植而形成;積層(laminating ) 一間隙壁 氧化膜並藉由乾蝕刻來形成一間隙壁m ;針對該相對 於一溝槽閘極電極之該磊晶層1〇2之一部分進行溝槽韻 刻,而該磊晶層102之一部分是在該間隙壁形成而曝露 於外,因此形成一溝槽孔112 ,洗淨該溝槽孔112之内 200910469 部彳成:犠牲氧化膜(圖中未示),藉由濕蝕刻來去 除該犠牲氧㈣,然後生成—閘極氧化獏⑴;積層多 晶矽1H’其是摻雜至一高濃度以形成該閉極電極,因 此注入於該溝槽孔i!2,藉由多晶石夕回钱刻(p〇iysiii績 etch back)或化學機械研磨(Chemica〗 Mechanical 滅shing,CMP)來去除該摻雜的多^,致使該最初 乳化膜曝露於外,然後形成一層間絕緣膜(interlayer Γ —g fihn) 115;積層—光阻以便藉由第二微影技 術而,? $觸圖案’並藉由該微影技術形成該圖案; 触刻该母-個間極電極及該源極區之該氧化膜,並形成 一第二型高濃度源極區;再執行施加一金屬至一高濃产 源極及-閉極電極之製程’因此形成一金屬電極二广 、根據本發明所述之溝槽型功率半導體裝置之製造 方法中’在於第一型高濃度源極區1〇7之離子佈植,在 所形成之開放寬度(零n wi她)可能比在該 源極區所形成之開放寬度(open width)大,約至少為 個溝槽之寬度;藉由兩個或更多個開放區域(如 Μ""0來界定一護環110’使兩個本體區相互接觸而構 =蔓環U0; 一個護ifll。可包含一個或多個本觸體區構 ^個、第二個或更多個護環110是可單獨使用或組合 使用。 、根據本發明所述之溝槽型功率半導體裝置之製造 =法中’更可包含形成-接觸孔之後’再藉由離子佈植 來形成一第二導電型高濃度區。 根據本發明所述之溝槽型功率半導體裝置之製造 200910469 方法中,利用一溝槽型MOSFET以減小裝置之尺寸大 小’取代垂直型DM0SFET,由於過度的成本競爭的情 况下,必須降低製造成本。此外,隨著製造過程加以簡 化並增進了其特徵,隨之減低製造成本,以致可大量生 產及創造利潤。 再者’製造一溝槽型MOSFET或一溝槽型IGBT作 為一功率裝置’比起傳統的VDM0S,可以在更小的晶 片規格中實現相同的電壓及導通電阻(〇n_resistance , Ron )’並且其製造過程會變得更簡單。 此外,歸因於製程的簡化’而半導體的製造之損益 平衡點得以降低,最終可降低其最初的投#成本。即使 在半導體製程中利用大量的有毒氣體及化學物,也能每 現環境保護。 Λ L實施方式】 ^本發明是有關於一種溝槽型功率半導體裝置之製 ie方法口此底下藉由具體實施例配合所附的圖式詳 ::明’當更容易瞭解本發明的目的、技術内容、特點 及其所達成的功效。 請參閱第3W ’根據本發明所述 製rr其第一步驟包含生成-第-= 層102在一苐一型高濃度矽基1〇1上,以 在5000 A至10000 A範圍内之曰,, 旱又 是,第3圖是沿著第二膜⑻。特別 生成織日日層U)2及最初氧化膜⑻在該㈣⑼上之 200910469 連續製程。 接著’本發明之方法之第二步驟包 1〇4在該最初氧化膜1〇3,並 σ光阻 而形成-溝槽圖案。特別是,tit二=製:因 104是施加在該最初氧化膜I-然後形成::槽=阻 再者’本發明之方法之第二 案峨最初氧化臈⑻之曝;:區,二藉亥= 槽圖 :行離子佈植而形成一屏蔽氧化臈 二 Π)2之曝露區,再藉由離子佈植及 ^曰曰^ =圖案__初氧化膜1G3之曝m 光阻刚。之後,該屏蔽氧化臈105是為進行離子佈植〆 Γ=Γ晶層102之曝露區,然後再藉由離子佈植 驅入ι程以形成該第二型本體區1〇6。 植以开^ 月之方法之第四個步驟包含藉由離子佈 ==-第一型高濃度源極區107。然後第五 包含積層-間隙壁氧化膜,並藉由乾钱 =。=是,如第4圖中所示,藉由離子佈植以: 成該第:型向漠度源極區107。因此,在該間極區上所 形成的η玄開放寬度(open width)⑷是比源極區之開放 寬度(啊Width) (b)大,約至少為一個溝槽的寬度。 圖是說明該所需圖案之佈局,以便以—接觸孔來重 豐::濃度源極區,為了在執行該連續的製程中有效地 金屬接觸。如第5圖中所示,將該間隙壁氧化膜加以積 200910469 =由:::形:_:壁⑴。當形成該間隙壁 部分即曝露2溝槽開極電極之該县晶層-之_ 對於-溝槽二驟包含針對該相 是r間隙壁形成二= 該溝槽孔"2之内部,·生成-上 Γ 狹後生成/ ’猎由濕㈣來去除該犧牲氧化膜; ,膜113。持別是,如第5圖中所示, =曰曰層⑽之曝露部分是用以進行溝槽韻刻,因此形 成…冓槽孔112 ;然後再洗淨該溝槽孔112之内部;之 Ο 後生成-犠牲氧化膜(圖中未示)在其中;然後再藉由 濕餘刻來去除關牲氧㈣;接著便生成—祕氧化膜 U3。將一氧化膜或一絕緣膜覆蓋在該源極區之開放部 分(open portion) 1〇9以及該護環11〇之上部以形成該 間隙壁111。因此,該溝槽孔112僅形成在要形成間= 電極之區域,也就是說,該溝槽孔112只形成在該較大 的開放寬度(open width) (a)處。 接著,本發明之方法之第七個步驟包含積層多晶石夕 114 ’其是摻雜至一高濃度以形成該閘極電極,因此注 入於该溝槽孔112 ’再藉由多晶石夕回飯刻或化學機械研 磨(Chemical Mechanical Polishing,CMP)來去除該換 雜的多晶矽,因此該最初氧化膜是曝露於外;然後形成 一層間絕緣膜(interlayer insulating film ) 115。特別是, 200910469 如第6圖中所示,該多晶矽114是摻雜至高濃度以形成 該閘極電極,將該多晶矽114加以積層,然後再將其注 入於該溝槽孔112中,之後,再藉由多晶矽回蝕刻或化 學機械研磨(Chemical Mechanical Polishing,CMP)來 去除該換雜的多晶矽,以致該最初氧化膜是曝露於外。 然後形成一層間絕緣膜(interlayer insulating film ) 115。 更特別的是’當該多晶矽之水平位大約位於該最初氧化 膜1〇3之頂端下方時便停止去除該多晶矽,因此,該多 〔 θθ石夕即不會施加至該最初氧化膜103之頂端。具體而 °停止去除5亥多晶石夕之時間點是當該多晶石夕之水平位 於該溝槽頂端之下方’其原因是為了減少一個所要使用 =光罩數量。假設當該多晶矽位於該溝槽孔頂端以上時 停止去除,那麼在該閘極區與源極區之間的接觸之後, ,許會因金屬的連接而產生短路。相對而言,假設當該 夕、日a矽位於該溝槽之太淺的地方時就停止去除,也就曰 ^該多晶秒位於比該第-型高濃度區更低的地方^ υ ^置之運作便會產生問題。特別 臨界電壓、高導通電阻、或是裝置無法運如网 1 下來,本發明之方法之第人個步驟包含積層 :使旎错由第二微影技術而形成一接觸圖案,: = 二:f方法的;九: 触d „亥母⑯閘極電極及該源極 積層= °如第7圖中所- 積層―第二微影技術來形成該接二::之 10 200910469 後再藉由職影技術形成該圖案。_每—㈣極電極 區之氧化膜,然後再去除該光阻。之後,根據 接::阻之特性’針對具有一高濃度之導電型源極區進 仃離子佈植;接著,進行退火(annealing)處理。 -会發明之方法之第十個步驟包含執行施加 J至-w辰度源極及一閘極電極之 =電=如第7圖中所示,該金屬電極= 藉由施加一金屬至一源極及一閘極電極的製程而形成。 本發明之一施實例是說明如下。 驅動而言’例如一經製造之LCD驅動1c,該 動1C用於—㈣電話機中具有262,_ 幕’可藉由一大約〇. TFT螢 造的成本。同時,一高電麗因此可降低製 …置之尺寸大小:不減少至低 可用自由度。 α此’可增加可微型化設計的 是在本發明之方法更顯現優異的功效,即使 特性之dIC :製造上,其需要-具有優良匹配 含古㈣㈣ 料述之方法是可料其他包 產品’例如快閃記憶體之週邊零件、或 厌閃DML·讀/寫之主要裝置。 什次 相較於傳統的VDM0S,
或—溝槽IGBT是可在更1 的—溝槽咖FET 屢及導通電阻,此外,4: Θ:ΓΓ上實現相同的電 八I ie過程更能簡化。 200910469 一相較於傳統的製造方法而言,本發明所述之方法可 實現一簡單的製程,因此可降低半導體製造之損益平 點,並大幅地降低最初的投資成本。此外,即使:導 體製程中利用A量的有毒氣體及化學物,也 保護。 衣兄 更特別的是,當針對第一型高濃度源極1〇7是進行 離子佈植’該間極區上所形成之開放寬度(。penwi她丁 是比該源極區之開放寬度(open width)更大,大約至 夕為/冓槽的寬度。該源極區是界定在相鄰之閑極之 間’並標示出該完全開放區域,如第3圖及第4圖中所 示。為了要填滿該狹窄的區域,應該要積層—材料 (medium)至-厚度,該厚度是相對於—最小狹窄寬度 之50%,或是施加至更高的厚度。然而,該最後的溝槽 區是由要用來填滿於其中之材料之種類及該材料之^ 飿刻來決定。假設上述之條件無法滿足,即無法形成^ 溝槽區。該源極區是包含要形成該溝槽之該區域的相對 立表面,也就是說’該間隙壁之較下末端變成一高濃度 源極區,且形成該本體區於其下。 又 在本發明之中,—護環㈣是由兩個或多個開口區 域所界定,而兩個本㈣是相互接觸,以組成 ?〇對於问電壓裝置或產品而言’必須適當地確保護 %之數量’並且在護環之間的也需要有適當的距離,原 因在於在球狀接合處(spheHealjunetiGn)、圓柱狀接人 處(CyUndHCal junction )、及平面接合處(pianar ju⑽ J) 12 200910469 ^崩/貝電壓(breakdown voltage )的不同。在高電壓的 情況下,產品會製造成接近一平面接合處(planar junction)。 上述之一護環11〇包含一個或多個本體區,第一 個、第二個或多個護環可單獨使用或組合使用。為了上 述原因,第二導電型高濃度區之數量不單單只有一個, 而是增加到兩個或三個,為能增加崩潰電壓。當該第一 型高濃度源極區107之護環相連接,以實現兩區域之擴 G 散接觸,因此兩者之間的距離減小。 、 在本發明中,在該接觸孔形成之後,一第二導電型 咼濃度.區是藉由離子佈植而額外形成。在作為歐姆接觸 (ohnnc contact)的一 p_型而言,A1是一三價材料 (trivalem medium),形成在一〆區域。但在該高濃度 源極區107(即該第二導電型區)是為一 N_本體區而言, 接觸電阻增加並非透過歐姆接觸(〇hmic c〇ntact),而是 透過蕭特基接觸(Scll〇ttky contact),最後增加導通電 為了防止這些問題的產生,有—種情況是需要額外 高濃度離子佈植。此是屬於一典型的製程。 請參閱第8圖,其是顯示一實施例之上視平面圖及 剖面圖’其中利用該護環以致—個或多個離子佈植區重 疊。此外,請參閱第九圖,其顯示該溝槽閘極是呈一細 長型。在此情況下,其是說明一長方形溝槽之結構。 以上所述係藉由較佳實施例說明本發明之特點,其 目的在使熟習該技術者能瞭解本發明之内容並據以實 13 200910469 施’而非限定本發明之專利範圍,故凡其他未脫離本發 明所揭示之精神而完成之等效修飾或修改,仍應包含在 以下所述之申請專利範圍中。 【圖式簡單說明】 第1圖是根才康本發明所顯示一溝槽圖案之上視平面 圖。 ,2圖是根據本發明所描述一佈局之示意圖。 第3圖至第7 ®是根據本發明所顯示該半導體裝置 製程之連續示意圖’其是根據第i圖沿著A_A,線之剖面 視圖。 第8圖是第7圖之上視平面圖。 第9圖至第1〇圖是顯示本發明利用一護環之上視 平:圖及剖面圖,因此,-個或多個離子佈植區是各別 重疊。 第11圖是顯示本發明之溝槽閘極是呈細長形之視 【主要元件符號說明】 101 第一型高濃度石夕基 102 蟲晶層 103 氧化膜 光阻 105 屏蔽氧化膜 106 第二型本體區 14 200910469 107 第一型高濃度源極區 109 開放部分 110 護環 111 間隙壁 112 溝槽孔 113 閘極氧化膜 114 多晶矽 115 層間絕緣膜 116 金屬電極

Claims (1)

  1. 200910469 七、申請專利範圍: 1. 一種功率半導裝置之製造方法,其係包含下列步驟: 生成一苐一型蠢晶層102在一第一型高濃度石夕 基101 ’並生成一厚度在5〇〇〇 A至10000 A範圍之 最初氧化膜103 ; 施加一光阻104在該最初氧化膜103上,並執 行微影及顯影製程,因此形成一溝槽圖案; 利用該溝槽圖案钕刻該最初氧化膜丨〇3之曝露 p 區,去除該光阻104,為進行離子佈植而形成一屏蔽 氧化膜105在該磊晶層1〇2之曝露區,然後再藉由 離子佈植及一驅入製程而形成一第二型本體區丨; 藉由離子佈植來形成一第一型高濃度源極區 107 ; 積層一間隙壁氧化膜,並藉由乾餘刻來形成一 間隙壁; 針對該相對於一溝槽閘極電極之該磊晶層1〇2 Ο 之一部分進行溝槽蝕刻,其是在該間隙壁之形成而 曝露在外’因此形成一溝射L 112;洗淨該溝槽孔ιΐ2 之内部,生成-犧牲氧化膜(圖中未示),藉由齡 刻來去除該犠牲氧化膜,然後生成-閘極氧化膜 113 ; 積層多晶石夕114,其是摻雜至一高濃度以形成該 閘極電極,因此注入於該溝槽孔112,藉由多晶石夕回 姓刻或化學機械研磨(Chemical Pohshing,CMP )來去除該摻雜的多晶石夕,因此使該 16 200910469 最初氧化膜曝露於外’然後形成一層間絕緣層 (interlayer insulating film) 115 ; 積層一光阻,用以藉由第二微影技術來形成一 接觸圖案,再藉由該微影技術形成該圖案; I虫刻該每一個閘極電極及該源極區之氧化膜, 並形成一第二型高濃度源極區;及 執行施加一金屬至一高濃度源極及一閘極電極 之製程,因此形成一金屬電極丨丨6。
    2.如專利範圍第1項所述之方法,其中當該第一型高濃 度源極107進行離子佈植時,在該閘極區上形成一開 放寬度(open width),該閘極區之開放寬度(〇pen width)是比源極區之開放寬度(〇penwidth)大,約 至少為一個溝槽的寬度。 3·如專利範圍第丨項所述之方法,其中利用兩個或多個 開口區域來界護環UG,並使兩個本體區相 觸’以構成一護環1 1 〇。 4. 如專利範圍第1項所述之方法 個或多個本體區’且第一個、第二 110是各別單獨使用或是組合使用。 遵衣 5. 如專利範圍第項所成 Λ所述之方法,其卡更包含形成-接 區。 丁师植來形成一弟一導電型高濃度
TW097122393A 2007-06-15 2008-06-16 Manufacturing method of semiconductor power device TW200910469A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070058974 2007-06-15

Publications (1)

Publication Number Publication Date
TW200910469A true TW200910469A (en) 2009-03-01

Family

ID=40129895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097122393A TW200910469A (en) 2007-06-15 2008-06-16 Manufacturing method of semiconductor power device

Country Status (6)

Country Link
US (1) US8058127B2 (zh)
JP (1) JP2010530136A (zh)
KR (1) KR100992742B1 (zh)
CN (1) CN101803030A (zh)
TW (1) TW200910469A (zh)
WO (2) WO2008153368A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396240B (zh) * 2009-05-08 2013-05-11 Anpec Electronics Corp 製造功率半導體元件的方法
TWI411097B (zh) * 2009-08-31 2013-10-01 Alpha & Omega Semiconductor 高電壓半導體裝置中的積體肖特基二極體

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701684B2 (ja) * 2011-05-23 2015-04-15 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置
CN103050404B (zh) * 2011-10-14 2015-08-19 上海华虹宏力半导体制造有限公司 一种mosfet器件沟槽和保护环的制造方法
CN103151254A (zh) * 2013-03-18 2013-06-12 北京大学 一种锗基肖特基结的制备方法
TW201440145A (zh) * 2013-04-09 2014-10-16 Anpec Electronics Corp 半導體功率元件的製作方法
CN104779164B (zh) * 2014-01-15 2017-11-14 北大方正集团有限公司 一种提高沟槽型vdmos栅氧层击穿电压的方法
CN113838756A (zh) * 2021-09-24 2021-12-24 南瑞联研半导体有限责任公司 一种改善Trench-IGBT晶圆微形变的器件制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
GB9815021D0 (en) 1998-07-11 1998-09-09 Koninkl Philips Electronics Nv Semiconductor power device manufacture
KR100597583B1 (ko) * 1999-08-14 2006-07-06 한국전자통신연구원 고집적 트렌치 게이트 전력소자의 제조방법
US6211018B1 (en) 1999-08-14 2001-04-03 Electronics And Telecommunications Research Institute Method for fabricating high density trench gate type power device
GB9928285D0 (en) * 1999-11-30 2000-01-26 Koninkl Philips Electronics Nv Manufacture of trench-gate semiconductor devices
JP2001274396A (ja) 2000-03-27 2001-10-05 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置の製造方法
JP2004507088A (ja) * 2000-08-17 2004-03-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体装置の製造方法
WO2002089195A2 (en) * 2001-04-28 2002-11-07 Koninklijke Philips Electronics N.V. Method of manufacturing a trench-gate semiconductor device
GB0118000D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Manufacture of semiconductor devices with schottky barriers
GB0117949D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
US6822288B2 (en) * 2001-11-20 2004-11-23 General Semiconductor, Inc. Trench MOSFET device with polycrystalline silicon source contact structure
US6753228B2 (en) * 2002-10-15 2004-06-22 Semiconductor Components Industries, L.L.C. Method of forming a low resistance semiconductor device and structure therefor
KR100498476B1 (ko) * 2003-01-11 2005-07-01 삼성전자주식회사 리세스 채널 mosfet 및 그 제조방법
KR100500473B1 (ko) * 2003-10-22 2005-07-12 삼성전자주식회사 반도체 소자에서의 리세스 게이트 트랜지스터 구조 및형성방법
US7049677B2 (en) * 2004-01-28 2006-05-23 Power-One, Inc. Low cost dielectric isolation method for integration of vertical power MOSFET and lateral driver devices
US7667264B2 (en) * 2004-09-27 2010-02-23 Alpha And Omega Semiconductor Limited Shallow source MOSFET

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396240B (zh) * 2009-05-08 2013-05-11 Anpec Electronics Corp 製造功率半導體元件的方法
TWI411097B (zh) * 2009-08-31 2013-10-01 Alpha & Omega Semiconductor 高電壓半導體裝置中的積體肖特基二極體

Also Published As

Publication number Publication date
US20100184264A1 (en) 2010-07-22
CN101803030A (zh) 2010-08-11
WO2009154391A2 (ko) 2009-12-23
JP2010530136A (ja) 2010-09-02
WO2008153368A1 (en) 2008-12-18
US8058127B2 (en) 2011-11-15
KR100992742B1 (ko) 2010-11-05
WO2009154391A3 (ko) 2010-04-22
KR20080110547A (ko) 2008-12-18

Similar Documents

Publication Publication Date Title
TW200910469A (en) Manufacturing method of semiconductor power device
JP5091487B2 (ja) 半導体装置の製造方法
CN104241389B (zh) 薄膜晶体管和有源矩阵有机发光二极管组件及制造方法
TWI696288B (zh) 遮蔽閘金氧半場效電晶體及其製造方法
JP2008153685A (ja) 半導体装置の製造方法
TW201112418A (en) Overlapping trench gate semiconductor device and manufacturing method thereof
TW200903655A (en) Method of fabricating high-voltage MOS having doubled-diffused drain
TWI302748B (en) High-voltage semiconductor device, semiconductor device and method of forming thereof
JP5645766B2 (ja) GaNベースの薄膜トランジスタの製造方法
TW201243931A (en) Method for fabricating a semiconductor power device
CN109755322A (zh) 碳化硅mosfet器件及其制备方法
TW201250848A (en) Method for fabricating a semiconductor power device
TWI450327B (zh) 功率半導體元件的製作方法
JP5616720B2 (ja) 半導体装置およびその製造方法
TWI287856B (en) Method of manufacturing a semiconductor device and semiconductor device obtainable with such a method
JP2006253334A (ja) 半導体装置及びその製造方法
CN109119473B (zh) 一种晶体管及其制作方法
TWI312192B (en) Semiconductor device and manufacture method thereof
TW200952176A (en) Semiconductor devices and methods for fabricating the same
TW584935B (en) Termination structure of DMOS device
KR100783283B1 (ko) 반도체 소자 및 그 제조 방법
TWI614898B (zh) 終止區結構及其製造方法
TW200847428A (en) Low on-resistance lateral-double diffused transistor and fabrication method of the same
JP4836914B2 (ja) 高電圧シーモス素子及びその製造方法
TWI262545B (en) Semiconductor device and fabricating method thereof