CN101803030A - 半导体功率装置的制造方法 - Google Patents

半导体功率装置的制造方法 Download PDF

Info

Publication number
CN101803030A
CN101803030A CN200880103615A CN200880103615A CN101803030A CN 101803030 A CN101803030 A CN 101803030A CN 200880103615 A CN200880103615 A CN 200880103615A CN 200880103615 A CN200880103615 A CN 200880103615A CN 101803030 A CN101803030 A CN 101803030A
Authority
CN
China
Prior art keywords
high concentration
film
source area
ion
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880103615A
Other languages
English (en)
Inventor
李泰福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101803030A publication Critical patent/CN101803030A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种功率半导体装置,具体地,一种用于功率电子装置的沟槽型功率半导体装置。提供了制造该功率半导体装置的方法。在由于过度的成本竞争,成本必须降低的情况下,制造该功率半导体装置的方法采用沟槽MOSFET,来减小该装置的尺寸大小,以取代垂直型DMOSFET。由于制造过程被简化和提高了特征,所以降低了成本,以致可大量生产及创造利润。

Description

半导体功率装置的制造方法
技术领域
本发明是涉及一种功率半导体装置,更具体地,涉及一种用于功率电子装置的沟槽型功率半导体装置及该功率半导体装置的制造方法。
本发明是主张韩国专利第10-2007-58974号申请案的优先权,其专利名称为:沟槽型功率半导体装置及其制造方法。籍由参照韩国专利申请案的全部并结合至本发明申请案中。
背景技术
一般而言,功率半导体装置是指可控制功率的半导体,并使功率能在一瓦特至十亿瓦特的范围进行转换或控制。众所周知的功率半导体装置的例子包含整流二极管(rectifying diode)、双极性晶体管(bipolar transistor)、栅流管(thyristor)、GTO、两端交流开关元件、三端双向可控硅开关元件、功率金属氧化物半导体场效应晶体管、绝缘栅双极型晶体管(Insulated GateBipolar Transistor,IGBT)、智能功率模块(Intelligent Power Module,IPM)等等。
在功率半导体装置中,金属氧化物半导体场效应晶体管(Metal OxideSemiconductor Field Effect Transistor,MOSFET)对于减小装置的尺寸大小特别地有用,由于最小化或去除了JFET区,因此,比起使用平面的功率MOSFET时,能更加降低其导通电阻(on-resistance,Ron)。
一种常规的制造沟槽型功率半导体装置的方法包括顺序形成第一导电型低浓度外延层,以及在第一导电型高浓度半导体基底上的保护环区域。
然后,第二导电型本体区形成于其上,并利用蚀刻掩模(etching mask)将在该本体区上设置的氧化膜图案形成为栅极沟槽图案。将该氧化膜图案蚀刻,并且在该外延层中形成沟槽孔。
接着,长出牺牲氧化膜(sacrificial oxide film)后再将它去除,然后形成栅极氧化膜,并在沟槽中注入高浓度掺杂的多晶硅。
接着,进行用于形成栅极的光刻和蚀刻,因而形成栅极。另外,第二导电型高浓度源极是通过光刻及离子注入而形成,并且执行扩散热处理,以界定该第二导电型的沟道区域。
最后,第一导电型高浓度源极通过光刻及离子注入而形成,然后,形成绝缘体于其上。此外,在该栅极的上部及源极区形成接触孔,然后,进行金属处理,于是完成了产品的制造。通常,光刻要进行七次。
虽然此制造方法是有益的,因为可有效地制造出比一般垂直型MOSFET更小的装置,然而,其缺点却在于制造技术难以实现。此外,由于竞争加剧,急需发展能简化制造过程的方法。
为此,做过各种尝试来简化该过程。事实上,不容易达到既能简化制造过程而又不会降低装置的性能。
发明内容
技术问题
因此,本发明是基于解决上述现有技术产生的问题而提出。本发明是提供一种功率半导体装置的制造方法,其中应用沟槽型来实现高密度装置,并产品设计简单,并且其制造过程被简化,以确保在制造具有良好匹配特性的多沟道驱动IC中的稳定性能。
技术方案
根据本发明,沟槽型功率半导体装置的制造方法可包括在第一型高浓度硅基板101上生成第一型外延层102,并生成厚度在5000至10000范围的初始氧化膜103;在所述初始氧化膜103上施加光阻剂104,并执行光刻及显影,因此形成沟槽图案;利用所述沟槽图案蚀刻所述初始氧化膜103的曝露区域,去除所述光阻剂104,在所述外延层102的曝露区域形成用于离子注入的屏蔽氧化膜105,和通过离子注入及推阱过程形成第二型本体区106;通过离子注入形成第一型高浓度源极区107;层压隔离氧化膜,并通过干蚀刻来形成隔离物111;针对形成所述隔离物后被曝露的对应于沟槽栅极的所述外延层102的一部分来进行沟槽蚀刻,因此形成沟槽孔112;清洁所述沟槽孔112的内部;生成牺牲氧化膜(未图示);通过湿蚀刻来去除所述牺牲氧化膜;然后生成栅极氧化膜113;将掺杂至高浓度而形成所述栅极的多晶硅114进行层压,因此填充所述沟槽孔112,通过多晶硅回蚀刻(etch back)或CMP(化学机械抛光(Chemical Mechanical Polishing))来去除所述掺杂的多晶硅,因此所述初始氧化膜被曝露;和形成层间绝缘膜115;层压光阻剂,用以通过第二光刻来形成接触图案,和通过所述光刻形成所述图案;蚀刻所述每个栅极及所述源极区的氧化膜,并形成第二型高浓度源极区;及执行施加金属至高浓度源极及栅极的过程,因此形成金属电极116。
根据本发明所述的沟槽型功率半导体装置的制造方法中,在所述第一型高浓度源极区107进行离子注入后,所述栅极区的开口宽度形成为比所述源极区的开口宽度至少宽一个沟槽宽度;通过两个或更多个开口区域(openregion)来界定一个保护环110,两个本体区相互接触而构成一个保护环110;一个保护环110可以包括一个或多个本体区,并且第一个、第二个或更多个保护环110可以单独使用或组合使用。
根据本发明所述的沟槽型功率半导体装置的制造方法中,还可以包括形成接触孔后,通过离子注入来形成第二导电型高浓度区。
有益效果
根据本发明,在功率半导体装置的制造方法中,由于过度的成本竞争,在必须降低制造成本的情况下,取代垂直型DMOSFET,利用沟槽型MOSFET以减小装置的尺寸大小。此外,由于制造过程被简化并增进了其特征,随之降低制造成本,以致可大量生产及创造利润。
另外,制造沟槽型MOSFET或沟槽型IGBT作为功率装置,比起常规的VDMOS,可以在更小的芯片规格中实现相同的电压及导通电阻(Ron),并且其制造过程会变得更简单。
此外,归因于过程的简化,半导体制造的损益平衡点得以降低,最终可降低其最初的投资成本。即使在半导体制造过程中利用大量的有毒气体及化学物,也能实现环境保护。
附图说明
图1是示出根据本发明的沟槽图案的俯视图;
图2是示出根据本发明的布局图;
图3至图7是基于沿着图1的A-A`线剖切的横截面图,顺序示出根据本发明的制造半导体装置的过程的视图;
图8是图7的俯视图;
图9和图10是在本发明的保护环以一个或多个离子注入区分别重叠的方式使用的情况中的俯视图和横截面图;
图11是示出将本发明的沟槽栅极以带状形式设置的情况的视图。
*附图标记说明*
102:外延层,103:初始氧化膜,104:光阻剂,105:屏蔽氧化膜,106:第二型本体区,107:第一型高浓度源极区,110:保护环,111:隔离物,112:沟槽孔,113:栅极氧化膜,114:多晶硅,115:层间绝缘膜,116:金属电极
具体实施方式
本发明是涉及一种沟槽型功率半导体装置的制造方法。本发明的构造和效果将参考附图详细说明。
如图3所示,根据本发明的功率半导体装置的制造方法包括:第一步骤包括在第一型高浓度硅基板101上生成第一型外延层102,以及生成厚度为5000至10000的初始氧化膜103。具体地,图3是沿着图1A-A线剖切的横截面图,并示出了在硅基板101上顺序生成外延层102及初始氧化膜103的过程。
接着,本发明的方法包括:第二步骤包括施加光阻剂104在该初始氧化膜103上,并执行光刻及显影,因而形成沟槽图案。具体地,如图3所示,该光阻剂104施加在该初始氧化膜103,并且形成该沟槽图案。
接着,本发明的方法包括:第三步骤包括通过该沟槽图案蚀刻该初始氧化膜103的曝露区域,去除该光阻剂104,在该外延层102的曝露区域上形成用于离子注入的屏蔽氧化膜105,再通过离子注入及推阱过程形成第二型本体区106。具体地,如图4中所示,利用该沟槽图案蚀刻该初始氧化膜103的曝露区域,然后再去除该光阻剂104。之后,用于离子注入的该屏蔽氧化膜105形成在该外延层102的曝露区域上,然后再通过离子注入及推阱过程形成该第二型本体区106。
接着,本发明的方法包括:第四步骤包括通过离子注入形成第一型高浓度源极区107,和第五步骤包括层压隔离氧化膜,并通过干蚀刻形成隔离物111。具体地,如图4中所示,通过离子注入形成该第一型高浓度源极区107。因此,在该栅极所形成的该开口宽度(open width)(a)比源极区的开口宽度(b)至少宽约一个沟槽的宽度。图2示出该所需图案的布局,以便以接触孔来重叠该高浓度源极区,为了在执行后面的过程中有效地金属接触。如图5中所示,将该隔离氧化膜加以层压,并通过干蚀刻形成该隔离物111。当形成该隔离物111之后,对应于沟槽栅极的该外延层102的一部分被曝露。
接着,本发明的方法包括:第六步骤包括针对形成隔离物后被曝露的该对应于沟槽栅极的该外延层102的一部分来进行沟槽蚀刻,因此形成沟槽孔112;清洁该沟槽孔112的内部;生成牺牲氧化膜(未图示);通过湿蚀刻来去除该牺牲氧化膜;然后生成栅极氧化膜113。具体地,如图5中所示,该外延层102的曝露部分受到沟槽蚀刻,因此形成该沟槽孔112;然后再清洁该沟槽孔112的内部;之后生成牺牲氧化膜(未图示)在其中;然后再通过湿蚀刻来去除该牺牲氧化膜;接着便生成栅极氧化膜113。将氧化膜或绝缘膜覆盖在该源极区的开口部分109以及该保护环110的上部以形成该隔离物111。因此,该沟槽孔112仅形成在要形成栅极的区域中。也就是说,该沟槽孔只形成在该较大的开口宽度(a)处。
接着,本发明的方法包括:第七步骤包括将掺杂至高浓度而形成该栅极的多晶硅114进行层压,因此用其填充该沟槽孔112,再通过多晶硅回蚀刻或化学机械抛光来去除该掺杂的多晶硅,因此该初始氧化膜被曝露;然后形成层间绝缘膜(interlayer insulating film)115。具体地,如图6中所示,将掺杂至高浓度以形成该栅极的该多晶硅114加以层压,和因此用其填充该沟槽孔112,然后,通过多晶硅回蚀刻或CMP来去除该掺杂的多晶硅,以致该初始氧化膜被曝露。然后形成层间绝缘膜115。更具体地,当该多晶硅的水平大约位于该初始氧化膜103的顶端下方时便停止去除多晶硅,因此,该多晶硅不会施加至该初始氧化膜103的顶端。因此,停止去除该多晶硅的时间点是当该多晶硅的水平位于该沟槽顶端的下方,其原因是为了减少一个所要使用的光掩模的数量。如果当该多晶硅位于该沟槽孔顶端以上时停止去除,那么在该栅极区与源极区之间发生接触之后也许会因金属的连接而产生短路。相反,如果当该多晶硅位于该沟槽的太浅的地方时停止去除,也就是说,该多晶硅位于比该第一型高浓度区更低的地方,则该装置的运行便会产生问题。具体地,这些问题包括高阈值电压、高导通电阻、或是装置无法运行。
接着,本发明的方法包括:第八步骤包括层压光阻剂,以通过第二光刻形成接触图案,和通过该光刻形成该图案,和第九步骤包括蚀刻该每一个栅极及该源极区的氧化膜,并形成第二型高浓度源极区。如图7中所示,层压该光阻剂,以通过第二光刻获得该接触图案;然后通过该光刻形成该图案。蚀刻每一个栅极及该源极区的氧化膜,然后再去除该光阻剂。之后,根据接触电阻的特性,针对具有高浓度的导电型源极区进行离子注入;接着,进行退火(annealing)处理。
接着,本发明的方法包括:第十步骤包括执行施加金属至高浓度源极及栅极的过程,因此形成金属电极116。如图7中所示,该金属电极116是通过施加金属至源极及栅极的过程而形成。
本发明的一个实施例说明如下。
在制造例如LCD驱动IC的产品的情况下,用于移动电话的具有262000颜色的TFT显示器的该驱动IC可通过大约0.35μm工艺来制造,因此可降低制造成本。同时,高电压装置的尺寸大小可减少至低电压装置的尺寸大小,而不需要建立半导体工厂(semiconductor plants),因此,增加了可用于小型化设计的自由度。
具体地,本发明的方法即使是在需要具有优良匹配特性的多沟道驱动IC的制造上也展现了优异的功效。此外,本发明所述的方法可应用于其他包括高电压装置的产品,例如闪存的周边零件、或快闪DML读/写的主要装置。
相较于常规的VDMOS,在制造沟槽MOSFET或沟槽IGBT的情况中,可在更小的芯片规格上实现相同的电压及导通电阻,此外,其制造过程更能简化。
相较于常规的制造方法,本发明所述的方法可实现简单的制造过程,因此可降低半导体制造的损益平衡点,并大幅地降低最初的投资成本。此外,即使在半导体工艺中利用大量的有毒气体及化学物,也能达到环境保护。
更具体地,当对第一型高浓度源极区107进行离子注入时,该栅极区上所形成的开口宽度比该源极区的开口宽度宽至少沟槽的宽度。该源极区界定在相邻的栅极之间,并标示出图3及图4所示的该宽的开口区域。为了填充该狭窄的区域,应该将介质厚度层压至对应于最窄处宽度的50%,或是应用更高的厚度。然而,该最后的沟槽区由要填充于其中的介质的种类及该介质的干蚀刻来决定。如果上述的条件无法满足,则无法形成该沟槽区。该源极区以包括该沟槽将要形成的该区域的相对侧表面的形式设置,也就是说,该隔离物的下端变成高浓度源极区,且形成该本体区于其下。
在本发明中,保护环110由两个或多个开口区域所界定,而两个本体区相互发生接触,以构成一个保护环110。对于高电压装置或产品而言,必须适当地确保保护环的数量,并且在保护环之间也需要有适当的距离。原因在于在球状接合(spherical junction)、圆柱状接合(cylindrical junction)及平面接合(planar junction)中的击穿电压(breakdown voltage)不同。在高电压的情况下,产品会制造成接近平面接合。
上述保护环110包含一个或多个本体区,并且第一、第二或更多个保护环110单独使用或组合使用。由于上述原因,第二导电型高浓度区的数量不单单只有一个,而是增加到两个或三个,以便增加击穿电压。当该第一型高浓度源极区107的保护环相连接,以实现两个区域的扩散接触时,两者之间的距离减小。
在本发明中,在该接触孔形成之后,第二导电型高浓度区通过离子注入而另外形成。在用于欧姆接触(ohmic contact)的p-型的情况中,作为三价介质(trivalent medium)的铝(Al)形成为P+区域,但在该高浓度源极区107(即该第二导电型区)为N-本体区的情况中,接触电阻增加并非通过欧姆接触,而是通过萧特基接触(Schottky contact),最终增加导电阻。为了防止这些问题的产生,有一种情况是需要额外高浓度离子注入。这属于典型的过程。
图8示出保护环以一个或多个离子注入区重叠的方式使用的情况中的俯视图和横截面图,图9示出带状形式的沟槽栅极。在此情况下,示出矩形沟槽结构。

Claims (5)

1.一种功率半导体装置的制造方法,包括:
在第一型高浓度硅基板(101)上生成第一型外延层(102),并生成厚度在5000至10000范围的初始氧化膜(103);
在所述初始氧化膜(103)上施加光阻剂(104),并执行光刻及显影,因此形成沟槽图案;
利用所述沟槽图案蚀刻所述初始氧化膜(103)的曝露区域,去除所述光阻剂(104),在所述外延层(102)的曝露区域形成用于离子注入的屏蔽氧化膜(105),和通过离子注入及推阱过程形成第二型本体区(106);
通过离子注入形成第一型高浓度源极区(107);
层压隔离氧化膜,并通过干蚀刻来形成隔离物(111);
针对形成所述隔离物后被曝露的对应于沟槽栅极的所述外延层(102)的一部分来进行沟槽蚀刻,因此形成沟槽孔(112);清洁所述沟槽孔(112)的内部;生成牺牲氧化膜(未图示);通过湿蚀刻来去除所述牺牲氧化膜;然后生成栅极氧化膜(113);
将掺杂至高浓度而形成所述栅极的多晶硅(114)进行层压,因此填充所述沟槽孔(112),通过多晶硅回蚀刻或化学机械抛光来去除所述掺杂的多晶硅,因此所述初始氧化膜被曝露;和形成层间绝缘膜(115);
层压光阻剂,用以通过第二光刻来形成接触图案,和通过所述光刻形成所述图案;
蚀刻所述每个栅极及所述源极区的氧化膜,并形成第二型高浓度源极区;及
执行施加金属至高浓度源极及栅极的过程,因此形成金属电极(116)。
2.根据权利要求1所述的方法,其中,在所述第一型高浓度源极区(107)进行离子注入后,所述栅极区的开口宽度形成为比所述源极区的开口宽度至少宽一个沟槽宽度。
3.根据权利要求1所述的方法,其中,通过两个或更多个开口区域来界定一个保护环(110),并且两个本体区相互接触,以构成一个保护环(110)。
4.根据权利要求1所述的方法,其中,一个保护环(110)包括一个或更多个本体区,并且第一个、第二个或更多个保护环(110)单独使用或组合使用。
5.根据权利要求1所述的方法,还包括形成接触孔后,通过离子注入来形成第二导电型高浓度区。
CN200880103615A 2007-06-15 2008-06-16 半导体功率装置的制造方法 Pending CN101803030A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0058974 2007-06-15
KR20070058974 2007-06-15
PCT/KR2008/003390 WO2008153368A1 (en) 2007-06-15 2008-06-16 Manufacturing method of semiconductor power devices

Publications (1)

Publication Number Publication Date
CN101803030A true CN101803030A (zh) 2010-08-11

Family

ID=40129895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880103615A Pending CN101803030A (zh) 2007-06-15 2008-06-16 半导体功率装置的制造方法

Country Status (6)

Country Link
US (1) US8058127B2 (zh)
JP (1) JP2010530136A (zh)
KR (1) KR100992742B1 (zh)
CN (1) CN101803030A (zh)
TW (1) TW200910469A (zh)
WO (2) WO2008153368A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800703A (zh) * 2011-05-23 2012-11-28 半导体元件工业有限责任公司 半导体装置
CN104779164A (zh) * 2014-01-15 2015-07-15 北大方正集团有限公司 一种提高沟槽型vdmos栅氧层击穿电压的方法
CN113838756A (zh) * 2021-09-24 2021-12-24 南瑞联研半导体有限责任公司 一种改善Trench-IGBT晶圆微形变的器件制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396240B (zh) * 2009-05-08 2013-05-11 Anpec Electronics Corp 製造功率半導體元件的方法
US8829614B2 (en) * 2009-08-31 2014-09-09 Alpha And Omega Semiconductor Incorporated Integrated Schottky diode in high voltage semiconductor device
CN103050404B (zh) * 2011-10-14 2015-08-19 上海华虹宏力半导体制造有限公司 一种mosfet器件沟槽和保护环的制造方法
CN103151254A (zh) * 2013-03-18 2013-06-12 北京大学 一种锗基肖特基结的制备方法
TW201440145A (zh) * 2013-04-09 2014-10-16 Anpec Electronics Corp 半導體功率元件的製作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
GB9815021D0 (en) * 1998-07-11 1998-09-09 Koninkl Philips Electronics Nv Semiconductor power device manufacture
US6211018B1 (en) * 1999-08-14 2001-04-03 Electronics And Telecommunications Research Institute Method for fabricating high density trench gate type power device
KR100597583B1 (ko) * 1999-08-14 2006-07-06 한국전자통신연구원 고집적 트렌치 게이트 전력소자의 제조방법
GB9928285D0 (en) * 1999-11-30 2000-01-26 Koninkl Philips Electronics Nv Manufacture of trench-gate semiconductor devices
JP2001274396A (ja) 2000-03-27 2001-10-05 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置の製造方法
JP2004507088A (ja) * 2000-08-17 2004-03-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体装置の製造方法
EP1393362B1 (en) * 2001-04-28 2011-12-14 Nxp B.V. Method of manufacturing a trench-gate semiconductor device
GB0118000D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Manufacture of semiconductor devices with schottky barriers
GB0117949D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
US6822288B2 (en) * 2001-11-20 2004-11-23 General Semiconductor, Inc. Trench MOSFET device with polycrystalline silicon source contact structure
US6753228B2 (en) * 2002-10-15 2004-06-22 Semiconductor Components Industries, L.L.C. Method of forming a low resistance semiconductor device and structure therefor
KR100498476B1 (ko) * 2003-01-11 2005-07-01 삼성전자주식회사 리세스 채널 mosfet 및 그 제조방법
KR100500473B1 (ko) * 2003-10-22 2005-07-12 삼성전자주식회사 반도체 소자에서의 리세스 게이트 트랜지스터 구조 및형성방법
US7049677B2 (en) * 2004-01-28 2006-05-23 Power-One, Inc. Low cost dielectric isolation method for integration of vertical power MOSFET and lateral driver devices
US7667264B2 (en) * 2004-09-27 2010-02-23 Alpha And Omega Semiconductor Limited Shallow source MOSFET

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800703A (zh) * 2011-05-23 2012-11-28 半导体元件工业有限责任公司 半导体装置
CN102800703B (zh) * 2011-05-23 2015-03-25 半导体元件工业有限责任公司 半导体装置
CN104779164A (zh) * 2014-01-15 2015-07-15 北大方正集团有限公司 一种提高沟槽型vdmos栅氧层击穿电压的方法
CN104779164B (zh) * 2014-01-15 2017-11-14 北大方正集团有限公司 一种提高沟槽型vdmos栅氧层击穿电压的方法
CN113838756A (zh) * 2021-09-24 2021-12-24 南瑞联研半导体有限责任公司 一种改善Trench-IGBT晶圆微形变的器件制备方法

Also Published As

Publication number Publication date
US20100184264A1 (en) 2010-07-22
WO2008153368A1 (en) 2008-12-18
KR100992742B1 (ko) 2010-11-05
TW200910469A (en) 2009-03-01
WO2009154391A3 (ko) 2010-04-22
JP2010530136A (ja) 2010-09-02
WO2009154391A2 (ko) 2009-12-23
KR20080110547A (ko) 2008-12-18
US8058127B2 (en) 2011-11-15

Similar Documents

Publication Publication Date Title
EP3257085B1 (en) High voltage semiconductor devices and methods of making the devices
JP3395473B2 (ja) 横型トレンチmisfetおよびその製造方法
KR100299988B1 (ko) 반도체장치및그제조방법
KR100199271B1 (ko) 절연게이트형 반도체장치 및 그 제조방법
CN102237279B (zh) 用三个或四个掩膜制备的氧化物终止沟槽mosfet
US7417266B1 (en) MOSFET having a JFET embedded as a body diode
JP5055813B2 (ja) Soi横型半導体装置
CN101803030A (zh) 半导体功率装置的制造方法
JP2004515907A (ja) パワーmosfet及び自己整合本体注入工程を用いたパワーmosfetの製造方法。
TWI696288B (zh) 遮蔽閘金氧半場效電晶體及其製造方法
CN108682624B (zh) 一种具有复合栅的igbt芯片制作方法
KR101450437B1 (ko) Ldmos 소자와 그 제조 방법
CN114220844A (zh) 集成sbd的碳化硅mosfet器件及其制备方法
US7541260B2 (en) Trench diffusion isolation in semiconductor devices
KR20100079573A (ko) 반도체 소자 및 그 제조 방법
CN115424932A (zh) Ldmos器件及工艺方法
CN111063737A (zh) Ldmos器件及工艺方法
CN112117332A (zh) Ldmos器件及工艺方法
CN114361244B (zh) Ldmosfet器件、制作方法及芯片
CN104091824B (zh) 半导体装置
CN108598151A (zh) 能提高耐压能力的半导体器件终端结构及其制造方法
JP4228594B2 (ja) 半導体装置の製造方法
CN115547838A (zh) 金属氧化物半导体器件的制备方法及器件
CN111785634B (zh) Ldmos器件及工艺方法
CN111146285A (zh) 半导体功率晶体管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100811