RU99106432A - Способ и устройство для определения информации об амплитуде и фазе электромагнитной волны - Google Patents
Способ и устройство для определения информации об амплитуде и фазе электромагнитной волныInfo
- Publication number
- RU99106432A RU99106432A RU99106432/28A RU99106432A RU99106432A RU 99106432 A RU99106432 A RU 99106432A RU 99106432/28 A RU99106432/28 A RU 99106432/28A RU 99106432 A RU99106432 A RU 99106432A RU 99106432 A RU99106432 A RU 99106432A
- Authority
- RU
- Russia
- Prior art keywords
- electromagnetic wave
- mixing element
- pixel
- phase
- modulating
- Prior art date
Links
- 230000000051 modifying Effects 0.000 claims 46
- 230000001702 transmitter Effects 0.000 claims 14
- 230000003287 optical Effects 0.000 claims 9
- 230000000875 corresponding Effects 0.000 claims 4
- 238000005516 engineering process Methods 0.000 claims 4
- 238000005286 illumination Methods 0.000 claims 3
- 230000003334 potential Effects 0.000 claims 3
- 238000009825 accumulation Methods 0.000 claims 2
- 239000002800 charge carrier Substances 0.000 claims 2
- 238000005259 measurement Methods 0.000 claims 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000005670 electromagnetic radiation Effects 0.000 claims 1
- 230000001678 irradiating Effects 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 230000000737 periodic Effects 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000003595 spectral Effects 0.000 claims 1
- 230000035882 stress Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
Claims (34)
1. Способ определения информации об амплитуде и/или фазе электромагнитной волны, в котором излучаемая электромагнитная волна падает на поверхность элемента фотонного смешения, имеющего по меньшей мере один пиксель, причем пиксель имеет по меньшей мере два светочувствительных модуляционных фотовентиля Gam и Gbm и связанные накопительные вентили Ga и Gb, к модуляционным фотовентилям Gam и Gbm прикладывают напряжения Uam(t) и Ubm(t) модуляционный фотовентилей, которые имеют вид Uam(t) = U0 + Um(t) и Ubm(t) = U0 - Um(t), причем к накопительным вентилям Ga и Gb прикладывают постоянное напряжение, величина которого изменяется по меньшей мере настолько, насколько изменяется величина суммы U0 и амплитуда напряжения Um(t) модуляции, носители заряда, которые образуются в зоне пространственного заряда модуляционных фотовентилей Gam и Gbm с помощью падающей электромагнитной волны, подвергают действию градиента потенциалов поля дрейфа в зависимости от полярности напряжений Uam(t) и Ubm(t) модуляционных фотовентилей и дрейфа в соответствующем накопительном вентиле Ga и Gb, и удаляют заряды qa и qb, которые образуются в результате дрейфа к соответствующим накопительным вентилям Ga и Gb.
2. Способ по п. 1, в котором электромагнитную волну, промодулированную по интенсивности, излучают посредством передатчика, электромагнитная волна, отраженная от объекта, падает на поверхность элемента фотонного смещения, напряжение Uam(t) и Ubm(t) модуляционных фотовентилей находятся при фиксированном соотношении фаз с фазой электромагнитной волны, излученной посредством передатчика, и произведенные носители заряда дополнительно подвергают действию градиента потенциалов поля дрейфа в зависимости от фазы противофазных напряжений Uam(t) И Ubm(t) модуляционных фотовентилей.
3. Способ по п. 2, в котором для двух различных сдвигов dΦ1 и dΦ2 фаз напряжений Uam(t) и Ubm(t) модуляционных фотовентилей относительно фазы электромагнитной волны, излученной посредством передатчика, удаляют заряды qa1 и qb1, а также qa2 и qb2 и формируют разности (qa1 - qb1) и (qa2 - qb2), и по которому в соответствии с выражением фазу Φopt пикселя падающей электромагнитной волны определяют относительно фазы электромагнитной волны, излученной посредством передатчика, и таким образом определяют время прохождения электромагнитной волны, принимаемой с помощью пикселя.
4. Способ по п. 3, в котором посредством четырех модуляционных фотовентилей Gam, Gbm, Gcm и Gdm и четырех связанных накопительных вентилей Ga, Gb, Gc и Gd, для двух различных сдвигов dΦ1 и dΦ2 фаз напряжений модуляционных фотовентилей Uam(t) = U0 + Um1(t) и Ubm(t) = U0 - Um1(t), Ucm(t) = U0 + Um2(t) и Udm(t) = U0 - Um2(t) относительно фазы электромагнитной волны, излученной посредством передатчика, в то же самое время заряды qa, qb, qc и qd разделяют и удаляют, и в соответствии с выражением определяют фазу Φopt пикселя электромагнитной волны, излученной посредством передатчика и вместе с тем время прохождения электромагнитной волны, принимаемой с помощью пикселя.
5. Способ по любому из пп. 1 - 4, в котором элемент фотонного смешения имеет множество пикселей, по меньшей мере один пиксель непосредственно облучают частью промодулированной по интенсивности электромагнитной волной из передатчика и калибровку сдвига фаз между падающей электромагнитной волной и напряжениями Uam(t) и Ubm(t) модуляционных фотовентилей производят из сдвига фаз, который измеряют с помощью пикселя.
6. Способ по п. 1, в котором электромагнитную волну с независимо возбужденной, неизвестной модуляцией интенсивности излучают на поверхность элемента фотонного смешения, напряжения Uam(t) и Ubm(t) модуляционных фотовентилей получают посредством настраиваемого модуляционного генератора, произведенные носители заряда дополнительно подвергают действию градиента потенциалов поля дрейфа в зависимости от фазы противофазных напряжений Uam(t) и Ubm(t) модуляционных фотовентилей и элемент фотонного смешения и модуляционный генератор формируют по меньшей мере одну цепь фазовой автоподстройки и измеряют электромагнитную волну в соответствии со способом синхронизации.
7. Способ по любому из пп. 1 - 6, в котором непрерывную или прерывистую ВЧ-модуляцию, псевдошумовую модуляцию или модуляцию с линейной ЧМ используют в качестве периодической модуляции.
8. Способ по п. 7, в котором модуляция является ВЧ-модуляцией, а заряды qa и qb и по возможности qc и qd для сдвигов фаз ΔΦ= 0°/190° и 90°/270° предпочтительно удаляют.
9. Способ по п. 1, в котором устойчивую по состоянию модуляцию используют с напряжениями модуляционных фотовентилей Uam = U0 + Um0 и Ubm = U0 - Um0 с устанавливаемым модуляционным постоянным напряжением Um0, которое является постоянным в отношении времени и с которым специфически взвешивают разностное изображение, полученное из разности зарядов qa и qb.
10. Способ по любому из пп. 1 - 9, в котором заряды qa и qb, расположенные ниже накопительных вентилей Ga и Gb, интегрируют и считывают мультиплексной структурой, предпочтительно с ПЗС-структурой.
11. Способ по любому из пп. 1 - 9, в котором накопительные вентили Сa и Gb выполнены в виде pn-диодов, предпочтительно, блочных pn-диодов с низкой емкостью и, предпочтительно, с использованием КМОП-технологии, а заряды qa и qb и возможно qc и qd считывают непосредственно в виде напряжения или тока.
12. Способ по п. 11, в котором фазу пикселя или время прохождения пикселя и яркость пикселя устанавливают прямым путем посредством структуры активных пиксельных датчиков (САПС) и предпочтительно выборочно и/или последовательно считывают посредством мультиплексной структуры, расположенной на кристалле интегральной схемы.
13. Способ по любому из пп. 1 - 12, в котором яркость пикселя соответственно оценивают как сумму зарядов связанных накопительных вентилей, также как полутоновое изображение.
14. Способ по любому из пп. 1 - 13, в котором в случае фонового освещения или внешнего, немодулированного дополнительного освещения, разность полутоновых изображений используют в качестве параметра коррекции с одной стороны, когда включают модулированное освещение, и с другой стороны, когда выключают модулированное освещение.
15. Способ по любому из пп. 1 - 14, в котором множество отдельных элементов смешения используют в линейном, поверхностном или пространственном массиве.
16. Способ по п. 15, в котором по меньшей мере один из пикселей непосредственно облучают частью модулированной по интенсивности электромагнитной волны, которая служит в качестве освещения, а измерение в упомянутом по меньшей мере одном пикселе используют для калибровки других фаз и результатов измерений яркости, причем предпочтительно опорный пиксель или пиксели подвергается или подвергаются воздействию со стороны передатчика с различными уровнями интенсивности или уровнями интенсивности, которые могут быть установлены по-разному.
17. Элемент фотонного смешения, содержащий по меньшей мере один пиксель (1), который имеет по меньшей мере два светочувствительных модуляционных фотовентиля (Gam, Gbm) и накопительные вентили (Ga, Gb), связанные с модуляционными фотовентилями (Gam, Gbm), и которые затенены относительно падающей электромагнитной волны.
18. Элемент смешения по п. 17, в котором средний вентиль (G0) размещен между модуляционными фотовентилями (Gam, Gbm).
19. Элемент смешения по п. 17 или 18, в котором пиксель (1) имеет четыре, предпочтительно симметрично размещенных, модуляционных фотовентиля (Gam, Gbm, Gcm, Gdm) и накопительные вентили (Ga, Gb, Gc, Gd).
20. Элемент смешения по любому из пп. 17 - 19, в котором накопительные вентили (Ga, Gb и возможно Gc, Gd) выполнены в виде pn-диодов, предпочтительно сгруппированных pn-диодов с низкой емкостью, предпочтительно изготовленных по КМОП-технологии, а заряды qa, qb и возможно qc, qd, можно непосредственно считывать в виде напряжения или тока.
21. Элемент смешения по любому из пп. 17 - 20, в котором с целью увеличения максимальной скорости модуляции пиксель выполняют с использованием GaAs-технологии, предпочтительно типа "скрытого канала" (например, скрытый n-канал) и с интегральным полем дрейфа.
22. Элемент смешения по любому из пп. 17 - 21, в котором пиксель (1) выполнен в виде структуры активных пиксельных датчиков с частичной и связанной с пиксельной обработкой сигналов, и с частичной и связанной с линейной или, возможно, матричной обработкой сигналов.
23. Элемент смешения по любому из пп. 17 - 22, в котором затенение также распространено на краевые области модуляционных фотовентилей.
24. Скомпонованный элемент смешения, содержащий по меньшей мере два элемента фотонного смешения по любому из пп. 17 - 23, в котором элементы фотонного смешения скомпонованы в одномерную, двухмерную или трехмерную компоновку.
25. Скомпонованный элемент смешения по п. 24, в котором модуляционные фотовентили (Gam,n, Gam,n+1) и (Gbm,n, Gbm,n+1), соответственно связанные с двумя смежно размещенными, различными пикселями (n, n+1), соответственно имеют общий накопительный вентиль (Gs), причем на модуляционные фотовентили (Gam,n, Gam,n+1) и (Gbm,n, Gbm,n+1), соответственно, воздействуют те же напряжения Uam(t) и Ubm(t) модуляционных фотовентилей.
26. Скомпонованный элемент смешения по п. 24 или 25, в котором предусмотрены устройства для прямого облучения по меньшей мере одного пикселя (1) в качестве контрольного пикселя, посредством которого часть промодулированного по интенсивности электромагнитного излучения передатчика направляют на пиксель или рассматриваемые пиксели.
27. Скомпонованный элемент смешения по п. 26, в котором приспособления для прямого облучения оборудованы для изменения в отношении пространства и/или времени интенсивности прямого облучения.
28. Одномерный или многомерный скомпонованным элемент смешения по любому из пп. 24 - 27, в котором пиксели (1) выполнены с использованием МОП-технологии на кремниевой подложке (2) и могут быть считаны мультиплексной структурой предпочтительно ПЗС-структурой.
29. Скомпонованный элемент смешения по любому из пп. 24 - 28, в котором обеспечена микролинзовая оптическая система, которая производит по существу для каждого элемента смешения, который используют для изображения, запись своей собственной микролинзы, посредством которой падающее излучение фокусируют на центральную область элемента смешения, который можно, таким образом, уменьшить в размере.
30. Устройство для определения информации о фазе электромагнитной волны, имеющее по меньшей мере один элемент фотонного смешения по любому из пп. 17 - 23, модуляционный генератор (10, 13) и передатчик (4), излученная электромагнитная волна которого является промодулированной по интенсивности посредством модуляционного генератора (10, 13) заранее определенным образом, причем, электромагнитная волна, которая отражается от объекта (6), падает на поверхность элемента фотонного смешения, а модуляционный генератор (10, 13) обеспечивает элемент фотонного смешения модуляционными напряжениями Um(t), которые находятся в заранее определенном соотношении фаз по отношению к фазе, излученной из передатчика электромагнитной волны.
31. Устройство по п. 30, в котором предусмотрена оптическая система (7) и размещение элемента смешения возможно по любому из пп. 24 - 29, причем оптическая система (7) формирует изображение из отраженной электромагнитной волны на поверхности элемента смешения или сгруппированного элемента смешения.
32. Устройство по п. 30 или 31, в котором обеспечен сгруппированный элемент смешения со связанной оптической приемной системой, системой электронной оценки и обработки сигнала для разностных сигналов, суммарных сигналов и связанных опорных сигналов, с цифровой памятью для полутонового изображения и времени прохождения или изображения расстояния, передатчик для освещения трехмерной сцены модулированными электромагнитными волнами, и с регулируемой оптической передающей системой, соответствующей оптической приемной системе, образующей при этом цифровую трехмерную фотографическую камеру в виде компактного узла.
33. Устройство по п. 30 или 31, в котором для того, чтобы образовать цифровую, трехмерную записывающую видеокамеру, обеспечен сгруппированный элемент смешения со связанной оптической приемной системой, системой электронной оценки и обработки сигналов для разностных сигналов, суммарных сигналов и связанных опорных сигналов, с цифровой памятью для полутонового изображения и времени прохождения или изображения расстояния, передатчик для освещения трехмерной сцены модулированными электромагнитными волнами, и с регулируемой оптической передающей системой, соответствующей оптической приемной системе, причем дополнительно обеспечено средство памяти для хранения последовательностей цифровых изображений.
34. Устройство по п. 32 или 33, в котором передатчик обеспечен приспособлениями для испускания световых волн в различных спектральных областях для создания цветных изображений или компонентов цветного изображения.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19635932 | 1996-09-05 | ||
DE19704496.4 | 1997-02-07 | ||
DE19635932.5 | 1997-02-07 | ||
DE19704496A DE19704496C2 (de) | 1996-09-05 | 1997-02-07 | Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99106432A true RU99106432A (ru) | 2001-02-10 |
RU2182385C2 RU2182385C2 (ru) | 2002-05-10 |
Family
ID=26029051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99106432/28A RU2182385C2 (ru) | 1996-09-05 | 1997-09-05 | Способ и устройство для определения информации об амплитуде и фазе электромагнитной волны |
Country Status (14)
Country | Link |
---|---|
US (2) | US6825455B1 (ru) |
EP (1) | EP1009984B1 (ru) |
JP (1) | JP4060365B2 (ru) |
CN (1) | CN1103045C (ru) |
AT (1) | ATE254758T1 (ru) |
AU (1) | AU715284B2 (ru) |
BR (1) | BR9712804B1 (ru) |
CA (1) | CA2264051C (ru) |
CZ (1) | CZ300055B6 (ru) |
ES (1) | ES2206748T3 (ru) |
HU (1) | HU227654B1 (ru) |
MX (1) | MXPA99002142A (ru) |
RU (1) | RU2182385C2 (ru) |
WO (1) | WO1998010255A1 (ru) |
Families Citing this family (215)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MXPA99002142A (es) * | 1996-09-05 | 2004-08-27 | Rudolf Schwarte | Metodo y aparato para determinar la informacion defase y/o amplitud de una onda electromagnetica. |
US6815791B1 (en) * | 1997-02-10 | 2004-11-09 | Fillfactory | Buried, fully depletable, high fill factor photodiodes |
US7199410B2 (en) | 1999-12-14 | 2007-04-03 | Cypress Semiconductor Corporation (Belgium) Bvba | Pixel structure with improved charge transfer |
DE19821974B4 (de) * | 1998-05-18 | 2008-04-10 | Schwarte, Rudolf, Prof. Dr.-Ing. | Vorrichtung und Verfahren zur Erfassung von Phase und Amplitude elektromagnetischer Wellen |
DE19916123B4 (de) * | 1999-04-09 | 2015-02-05 | Pmdtechnologies Gmbh | Erfassung von Phase und Amplitude elektromagnetischer Wellen |
DE19951154A1 (de) * | 1999-10-23 | 2001-05-17 | Garwe Frank | Verfahren und Vorrichtung zur Bestimmung von Probeneigenschaften über zeitaufgelöste Lumineszenz |
EP1152261A1 (en) * | 2000-04-28 | 2001-11-07 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves |
WO2002087118A1 (en) * | 2000-07-24 | 2002-10-31 | Litton Systems, Inc. | Polarization diversity detector mask selection algorithm |
CA2424139C (en) | 2000-10-09 | 2008-07-15 | S-Tec Gmbh | Sensing the phase and amplitude of electromagnetic waves |
EP1330869A1 (de) * | 2000-10-16 | 2003-07-30 | SCHWARTE, Rudolf | Verfahren und vorrichtung zur erfassung und verarbeitung von signalwellen |
US6906793B2 (en) * | 2000-12-11 | 2005-06-14 | Canesta, Inc. | Methods and devices for charge management for three-dimensional sensing |
EP1356664A4 (en) * | 2000-12-11 | 2009-07-22 | Canesta Inc | CMOS-COMPATIBLE THREE-DIMENSIONAL IMAGE SENSING USING MODULATION OF QUANTUM OUTPUT |
DE10118183B4 (de) * | 2001-04-11 | 2005-06-23 | Siemens Ag | Röntengerät |
DE10207610A1 (de) * | 2002-02-22 | 2003-09-25 | Rudolf Schwarte | Verfahren und Vorrichtung zur Erfassung und Verarbeitung elektrischer und optischer Signale |
US6657706B2 (en) * | 2002-03-27 | 2003-12-02 | Sarnoff Corporation | Method and apparatus for resolving relative times-of-arrival of light pulses |
US6924887B2 (en) | 2002-03-27 | 2005-08-02 | Sarnoff Corporation | Method and apparatus for generating charge from a light pulse |
JP3832441B2 (ja) * | 2002-04-08 | 2006-10-11 | 松下電工株式会社 | 強度変調光を用いた空間情報の検出装置 |
LU90912B1 (de) | 2002-04-19 | 2003-10-20 | Iee Sarl | Sicherheitsvorrichtung fuer ein Fahrzeug |
JP2005526971A (ja) | 2002-04-19 | 2005-09-08 | アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. | 車両安全装置 |
RU2002112876A (ru) * | 2002-05-17 | 2004-03-27 | Леонид Викторович Волков (RU) | Система формирования объемных изображений в миллиметровом и субмиллиметровом диапазоне волн |
US20110015518A1 (en) * | 2002-06-13 | 2011-01-20 | Martin Schmidt | Method and instrument for surgical navigation |
GB2389960A (en) * | 2002-06-20 | 2003-12-24 | Suisse Electronique Microtech | Four-tap demodulation pixel |
CN1312489C (zh) | 2002-07-15 | 2007-04-25 | 松下电工株式会社 | 具有可控灵敏度的光接收设备及其空间信息检测装置 |
EP1535340A1 (en) * | 2002-07-16 | 2005-06-01 | STMicroelectronics N.V. | Tfa image sensor with stability-optimized photodiode |
US6906302B2 (en) | 2002-07-30 | 2005-06-14 | Freescale Semiconductor, Inc. | Photodetector circuit device and method thereof |
US6777662B2 (en) | 2002-07-30 | 2004-08-17 | Freescale Semiconductor, Inc. | System, circuit and method providing a dynamic range pixel cell with blooming protection |
AU2003263131A1 (en) | 2002-08-09 | 2004-03-19 | Automotive Distance Control Systems Gmbh | Means of transport with a three-dimensional distance camera and method for the operation thereof |
DE10259135A1 (de) * | 2002-12-18 | 2004-07-01 | Conti Temic Microelectronic Gmbh | Verfahren und Anordnung zur Referenzierung von 3D Bildaufnehmern |
JP4235729B2 (ja) * | 2003-02-03 | 2009-03-11 | 国立大学法人静岡大学 | 距離画像センサ |
EP1458087B1 (en) * | 2003-03-10 | 2005-10-12 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Electrical circuit, apparatus and method for the demodulation of an intensity-modulated signal |
DE10324217A1 (de) | 2003-05-28 | 2004-12-16 | Robert Bosch Gmbh | Vorrichtung zur Klassifizierung von wenigstens einem Objekt mit einer Umfeldsensorik |
ES2339643T3 (es) | 2003-09-02 | 2010-05-24 | Vrije Universiteit Brussel | Detector de radiacion electromagnetica asistido por corriente de portadores mayoritarios. |
EP1665382B1 (de) | 2003-09-18 | 2012-12-12 | iC-Haus GmbH | Optoelektronischer sensor und vorrichtung zur 3d-abstandsmessung |
ATE412976T1 (de) * | 2003-09-18 | 2008-11-15 | Mesa Imaging Ag | Optoelektronischer detektor mit mehreren ausleseknoten und verwendung dafür |
US20050243302A1 (en) * | 2004-01-20 | 2005-11-03 | Bedabrata Pain | Two dimensional range-imaging |
JP4280822B2 (ja) * | 2004-02-18 | 2009-06-17 | 国立大学法人静岡大学 | 光飛行時間型距離センサ |
DE102004016624A1 (de) * | 2004-04-05 | 2005-10-13 | Pmdtechnologies Gmbh | Photomischdetektor |
EP1612511B1 (en) | 2004-07-01 | 2015-05-20 | Softkinetic Sensors Nv | TOF rangefinding with large dynamic range and enhanced background radiation suppression |
DE102004035847A1 (de) * | 2004-07-23 | 2006-03-23 | BSH Bosch und Siemens Hausgeräte GmbH | Verfahren zur Erkennung der Spülgutbeladung und Geschirrspülmaschine |
WO2006011674A1 (en) * | 2004-07-30 | 2006-02-02 | Matsushita Electric Works, Ltd. | Image processing device |
JP4645177B2 (ja) * | 2004-11-30 | 2011-03-09 | パナソニック電工株式会社 | 計測装置 |
DE602004021251D1 (de) | 2004-08-04 | 2009-07-09 | Suisse Electronique Microtech | Festkörperbildsensor mit elektronischer Kontrolle der Apertur |
DE102004037870B4 (de) * | 2004-08-04 | 2007-02-15 | Siemens Ag | Optisches Modul für ein den Außenvorraum in Fahrtrichtung eines Kraftfahrzeuges erfassendes Assistenzsystem |
DE102004044581B4 (de) * | 2004-09-13 | 2014-12-18 | Pmdtechnologies Gmbh | Verfahren und Vorrichtung zur Laufzeitsensitiven Messung eines Signals |
EP1668384B1 (en) | 2004-09-17 | 2008-04-16 | Matsushita Electric Works, Ltd. | A range image sensor |
JP2006105887A (ja) * | 2004-10-08 | 2006-04-20 | Synthesis Corp | 立体視装置およびそれを備えた立体画像表示システム |
US7808022B1 (en) | 2005-03-28 | 2010-10-05 | Cypress Semiconductor Corporation | Cross talk reduction |
US7750958B1 (en) | 2005-03-28 | 2010-07-06 | Cypress Semiconductor Corporation | Pixel structure |
US7417736B2 (en) * | 2005-03-31 | 2008-08-26 | Infineon Technologies Ag | Method for determining a radiation power and an exposure apparatus |
JP2006337286A (ja) * | 2005-06-03 | 2006-12-14 | Ricoh Co Ltd | 形状計測装置 |
EP1746410B1 (en) | 2005-07-21 | 2018-08-22 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Apparatus and method for fluorescence lifetime imaging |
WO2007025398A1 (de) * | 2005-08-31 | 2007-03-08 | Baumer Electric Ag | Vorrichtung und verfahren zur phasendiskriminierung bei einem optischen distanzsensor |
EP1762862A1 (en) | 2005-09-09 | 2007-03-14 | IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. | Method and device for 3D imaging |
DE102005046754A1 (de) * | 2005-09-29 | 2007-04-05 | Carl Zeiss Jena Gmbh | Vorrichtung und Verfahren zur tiefenaufgelösten optischen Erfassung einer Probe |
US20090115993A1 (en) * | 2005-09-30 | 2009-05-07 | Gunter Doemens | Device and Method for Recording Distance Images |
US8355117B2 (en) * | 2005-12-21 | 2013-01-15 | Ecole Polytechnique Federale De Lausanne | Method and arrangement for measuring the distance to an object |
JP2007175294A (ja) * | 2005-12-28 | 2007-07-12 | Ge Medical Systems Global Technology Co Llc | イメージセンサ及びその制御方法並びにx線検出器及びx線ct装置 |
US20070200943A1 (en) * | 2006-02-28 | 2007-08-30 | De Groot Peter J | Cyclic camera |
WO2007119626A1 (ja) * | 2006-03-31 | 2007-10-25 | National University Corporation Shizuoka University | 半導体測距素子及び固体撮像装置 |
DE102006017003A1 (de) * | 2006-04-11 | 2007-10-18 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Endoskop zur Tiefendatenakquisition |
EP1903299A1 (en) | 2006-09-20 | 2008-03-26 | IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. | Method and system for acquiring a 3-D image of a scene |
JP5266636B2 (ja) * | 2006-12-12 | 2013-08-21 | 株式会社デンソー | 光センサ、および距離検出装置 |
JP4807253B2 (ja) * | 2006-12-28 | 2011-11-02 | 株式会社デンソー | 画像データ生成装置及び受光デバイス |
DE102007004349A1 (de) * | 2007-01-29 | 2008-07-31 | Robert Bosch Gmbh | Nachtsichtsystem, insbesondere für ein Fahrzeug, und Verfahren zum Erstellen eines Nachtsichtbildes |
DE202007018027U1 (de) † | 2007-01-31 | 2008-04-17 | Richard Wolf Gmbh | Endoskopsystem |
DE102007012624B3 (de) * | 2007-03-16 | 2008-06-12 | K.A. Schmersal Holding Kg | Vorrichtung und Verfahren zur Aufnahme eines dreidimensionalen Abstandsbildes |
JP4831760B2 (ja) * | 2007-03-29 | 2011-12-07 | 日本放送協会 | 3次元情報検出方法及びその装置 |
US7889257B2 (en) | 2007-07-18 | 2011-02-15 | Mesa Imaging Ag | On-chip time-based digital conversion of pixel outputs |
US7586077B2 (en) | 2007-07-18 | 2009-09-08 | Mesa Imaging Ag | Reference pixel array with varying sensitivities for time of flight (TOF) sensor |
EP2026097A1 (en) * | 2007-08-08 | 2009-02-18 | Harman Becker Automotive Systems GmbH | Vehicle illumination system |
US8027029B2 (en) | 2007-11-07 | 2011-09-27 | Magna Electronics Inc. | Object detection and tracking system |
EP2073035A1 (en) | 2007-12-18 | 2009-06-24 | IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. | Recording of 3D images of a scene |
WO2009097516A1 (en) | 2008-01-30 | 2009-08-06 | Mesa Imaging Ag | Adaptive neighborhood filtering (anf) system and method for 3d time of flight cameras |
KR101448152B1 (ko) * | 2008-03-26 | 2014-10-07 | 삼성전자주식회사 | 수직 포토게이트를 구비한 거리측정 센서 및 그를 구비한입체 컬러 이미지 센서 |
DE102008018637A1 (de) * | 2008-04-11 | 2009-10-15 | Storz Endoskop Produktions Gmbh | Vorrichtung und Verfahren zur Fluoreszenz-Bildgebung |
JP5356726B2 (ja) | 2008-05-15 | 2013-12-04 | 浜松ホトニクス株式会社 | 距離センサ及び距離画像センサ |
JP2010002326A (ja) * | 2008-06-20 | 2010-01-07 | Stanley Electric Co Ltd | 移動ベクトル検出装置 |
EP2138865A1 (en) | 2008-06-25 | 2009-12-30 | IEE International Electronics & Engineering S.A.R.L. | Method and device for recording 3D images of a scene |
DE102008031601A1 (de) * | 2008-07-07 | 2010-01-14 | Pmd Technologies Gmbh | Sensor zur Messung eines Einfallwinkels elektromagnetischer Strahlung |
KR101483462B1 (ko) * | 2008-08-27 | 2015-01-16 | 삼성전자주식회사 | 깊이 영상 획득 장치 및 방법 |
DE102008047103B4 (de) * | 2008-09-12 | 2011-03-24 | Cnrs Centre National De La Recherche Scientifique | Vorrichtung und Verfahren zur dreidimensionalen Bildgebung mit THz-Strahlung |
EP2264481A1 (en) | 2009-06-04 | 2010-12-22 | IEE International Electronics & Engineering S.A. | Method and device for acquiring a range image |
US20100308209A1 (en) * | 2009-06-09 | 2010-12-09 | Mesa Imaging Ag | System for Charge-Domain Electron Subtraction in Demodulation Pixels and Method Therefor |
JP5439975B2 (ja) * | 2009-06-23 | 2014-03-12 | 富士ゼロックス株式会社 | イメージセンサおよび画像読取装置 |
EP2275833A1 (en) | 2009-07-01 | 2011-01-19 | IEE International Electronics & Engineering S.A.R.L. | Range camera and range image acquisition method |
US9117712B1 (en) * | 2009-07-24 | 2015-08-25 | Mesa Imaging Ag | Demodulation pixel with backside illumination and charge barrier |
DE102009037596B4 (de) | 2009-08-14 | 2014-07-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pixelstruktur, System und Verfahren zur optischen Abstandsmessung sowie Steuerschaltung für die Pixelstruktur |
WO2011020921A1 (en) * | 2009-08-21 | 2011-02-24 | Iee International Electronics & Engineering S.A. | Time-of-flight sensor |
EP2302564A1 (en) | 2009-09-23 | 2011-03-30 | Iee International Electronics & Engineering S.A. | Real-time dynamic reference image generation for range imaging system |
DE102009045555A1 (de) | 2009-10-12 | 2011-04-14 | Ifm Electronic Gmbh | Überwachungskamera |
GB2474631A (en) | 2009-10-14 | 2011-04-27 | Optrima Nv | Photonic Mixer |
WO2011057244A1 (en) | 2009-11-09 | 2011-05-12 | Mesa Imaging Ag | Multistage demodulation pixel and method |
WO2011085079A1 (en) | 2010-01-06 | 2011-07-14 | Mesa Imaging Ag | Demodulation sensor with separate pixel and storage arrays |
WO2011117162A1 (en) | 2010-03-25 | 2011-09-29 | Iee International Electronics & Engineering S.A. | Optoelectronic sensor and method for detecting impinging-light attribute |
DE102011007464A1 (de) | 2010-04-19 | 2011-10-20 | Ifm Electronic Gmbh | Verfahren und Vorrichtung zur Visualisierung einer Szene |
US8587771B2 (en) * | 2010-07-16 | 2013-11-19 | Microsoft Corporation | Method and system for multi-phase dynamic calibration of three-dimensional (3D) sensors in a time-of-flight system |
DE102010043768B3 (de) * | 2010-09-30 | 2011-12-15 | Ifm Electronic Gmbh | Lichtlaufzeitkamera |
GB2486208A (en) | 2010-12-06 | 2012-06-13 | Melexis Tessenderlo Nv | Demodulation sensor and method for detection and demodulation of temporarily modulated electromagnetic fields for use in Time of Flight applications. |
FR2971343B1 (fr) * | 2011-02-07 | 2014-07-04 | Keopsys | Dispositif aeroporte de telemetrie par laser, a division d'impulsions, et systeme de releve topographique correspondant |
EP2702428A4 (en) * | 2011-04-29 | 2014-12-24 | Univ Waikato | RESONANT MODULATION FOR LOW-POWER AND LOW-POWER IMAGING CAMERAS |
WO2013041949A1 (en) | 2011-09-20 | 2013-03-28 | Mesa Imaging Ag | Time of flight sensor with subframe compression and method |
DE102012109129B4 (de) | 2011-09-27 | 2017-06-29 | Heptagon Micro Optics Pte. Ltd. | Sensor-Pixelanordnung und getrennte Anordnung einer Speicherung und Akkumulation mit parallelem Erfassen und Auslesen |
US9190540B2 (en) | 2011-12-21 | 2015-11-17 | Infineon Technologies Ag | Photo cell devices for phase-sensitive detection of light signals |
DE102012203596B4 (de) * | 2012-03-07 | 2023-11-23 | pmdtechnologies ag | Lichtlaufzeitsensor |
US9030354B2 (en) | 2012-03-12 | 2015-05-12 | International Business Machines Corporation | Imaging architecture with code-division multiplexing for large aperture arrays |
US8853813B2 (en) | 2012-04-30 | 2014-10-07 | Infineon Technologies Ag | Photo cell devices and methods for spectrometric applications |
CN102692622B (zh) * | 2012-05-28 | 2014-07-02 | 清华大学 | 基于密集脉冲的激光探测方法 |
EP2867923B1 (en) * | 2012-06-27 | 2020-01-15 | Teledyne Dalsa B.V. | Image sensor and apparatus comprising such image sensor |
GB2506685A (en) | 2012-10-08 | 2014-04-09 | Melexis Technologies Nv | Determining and/or Compensating Range Offset of a Range Sensor |
DE102013225438B4 (de) * | 2012-12-14 | 2017-02-23 | pmdtechnologies ag | Lichtlaufzeitsensor mit Referenzpixel |
KR101941907B1 (ko) * | 2013-01-03 | 2019-01-24 | 삼성전자주식회사 | 깊이 정보를 이용하는 내시경 및 깊이 정보를 이용하는 내시경에 의한 용종 검출 방법 |
US9141198B2 (en) | 2013-01-08 | 2015-09-22 | Infineon Technologies Ag | Control of a control parameter by gesture recognition |
KR102007277B1 (ko) | 2013-03-11 | 2019-08-05 | 삼성전자주식회사 | 3차원 이미지 센서의 거리 픽셀 및 이를 포함하는 3차원 이미지 센서 |
LU92173B1 (en) * | 2013-03-20 | 2014-09-22 | Iee Sarl | Distance determination method |
KR102203318B1 (ko) * | 2013-06-06 | 2021-01-15 | 헵타곤 마이크로 옵틱스 피티이. 리미티드 | 능동형 조명을 구비한 센서 시스템 |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
EP3792662A1 (en) * | 2014-01-13 | 2021-03-17 | Sony Depthsensing Solutions SA/NV | Time-of-flight system for use with an illumination system |
US9360554B2 (en) | 2014-04-11 | 2016-06-07 | Facet Technology Corp. | Methods and apparatus for object detection and identification in a multiple detector lidar array |
JP6507529B2 (ja) * | 2014-08-29 | 2019-05-08 | 株式会社デンソー | 光飛行型測距装置 |
US10215857B2 (en) | 2014-12-02 | 2019-02-26 | Ams Sensors Singapore Pte. Ltd. | Depth sensor module and depth sensing method |
US10036801B2 (en) | 2015-03-05 | 2018-07-31 | Big Sky Financial Corporation | Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array |
JP6439181B2 (ja) * | 2015-03-12 | 2018-12-19 | 本田技研工業株式会社 | 光通信装置、及びプログラム |
KR102456875B1 (ko) * | 2015-03-17 | 2022-10-19 | 코넬 유니버시티 | 심도 촬상 장치, 방법 및 응용 |
WO2016187483A1 (en) * | 2015-05-20 | 2016-11-24 | Brian Mullins | Light-based radar system for augmented reality |
US9874693B2 (en) | 2015-06-10 | 2018-01-23 | The Research Foundation For The State University Of New York | Method and structure for integrating photonics with CMOs |
US10677924B2 (en) | 2015-06-23 | 2020-06-09 | Mezmeriz, Inc. | Portable panoramic laser mapping and/or projection system |
US10419723B2 (en) | 2015-06-25 | 2019-09-17 | Magna Electronics Inc. | Vehicle communication system with forward viewing camera and integrated antenna |
US10137904B2 (en) | 2015-10-14 | 2018-11-27 | Magna Electronics Inc. | Driver assistance system with sensor offset correction |
US11027654B2 (en) | 2015-12-04 | 2021-06-08 | Magna Electronics Inc. | Vehicle vision system with compressed video transfer via DSRC link |
US10191154B2 (en) | 2016-02-11 | 2019-01-29 | Massachusetts Institute Of Technology | Methods and apparatus for time-of-flight imaging |
US9866816B2 (en) | 2016-03-03 | 2018-01-09 | 4D Intellectual Properties, Llc | Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis |
US10703204B2 (en) | 2016-03-23 | 2020-07-07 | Magna Electronics Inc. | Vehicle driver monitoring system |
US10571562B2 (en) | 2016-03-25 | 2020-02-25 | Magna Electronics Inc. | Vehicle short range sensing system using RF sensors |
US10190983B2 (en) | 2016-04-15 | 2019-01-29 | Massachusetts Institute Of Technology | Methods and apparatus for fluorescence lifetime imaging with pulsed light |
US10534081B2 (en) | 2016-05-02 | 2020-01-14 | Magna Electronics Inc. | Mounting system for vehicle short range sensors |
FI127463B (en) * | 2016-05-10 | 2018-06-29 | Aabo Akademi Aabo Akademi Univ | Artifact to determine resolution of imaging based on electromagnetic radiation and / or mechanical waves |
US10040481B2 (en) | 2016-05-17 | 2018-08-07 | Magna Electronics Inc. | Vehicle trailer angle detection system using ultrasonic sensors |
US10768298B2 (en) | 2016-06-14 | 2020-09-08 | Magna Electronics Inc. | Vehicle sensing system with 360 degree near range sensing |
CN109565304B (zh) | 2016-07-08 | 2023-04-07 | 马格纳电子系统公司 | 用于车辆的2d mimo雷达系统 |
US10239446B2 (en) | 2016-07-13 | 2019-03-26 | Magna Electronics Inc. | Vehicle sensing system using daisy chain of sensors |
US10708227B2 (en) | 2016-07-19 | 2020-07-07 | Magna Electronics Inc. | Scalable secure gateway for vehicle |
US10641867B2 (en) | 2016-08-15 | 2020-05-05 | Magna Electronics Inc. | Vehicle radar system with shaped radar antennas |
US10852418B2 (en) | 2016-08-24 | 2020-12-01 | Magna Electronics Inc. | Vehicle sensor with integrated radar and image sensors |
US10677894B2 (en) | 2016-09-06 | 2020-06-09 | Magna Electronics Inc. | Vehicle sensing system for classification of vehicle model |
US10836376B2 (en) | 2016-09-06 | 2020-11-17 | Magna Electronics Inc. | Vehicle sensing system with enhanced detection of vehicle angle |
DE102016223568B3 (de) | 2016-10-14 | 2018-04-26 | Infineon Technologies Ag | Optische Sensoreinrichtung mit tiefen und flachen Steuerelektroden |
US10347129B2 (en) | 2016-12-07 | 2019-07-09 | Magna Electronics Inc. | Vehicle system with truck turn alert |
US10462354B2 (en) | 2016-12-09 | 2019-10-29 | Magna Electronics Inc. | Vehicle control system utilizing multi-camera module |
US10703341B2 (en) | 2017-02-03 | 2020-07-07 | Magna Electronics Inc. | Vehicle sensor housing with theft protection |
US11536829B2 (en) | 2017-02-16 | 2022-12-27 | Magna Electronics Inc. | Vehicle radar system with radar embedded into radome |
US10782388B2 (en) | 2017-02-16 | 2020-09-22 | Magna Electronics Inc. | Vehicle radar system with copper PCB |
US11142200B2 (en) | 2017-02-23 | 2021-10-12 | Magna Electronics Inc. | Vehicular adaptive cruise control with enhanced vehicle control |
DE102017105142B4 (de) | 2017-03-10 | 2021-09-16 | Infineon Technologies Ag | Laufzeit-Bilderzeugungsvorrichtungen und ein Verfahren zum Anpassen einer Referenzfrequenz |
US10928489B2 (en) | 2017-04-06 | 2021-02-23 | Microsoft Technology Licensing, Llc | Time of flight camera |
US10884103B2 (en) | 2017-04-17 | 2021-01-05 | Magna Electronics Inc. | Calibration system for vehicle radar system |
US10870426B2 (en) | 2017-06-22 | 2020-12-22 | Magna Electronics Inc. | Driving assistance system with rear collision mitigation |
CN208376630U (zh) | 2017-06-30 | 2019-01-15 | 麦格纳电子(张家港)有限公司 | 与拖车传感器通信的车辆视觉系统 |
JP7013448B2 (ja) * | 2017-08-30 | 2022-01-31 | ソニーセミコンダクタソリューションズ株式会社 | 撮像素子および撮像装置 |
US10962638B2 (en) | 2017-09-07 | 2021-03-30 | Magna Electronics Inc. | Vehicle radar sensing system with surface modeling |
US10962641B2 (en) | 2017-09-07 | 2021-03-30 | Magna Electronics Inc. | Vehicle radar sensing system with enhanced accuracy using interferometry techniques |
US11150342B2 (en) | 2017-09-07 | 2021-10-19 | Magna Electronics Inc. | Vehicle radar sensing system with surface segmentation using interferometric statistical analysis |
US10877148B2 (en) | 2017-09-07 | 2020-12-29 | Magna Electronics Inc. | Vehicle radar sensing system with enhanced angle resolution using synthesized aperture |
US10933798B2 (en) | 2017-09-22 | 2021-03-02 | Magna Electronics Inc. | Vehicle lighting control system with fog detection |
US11391826B2 (en) | 2017-09-27 | 2022-07-19 | Magna Electronics Inc. | Vehicle LIDAR sensor calibration system |
EP3474038B1 (en) | 2017-10-23 | 2024-07-24 | ams International AG | Image sensor for determining a three-dimensional image and method for determining a three-dimensional image |
US11486968B2 (en) | 2017-11-15 | 2022-11-01 | Magna Electronics Inc. | Vehicle Lidar sensing system with sensor module |
US10816666B2 (en) | 2017-11-21 | 2020-10-27 | Magna Electronics Inc. | Vehicle sensing system with calibration/fusion of point cloud partitions |
US10016137B1 (en) | 2017-11-22 | 2018-07-10 | Hi Llc | System and method for simultaneously detecting phase modulated optical signals |
US10299682B1 (en) | 2017-11-22 | 2019-05-28 | Hi Llc | Pulsed ultrasound modulated optical tomography with increased optical/ultrasound pulse ratio |
US10215856B1 (en) | 2017-11-27 | 2019-02-26 | Microsoft Technology Licensing, Llc | Time of flight camera |
US11167771B2 (en) | 2018-01-05 | 2021-11-09 | Magna Mirrors Of America, Inc. | Vehicular gesture monitoring system |
US10901087B2 (en) | 2018-01-15 | 2021-01-26 | Microsoft Technology Licensing, Llc | Time of flight camera |
US11112498B2 (en) | 2018-02-12 | 2021-09-07 | Magna Electronics Inc. | Advanced driver-assistance and autonomous vehicle radar and marking system |
US11047977B2 (en) | 2018-02-20 | 2021-06-29 | Magna Electronics Inc. | Vehicle radar system with solution for ADC saturation |
US11199611B2 (en) | 2018-02-20 | 2021-12-14 | Magna Electronics Inc. | Vehicle radar system with T-shaped slot antennas |
US10368752B1 (en) | 2018-03-08 | 2019-08-06 | Hi Llc | Devices and methods to convert conventional imagers into lock-in cameras |
CN108519604B (zh) * | 2018-03-08 | 2021-08-10 | 北京理工大学 | 一种基于伪随机码调制解调的固态面阵激光雷达测距方法 |
JP7054639B2 (ja) * | 2018-03-16 | 2022-04-14 | ソニーセミコンダクタソリューションズ株式会社 | 受光素子および電子機器 |
CN108507688B (zh) * | 2018-04-10 | 2019-05-03 | 中国人民解放军国防科技大学 | 大数目激光阵列的相位探测与控制方法 |
US10942274B2 (en) | 2018-04-11 | 2021-03-09 | Microsoft Technology Licensing, Llc | Time of flight and picture camera |
US11206985B2 (en) | 2018-04-13 | 2021-12-28 | Hi Llc | Non-invasive optical detection systems and methods in highly scattering medium |
US12019160B2 (en) | 2018-04-19 | 2024-06-25 | The Board Of Trustees Of The Leland Stanford Junior University | Mechanically resonant photoelastic modulator for time-of-flight imaging |
US11857316B2 (en) | 2018-05-07 | 2024-01-02 | Hi Llc | Non-invasive optical detection system and method |
JP7433231B2 (ja) | 2018-07-17 | 2024-02-19 | ソニーグループ株式会社 | 撮像素子および撮像装置 |
KR102615195B1 (ko) * | 2018-07-19 | 2023-12-18 | 삼성전자주식회사 | ToF 기반의 3D 이미지 센서 및 그 이미지 센서를 구비한 전자 장치 |
US10895925B2 (en) | 2018-10-03 | 2021-01-19 | Microsoft Technology Licensing, Llc | Touch display alignment |
US11435476B2 (en) | 2018-10-12 | 2022-09-06 | Microsoft Technology Licensing, Llc | Time-of-flight RGB-IR image sensor |
EP3640677B1 (en) | 2018-10-17 | 2023-08-02 | Trimble Jena GmbH | Tracker of a surveying apparatus for tracking a target |
EP3640590B1 (en) | 2018-10-17 | 2021-12-01 | Trimble Jena GmbH | Surveying apparatus for surveying an object |
US11808876B2 (en) | 2018-10-25 | 2023-11-07 | Magna Electronics Inc. | Vehicular radar system with vehicle to infrastructure communication |
US11683911B2 (en) | 2018-10-26 | 2023-06-20 | Magna Electronics Inc. | Vehicular sensing device with cooling feature |
US11638362B2 (en) | 2018-10-29 | 2023-04-25 | Magna Electronics Inc. | Vehicular radar sensor with enhanced housing and PCB construction |
US11454720B2 (en) | 2018-11-28 | 2022-09-27 | Magna Electronics Inc. | Vehicle radar system with enhanced wave guide antenna system |
US11096301B2 (en) | 2019-01-03 | 2021-08-17 | Magna Electronics Inc. | Vehicular radar sensor with mechanical coupling of sensor housing |
US11332124B2 (en) | 2019-01-10 | 2022-05-17 | Magna Electronics Inc. | Vehicular control system |
US11294028B2 (en) | 2019-01-29 | 2022-04-05 | Magna Electronics Inc. | Sensing system with enhanced electrical contact at PCB-waveguide interface |
US11609304B2 (en) | 2019-02-07 | 2023-03-21 | Magna Electronics Inc. | Vehicular front camera testing system |
EP3696498A1 (en) | 2019-02-15 | 2020-08-19 | Trimble Jena GmbH | Surveying instrument and method of calibrating a survey instrument |
US12044794B2 (en) | 2019-02-26 | 2024-07-23 | Magna Electronics Inc. | Vehicular radar system with automatic sensor alignment |
WO2020225094A1 (en) * | 2019-05-06 | 2020-11-12 | Sony Semiconductor Solutions Corporation | Time-of-flight device and method |
US11267393B2 (en) | 2019-05-16 | 2022-03-08 | Magna Electronics Inc. | Vehicular alert system for alerting drivers of other vehicles responsive to a change in driving conditions |
US12036990B2 (en) | 2019-11-22 | 2024-07-16 | Magna Electronics Inc. | Vehicular control system with controlled vehicle stopping and starting at intersection |
US11079515B2 (en) | 2019-12-18 | 2021-08-03 | Microsoft Technology Licensing, Llc | Micro lens time-of-flight sensor having micro lens heights that vary based on image height |
DE112021000497T5 (de) | 2020-01-10 | 2022-11-24 | Magna Electronics, Inc. | Kommunikationssystem und -verfahren |
US12071084B2 (en) | 2020-02-14 | 2024-08-27 | Magna Electronics Inc. | Vehicular sensing system with variable power mode for thermal management |
RU2738602C1 (ru) * | 2020-03-03 | 2020-12-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" | Способ одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала |
JP2021182701A (ja) * | 2020-05-19 | 2021-11-25 | ソニーセミコンダクタソリューションズ株式会社 | 受光装置およびその駆動制御方法、並びに、測距装置 |
US12013480B2 (en) | 2020-06-05 | 2024-06-18 | Magna Electronics Inc. | Vehicular radar sensor with waveguide connection embedded in PCB |
US11823395B2 (en) | 2020-07-02 | 2023-11-21 | Magna Electronics Inc. | Vehicular vision system with road contour detection feature |
US20220011438A1 (en) * | 2020-07-10 | 2022-01-13 | Xin Jin | Multi-domain optical sensor chip and apparatus |
US20220011431A1 (en) * | 2020-07-10 | 2022-01-13 | Xin Jin | Camera sensor for lidar with doppler-sensing pixels |
US11749105B2 (en) | 2020-10-01 | 2023-09-05 | Magna Electronics Inc. | Vehicular communication system with turn signal identification |
US12030501B2 (en) | 2020-10-02 | 2024-07-09 | Magna Electronics Inc. | Vehicular control system with enhanced vehicle passing maneuvering |
US12117555B2 (en) | 2020-12-11 | 2024-10-15 | Magna Mirrors Of America, Inc. | Vehicular exterior door handle assembly with radar module and enhanced thermal management |
US12007476B2 (en) | 2021-09-13 | 2024-06-11 | Magna Electronics Inc. | Method for detecting objects via a vehicular sensing system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873561A (en) * | 1988-04-19 | 1989-10-10 | Wen David D | High dynamic range charge-coupled device |
DE3930632A1 (de) * | 1989-09-13 | 1991-03-14 | Steinbichler Hans | Verfahren zur direkten phasenmessung von strahlung, insbesondere lichtstrahlung, und vorrichtung zur durchfuehrung dieses verfahrens |
JP2581863B2 (ja) | 1991-12-26 | 1997-02-12 | 三菱電機株式会社 | 立体形状計測装置及び立体形状計測用センサ |
US5155383A (en) | 1992-02-03 | 1992-10-13 | Motorola, Inc. | Circuit and method of resetting a master/slave flipflop |
US5517043A (en) * | 1994-10-25 | 1996-05-14 | Dalsa, Inc. | Split pixel interline transfer imaging device |
DE4439298A1 (de) | 1994-11-07 | 1996-06-13 | Rudolf Prof Dr Ing Schwarte | 3D-Kamera nach Laufzeitverfahren |
JPH08313215A (ja) | 1995-05-23 | 1996-11-29 | Olympus Optical Co Ltd | 2次元距離センサ |
US5646733A (en) * | 1996-01-29 | 1997-07-08 | Medar, Inc. | Scanning phase measuring method and system for an object at a vision station |
MXPA99002142A (es) * | 1996-09-05 | 2004-08-27 | Rudolf Schwarte | Metodo y aparato para determinar la informacion defase y/o amplitud de una onda electromagnetica. |
-
1997
- 1997-09-05 MX MXPA99002142A patent/MXPA99002142A/es active IP Right Grant
- 1997-09-05 EP EP97941871A patent/EP1009984B1/de not_active Expired - Lifetime
- 1997-09-05 WO PCT/DE1997/001956 patent/WO1998010255A1/de active IP Right Grant
- 1997-09-05 HU HU0001087A patent/HU227654B1/hu unknown
- 1997-09-05 ES ES97941871T patent/ES2206748T3/es not_active Expired - Lifetime
- 1997-09-05 AU AU43761/97A patent/AU715284B2/en not_active Expired
- 1997-09-05 CN CN97198749A patent/CN1103045C/zh not_active Expired - Lifetime
- 1997-09-05 RU RU99106432/28A patent/RU2182385C2/ru active
- 1997-09-05 AT AT97941871T patent/ATE254758T1/de active
- 1997-09-05 BR BRPI9712804-0A patent/BR9712804B1/pt not_active IP Right Cessation
- 1997-09-05 US US09/254,333 patent/US6825455B1/en not_active Expired - Lifetime
- 1997-09-05 CZ CZ0069399A patent/CZ300055B6/cs not_active IP Right Cessation
- 1997-09-05 JP JP51212498A patent/JP4060365B2/ja not_active Expired - Lifetime
- 1997-09-05 CA CA002264051A patent/CA2264051C/en not_active Expired - Lifetime
-
2004
- 2004-11-29 US US10/999,582 patent/US7053357B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU99106432A (ru) | Способ и устройство для определения информации об амплитуде и фазе электромагнитной волны | |
RU2182385C2 (ru) | Способ и устройство для определения информации об амплитуде и фазе электромагнитной волны | |
US11172186B2 (en) | Time-Of-Flight camera system | |
US11025847B2 (en) | Imaging device including an imaging cell having variable sensitivity | |
KR100404961B1 (ko) | 강도변조된복사전자기장의검출과복조를위한장치및그방법 | |
JP5066735B2 (ja) | 電磁波の位相及び振幅を検出するための装置並びに方法 | |
Lange et al. | Solid-state time-of-flight range camera | |
Miyagawa et al. | CCD-based range-finding sensor | |
US5754280A (en) | Two-dimensional rangefinding sensor | |
CN104081528B (zh) | 多光谱传感器 | |
KR100725848B1 (ko) | 제어 가능 감도를 가진 수광 소자 및 제어 가능 감도를가진 수광 소자를 이용하는 공간 정보 검출 장치 | |
US20110018967A1 (en) | Recording of 3d images of a scene | |
EP1152261A1 (en) | Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves | |
US20110063437A1 (en) | Distance estimating device, distance estimating method, program, integrated circuit, and camera | |
US20130088620A1 (en) | Method of controlling a system including an image sensor and a light source | |
US20110193956A1 (en) | Apparatus and a method for performing a difference measurement of an object image | |
JP2003247809A (ja) | 距離情報入力装置 | |
JP2001268445A (ja) | 光センサおよび三次元形状計測装置 | |
JP2001028766A (ja) | 3次元画像検出装置 | |
KR20000068490A (ko) | 전자파의 진폭정보와 위상을 감지하는 방법 및 장치 | |
WO2009156300A1 (en) | Method and device for recording 3d images of a scene | |
JPH07140005A (ja) | マルチカラーセンサ | |
JP2000346626A (ja) | 3次元画像入力装置 |