RU2728243C1 - Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis - Google Patents

Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis Download PDF

Info

Publication number
RU2728243C1
RU2728243C1 RU2019140912A RU2019140912A RU2728243C1 RU 2728243 C1 RU2728243 C1 RU 2728243C1 RU 2019140912 A RU2019140912 A RU 2019140912A RU 2019140912 A RU2019140912 A RU 2019140912A RU 2728243 C1 RU2728243 C1 RU 2728243C1
Authority
RU
Russia
Prior art keywords
xylanase
pichia pastoris
gene
yeast strain
yeast
Prior art date
Application number
RU2019140912A
Other languages
English (en)
Inventor
Анна Николаевна Калинина
Лариса Николаевна Борщевская
Татьяна Леонидовна Гордеева
Татьяна Дмитриевна Федай
Сергей Павлович Синеокий
Original Assignee
Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт"-ГосНИИгенетика)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт"-ГосНИИгенетика) filed Critical Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт"-ГосНИИгенетика)
Priority to RU2019140912A priority Critical patent/RU2728243C1/ru
Application granted granted Critical
Publication of RU2728243C1 publication Critical patent/RU2728243C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к микробиологии и биотехнологии и касается получения рекомбинантных штаммов дрожжей Pichia pastoris, способных продуцировать ксиланазу. Получен рекомбинантный штамм дрожжей Pichia pastoris Х2 ВКПМ Y-4607, содержащий ген, кодирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis, и дополнительные копии гена НАС1 из Pichia pastoris - продуцент ксиланазы. Изобретение позволяет расширить арсенал продуцентов ксиланазы. 3 ил., 2 пр.

Description

Изобретение относится к микробиологии и биотехнологии и касается получения трансформантов дрожжей Pichia pastoris, способных продуцировать ксиланазу.
Ксилан является основным структурным полисахаридом растительных клеткок и вторым после целлюлозы наиболее распространенным полисахаридом в природе [Biotech. Genet. Eng. Rev. 1995, 13, 100-131]. Это комплексный полисахарид, основная цепь которого состоит из β-(1-4) связанного ксилозного скелета с небольшим количеством β-(1-3) ответвлений [Macromol Rapid Commun., 2000, 21(9), 542-556. doi: 10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.СО;2-7].
Полная деградация ксилана требует комплекса ксиланолитических ферментов, включающих эндо-ксиланазу, ксилозидазу, глюкуронидазу, ацетилэстеразу и арабинофуранозидазу [Crit Rev Biotechnol., 2002, 22, 33-64, doi: 10.1080/07388550290789450].
Основную роль в разрушении ксилана играет эндо-ксиланаза (эндо-1,4-β-ксиланаза, ЕС 3.2.1.8), которая катализирует случайный гидролиз ксилана до ксилололигосахаридов.
Эндо-1,4-β-ксиланазу широко используют в различных отраслях промышленности. При кормопроизводстве введение ксиланаз уменьшает содержание некрахмальных полисахаридов, тем самым снижая вязкость корма в кишечнике животных и улучшая усвояемость и питательную ценность плохо разлагаемых кормов. [J. Anim. Sci., 2002, 80, 2773-2779; Br. Poult. Sci., 2003, 44, 60-66; Br. Poult. Sci., 2003, 44, 291-298]
Природными источниками ксиланаз являются различные микроорганизмы: бактерии, грибы, дрожжи и актиномицеты [FEMS Microbiology Reviews, 2005, 29 (1), 3-23].
Традиционно ферментные препараты, в состав которых входят ксиланазы, получают на основе нерекомбинантных или рекомбинантных штаммов грибов рода Trichoderma, Aspergillus или Penicillium. Однако грибные штаммы, помимо ксиланазы, продуцируют ряд других ферментов, относящихся к карбогидразам, а именно: целлюлазу, глюканазу, пектиназу и маннаназу, что не позволяет использовать их при производстве моноферментных препаратов.
Наиболее перспективным является создание продуцентов ферментов на основе рекомбинантных штаммов метилотрофных дрожжей Pichia pastoris. При использовании несбраживаемых источников углерода (глицерина, метанола и т.п.) дрожжи Pichia pastoris способны к росту с образованием биомассы высокой плотности, что позволяет получать значительные количества гетерологичного белка [Appl. Microbiol. Biotechnol, 2000, 54(6), 741-750]. При этом процесс культивирования метилотрофных дрожжей достаточно прост, поскольку их рост не блокируется продуктами метаболизма [FEMS Microbiol. Rev., 2000, 24: 45-66, doi: 10.1111/j.1574-6976.2000.tb00532.x].
Известны примеры создания продуцентов ксиланазы на основе дрожжей Pichia pastoris.
Показано [Protein Expression and Purification 57 (2008), 101-107], что ген reBlxA из Bacillus licheniformis, кодирующий ксиланазу А, эффективно экспрессируется в клетках дрожжей Pichia pastoris, при этом активность рекомбинантной ксиланазы в культуральной жидкости составляет 122.9 U/mg.
Известны также рекомбинантные штаммы Pichia pastoris, продуцирующие ксиланазу из Streptomyces sp. FA1 [CN 107142225 А] и ксиланазу из Neocallimastix frontalis [CN 104130951 A].
Показано [Биотехнология, 2018, 34 (6), 22-32], что эндо-1,4-β-ксиланаза из Paenibacillus brasilensis обладает промышленно ценными свойствами. На основе Р pastoris получены штаммы, секретирующие ксиланазу из Paenibacillus brasilensis, продуктивность которых при культивировании в пробирках составляет 1114 и 1728 ед/мл культуральной жидкости [RU 2701308, RU 2701642].
Однако, остается потребность в расширении арсенала штаммов P. pastoris с повышенной продукцией эндо-1,4-β-ксиланазы из Paenibacillus brasilensis.
Одним из подходов, позволяющих повысить продукцию целевых белков в Р. pastoris, является коэкспрессия генов-помощников, входящих в систему ответа клетки на несвернутый белок (UPR - unfolded protein response) [Экологическая генетика, 2017, 15(2), 21-30]. В качестве таких генов используют, в частности, ген, кодирующий протеиндисульфидизомеразу (Pdi), которая выступает в качестве шаперона, ингибируя агрегацию неправильно свернутых белков; ген НАС1, кодирующий активатор транскрипции генов UPR и другие. Так, в работе [Journal of proteomics, 91 (2013) 58-72] в состав хромосомы рекомбинантного штамма Р. pastoris, продуцирующего ксиланазу из Bacillus halodurans, был интегрирован ген НАС1 из P. pastoris, что привело к увеличению продуктивности на 38% по сравнению с исходным штаммом.
Задачей заявляемого изобретения является расширение арсенала рекомбинантных микроорганизмов, продуцирующих эндо-1,4-β-ксиланазу.
Задача решена путем конструирования штамма дрожжей Pichia pastoris, продуцирующего эндо-1,4-β-ксиланазу, содержащего в составе хромосомы ген xyl, кодирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis, и дополнительные копии гена НАС1 из Pichia pastoris.
Рекомбинантный штамм получен:
- интеграцией в состав хромосомы штамма Pichia pastoris ВКПМ Y-4392 экспрессионной кассеты 1, содержащей ген xyl из Paenibacillus brasilensis;
- выщеплением маркерного гена с использованием Cre-lox системы;
- интеграцией экспрессионной кассеты 2, содержащей ген НАС1 из Pichia pastoris.
Штамм является продуцентом эндо-1,4-β-ксиланазы и депонирован в Биоресурсном центре Всероссийская Коллекция Промышленных Микроорганизмов (БРЦ ВКПМ) НИЦ «Курчатовский институт» - ГосНИИгенетика как Pichia pastoris Х2 ВКПМ Y-4607.
Культурально-морфологические характеристики заявляемого штамма:
При культивировании при температуре 28°С в течение 48 часов на агаризованной среде YP (мас. %: дрожжевой экстракт - 1, пептон - 2, агар - 2, вода - остальное) с добавлением глюкозы (2 мас. %) клетки имеют овальную форму, 3-4 мкм в диаметре. Клетки почкуются, при этом почкование истинное, многостороннее. Истинного мицелия не образуют.
Споруляция происходит при инкубации культуры на агаризованной среде следующего состава (мас. %): хлорид калия - 1.0, ацетат натрия - 0.5, глюкоза - 1.0, агар - 2.0, вода - остальное. Аски имеют тетраэдрическую форму, включают 4 аскоспора.
На агаризованной среде YP с добавлением глюкозы (2 мас. %) колонии светло-бежевого цвета с ровным краем, матовой поверхностью, линзовидным профилем и пастообразной консистенцией.
При росте в жидкой среде YP (мас. %: дрожжевой экстракт - 1, пептон - 2, вода -остальное) с добавлением глюкозы (2 мас. %), при 28°С в течение 24 ч культивирования - жидкость мутная, осадок белый, коагуляции не наблюдается, пристеночных пленок не образует.
Физиолого-биохимические признаки:
Штамм способен к росту как в аэробных, так и в анаэробных условиях.
В качестве единственного источника углерода способен использовать метанол, этанол, глюкозу, глицерин, лактат, сукцинат, не способен ассимилировать мальтозу, сахарозу, ацетат, крахмал, лактозу.
При культивировании в присутствии метанола штамм способен синтезировать ксиланазу.
Изобретение проиллюстрировано следующими фигурами.
Фиг. 1 Экспрессионная кассета 1
Фиг. 2 Экспрессионная кассета 2.
Фиг. 3 Фингерпринт штамма Pichia pastoris ВКПМ Х2 Y-4607
Пример 1. Конструирование заявляемого штамма.
При конструировании интегративной кассеты для экспрессии гена xyl используют метод "фьюжн-пцр" [Gene., 1989, 15, 77(1), 61-68.]. В качестве источника гена xyl используют тотальную геномную ДНК Paenibacillus brasilensis X1 ВКПМ В-13092 [Биотехнология, 2018, 34 (6), 22-32]. Синтезируют ДНК гена xyl методом ПЦР с использованием праймеров XylP-f и XylP-r
XylP-f5'-gcgacagactactggcaaaat-3',
XylP-r5'-ttaccacaccgttacgttaga-3'.
Полученную последовательность ДНК встраивают в состав экспрессионной кассеты 1 (фиг. 1), в состав которой входят следующие генетические элементы:
1. Ген xyl Paenibacillus brasilensis, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем АОХ1 промотора;
2. Терминатор транскрипции ТТАОХ1;
3. Дрожжевой селективный маркер kan (kanMX), фланкированный сайтами lox 66 и lox 71, под контролем дрожжевого TEF промотора и обуславливающий у дрожжей Pichia pastoris устойчивость к антибиотику генетицину (G418);
4. Область интеграции - нуклеотидная последовательность гена АОХ2.
Указанную интегративную экспрессионную кассету трансформируют в штамм Pichia pastoris ВКПМ Y-4392, полученный на основе штамма Pichia pastoris DSMZ 70877 интеграцией в хромосому кассеты Pcup-cre, состоящей из гена cre, кодирующего рекомбиназу бактериофага Р1 под контролем Pcup промотора из Saccharomyces cerevisiae.
Штамм Pichia pastoris ВКПМ Y-4392 предварительно выращивают в жидкой питательной среде YP с добавлением глюкозы (2 мас. %) до концентрации 1×108 клеток на 1 мл. Клетки центрифугируют, промывают в ледяной стерильной воде, а затем в ледяном растворе 1 М сорбитола. Затем клетки инкубируют в 25 мМ растворе дитиотрейтола в течение 15 минут и промывают в ледяном растворе 1 М сорбитола. Обработанные таким образом клетки ресуспендируют в ледяном растворе 1 М сорбитола в концентрации 1-5×109 клеток на 1 мл. Аликвоту, объемом 40 мкл клеточной суспензии, переносят в охлажденный эппендорф, добавляют 400 нг ДНК экспрессионной интеграционной кассеты, и инкубируют во льду 5 минут. Смесь клеток и ДНК переносят в предварительно охлажденную кювету для электропорации. Электропорацию проводят при следующих условиях: 1,5 кВ, 400 Ом, 25 uF. После порации добавляют 1 мл ледяного раствора 1 М сорбитола.
Селекцию ведут на агаризованной среде среде YP с добавлением глюкозы (2 мас. %) в течение 5 суток при температуре 30°С. В качестве селективного агента добавляют антибиотик G418 в количестве 500 мкг/мл.
Для отбора наиболее продуктивных трансформантов проводят их культивирование в жидкой ферментационной питательной среде YP с добавлением метанола (3 мас. %) в 96-луночных планшетах при 30°С в течение 72 ч на качалке (250 об/мин). В качестве контроля используют штамм Pichia pastoris ВКПМ Y-4392.
Определение активности ксиланазы в культуральной жидкости проводят с использованием ДНС метода [Anal. Chem., 1959, 31 (3), 426-428] в 96-луночном планшете следующим образом: в каждой лунке смешивают 25 мкл 1% раствора субстрата ксилана березы в 0,5 М ацетатном буфере (рН 6) и 25 мкл культуральной жидкости. Инкубацию проводят при 50°С 10 минут, после чего добавляют в лунку 50 мкл раствора ДНС. Планшет прогревают при 99°С 10 минут и измеряют оптическую плотность окрашенного раствора при длине волны 546 нм. В качестве стандарта используют раствор глюкозы.
По результатам ферментации отбирают наиболее продуктивный трансформант X1, который при культивировании в планшете синтезирует ксиланазу в количестве 445 ед/мл культуральной жидкости.
Для выщепления маркерного гена kanMX из экспрессионной кассеты, интегрированной в хромосому трансформанта X1, проводят индукцию гена cre, кодирующего рекомбиназу бактериофага Р1, встроенного в хромосому штамма Pichia pastoris ВКПМ Y-4392 (Mut+, INS Pcup-cre) и находящегося под контролем промотора Pcup. Индукция происходит в присутствии ионов меди. Для этого клетки трансформанта X1 выращивают в жидкой питательной среде YP с добавлением глюкозы (2 мас. %) до концентрации 1×108 клеток на 1 мл, после чего добавляют раствор сульфата меди до концентрации 0,3 М, инкубируют в течение 3 часов, после чего клетки высевают на агаризованную питательную среду YP с добавлением глюкозы (2 мас. %). Отбирают колонии, не способные к росту в присутствии антибиотика G418.
Таким образом отобран трансформант X1 с выщепленным маркерным геном kanMX, способный к синтезу фермента эндо-1,4-β-ксиланазы Paenibacillus brasilensis.
При конструировании интегративной кассеты для экспрессии гена НАС1 используют метод "фьюжн-пцр" [Gene., 1989, 15, 77(1), 61-68.]. В качестве источника гена НАС1 используют тотальную геномную ДНК Pichia pastoris ВКПМ Y-4392. Синтезируют ДНК гена НАС1 методом ПЦР с использованием праймеров HAC1-f и HAC1-r.
НАС1-f5'-atgcccgtagattcttctca-3',
HAC1-r5'-ctattcctggaagaatacaaagt-3'
Полученную последовательность ДНК встраивают в состав экспрессионной кассеты 1 (фиг. 2), в состав которой входят следующие генетические элементы:
1. Ген HAC1_Pichia pastoris под контролем GAP промотора;
2. Терминатор транскрипции ТТАОХ1;
3. Дрожжевой селективный маркер kan (kanMX), фланкированный сайтами lox 66 и lox 71, под контролем дрожжевого TEF промотора и обуславливающий у дрожжей Pichia pastoris устойчивость к антибиотику генетицину (G418);
Указанную экспрессионную кассету интегрируют в состав хромосомы трансформанта X1. Трансформацию экспрессионной кассеты, отбор наиболее активного трансформанта и выщепление маркерного гена проводят как описано выше.
Результаты ПЦР-фингерпринта [Applied and Environmental Microbiology, Oct, 1999, 4351-4356] штамма Pichia pastoris X2 ВКПМ Y-4607 представлены на фиг 3.
Фингерпринт проведен путем полимеразной цепной реакции (PCR) с использованием неспецифических праймеров М13 (линия 2 фиг. 3) и 1254 (линия 3 фиг. 3).
Праймер М13 gagggtggcggttct
режим реакции:
1 цикл
95°С - 3 мин.
39 циклов
95°С - 30 сек.
45°С - 30 сек.
72°С - 2 мин.
1 цикл
72°С - 5 мин
Праймер 1254 ccgcagccaa
режим реакции:
1 цикл
95°С - 3 мин.
39 циклов
95°С - 30 сек.
48°С - 30 сек.
72°С- 1 мин.
1 цикл
72°С - 5 мин
Для контроля величины фрагментов ДНК при электрофорезе использован молекулярный маркер 1kb DNA GeneRuler (Fermentas) (линия 1, фиг. 3 размер фрагментов снизу вверх 10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250 п.н.).
Таким образом отобран трансформант, в состав хромосомы которого интегрированы кассеты для совместной экспрессии гена xyl и дополнительных копий гена НАС1 из P. pastoris, способный к синтезу фермента эндо-1,4-β-ксиланазы Paenibacillus brasilensis в количестве 618 ед/мл КЖ при культивировании в планшете.
Полученный трансформант является продуцентом эндо-1,4-β-ксиланазы и депонирован в Биоресурсном центре Всероссийская Коллекция Промышленных Микроорганизмов (БРЦ ВКПМ) НИЦ «Курчатовский институт» - ГосНИИгенетика как Pichia pastoris Х2 ВКПМ Y-4607.
Пример 2. Получение ксиланазы с использованием штамма Pichia pastoris Х2 ВКПМ Y-4607.
Посевную культуру выращивают в пробирках (50 мл) с 10 мл жидкой питательной среды YP с добавлением глюкозы (2 мас. %) при 30°С в течение 24 ч на качалке с 250 об/мин. Посев ферментационной среды осуществляют в соотношении 1/10.
Ферментацию проводят при 30°С на качалке (250 об/мин) в питательной среде состава (мас. %): дрожжевой экстракт - 0,5, пептон - 1, вода - остальное с добавлением глюкозы (1 мас. %) в пробирках (50 мл) с рабочим объемом 5 мл. Через 18 часов добавляют метанол (1 мас. %) Ферментацию продолжают в течение 72 часов, добавляя метанол (1 мас. %) через каждые 24 часа. После окончания ферментации определяют количество фермента ксиланазы в культуральной жидкости с использованием ДНС метода [Anal. Chem., 1959, 31 (3), 426-428].
Через 72 часа ферментации количество фермента составило 2219 ед/мл культуральной жидкости.

Claims (1)

  1. Рекомбинантный штамм дрожжей Pichia pastoris ВКПМ Y-4607 - продуцент ксиланазы, содержащий в составе хромосомы ген, кодирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis, и дополнительные копии гена НАС1 из Pichia pastoris.
RU2019140912A 2019-12-11 2019-12-11 Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis RU2728243C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019140912A RU2728243C1 (ru) 2019-12-11 2019-12-11 Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019140912A RU2728243C1 (ru) 2019-12-11 2019-12-11 Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis

Publications (1)

Publication Number Publication Date
RU2728243C1 true RU2728243C1 (ru) 2020-07-28

Family

ID=72085908

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019140912A RU2728243C1 (ru) 2019-12-11 2019-12-11 Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis

Country Status (1)

Country Link
RU (1) RU2728243C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142225A (zh) * 2017-07-06 2017-09-08 江南大学 一种强化表达Streptomyces sp. FA1来源木聚糖酶的毕氏酵母重组菌
RU2673971C1 (ru) * 2017-12-19 2018-12-03 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Штамм бактерий Paenibacillus species - продуцент ксиланазы
RU2701308C1 (ru) * 2018-12-19 2019-09-25 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Рекомбинантный штамм дрожжей Pichia pastoris - продуцент ксиланазы
RU2701642C1 (ru) * 2018-12-19 2019-09-30 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Штамм дрожжей Pichia pastoris - продуцент ксиланазы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142225A (zh) * 2017-07-06 2017-09-08 江南大学 一种强化表达Streptomyces sp. FA1来源木聚糖酶的毕氏酵母重组菌
RU2673971C1 (ru) * 2017-12-19 2018-12-03 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Штамм бактерий Paenibacillus species - продуцент ксиланазы
RU2701308C1 (ru) * 2018-12-19 2019-09-25 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Рекомбинантный штамм дрожжей Pichia pastoris - продуцент ксиланазы
RU2701642C1 (ru) * 2018-12-19 2019-09-30 Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) Штамм дрожжей Pichia pastoris - продуцент ксиланазы

Similar Documents

Publication Publication Date Title
Visser et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1
TWI410490B (zh) 製造纖維素酶及/或半纖維素酶之真菌、具有高水解活性之纖維素酶及半纖維素酶之製造方法、以及降解或糖化生物質之方法
Ruanglek et al. Cloning, expression, characterization, and high cell-density production of recombinant endo-1, 4-β-xylanase from Aspergillus niger in Pichia pastoris
CN109790510A (zh) 在不存在诱导底物下丝状真菌细胞中的蛋白产生
WO2019128454A1 (zh) 一种新型木霉及其应用
Wei et al. Recombinant protein production in the filamentous fungus Trichoderma
CN104838003A (zh) Rasamsonia转化体
RU2701308C1 (ru) Рекомбинантный штамм дрожжей Pichia pastoris - продуцент ксиланазы
RU2701642C1 (ru) Штамм дрожжей Pichia pastoris - продуцент ксиланазы
CN111094556B (zh) 用于生产纤维素酶和木聚糖酶的突变株棘孢曲霉及其制备方法
Su et al. High-level expression and purification of a molluskan endoglucanase from Ampullaria crossean in Pichia pastoris
RU2728243C1 (ru) Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis
WO2003016525A9 (fr) Procede de production d&#39;alcool a partir d&#39;amidon
CN107236680B (zh) 一种表达Streptomyces sp.FA1来源木聚糖酶的毕氏酵母重组菌
RU2725475C1 (ru) Рекомбинантный штамм дрожжей Pichia pastoris - продуцент ксиланазы из Pyromyces finnis
RU2728033C1 (ru) Трансформант дрожжей Pichia pastoris, продуцирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis
CN106350461B (zh) 根瘤农杆菌介导的特异腐质霉的遗传转化方法及其表达载体
CN113699176A (zh) 高产溶血磷脂酶黑曲霉重组表达菌株的构建及应用
JP2015012852A (ja) 微細藻類バイオマスを原料とするバイオ燃料の製造方法
RU2736441C1 (ru) Штамм дрожжей Komagataella kurtzmanii, продуцирующий бета-глюканазу из Bacillus pumilus и бета-глюканазу из Paenibacillus jamilae
RU2646132C1 (ru) Рекомбинантный штамм мицелиального гриба penicillium canescens cl14, продуцирующий компонент целллюлосомы clostridium thermocellum, и способ его культивирования
RU2714113C1 (ru) Трансформант дрожжей Pichia pastoris, продуцирующий ксиланазу
RU2730577C1 (ru) Рекомбинантный штамм дрожжей Komagataella kurtzmanii - продуцент бета-глюканазы из Paenibacillus jamilae
RU2747782C1 (ru) Рекомбинантный штамм дрожжей Ogataea haglerorum, продуцирующий бета-маннаназу Bacillus subtilis
RU2764793C1 (ru) Трансформант дрожжей Ogataea haglerorum, продуцирующий бета-маннаназу, содержащий в составе хромосомы синтетический ген MANS

Legal Events

Date Code Title Description
QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20200828

Effective date: 20201214