RU2693167C1 - Резиновая смесь и шина - Google Patents

Резиновая смесь и шина Download PDF

Info

Publication number
RU2693167C1
RU2693167C1 RU2018118143A RU2018118143A RU2693167C1 RU 2693167 C1 RU2693167 C1 RU 2693167C1 RU 2018118143 A RU2018118143 A RU 2018118143A RU 2018118143 A RU2018118143 A RU 2018118143A RU 2693167 C1 RU2693167 C1 RU 2693167C1
Authority
RU
Russia
Prior art keywords
rubber
urea
fatty acid
tire
rubber composition
Prior art date
Application number
RU2018118143A
Other languages
English (en)
Inventor
Масаки МИЁСИ
Original Assignee
Бриджстоун Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бриджстоун Корпорейшн filed Critical Бриджстоун Корпорейшн
Application granted granted Critical
Publication of RU2693167C1 publication Critical patent/RU2693167C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/262Alkali metal carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Tires In General (AREA)

Abstract

Изобретение относится к резиновой композиция и шине. Резиновая композиция включает компонент на основе диенового каучука, мас.ч на 100 мас.ч. каучука: пенообразователь 0,1-20,0, образующий диоксид углерода; соль металла жирной кислоты и мочевина в сумме 0,1-2,0, и массовое отношение соли металла жирной кислоты и мочевины составляет 1:0,5 - 1:3,9. Изобретение обеспечивает баланс между скоростью вулканизации и скоростью вспенивания, что улучшает характеристики торможения шины на льду. 2 н. и 5 з.п. ф-лы, 2 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к резиновой смеси и шине.
Известный уровень техники
Обычно органический вспенивающий агент в основном используется в качестве пенообразователя, входящего в резиновую смесь. Если в дополнение к органическому пенообразователю неорганический пенообразователь (например, см. JP 2014-520174 A (PTL 1)) может быть использован в качестве вспенивающего агента, включённого в резиновую смесь, даже компаундирующий агент, который снижает характеристики улучшения эффекта при использовании в сочетании с органическим вспенивающим агентом, может быть использован в резиновой смеси в сочетании с неорганическим вспенивающим агентом. Это может расширить диапазон вариантов сочетания пенообразующих агентов и компаундирующих агентов в резиновой смеси.
Список цитированных источников
Патентная литература
PTL 1: JP 2014-520174 A
Краткое изложение существа изобретения
Техническая проблема
Однако в случае, когда неорганический пенообразователь, такой как пищевая сода, используется в качестве вспенивающего агента, трудно обеспечить баланс между скоростью вулканизации и скоростью вспенивания.
Поэтому было бы полезно создать резиновую композицию и шину, которые могут обеспечить баланс между скоростью вулканизации и скоростью вспенивания.
Решение проблемы
Резиновая композиция в соответствии с настоящим изобретением включает: компонент на основе диенового каучука; пенообразователь, образующий диоксид углерода; соль металла жирной кислоты; и мочевину, причём содержание пенообразователя составляет 0,1 - 20 частей масс. на 100 частей масс. компонента на основе диенового каучука, общее содержание соли металла жирной кислоты и мочевины составляет 0,1 - 20 частей масс. на 100 частей масс. компонента на основе диенового каучука, и массовое отношение соли жирной кислоты и мочевины составляет 1:0,5 - 1:3,9.
Положительный эффект
В результате проведения тщательного исследования заявители установили, что в случае использования пенообразователя, который образует диоксид углерода, баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен за счёт присутствия соли металла жирной кислоты и мочевины при заданном соотношении.
В соответствии с настоящим изобретением можно создать резиновую смесь и шину, которые могут обеспечить баланс между скоростью вулканизации и скоростью вспенивания.
Подробное описание
Резиновая композиция и шина в соответствии с одним из раскрытых осуществлений подробно описаны ниже.
Резиновая композиция
Резиновая композиция в соответствии с одним из раскрытых осуществлений (далее также обозначаемая «иллюстративной резиновой композицией») включает, по меньшей мере, на основе компонент диенового каучука, пенообразователь, соль металла жирной кислоты и мочевину и необязательно включает другие компоненты.
В дополнение к компоненту на основе диенового каучука, пенообразующему агенту, соли металла жирной кислоты и мочевине иллюстративная резиновая композиция может дополнительно содержать компаундирующие агенты, обычно используемые в резиновой промышленности, которые могут быть подходящими, не влияя при этом на настоящее изобретение. В качестве этих компаундирующих агентов могут быть использованы коммерчески доступные продукты. Резиновая композиция в соответствии с осуществлением может быть получена путём смешивания при необходимости смеси компонента на основе диенового каучука, пенообразователя, соли металла жирной кислоты и мочевины с подходящими компаундирующими агентами и пластифицирования, нагрева, экструзии и т.д., смеси.
Компонент на основе диенового каучука
Компонент на основе диенового каучука не ограничен и он может быть выбран в зависимости от цели. Примеры включают натуральный каучук (NR) и синтетический диеновый каучук, такой как бутадиеновый каучук (BR), стирол-бутадиеновый каучук (SBR), изопреновый каучук (IR) и хлоропреновый каучук (CR). «Диеновый каучук», указанный в описании, также включает соответствующие модифицированные продукты этих каучуков. Они могут быть использованы по отдельности или в комбинации двух или более.
Из них природный каучук (NR) и бутадиеновый каучук (BR) являются предпочтительными с точки зрения обеспечения гибкости на льду (низкой температурной гибкости) резиновой смеси или шины.
Пенообразователь
Пенообразователь не ограничен, если он образует диоксид углерода, и может быть выбран в зависимости от цели. Примеры включают неорганические пенообразующие агенты, такие как пищевая сода, карбонат натрия, гидрокарбонат кальция, карбонат кальция, гидрокарбонат аммония и карбонат аммония. Они могут быть использованы по отдельности или в комбинации двух или более.
Из них предпочтительной является пищевая сода с точки зрения баланса между скоростью вулканизации и скоростью вспенивания.
Содержание пенообразователя на 100 частей масс. компонента на основе диенового каучука не ограничено, до тех пор, пока оно составляет 0,1 - 20 частей масс. и может быть выбрано соответствующим образом в зависимости от цели. Содержание предпочтительно составляет 5 частей масс. или более и более предпочтительно 5 - 15 частей масс.
Если содержание составляет менее 0,1 частей масс., не происходит вспенивания. Если содержание составляет более 20 частей масс., существует возможность снижения износостойкости. Если содержание находится в предпочтительном диапазоне или в более предпочтительном диапазоне, баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
Соль металла жирной кислоты
Ограничения соли металла жирной кислоты не существует и она может быть выбрана соответствующим образом в зависимости от цели. Например, стеарат цинка и стеарат магния являются предпочтительными с точки зрения баланса между скоростью вулканизации и скоростью вспенивания. Они могут использоваться по отдельности или в комбинации двух или более.
Из них особенно предпочтительным является стеарат цинка.
Мочевина
Содержание мочевины на 100 частей масс. компонента на основе диенового каучука не ограничено, до тех пор пока общее содержание соли металла жирной кислоты и мочевины находится в диапазоне 0,1 - 20 частей масс. и может быть выбрано соответствующим образом в зависимости от цели. Содержание предпочтительно составляет 3 части масс. или более.
Если содержание находится в предпочтительном диапазоне или в более предпочтительном диапазоне, баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
В случае, когда пенообразователем является пищевая сода, содержание мочевины предпочтительно составляет 1/2 или более содержания пищевой соды. Если содержание мочевины составляет 1/2 или более содержания соды в качестве пенообразователя, баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
Общее содержание соли металла жирной кислоты и мочевины
Общее содержание соли металла жирной кислоты и мочевины на 100 частей масс. компонента диенового каучука не ограничено, до тех пор, пока оно находится в диапазоне 0,1 - 20 частей масс. и может быть выбрано в зависимости от цели. Общее содержание предпочтительно составляет 3 части масс. или более и более предпочтительно 5 частей масс. или более.
Если общее содержание находится в предпочтительном диапазоне или в более предпочтительном диапазоне, баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
Массовое отношение соли металла жирной кислоты и мочевины
Массовое отношение соли металла жирной кислоты и мочевины не ограничено, до тех пор, пока оно находится в диапазоне 1: 0,5 - 1: 3,9 и может быть соответственно выбрано в зависимости от цели. Массовое отношение предпочтительно составляет 1: 0,7 - 1: 3,3 и более предпочтительно 1: 0,9 - 1: 2,7.
Если массовое отношение менее 1:0,5, пищевая сода не вспенивается. Если массовое отношение более 1:3,9, вулканизация чрезмерно быстрая, и вспенивание не происходит. Если массовое отношение находится в предпочтительном диапазоне или в более предпочтительном диапазоне, может быть обеспечен баланс между скоростью вспенивания и скоростью вулканизации.
Другие компоненты
Отсутствуют ограничения по другим компонентам, и они могут быть выбраны соответствующим образом в зависимости от предназначения. Примеры включают наполнитель, ингибитор старения, пластификатор, стеариновую кислоту, оксид цинка, ускоритель вулканизации, вулканизующий агент, масло и серу.
В резиновой композиции в соответствии с этим осуществлением предпочтительно соль металла жирной кислоты является, по меньшей мере, одной солью, выбранной из группы, состоящей из стеарата цинка и стеарата магния. Благодаря этой структуре баланс между скоростью вулканизации и скоростью вспенивания может быть надёжно обеспечен.
В резиновой композиции в соответствии с этим осуществлением более предпочтительно пенообразователем является пищевая сода. Благодаря этой структуре баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
В резиновой композиции в соответствии с этим осуществлением более предпочтительно содержание мочевины составляет 3 части масс. или более на 100 частей масс. компонента на основе диенового каучука. Благодаря этой структуре баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
В резиновой композиции в соответствии с этим осуществлением более предпочтительно общее содержание соли металла жирной кислоты и мочевины составляет 5 частей масс. или более на 100 частей масс. компонента на основе диенового каучука. Благодаря этой структуре баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
В резиновой композиции в соответствии с этим осуществлением более предпочтительно содержание пенообразователя составляет 5 частей масс. или более на 100 частей масс. компонента на основе диенового каучука. Благодаря этой структуре баланс между скоростью вулканизации и скоростью вспенивания может быть обеспечен более надёжно.
Шина
Шина в соответствии с одним из раскрытых осуществлений (далее также называемая «иллюстративной шиной») включает протектор, в котором используется резиновая композиция в соответствии с этим осуществлением.
Способ изготовления иллюстративной шины может быть обычным способом. Например, элементы, обычно используемые для производства шин, такие как слой каркаса, слой брекера и слой протектора, содержащие невулканизированный каучук, последовательно собираются на барабане для формирования шины. Затем барабан удаляется, чтобы получить невулканизированную шину. Затем невулканизированную шину нагревают и вулканизируют обычным способом для получения требуемой шины (например, пневматической шины). Таким образом, способ изготовления образцовой шины включает, например, (i) стадию сборки и (ii) стадию нагрева и вулканизации.
Шина в соответствии с этим осуществлением включает протектор, в котором используется резиновая смесь в соответствии с этим осуществлением.
Шина в соответствии с этим осуществлением может обеспечить баланс между скоростью вулканизации и скоростью вспенивания. Следовательно, например, может быть получен эффект отвода воды, чтобы таким образом улучшить гарантированные характеристики, то есть характеристики на льду (около 0°C), который является наиболее скользким.
Примеры
Раскрытые способы описаны более подробно ниже, с использованием примеров, хотя настоящее раскрытие не ограничивается этими примерами.
Примеры 1- 13 и сравнительные примеры 1 - 10
Резиновые композиции примеров 1 - 13 и сравнительных примеров 1 - 10 готовят в соответствии с обычным способом на основе соответствующих рецептур, перечисленных в таблицах 1 и 2. В таблицах 1 и 2 единицами являются «части масс.», если не указано иное. Каждую полученную резиновую композицию вулканизируют в виде протектора (слой из вспененной резины), и радиальную шину испытательного пассажирского транспортного средства с размером шины 185/70R15 изготавливают в соответствии с обычным способом.
Измерение коэффициента пенообразования
Коэффициент пенообразования Vs обозначает общую степень пенообразования в протекторе и рассчитывается по следующей формуле с использованием образцов (n = 10), отобранных из каждого протектора:
Vs = ((ρ01) - 1) × 100 (%),
где ρ1 представляет плотность (г/см3) каучука (вспененного каучука) после вулканизации и ρ0 представляет плотность (г/см3) твёрдой фазы в каучуке (вспененный каучук) после вулканизации. Например, плотность каучука (вспененного каучука) после вулканизации и плотность твёрдой фазы в каучуке (вспененном каучуке) после вулканизации рассчитывают путём измерения массы в этаноле и массы на воздухе. Результаты измерений и результаты оценки приведены в таблицах 1 и 2. Ниже приведены критерии оценки коэффициента пенообразования.
Критерии оценки коэффициента пенообразования
Отлично: 95% или более и менее 105% по сравнению с известным пенообразователем
Хорошо: 50% или более и менее 95% по сравнению с известным пенообразователем
Плохо: менее 50% по сравнению с известным пенообразователем
Измерение скорости вулканизации
Измерение проводят с использованием обычного реометра и количественно определяют скорость вулканизации T0.9. Результаты измерений и результаты оценки приведены в таблицах 1 и 2. Критерии оценки скорости вулканизации следующие.
Критерии оценки скорости вулканизации
Отлично: 90% или более по сравнению с известной скоростью вулканизации
Хорошо: 50% или более и менее 90% по сравнению с известной скоростью вулканизации
Плохо: менее 50% по сравнению с известной скоростью вулканизации
Оценка характеристики шины на льду
Четырьмя шинами, соответствующими каждой из вышеуказанных испытуемых шин (размер шины 185/70R15), снаряжают пассажирское транспортное средство, соответствующее внутреннему классу 1600CC и проверяют характеристики торможения на льду при температуре замерзания -1°C. Результат выражен индексом, рассчитываемым согласно следующей формуле, с использованием шины сравнительного примера 1 в качестве контроля. Более высокое значение указывает на более благоприятные характеристики на льду. Результаты оценки приведены в таблицах 1 и 2.
Характеристики на льду = ((тормозной путь шины сравнительного примера 1)/(тормозной путь образца шины))×100
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
*1. Натуральный каучук (NR)
*2. Бутадиеновый каучук (BR): (изготовитель: JSR Corporation, торговое название: Полибутадиеновый каучук BR01)
*3. Газовая сажа (CB): (производства Asahi Carbon Co., Ltd., [N134 (N2SA: 146 м2/г)])
*4. Диоксид кремния: (производства Tosoh Cilica Corporation, торговая марка «Nipsil AQ»)
*5. Силановый связующий агент: (производства Evonik Degussa Japan Co., Ltd., торговая марка «Si69»)
*6. Масло: нафтеновое технологическое масло: (производства Idemitsu Kosan Co., Ltd., торговая марка “Diana Process Oil NS-24”, температура застывания: -30°C)
*7. Воск
*8. Ингибитор старения 6C: (N-фенил-N'-(1,3-диметилбутил)-p-фенилендиамин, производства Ouchi Shinko Chemical Industrial Co., Ltd., «NOCRAC NS-6»)
*9. Антиоксидант RD: (производства Seiko Chemical Co., Ltd., «NONFLEX RD»)
*10. Ускоритель вулканизации CZ: (производства Sanshin Chemical Industry Co., Ltd., «Sanceler CZ»)
*11. Соль жирной кислоты: стеарат цинка: (производства NOF Corporation, «Стеарат цинка G»)
*12. Неорганический пенообразователь: пищевая сода: (производства Otsuka Chemical Co., Ltd., «С-5»): пенообразователь, образующий диоксид углерода
*13. Органический пенообразователь: динитрозопентаметилентетрамин (DPT): пенообразователь, не образующий диоксид углерода
*14. Органический пенообразователь: азодикарбонамид (ADCA): пенообразователь, не образующий диоксида углерода
Как показано в таблицах 1 и 2, резиновые композиции примеров 1 - 13, в которых (i) содержание пенообразователя составляет 0,1 - 20 частей масс. на 100 частей масс. компонента на основе диенового каучука, (ii) общее содержание соли металла жирной кислоты и мочевины составляет 0,1 - 20 частей масс. на 100 частей масс компонента на основе диенового каучука и (iii) массовое отношение соли металла жирной кислоты и мочевины составляет 1:0,5 - 1:3,9, могут обеспечить баланс между скоростью вулканизации и скоростью пенообразования по сравнению с резиновыми композициями сравнительных примеров 1 - 10, не соответствующих, по меньшей мере, одному из параметров (i) - (iii).
Кроме того, как показано в таблицах 1 и 2, шины, изготовленные из резиновых композиций примеров 1 - 13, соответствующих всем параметрам (i) - (iii), имеют улучшенные характеристики на льду и могут быть получены в заданном диапазоне времени вулканизации, по сравнению с шинами, полученными из резиновых композиций сравнительных примеров 1 - 10, не соответствующих, по меньшей мере, одному из параметров (i) - (iii).

Claims (15)

1. Резиновая композиция для шин, включающая:
компонент на основе диенового каучука;
пенообразователь, образующий диоксид углерода;
соль металла жирной кислоты; и
мочевину,
в которой содержание пенообразователя составляет 0,1 - 20 мас.ч. на 100 мас.ч. компонента на основе диенового каучука,
общее содержание соли металла жирной кислоты и мочевины составляет 0,1 - 20 мас.ч. на 100 мас.ч. компонента на основе диенового каучука и
массовое отношение соли металла жирной кислоты и мочевины составляет 1: 0,5 - 1: 3,9.
2. Резиновая композиция для шин по п. 1,
в которой соль металла жирной кислоты является, по меньшей мере, одной, выбранной из группы, состоящей из стеарата цинка и стеарата магния.
3. Резиновая композиция для шин по п. 1 или 2, в которой пенообразователем является пищевая сода.
4. Резиновая композиция для шин по любому из пп. 1 - 3, в которой содержание мочевины составляет 3 мас.ч. или более на 100 мас.ч. компонента на основе диенового каучука.
5. Резиновая композиция для шин по любому из пп. 1 - 4, в которой общее содержание соли металла жирной кислоты и мочевины составляет 5 мас.ч. или более на 100 мас.ч. компонента на основе диенового каучука.
6. Резиновая композиция для шин по любому из пп. 1 - 5, в которой содержание пенообразователя составляет 5 мас.ч. или более на 100 мас.ч. компонента на основе диенового каучука.
7. Шина, содержащая протектор, в котором использована резиновая композиция для шин по любому из пп. 1 - 6.
RU2018118143A 2015-10-19 2016-10-17 Резиновая смесь и шина RU2693167C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-205552 2015-10-19
JP2015205552 2015-10-19
PCT/JP2016/004606 WO2017068772A1 (ja) 2015-10-19 2016-10-17 ゴム組成物及びタイヤ

Publications (1)

Publication Number Publication Date
RU2693167C1 true RU2693167C1 (ru) 2019-07-01

Family

ID=58556956

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018118143A RU2693167C1 (ru) 2015-10-19 2016-10-17 Резиновая смесь и шина

Country Status (6)

Country Link
US (1) US20180291186A1 (ru)
EP (1) EP3366719B1 (ru)
JP (2) JP6702997B2 (ru)
CN (1) CN108137844B (ru)
RU (1) RU2693167C1 (ru)
WO (1) WO2017068772A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190586A4 (en) * 2020-07-29 2024-01-17 Bridgestone Corporation RUBBER COMPOSITION, VULCANIZED RUBBER, TIRE TREAD RUBBER, AND TIRE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281776A (ja) * 1996-04-18 1997-10-31 Ricoh Co Ltd 導電性スポンジロール
WO2010068219A1 (en) * 2008-12-12 2010-06-17 Dow Global Technologies Inc. Oil extended rubber compositions
EA201071051A1 (ru) * 2008-03-10 2011-04-29 Сосьете Де Текноложи Мишлен Диеновая каучуковая композиция для пневматической шины, содержащая диоксид кремния в качестве усиливающего наполнителя
RU2492124C1 (ru) * 2012-04-17 2013-09-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Солнечная космическая электростанция и автономная фотоизлучающая панель

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917132B2 (ja) * 1978-12-28 1984-04-19 川口化学工業株式会社 高分子配合剤
JPH1178435A (ja) * 1997-09-16 1999-03-23 Bridgestone Corp 空気入りタイヤ
CN1073593C (zh) * 1997-11-19 2001-10-24 沈锡强 橡塑制品发泡剂用助剂及复合发泡剂
WO2005105912A1 (ja) * 2004-04-28 2005-11-10 Mitsui Chemicals, Inc. ゴム組成物の製造方法、ゴム組成物およびその用途
CN100465217C (zh) * 2004-09-06 2009-03-04 刘灵柱 高弹力轮胎及制备方法
JP2010168469A (ja) * 2009-01-22 2010-08-05 Bridgestone Corp タイヤ
EP2698397A4 (en) * 2011-04-13 2016-11-30 Bridgestone Corp RUBBER COMPOSITION, VULCANIZED RUBBER AND TIRE PRODUCTS USING THE SAME
FR2975997B1 (fr) * 2011-06-01 2013-06-14 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
JP6097750B2 (ja) * 2012-08-08 2017-03-15 株式会社ブリヂストン タイヤ
CN102964619B (zh) * 2012-10-26 2014-03-12 安徽艾柯泡塑股份有限公司 一种nbr海绵橡胶用发泡剂
FR2998508A1 (fr) * 2012-11-29 2014-05-30 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
JP6337808B2 (ja) * 2015-03-11 2018-06-06 豊田合成株式会社 スポンジゴム成形体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281776A (ja) * 1996-04-18 1997-10-31 Ricoh Co Ltd 導電性スポンジロール
EA201071051A1 (ru) * 2008-03-10 2011-04-29 Сосьете Де Текноложи Мишлен Диеновая каучуковая композиция для пневматической шины, содержащая диоксид кремния в качестве усиливающего наполнителя
WO2010068219A1 (en) * 2008-12-12 2010-06-17 Dow Global Technologies Inc. Oil extended rubber compositions
RU2492124C1 (ru) * 2012-04-17 2013-09-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Солнечная космическая электростанция и автономная фотоизлучающая панель

Also Published As

Publication number Publication date
CN108137844A (zh) 2018-06-08
US20180291186A1 (en) 2018-10-11
JPWO2017068772A1 (ja) 2018-08-09
JP6916343B2 (ja) 2021-08-11
WO2017068772A1 (ja) 2017-04-27
EP3366719B1 (en) 2020-02-12
EP3366719A1 (en) 2018-08-29
JP2020122160A (ja) 2020-08-13
EP3366719A4 (en) 2018-09-19
CN108137844B (zh) 2021-01-01
JP6702997B2 (ja) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5177304B2 (ja) ゴム組成物および空気入りスタッドレスタイヤ
JP2010105509A (ja) 空気入りタイヤ
US10086652B2 (en) Tire tread rubber composition
CN104893013A (zh) 无钉防滑冬胎
JP2011246563A (ja) タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
RU2693167C1 (ru) Резиновая смесь и шина
WO2018070173A1 (ja) 空気入りタイヤ
JP6809825B2 (ja) ゴム組成物の製造方法、ゴム組成物及びタイヤ
JP6107252B2 (ja) タイヤ用ゴム組成物の製造方法
CN106414584B (zh) 胎面用橡胶组合物以及使用其的乘用车用充气轮胎
US20170246918A1 (en) Protective tire sidewall coating
JP5625964B2 (ja) 空気入りタイヤ
JP5617281B2 (ja) タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2009209240A (ja) 再生ゴム入りタイヤ用ゴム組成物
JP2004243820A (ja) 更生タイヤ
KR101906240B1 (ko) 타이어 트레드용 고무 조성물
JP7167595B2 (ja) 金属接着用ゴム組成物およびそれを用いた空気入りタイヤ
JP2010144110A (ja) ゴム組成物の製造法
JP2019098799A (ja) 空気入りタイヤ
JP7215186B2 (ja) 金属接着用ゴム組成物およびそれを用いた空気入りタイヤ
JP2004306730A (ja) 空気入りタイヤ
JP5633230B2 (ja) タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2009084482A (ja) タイヤトレッド用ゴム組成物
JP2009084495A (ja) タイヤトレッド用ゴム組成物及びそれを用いた空気入りタイヤ
JP2022045051A (ja) タイヤ用ゴム組成物