RU2690357C9 - Осажденный оксид алюминия и способ его приготовления - Google Patents

Осажденный оксид алюминия и способ его приготовления Download PDF

Info

Publication number
RU2690357C9
RU2690357C9 RU2017107503A RU2017107503A RU2690357C9 RU 2690357 C9 RU2690357 C9 RU 2690357C9 RU 2017107503 A RU2017107503 A RU 2017107503A RU 2017107503 A RU2017107503 A RU 2017107503A RU 2690357 C9 RU2690357 C9 RU 2690357C9
Authority
RU
Russia
Prior art keywords
mixture
precipitated
aluminum
aluminium
alkali metal
Prior art date
Application number
RU2017107503A
Other languages
English (en)
Other versions
RU2017107503A (ru
RU2690357C2 (ru
RU2017107503A3 (ru
Inventor
Мариа Роберта РАБАЙОЛИ
Original Assignee
Сэсол Перформанс Кемикалз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэсол Перформанс Кемикалз Гмбх filed Critical Сэсол Перформанс Кемикалз Гмбх
Publication of RU2017107503A publication Critical patent/RU2017107503A/ru
Publication of RU2017107503A3 publication Critical patent/RU2017107503A3/ru
Publication of RU2690357C2 publication Critical patent/RU2690357C2/ru
Application granted granted Critical
Publication of RU2690357C9 publication Critical patent/RU2690357C9/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

Изобретение может быть использовано в химической промышленности. Для получения оксида алюминия готовят алюминиевую смесь, имеющую рН от 3 до 4, путем добавления соли алюминия, содержащей сульфат алюминия, хлорид алюминия или нитрат алюминия, к водному раствору или воде. Добавляют алюминат щелочного металла к алюминиевой смеси с образованием зародышевой смеси со скоростью, обеспечивающей поддержание рН зародышевой смеси от 6,0 до 7,5. Обеспечивают старение зародышевой смеси. Затем добавляют к зародышевой смеси дополнительное количество соли алюминия и алюмината щелочного металла со скоростью, обеспечивающей получение осажденной смеси, содержащей осажденный оксид алюминия, и поддержание рН осажденной смеси от 6,9 до 7,8. Нагревают осажденную смесь, содержащую осажденный оксид алюминия, при увеличении рН от рН 8,8 до рН 9,3 и извлекают осажденный оксид алюминия. Изобретение позволяет получить высокопористый оксид алюминия с высокой термической устойчивостью и площадью поверхности. 2 н. и 7 з.п. ф-лы, 1 ил., 10 табл., 9 пр.

Description

ПЕРЕКРЕСНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Данная заявка заявляет приоритет к заявке США № 62/034855, зарегистрированной 8 августа 2014, содержание которой включено сюда посредством ссылки для всех целей.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение касается способа получения оксида алюминия. В частности, настоящее изобретение касается способа получения высокопористого кристаллического полу-бемитного оксида алюминия с прекрасной термической устойчивостью и высокой площадью поверхности при повышенных температурах.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Приготовление оксида алюминия способом осаждения описывается в патентах США 4154812; 6174511 и 4248852, все из которых включены сюда посредством ссылки для всех целей.
Патент США 4154812 описывает способ, в котором сильно разбавленную смесь зародышей готовят путем добавления исходной дозы раствора сульфата алюминия к объему воды в количестве, достаточном, чтобы довести рН до величины от приблизительно 2 до величины приблизительно 5. Для этого материала кислотность зародышевого раствора является важным свойством. Сульфат алюминия гидролизуется и образует очень маленькие кристаллиты бемита. Процесс зарождения зародышей происходит очень быстро. Затем смесь нейтрализуют путем одновременного добавления раствора алюмината натрия и раствора сульфата алюминия. Контроль рН, температуры, реагентов и скоростей подачи строго контролируется во время осаждающего удара. Затем суспензию оставляют созревать. После фильтрации и промывки суспензию окончательно сушат.
Настоящее изобретение предлагает более эффективный способ, который имеет преимущество в объеме пор. Более конкретно, способ настоящего изобретения дает уникальный высокопористый кристаллический полу-бемитный порошок с прекрасной термической устойчивостью и высокой площадью поверхности при повышенных температурах прокаливания.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном аспекте настоящее изобретение обеспечивает способ получения оксида алюминия, содержащий следующие этапы:
i) приготовление алюминиевой смеси путем добавления соли алюминия к водному раствору; где данная алюминиевая смесь имеет рН от 3,0 до 4,0.
ii) добавление алюмината щелочного металла к данной алюминиевой смеси с образованием зародышевой смеси, где добавление алюмината щелочного металла к алюминиевой смеси происходит с такой скоростью, чтобы поддерживать рН зародышевой смеси от приблизительно 6,0 до приблизительно 7,5;
iii) старение зародышевой смеси;
iv) добавление к зародышевой смеси дополнительной соли алюминия и алюмината щелочного металла, где упомянутое добавление производят с такой скоростью, чтобы получать осажденную смесь, содержащую осажденный оксид алюминия и поддерживать рН осажденной смеси от приблизительно 6,9 до приблизительно 7,8;
v) нагрев осажденной смеси, содержащей осажденный оксид алюминия, при увеличении рН осажденной смеси до от рН 8,8 до рН 9,3; и
vi) извлечение осажденного оксида алюминия.
Следовательно, способ настоящего изобретения протекает в двух фазах: фаза зародышеобразования и фаза осаждения.
Соль алюминия, добавляемая на этапе i) и этапе iv) способа данного изобретения, может быть сульфатом алюминия, хлоридом алюминия или нитратом алюминия, предпочтительно сульфатом алюминия. Сульфат алюминия может иметь концентрацию Аl2О3 от приблизительно 7 масс.% до приблизительно 8 масс.%. Способ данного изобретения может включать в себя начальный этап нагрева соли алюминия перед тем, как ее добавляют к водному раствору, предпочтительно воде, на этапе i) способа данного изобретения, до температуры от приблизительно 45°С до приблизительно 75°С. Водный раствор или вода, к которым добавляют соль алюминия на этапе i) данного способа, может нагреваться до температуры от 68°С до 78°С перед тем, как происходит добавление соли алюминия. Соль алюминия, добавляемая на этапе iv), может добавляться в форме алюминиевой смеси, содержащей соль алюминия и водный раствор, предпочтительно воду.
Алюминат щелочного металла может представлять собой алюминат натрия или алюминат калия, предпочтительно алюминат натрия. Алюминат натрия может иметь концентрацию Аl2О3 от приблизительно 20 масс.% до приблизительно 23 масс.% и Nа2О от приблизительно 17 масс.% до приблизительно 21 масс.%. Алюминат щелочного металла может нагреваться до температуры от приблизительно 45°С до приблизительно 75°С перед тем, как его добавляют к алюминиевой смеси на этапе ii способа данного изобретения.
рН зародышевой смеси на этапе ii данного изобретения поддерживают вблизи нейтрального в интервале от рН 6,0 до рН 7,5, предпочтительно от рН 6,5 до рН 7,0.
Зародышевую смесь можно выдерживать в течение от 5 до 20 минут при температуре от 68°С до 78°С. Зародышевую смесь предпочтительно выдерживают в течение 10 минут при температуре 70°С.
Комбинация низкой концентрации частиц и нейтрального рН дает очень маленькие кристаллиты геля бемита. Зародыши являются дискретными частицами, которые после сушки имеют очень высокую пористость.
В фазе осаждения, этап iv способа данного изобретения, соль алюминия и алюминат щелочного металла добавляют к зародышевой смеси. Предпочтительно, когда соль алюминия и алюминат щелочного металла одновременно добавляют к зародышевой смеси на этапе iv способа данного изобретения.
Этап iv способа данного изобретения можно выполнять при температурах от 68°С до 78°С. рН смеси на этапе iv может быть от рН 6,9 до 7,8, предпочтительно от 7,2 до 7,5. Скорость подачи дополнительной соли алюминия и алюмината щелочного металла можно варьировать так, чтобы регулировать характеристики получаемого оксида алюминия, но обычно осаждение происходит во времени в интервале от 20 до 70 минут.
Осажденная смесь может нагреваться до температуры от 85°С до 90°С, а рН увеличивается до интервала от 8,8 до 9,3. рН увеличивают добавлением алюмината щелочного металла.
Осажденный оксид алюминия может затем извлекаться путем промывки и затем распылительной сушки. Эти способы известны в области данного изобретения.
Данный способ может включать в себя этап легирования осажденного оксида алюминия предшественником Lа2О3, таким как соль лантана, например ацетат лантана. Предпочтительно, осажденный оксид алюминия легируют приблизительно 3 масс.% Lа2О3.
Уникальным аспектом настоящего изобретения является то, что рН и зародышевой смеси, и осажденной смеси поддерживают вблизи нейтрального при приблизительно 6,0-7,8. Это является отличием от способов предшествующего уровня техники, где зародышевая смесь имеет кислый интервал рН от 2 до 5.
В другом аспекте настоящее изобретение обеспечивает композицию оксида алюминия. Оксид алюминия получают с помощью способа настоящего изобретения, и он имеет, по меньшей мере, одну из следующих характеристик, предпочтительно все:
размер кристаллитов 33-42 Å в диагональной плоскости (120) (используя РФА);
d-расстояние (020) кристаллита 6,30-6,59 Å; высокая пористость при среднем диаметре пор 115-166 Å;
относительно низкая объемная плотность 250-350 кг/м3;
площадь поверхности 60-80 м2/г после прокаливания в течение 24 часов при 1100°С; и
объем пор 0,8-1,1 см3/г после прокаливания в течение одного часа при 1000°С.
Эти и другие признаки и преимущества настоящего изобретения станут понятны из следующего подробного описания, в котором делается ссылка на фигуру в сопровождающих чертежах.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 изображает реакционный резервуар, в котором происходит способ настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Способ настоящего изобретения протекает в две фазы: фаза зародышеобразования и фаза осаждения. В фазе зародышеобразования сначала готовят алюминиевую смесь путем добавления желаемого количества подходящей соли алюминия, например сульфата алюминия, хлорида алюминия, нитрата алюминия и т.д., нагретой до температуры от приблизительно 45°С до приблизительно 75°С, к желаемому количеству водного раствора, например воды, нагретой до температуры от 68°С до 78°С. Затем следует дозируемое добавление надлежащего алюмината щелочного металла, например алюмината натрия, алюмината калия и др., нагретого до температуры от приблизительно 45°С до приблизительно 75°С. Добавление алюмината щелочного металла к алюминиевой смеси образует зародышевую смесь. рН зародышевой смеси поддерживают вблизи нейтрального в интервале от приблизительно 6,0 до 7,5, предпочтительно от приблизительно 6,5 до приблизительно 7,0. Зародышевую смесь затем выдерживают в течение от приблизительно 5 до приблизительно 20 минут при температуре от приблизительно 68°С до приблизительно 78°С. Комбинация низкой концентрации частиц и нейтрального рН дает очень мелкие кристаллиты бемитного геля. Зародыши являются дискретными частицами, которые после сушки имеют очень высокую пористость.
В фазе осаждения дополнительные количества соли алюминия и алюмината щелочного металла одновременно добавляют к зародышевой смеси, образуя осажденную смесь, содержащую осажденный оксид алюминия. Осажденный оксид алюминия образуется при температурах от приблизительно 68°С до приблизительно 78°С и при рН от приблизительно 6,9 до приблизительно 7,8, предпочтительно от приблизительно 7,2 до приблизительно 7,5. Скорость подачи дополнительной соли алюминия и алюмината щелочного металла может варьироваться, чтобы регулировать свойства получаемого оксида алюминия, но обычно осаждение происходит за время в интервале от приблизительно 20 до приблизительно 70 минут. Чтобы получать оксид алюминия с агломерированными, более пористыми кристаллами, скорость подачи может быть увеличена, снижая, тем самым, время осаждения. Осажденную смесь нагревают до температуры от приблизительно 85°С до приблизительно 90°С, а рН увеличивают до интервала от приблизительно 8,8 до приблизительно 9,3. После этого осажденный оксид алюминия промывают и сушат распылением.
Уникальным аспектом настоящего изобретения является то, что рН и зародышевой смеси, и осажденной смеси поддерживают вблизи нейтрального при 6,0-7,8. Это является отличием от способов предшествующего уровня техники, где зародышевая смесь имеет кислый интервал рН от 2 до 5.
В предпочтительном варианте осуществления соль алюминия представляет собой сульфат алюминия, имеющий концентрацию Аl2О3 от приблизительно 7 масс.% до приблизительно 8 масс.%. Алюминат щелочного металла предпочтительно представляет собой алюминат натрия, имеющий концентрацию Аl2О3 от приблизительно 20 масс.% до приблизительно 23 масс.% и Nа2О от приблизительно 17 масс.% до приблизительно 21 масс.%. Зародышевую смесь предпочтительно выдерживают в течение приблизительно 10 минут при температуре 70°С.
Как показано на фиг.1 ниже, данный способ протекает в резервуаре (10), оборудованном механической мешалкой (12) с регулируемой скоростью вращения. Реагенты добавляют через два подходящих внутренних распределителя или трубопровода (14) и (16). Трубопроводы (14) и (16) выдают реагенты непосредственно вблизи мешалки (12). Резервуар (10) может соединяться с внешней системой рециркуляции (не показана), которая гомогенизирует суспензию. При использовании резервуара (10), такого как этот, скорости подачи реагентов могут тщательно контролироваться, чтобы обеспечивать постоянный рН при минимизации времени осаждения.
В другом варианте осуществления получаемый оксид алюминия может легироваться приблизительно 3 масс.% Lа2О3 в расчете на композит путем добавления соли лантана, такой как ацетат лантана. Как будет показано далее, способ настоящего изобретения дает оксид алюминия с, по меньшей мере, одной из следующих характеристик:
(а) размер кристаллитов 33-42 Å в диагональной плоскости (120) (используя РФА);
(b) d-расстояние (020) кристаллита 6,30-6,59 Å, предпочтительно 6,44-6,48 Å;
(с) высокая пористость при среднем диаметре пор 115-166 Å;
(d) относительно низкая объемная плотность 250-350 кг/м3;
(е) площадь поверхности 60-80 м2/г после прокаливания в течение 24 часов при 1100°С; и
(f) объем пор 0,8-1,1 см3/г после прокаливания в течение одного часа при 1000°С.
Следующие неограничивающие примеры будут дополнительно демонстрировать изобретение.
Методы измерения:
Присущие свойства продукта измеряли с помощью следующих аналитических технологий. Чтобы определить свободную насыпную плотность (кг/м3), 50 г образца встряхивали в 250 мл пластиковом флаконе в течение одной минуты. Затем порошок засыпали за приблизительно 15 секунд через воронку в 100 мл мерный цилиндр. Через 3 минуты измеряли объем порошка и вычисляли плотность из привеса мерного цилиндра, содержащего оксид алюминия, на объем порошка в цилиндре.
Метод, использованный для определения количества всех летучих веществ, был основан на гравиметрическом определении. Точно взвешенный образец (Wi) нагревали до 1200°С с заданной скоростью нагрева в тигле, и температуру поддерживали в течение 1 часа, когда достигали постоянного веса. Образец медленно охлаждали до комнатной температуры. После окончания измерения полное содержание летучей влажности в массовых процентах вычисляли из исходного взвешенного количества Wi и конечного взвешенного количества Wf, используя формулу:
Все летучие вещества %=100 * (Wi-Wf)/Wi.
Чтобы определить размер кристаллитов (Å), образцы порошка подвергали действию рентгеновских лучей. Углы дифракции, интенсивность и полуширину рефлексов (120) для угла 2θ от приблизительно 24° до приблизительно 32° и (020) для угла 2θ от приблизительно 11° до приблизительно 18° использовали, чтобы определять средний размер кристаллитов, используя уравнение Шеррера:
Размер кристаллитов=K×λ/(βcos(θ)), где K обозначает формфактор частицы (0,94), постоянный для порошков, λ обозначает длину волны рентгеновского излучения (1,5406), β - ширина интенсивности на половине максимума. Точное положение пиков рефлексов (2θ) и ширину интенсивности на половине максимума соответствующего рефлекса определяли с помощью программы, которая использовала эти данные, чтобы вычислять размеры кристаллитов. Площадь поверхности (А) в м2/г и объем пор измеряли путем адсорбции азота при температуре жидкого азота, зная изотерму адсорбции в заданном интервале относительных давлений р/р00 обозначает давление паров жидкого азота, а р обозначает давление адсорбирующего азота в газовой фазе). Данные получали для образцов, термообработанных при 550°С в течение 3 часов в статической печи, и для прокаленных продуктов после термической обработки в статической печи при 1000°С в течение 1 часа и 1100°С в течение 24 часов. Площадь поверхности вычисляли, используя метод Брунауэра-Эммета-Теллера, известного как БЭТ. Объем пор (V) в см3/г измеряли для р/р0, равного 0,99. Средний диаметр пор в Å определяли из величин площади поверхности и объема пор, используя формулу: 4*V/А*10000. Распределение диаметров пор определяли из изотермы десорбции, используя метод БДА (Баррета-Джойнера-Аленда) согласно литературе. Перед каждым анализом образцы дегазировали в течение 30 минут при 300°С в потоке азота, чтобы удалить следы влаги, обычно адсорбирующейся во время переноса образца.
Содержание натрия получали с помощью ААС анализа (атомная абсорбционная спектроскопия). Содержание сульфата SО4 определяли, используя ЕDХRF анализ (энергодисперсионная рентгеновская флуоресценция). Перед измерениями необходимо было контролировать адсорбцию влаги. Небольшое количество образца, приблизительно 5 г осадка на фильтре или порошка, взвешивали в керамическом тигле, помещали в статическую печь и нагревали его до 800°С со скоростью 10°С/мин, и термически обрабатывали при 800°С в течение 30 минут. После дегидратации образцу позволяли остывать в контейнере в присутствии Р2О5 в качестве осушителя. Образцы прессовали в держателе образцов согласно требованию изготовителя прибора, содержание серы в расчете на SО4 измеряли по калибровочной кривой.
Размер агломератов порошка осажденного оксида алюминия измеряли методом лазерной дифракции. В зависимости от размера частиц получали разные углы дифракции, причем маленькие частицы преломляли свет больше, чем большие частицы. Для измерения образец диспергировали в изопропаноле и циркулировали через систему измерения. Предполагая частицы сферической формы, распределение размера частиц вычисляли из полученного распределения интенсивности в зависимости от угла, величину 50% распределения представляли для размера агломератов.
Пример 1
В фазе зародышеобразования алюминиевую смесь из сульфата алюминия и водного раствора, в данном случае воды, имеющую концентрацию эквивалента Аl2О3 7,5 масс.%, нагревали до температуры 68°С. Раствор алюмината натрия в водном растворе, в данном случае воде, с 20 масс.% Аl2О3 и 17,7 масс.% Nа2О также нагревали до температуры 68°С. Объем 30 м3 воды подавали в резервуар, как на фигуре 1, и нагревали до приблизительно 70°С путем прямого впрыскивания пара. 70 л нагретой алюминиевой смеси (раствор сульфата алюминия) добавляли в данный объем, сразу после этого дозировали 40 л нагретого алюмината натрия, чтобы получить зародышевую смесь, имеющую рН 6,0-6,5. Концентрация эквивалентного Аl2О3 в смеси была 0,06 масс.%. Смесь выдерживали при 70°С в течение 10 минут.
В фазе осаждения, этап iv способа данного изобретения, одновременно добавляли растворы сульфата алюминия и алюмината натрия, приготовленные для фазы зародышеобразования. Сульфат алюминия дозировали с постоянной скоростью подачи 12 м3/ч, тогда как скорость подачи раствора алюмината натрия регулировали таким образом, что рН поддерживали в интервале 7,1-7,3. Фазу осаждения выполняли в течение 70 минут при температурах в интервале 73-75°С. В конце осажденная смесь имела концентрацию эквивалентного Аl2О3 6-6,5 масс.%.
Осажденную смесь нагревали до приблизительно 85-90°С и подвергали изменению рН до приблизительно 9,2 путем добавления алюмината щелочного металла. рН стабилизировали, и осажденную смесь отфильтровывали и промывали водой на ленточном фильтре, чтобы удалить соль Nа24. Осадок на фильтре с ленточного фильтра собирали в бак и разбавляли водой, получая суспензию, содержащую 18 масс.% твердого вещества, пригодную для закачивания в распылительную сушилку. После распылительной сушки конечный порошок или осадок оксида алюминия имел следующие характеристики:
LBD кг/м3 350
масс.% Na 0,013
масс.% SO4 0,11
N2 площадь поверхности при 550°C/3 часа, м2 283
N2 объем пор при 550°C/3 часа, см3 0,88
Пример 2
Следовали примеру 1 за исключением того, что раствор сульфата алюминия нагревали до температуры 63°С, а раствор алюмината натрия нагревали до температуры 55°С. Время осаждения было 55 минут, а конечная концентрация Аl2О3 была 6%. Свойства порошка или осадка оксида алюминия были эквивалентны свойствам из примера 1.
LBD кг/м3 350
Размер кристаллитов (РФА), Å 40-42
020 d-расстояние бемита, Å 6,34
масс.% Na 0,012
масс.% SO4 0,09
масс.% всех летучих веществ 26,30
N2 площадь поверхности при 550°C/3 часа, м2 277
N2 объем пор при 550°C/3 часа, см3 0,86
Пример 3
Этот пример описывает получение осажденного оксида алюминия с более высокой пористостью, чем достигается с помощью способа в примере 1.
Резервуар, имеющий объем 70 м3, оборудовали большими лопастными мешалками турбинного типа, работающими со скоростью, дающей большую мощность циркуляции, и системой рециркуляции жидкости, обеспеченной внешним трубопроводом и циркуляционным насосом. В фазе зародышеобразования раствор сульфата алюминия нагревали до 63°С, а раствор алюмината натрия нагревали до 55°С. Объем 30 м3 воды нагревали до 70°С. Приблизительно 70 л нагретого раствора сульфата алюминия добавляли в данный объем. Сразу после этого дозировали 33 л нагретого алюмината натрия, чтобы получить смесь с рН 6,8. Смесь выдерживали при 70°С в течение 10 минут.
Раствор сульфата алюминия вводили при приблизительно 25 м3/ч, средняя скорость подачи алюмината алюминия была приблизительно 15 м3/ч, рН поддерживали в интервале 7,2-7,7. Фазу осаждения проводили при температуре в среднем 73-76°С. Осаждение завершали за 22-25 минут. Осажденная смесь содержала количество осажденного оксида алюминия, эквивалентное приблизительно 4,7 масс.% Аl2О3.
Затем осажденную смесь нагревали до приблизительно 90°С, и рН доводили до 8,8-9,2 путем добавления алюмината щелочного металла. Мощность фильтрации осажденной смеси достигали и поддерживали без проблем. Отношение суспензия-вода было 2,5-3 по объему. Осадок на фильтре с ленточного фильтра собирали в бак и разбавляли водой, получая количество твердого вещества 16 масс.%, и данную суспензию сушили в распылительной сушилке.
LBD кг/м3 320
Размер кристаллитов (РФА), Å 33
020 d-расстояние бемита, Å 6,46
масс.% Na 0,012
масс.% SO4 0,11
масс.% всех летучих веществ 26,0
N2 площадь поверхности при 550°C/3 часа, м2 334
N2 объем пор при 550°C/3 часа, см3 1,03
Пример 4
Этот пример описывает получение осажденного оксида алюминия, имеющего более высокую пористость, чем достигается с помощью способа в примере 3.
В фазе зародышеобразования раствор сульфата алюминия нагревали до температуры 63°С, а раствор алюмината натрия нагревали до 55°С. Объем 30 м3 воды подавали в реакторный бак и нагревали до приблизительно 68°С. Зародыши готовили при рН 6,5. Смесь выдерживали при 70°С в течение 10 минут. Количество зародышей было 0,07 масс.%.
Фазу осаждения завершали за 42 минуты при 75°С при скорости подачи сульфата алюминия 6,1 м3/ч, дозируя раствор алюмината так, чтобы поддерживать рН при 7,5. Суспензия содержала количество осажденного оксида алюминия, эквивалентное приблизительно 3,7 масс.% Аl2О3. Суспензию нагревали до 90°С и подвергали изменению рН близко к 9,0 путем добавления алюмината щелочного металла. Мощность фильтрации суспензии поддерживали без проблем. Свойства порошка показаны ниже:
LBD кг/м3 270
Размер кристаллитов (РФА), Å 37
масс.% Na 0,03
масс.% SO4 0,14
масс.% всех летучих веществ 28,0
N2 площадь поверхности при 550°C/3 часа, м2 314
N2 объем пор при 550°C/3 часа, см3 1,3
Пример 5
Данный пример описывает приготовление стабилизированного оксида алюминия с использованием способа из примера 2. Осадок на фильтре, полученный согласно примеру 2, легировали 3 масс.% Lа2О3 в расчете на 100 масс.% композита путем добавления раствора ацетата лантана. Высушенный порошок прокаливали при 1000°С, 1100°С и 1200°С в течение 24 часов. После прокаливания порошок имел следующие характеристики:
N2 площадь поверхности м2
1000°C/24 часа 124
1100°C/24 часа 81
1200°C/24 часа 46
Пример 6
Осадок на фильтре, полученный согласно примеру 3, легировали 3 масс.% Lа2О3 в расчете на 100 масс.% композита путем добавления раствора ацетата лантана. Высушенный порошок после прокаливания при 1000°С, 1100°С и 1200°С в течение 24 часов имел следующие характеристики:
N2 площадь поверхности м2
1000°C/24 часа 143
1100°C/24 часа 105
1200°C/24 часа 55
Сравнительный пример 1
Способ согласно патенту США 4154812 выполняли следующим образом. Раствор сульфата алюминия с 7,0 масс.% Аl2О3 и раствор алюмината натрия с 20 масс.% Аl2О3 нагревали до температуры приблизительно 68°С. Объем 35 м3 воды подавали в реакторный бак и нагревали до 72°С. Данный объем подкисляли достаточным количеством сульфата алюминия, дозированного так, чтобы достигать стабильного рН 3,5 (требуемые 90 л раствора), и рН стабилизировали. Смесь выдерживали в течение 5 минут. Добавляли растворы реагентов, и скорости потоков регулировали так, чтобы поддерживать рН приблизительно 7,3. Время осаждения было 55 минут. В конце фазы осаждения концентрация суспензии была 6 масс.% Аl2О3. После 55 минут суспензию оксида алюминия нагревали до температуры приблизительно 90°С и подвергали изменению рН близко к изоэлектрической точке. Фильтруемой продукта и способность продукта к промывке были очень трудными. Продукт имел следующие характеристики осадка на фильтре после сушки и прокаливания в статической печи при 100°С:
Размер кристаллитов (РФА), Å 50
N2 площадь поверхности при 550°C/3 часа, м2 341
N2 объем пор при 550°C/3 часа, см3 0,68
Сравнительный пример 2
Способ согласно патенту США 4154812 выполняли следующим образом. Объем подкисляли до рН 3,5 путем добавления сульфата алюминия. Смесь выдерживали в течение приблизительно 9 минут. Осаждение завершали за 50 минут при температуре 72-73°С. В конце фазы осаждения суспензия содержала количество осажденного оксида алюминия, эквивалентное 6 масс.% Аl2О3. Добавляли алюминат натрия, чтобы доводить рН до величины, близкой к 9,2. Суспензия не нагревали. Фильтруемость и способность к промывке продукта были очень трудными. Осадок на фильтре после сушки и прокаливания показывал следующие характеристики:
N2 площадь поверхности при 550°C/3 часа, м2 266
N2 объем пор при 550°C/3 часа, см3 0,71
Сравнительный пример 3
Способ согласно патенту США 4154812 выполняли следующим образом. Тест проводили в условиях сравнительного примера 2, но скорости подачи уменьшали, получая время осаждения 170 минут. Характеристики продукта показаны в таблице:
N2 площадь поверхности при 550°C/3 часа, м2 295
N2 объем пор при 550°C/3 часа, см3 0,75
Из вышеприведенных примеров будет ясно, что способ настоящего изобретения имеет несколько преимуществ над способами предшествующего уровня техники. Например, механизм зародышеобразования и относительно высокий начальный интервал рН ускоряют время процесса осаждения. Это короткое время осаждения дает очень маленькие кристаллиты 33-42 Å при использовании настоящего способа по сравнению с 50-60 Å при использовании способов предшествующего уровня техники, приводя к более высокой пористости и меньшей объемной плотности, что хорошо коррелирует с достижением большей площади поверхности и хорошим объемом пор. Эффективность фильтрации дает более чистый оксид алюминия с меньшими ч./млн. уровнями примесей натрия и сульфата. Наконец, более высокое содержание твердого вещества в суспензии перед распылительной сушкой сберегает энергию. Способ настоящего изобретения дает оксид алюминия, имеющий следующие свойства по сравнению со свойствами предшествующего уровня техники:
Единицы Продукт по US4,154,812 Коммерчески доступный оксид алюминия Настоящее изобретение
Объемная плотность кг/м3 385 224 320
Все летуччие вещества % (LOI при 1200°C/1ч) % 27,5-29,6 26
Размер агломератов мкм 21,5 66,3
Размер кристаллитов (020) Å 45-51 28-31
Размер кристаллитов (120) Å 48-51 41-46 33-42
d расстояние кристаллитов (020) Å 6,37 6,46
Низкий уровень примесей
Na2O, ч./млн. ч./млн. 590 <400 156
SO4, ч./млн. ч./млн. 3100 900
399°C/1 час 600°C 550°C/3 часа
Площадь поверхности м2 413 320 334
Объем пор см3 0,77 1,03
Средний радиус пор (диаметр) Å 37
(74)
62
(123)
BJH диаметр пор Å недоступно 80
ПРОКАЛЕННЫЕ ПРОДУКТЫ
1100°C/24 час 1100°C/24 часа 1100°C/24 часа
Площадь поверхности м2 30 72,75
1000°C/1 час 1000°C/1 час 1000°C/1 час
135 155 150
1000°C/1 час 1000°C/1 час 1000°C/1 час
Объем пор см3 0,7 >0,7
Хотя здесь подробно описаны конкретные варианты осуществления данного изобретения, это было сделано только с целью объяснения различных аспектов изобретения и не предназначено ограничивать объем изобретения, заданный в последующей формуле изобретения. Специалисты в данной области техники будут понимать, что показанный и описанный вариант осуществления является типичным, и различные другие замены, изменения и модификации, включая особо обсуждаемые здесь альтернативы дизайна, но не ограничиваясь этим, могут быть сделаны в практике изобретения без отклонения от его объема.

Claims (21)

1. Способ получения оксида алюминия, содержащий следующие этапы, где:
i) готовят алюминиевую смесь путем добавления соли алюминия, содержащей сульфат алюминия, хлорид алюминия или нитрат алюминия, к водному раствору или воде, где данная алюминиевая смесь имеет рН от 3 до 4;
ii) добавляют алюминат щелочного металла к данной алюминиевой смеси с образованием зародышевой смеси, где добавление алюмината щелочного металла к алюминиевой смеси происходит с такой скоростью, чтобы поддерживать рН зародышевой смеси от 6,0 до 7,5;
iii) обеспечивают старение зародышевой смеси;
iv) добавляют к зародышевой смеси дополнительное количество упомянутой соли алюминия и упомянутого алюмината щелочного металла, причем упомянутое добавление производят с такой скоростью, чтобы получать осажденную смесь, содержащую осажденный оксид алюминия и поддерживать рН осажденной смеси от 6,9 до 7,8;
v) нагревают осажденную смесь, содержащую осажденный оксид алюминия, при увеличении рН от рН 8,8 до рН 9,3; и
vi) извлекают осажденный оксид алюминия.
2. Способ по п.1, в котором алюминат щелочного металла, добавляемый на этапе ii) и этапе iv) данного способа, содержит алюминат натрия или алюминат калия.
3. Способ по п.1, в котором рН зародышевой смеси на этапе ii) данного способа составляет от 6,5 до 7,0.
4. Способ по п.1, в котором обеспечение старения зародышевой смеси включает нагревание данной смеси от 68 до 78°С в течение от 5 до 20 мин.
5. Способ по п.1, в котором соль алюминия и алюминат щелочного металла одновременно добавляют на этапе iv) данного способа.
6. Способ по п.1, в котором рН осажденной смеси на этапе iv) данного способа составляет от 7,2 до 7,5.
7. Способ по п.1, в котором этап iv) выполняют в течение времени в интервале от 20 до 70 мин.
8. Способ по п.1, включающий в себя дополнительный этап, в котором легируют осажденный оксид алюминия предшественником Lа2О3.
9. Оксид алюминия, полученный с помощью способа по любому из пп. 1-7, содержащий по меньшей мере одну из следующих характеристик, предпочтительно все:
i) размер кристаллитов 33-42
Figure 00000001
в диагональной плоскости (120) (используя РФА);
ii) d-расстояние (020) кристаллита 6,30-6,59
Figure 00000001
;
iii) средний диаметр пор 115-166
Figure 00000001
;
iv) относительно низкая объемная плотность 250-350 кг/м3;
v) площадь поверхности 60-80 м2/г после прокаливания в течение 24 часов при 1100°С и
vi) объем пор 0,8-1,1 см3/г после прокаливания в течение одного часа при 1000°С.
RU2017107503A 2014-08-08 2015-08-05 Осажденный оксид алюминия и способ его приготовления RU2690357C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462034855P 2014-08-08 2014-08-08
US62/034,855 2014-08-08
PCT/US2015/043842 WO2016022709A1 (en) 2014-08-08 2015-08-05 Precipitated alumina and method of preparation

Publications (4)

Publication Number Publication Date
RU2017107503A RU2017107503A (ru) 2018-09-10
RU2017107503A3 RU2017107503A3 (ru) 2019-01-24
RU2690357C2 RU2690357C2 (ru) 2019-05-31
RU2690357C9 true RU2690357C9 (ru) 2022-04-01

Family

ID=53901134

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017107503A RU2690357C9 (ru) 2014-08-08 2015-08-05 Осажденный оксид алюминия и способ его приготовления

Country Status (9)

Country Link
US (1) US10633258B2 (ru)
EP (1) EP3177566B1 (ru)
JP (1) JP6619421B2 (ru)
KR (1) KR102406566B1 (ru)
CN (2) CN114408952A (ru)
CA (1) CA2956954C (ru)
DK (1) DK3177566T3 (ru)
RU (1) RU2690357C9 (ru)
WO (1) WO2016022709A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075777A1 (fr) * 2017-12-22 2019-06-28 Rhodia Operations Hydrate d'aluminium poreux
KR20210096141A (ko) * 2018-11-21 2021-08-04 사솔 (유에스에이) 코포레이션 안정성이 개선된 실리카 알루미나 조성물 및 이를 제조하는 방법
RU2754740C2 (ru) * 2019-11-20 2021-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ синтеза оксида алюминия
JP2023532004A (ja) 2020-06-26 2023-07-26 ビーエーエスエフ ソシエタス・ヨーロピア 多孔質アルファ-アルミナ触媒支持体を生成する方法
WO2021260138A1 (en) 2020-06-26 2021-12-30 Basf Se Shaped catalyst body for the production of ethylene oxide
RU2758439C1 (ru) * 2020-10-22 2021-10-28 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Скандийсодержащий глинозем и способ его получения
FR3122585A1 (fr) 2021-05-04 2022-11-11 Universite Claude Bernard Lyon 1 Solide mésoporeux pour réguler l’humidité dans les espaces clos
CN117545552A (zh) 2021-06-25 2024-02-09 巴斯夫欧洲公司 高纯度压片阿尔法氧化铝催化剂载体
WO2023095868A1 (ja) * 2021-11-26 2023-06-01 住友化学株式会社 アルミナ粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154812A (en) * 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
GB1603461A (en) * 1977-03-25 1981-11-25 Grace W R & Co Process for preparing crystalline allumina
JP2000191321A (ja) * 1998-12-25 2000-07-11 Catalysts & Chem Ind Co Ltd アルミナの製造方法
RU2174955C2 (ru) * 1999-05-25 2001-10-20 Открытое акционерное общество "Алюминий Казахстана" Способ получения глинозема и галлия из боксита
US20090023581A1 (en) * 2004-12-30 2009-01-22 Magnesium Elektron Limited THERMALLY STABLE DOPED AND UNDOPED POROUS ALUMINUM OXIDES AND NANOCOMPOSITE CeO2-ZrO2 AND Al2O3 CONTAINING MIXED OXIDES

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527830A (en) 1978-08-15 1980-02-28 Chiyoda Chem Eng & Constr Co Ltd Production of alumina carrier
CN1048229C (zh) * 1994-07-01 2000-01-12 化学工业部天津化工研究院(熊尚彬) 低密度大孔容球形氧化铝的制备工艺
EP0950638B1 (en) * 1997-07-15 2012-10-17 Japan Energy Corporation Pseudoboehmite powder for catalyst carrier and process for preparing the same
DE19930924A1 (de) * 1999-07-06 2001-01-18 Rwe Dea Ag Verfahren zur Herstellung von Tonerdehydraten durch Fällung von Aluminiumsalzen in Gegenwart von Kristallisationskeimen
JP2010150090A (ja) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd αアルミナ粉末
FR2942624B1 (fr) * 2009-03-02 2011-03-18 Rhodia Operations Composition comprenant une perovskite a base de lanthane sur un support en alumine ou en oxyhydroxyde d'aluminium, procede de preparation et utilisation en catalyse
CN103043694B (zh) * 2011-10-17 2016-11-16 中国石油化工股份有限公司 一种水合氧化铝的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154812A (en) * 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
GB1603461A (en) * 1977-03-25 1981-11-25 Grace W R & Co Process for preparing crystalline allumina
JP2000191321A (ja) * 1998-12-25 2000-07-11 Catalysts & Chem Ind Co Ltd アルミナの製造方法
RU2174955C2 (ru) * 1999-05-25 2001-10-20 Открытое акционерное общество "Алюминий Казахстана" Способ получения глинозема и галлия из боксита
US20090023581A1 (en) * 2004-12-30 2009-01-22 Magnesium Elektron Limited THERMALLY STABLE DOPED AND UNDOPED POROUS ALUMINUM OXIDES AND NANOCOMPOSITE CeO2-ZrO2 AND Al2O3 CONTAINING MIXED OXIDES

Also Published As

Publication number Publication date
RU2017107503A (ru) 2018-09-10
EP3177566A1 (en) 2017-06-14
US20180208478A1 (en) 2018-07-26
JP2017523952A (ja) 2017-08-24
RU2690357C2 (ru) 2019-05-31
EP3177566B1 (en) 2019-12-18
WO2016022709A8 (en) 2017-03-16
DK3177566T3 (da) 2020-03-23
RU2017107503A3 (ru) 2019-01-24
CA2956954A1 (en) 2016-02-11
CA2956954C (en) 2022-11-15
WO2016022709A1 (en) 2016-02-11
JP6619421B2 (ja) 2019-12-11
CN114408952A (zh) 2022-04-29
KR20170039721A (ko) 2017-04-11
US10633258B2 (en) 2020-04-28
CN106795003A (zh) 2017-05-31
KR102406566B1 (ko) 2022-06-07

Similar Documents

Publication Publication Date Title
RU2690357C9 (ru) Осажденный оксид алюминия и способ его приготовления
EP1314695B1 (en) Silica and method for producing the same
CN107073439B (zh) 基于中孔沸石的沸石吸附剂
CN110294483B (zh) 一种用于VOCs去除的分子筛吸附剂及其制备方法
CN101353168A (zh) 一种纳米富铝β沸石的合成方法
Sun et al. Studies on the improved thermal stability for doped ordered mesoporous γ-alumina
CN106604907B (zh) 具有高连通度的非晶中孔氧化铝和其制备方法
RU2694751C2 (ru) Гель с высокой степенью диспергируемости и способ его получения
CN113242763A (zh) 具有改善的稳定性的二氧化硅氧化铝组合物及其制备方法
Siahpoosh et al. Synthesis of γ-Alumina nanoparticles with high-surface-area via Sol-Gel method and their performance for the removal of Nickel from aqueous solution
Yau et al. Aluminum hydroxide adjuvant produced under constant reactant concentration
JP2007204293A (ja) 多孔質粒子およびその製造方法
JP2021151942A (ja) 多孔質シリカアルミナ粒子およびその製造方法
CN115920961A (zh) 一种含硅拟薄水铝石浆液的制备方法
Zhao et al. Effect of the Si/Ce molar ratio on the textural properties of rare earth element cerium incorporated mesoporous molecular sieves obtained room temperature
Breitkopf et al. Structure–activity relationships for sulfated zirconias—comparison of mesoporous samples based on organic precursors
RU2754740C2 (ru) Способ синтеза оксида алюминия
WO2023190603A1 (ja) Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法
RU2738080C1 (ru) Носитель для катализатора гидроочистки
KR20230163562A (ko) Gis형 제올라이트 성형체, 흡착 장치, 분리 방법 및 gis형 제올라이트
JP2022145476A (ja) 多孔質シリカアルミナ粒子の製造方法
Bakovetz et al. The influence of the solutions pH on the microstructure of hydrogels of yttrium and europium oxohydrates prepared via the sol-gel method
Pacewska et al. Thermal transformations of the products of partial hydrolysis of hydrous aluminium nitrate
Kozlova et al. The stability of sulfide sorbents based on silica in aqueous media. Part II. MCM-41 matrix
Mohd Husin et al. Synthesis and Characteristics of Mesoporous SBA-15 Influence by HMTA as an internal pH Modifier

Legal Events

Date Code Title Description
TH4A Reissue of patent specification