WO2023190603A1 - Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法 - Google Patents

Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法 Download PDF

Info

Publication number
WO2023190603A1
WO2023190603A1 PCT/JP2023/012681 JP2023012681W WO2023190603A1 WO 2023190603 A1 WO2023190603 A1 WO 2023190603A1 JP 2023012681 W JP2023012681 W JP 2023012681W WO 2023190603 A1 WO2023190603 A1 WO 2023190603A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
type zeolite
gis
adsorption
gis type
Prior art date
Application number
PCT/JP2023/012681
Other languages
English (en)
French (fr)
Inventor
敦史 大久保
剛 羽根田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023190603A1 publication Critical patent/WO2023190603A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a GIS-type zeolite, a zeolite molded body, an adsorption device, and a method for producing purified gas.
  • Zeolites can be used as adsorbents, desiccants, separation agents, catalysts, catalyst carriers, detergent aids, ion exchange agents, wastewater treatment agents, fertilizers, food additives, cosmetic additives, etc. Among them, they are used for gas separation. It is useful as a.
  • GIS type zeolite is a zeolite having pores composed of eight-membered oxygen rings.
  • Patent Document 1 a GIS type zeolite having adsorption ability for carbon dioxide has been synthesized, and when the GIS type zeolite is used as an adsorbent, it is difficult to separate, recover, and purify carbon dioxide. It has been shown that it can be used for
  • zeolite is used by filling a column or the like.
  • the zeolite is shaped and used as a pellet-shaped zeolite molded body. The performance of the zeolite molded body is required to have sufficient durability under the conditions of use.
  • Adsorption/desorption hysteresis refers to the phenomenon in which hysteresis occurs during adsorption and desorption in the carbon dioxide adsorption/desorption isotherm. A large amount of adsorption during adsorption and a large amount of desorption during regeneration are required. Adsorption/desorption hysteresis is not a desirable characteristic when used as an adsorbent because the amount of adsorption during adsorption decreases and, accordingly, the amount of desorption during regeneration decreases.
  • Patent Document 1 describes a GIS type zeolite in which cations in the zeolite are replaced with Li, Na, K, Rb, and Cs, and adsorption/desorption hysteresis is observed in the carbon dioxide adsorption/desorption isotherm.
  • the present invention provides a GIS-type zeolite that has excellent embrittlement resistance against adsorption of carbon dioxide when used as a molded body, and is capable of reducing adsorption/desorption hysteresis in a carbon dioxide adsorption/desorption isotherm, and a molded body containing the same.
  • An object of the present invention is to provide an adsorbent containing the adsorbent and a method for producing purified gas using the adsorbent.
  • the present inventors found that when the diffraction peak P CO2 shown below is within a predetermined range, or when the ratio P CO2 /P de of the diffraction peak shown below is within a predetermined range, The present invention has been accomplished based on the discovery that when the molded product is within the range, it has excellent embrittlement resistance against adsorption of carbon dioxide when used as a molded body, and can reduce adsorption/desorption hysteresis in the adsorption/desorption isotherm of carbon dioxide. reached.
  • the present invention includes the following embodiments.
  • ⁇ 4> The GIS type zeolite according to any one of ⁇ 1> to ⁇ 3>, wherein the GIS type zeolite has a silica alumina ratio of 3.40 or more.
  • ⁇ 5> The GIS-type zeolite according to any one of ⁇ 1> to ⁇ 4>, containing potassium or lithium as a cationic species in the GIS-type zeolite.
  • ⁇ 6> The ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of alkali metals (T) in the GIS-type zeolite is 0.05 or more, described in ⁇ 5> GIS type zeolite.
  • ⁇ 7> The peak area intensities attributed to Q4(3Al), Q4(2Al), Q4(1Al), and Q4(0Al) observed in the 29 Si-MAS-NMR spectrum are respectively a, b, c, and d, and ( GIS type zeolite according to any one of ⁇ 1> to ⁇ 6>, satisfying a+d)/(b+c) ⁇ 0.192.
  • ⁇ 8> A zeolite molded body comprising the GIS type zeolite according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> The zeolite molded article according to ⁇ 8>, containing a carrier.
  • ⁇ 10> The zeolite molded article according to ⁇ 8> or ⁇ 9>, wherein the carrier contains an inorganic binder and an organic binder.
  • ⁇ 11> The zeolite shaped body according to any one of ⁇ 8> to ⁇ 10>, wherein the total content of the carrier is 1 to 99% by mass based on 100% by mass of the zeolite shaped body.
  • ⁇ 12> The zeolite molded article according to any one of ⁇ 8> to ⁇ 11>, which has a cylindrical shape.
  • ⁇ 13> The zeolite molded article according to ⁇ 12>, which has a length of 3 mm or more and 30 mm or less, and a diameter of 1 mm or more and 30 mm or less.
  • ⁇ 14> An adsorption device comprising the zeolite molded article according to any one of ⁇ 8> to ⁇ 13>.
  • CO 2 , H 2 O is extracted from a mixture containing two or more gases selected from the group consisting of H 2 , N 2 , O 2 , Ar, CO, and hydrocarbons. , He, Ne, Cl 2 , NH 3 , and HCl.
  • ⁇ 16> The manufacturing method according to ⁇ 15>, wherein the gas is separated by a pressure swing adsorption separation method, a temperature swing adsorption separation method, or a pressure/temperature swing adsorption separation method in the separation step.
  • a GIS-type zeolite that has excellent embrittlement resistance against adsorption of carbon dioxide and can reduce adsorption/desorption hysteresis in a carbon dioxide adsorption/desorption isotherm when used as a molded body, and a molded product containing the same It is possible to provide a body, an adsorbent containing the same, and a method for producing purified gas using the same.
  • FIG. 1 is an adsorption isotherm diagram and a desorption isotherm diagram of carbon dioxide of the GIS type zeolite obtained in Comparative Example 1.
  • FIG. 2 is a diagram illustrating an adsorbent according to an embodiment of the present invention.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following description, and can be implemented with various modifications within the scope of the gist.
  • the notation of a numerical range of "1 to 100” includes both the lower limit value "1” and the upper limit value "100”. The same applies to other numerical ranges.
  • any of the above GIS type zeolites has excellent embrittlement resistance against carbon dioxide adsorption when used as a molded body, and has reduced adsorption/desorption hysteresis in the carbon dioxide adsorption/desorption isotherm.
  • a specific X-ray diffraction peak is related to the rigidity of the crystal, which is influenced by the bonding mode of Si and Al present in the zeolite skeleton, and if the diffraction peak is controlled in a predetermined manner, the absorption of carbon dioxide into the zeolite can be It is thought that it is possible to suppress structural changes in . That is, according to the present embodiment, by controlling the bonding mode of Si and Al, the rigidity of the zeolite itself is controlled, the energy consumption that occurs in response to expansion and contraction is reduced, hysteresis is reduced, and the adsorption It is thought that it will be possible to reduce the maximum stress that occurs due to expansion and contraction when used as a material.
  • the diffraction angle (2 ⁇ ) of P CO2 is preferably set from the viewpoint of improving the embrittlement resistance against adsorption of carbon dioxide when used as a molded body, and from the viewpoint of reducing adsorption/desorption hysteresis in the adsorption/desorption isotherm of carbon dioxide.
  • the angle is 28.60° to 29.50°, more preferably 28.60° to 29.10°, and even more preferably 28.60° to 28.90°.
  • P CO2 /P de is preferably 0.969 or more, more preferably 0.974 or more, and still more preferably 0.985 or more.
  • the upper limit of P CO2 /P de is not particularly limited, it may be 1.33 or less, 1.20 or less, or 1.01 or less.
  • the diffraction angles (2 ⁇ ) of P CO2 and P de can be measured by the method described in Examples.
  • the diffraction angles (2 ⁇ ) of P CO2 and P de can be determined, for example, by sequentially adding a silica source in the ripening step in the GIS type zeolite production method described below to control initial nucleation in zeolite precursor synthesis. It can be obtained by
  • the GIS type zeolite according to this embodiment is not particularly limited, but has a low silica-alumina ratio (represents the molar ratio of silica and alumina expressed as SiO 2 /Al 2 O 3 , hereinafter also referred to as "SAR").
  • SAR silica-alumina ratio
  • a preferable SAR is 3.40 or more, more preferably 4.40 or more, more preferably 4.50 or more, still more preferably 4.69 or more, still more preferably 4.90 or more, More preferably, it is 5.40 or more, and still more preferably 6.01 or more.
  • the upper limit of the SAR is not particularly limited, if the SAR is too high, the interaction with the adsorbate becomes small, so the SAR is preferably 3000 or less, more preferably 500 or less, and still more preferably 100 or less.
  • the SAR of the zeolite in the zeolite molded body is determined by measuring 29 Si-MAS-NMR. SAR can be measured in more detail by the method described in Examples below. SAR can be adjusted by adjusting the amount ratio of water and OH - in the mixed gel.
  • the peak area intensities attributed to Q4 (3Al), Q4 (2Al), Q4 (1Al), and Q4 (0Al) observed in the 29 Si-MAS-NMR spectrum are expressed as a, b, and c, respectively.
  • d preferably satisfying (a+d)/(b+c) ⁇ 0.192, more preferably 0.913 ⁇ (a+d)/(b+c) ⁇ 0.195, still more preferably 0.519 ⁇ ( a+d)/(b+c) ⁇ 0.199.
  • Peaks such as Q4 (3Al), Q4 (2Al), Q4 (1Al), and Q4 (0Al) observed in the Si-MAS-NMR spectrum represent the bonding mode of Si and Al in the zeolite framework, and are the sum of the area intensities.
  • (a+d) and (b+c) represent the sum of abundances of those binding modes, and (a+d)/(b+c) represents the abundance ratio.
  • the abundance ratio of the bonding modes of Si and Al affects the structural changes of the zeolite skeleton itself during adsorption and desorption, so the abundance ratio of the bonding modes of Si and Al in the zeolite skeleton is (a + d) / (b + c)
  • adsorption/desorption hysteresis in the adsorption/desorption isotherm can be eliminated.
  • (a+d)/(b+c) can be measured by the method described in the Examples below. In order to keep (a+d)/(b+c) within a predetermined range, it is possible to adjust it by adjusting the amount ratio of alkali metal/alkaline earth metal and OH- in the mixed gel during synthesis.
  • the cation species in the GIS type zeolite preferably contains potassium or lithium, and more preferably contains potassium.
  • the total content of potassium and lithium in the zeolite is determined by the ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of alkali metals (T) in the GIS type zeolite. Calculated as Z/T is preferably 0.05 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. Although the upper limit of Z/T is not particularly limited, Z/T may be 1.00 or less.
  • Z/T can be measured by thermally dissolving zeolite in an aqueous sodium hydroxide solution or aqua regia, and performing ICP-emission spectroscopy using the appropriately diluted solution.
  • Z/T can be measured in more detail by the method described in the Examples below.
  • Z/T can be adjusted by changing the ratio of potassium and lithium of the cation species of the GIS type zeolite.
  • the ratio (K/T) of the total amount of potassium (K) to the total amount of each alkali metal (T) in the GIS-type zeolite is preferably 0.05 or more, more preferably is 0.10 or more, more preferably 0.15 or more.
  • K/T may be 1.00 or less.
  • the GIS type zeolite preferably has a carbon dioxide adsorption amount of 10 cm 3 /g or more.
  • the carbon dioxide adsorption amount of the zeolite is preferably 20 cm 3 /g or more, more preferably 40 cm 3 /g or more, and still more preferably 50 cm 3 /g or more.
  • the upper limit of the amount of carbon dioxide adsorbed by zeolite is not particularly limited, but is, for example, 100 cm 3 /g or less.
  • the carbon dioxide adsorption amount is the carbon dioxide adsorption capacity (cm 3 ) per 1 g of zeolite at 25°C. More specifically, it is measured by the method described in Examples.
  • the methane adsorption amount of the GIS type zeolite is preferably less than 10 cm 3 /g.
  • the methane adsorption amount of zeolite is more preferably 9 cm 3 /g or less, and even more preferably 8 cm 3 /g or less.
  • the methane adsorption amount is the methane adsorption capacity (cm 3 ) per 1 g of zeolite at 25°C. More specifically, it is measured by the method described in Examples.
  • the selectivity expressed as carbon dioxide adsorption amount/methane adsorption amount of the GIS type zeolite is preferably 10 or more, more preferably 13 or more, and still more preferably 15 or more.
  • the upper limit of the adsorption selectivity of zeolite is not particularly limited, but is, for example, 100 or less.
  • the content of zeolite may be preferably 50% by mass or more, 60% by mass or more, or 70% by mass or more with respect to the total amount of 100% by mass of the zeolite molded body. , 80% by mass or more. Further, the content of the GIS type zeolite may be 98% by mass or less, or 95% by mass or less with respect to 100% by mass of the total amount of the zeolite molded body.
  • the method for producing a GIS type zeolite according to the present embodiment includes, for example, a silica source containing silicon, an aluminum source containing aluminum, an alkali metal containing at least one selected from an alkali metal (M1) and an alkaline earth metal (M2).
  • the method may include the step of preparing a mixed gel containing an alkaline earth metal source, an alkali source, a phosphorus source containing phosphorus, an organic structure directing agent, and water. The mixed gel and each component contained therein will be explained below.
  • the mixed gel in this embodiment is a mixture containing a silica source, an aluminum source, an alkali metal source/alkaline earth metal source, and water as components, and optionally an alkali source, a phosphorus source, and an organic structure directing agent. That's true.
  • the silica source refers to the component in the mixed gel that is the raw material for the silicon contained in the zeolite produced from the mixed gel
  • the aluminum source refers to the raw material for the aluminum contained in the zeolite produced from the mixed gel.
  • the alkali metal source/alkaline earth metal source refers to the components in the mixed gel that are the raw materials for the alkali metals and/or alkaline earth metals contained in the zeolite produced from the mixed gel.
  • the alkaline source refers to the component used for the purpose of adjusting the alkalinity (pH) in the mixed gel
  • the phosphorus source refers to the component used to adjust the alkalinity (pH) in the mixed gel. Refers to the components in the mixed gel.
  • the silica source is not particularly limited as long as it is commonly used, and examples thereof include crystalline silica, amorphous silica, silicic acid, silicates, organic silicate compounds, and the like. More specific examples include sodium silicate, potassium silicate, calcium silicate, magnesium silicate, fumed silica, precipitated silica, silica gel, colloidal silica, aluminosilicate, tetraethoxysilane (TEOS), trimethylethoxysilane, etc. It will be done. These compounds may be used alone or in combination.
  • aluminosilicate serves as both a silica source and an aluminum source.
  • fumed silica, colloidal silica, or precipitated silica is preferable because zeolite with a high degree of crystallinity tends to be obtained.
  • the aluminum source is not particularly limited as long as it is commonly used, but specific examples include sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum hydroxide, aluminum oxide, aluminum chloride, and aluminum alkoxide. , metallic aluminum, amorphous aluminosilicate gel, and the like. These compounds may be used alone or in combination.
  • sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum hydroxide, aluminum chloride, and aluminum alkoxide are preferred because they tend to yield zeolite with a high degree of crystallinity. From the same point of view, sodium aluminate and aluminum hydroxide are more preferred, and sodium aluminate is even more preferred.
  • alkali metal source/alkaline earth metal source The type of alkali metal/alkaline earth metal in the alkali metal source/alkaline earth metal source is not particularly limited, and any alkali metal compound and/or any alkaline earth metal compound can be used.
  • Alkali metal sources/alkaline earth metal sources include, but are not limited to, hydroxides, hydrogen carbonates, carbonates, acetates, sulfates, and nitrates of alkali metals or alkaline earth metals. These compounds may be used alone or in combination.
  • alkali metal and alkaline earth metal used as the alkali source Li, Na, K, Rb, Cs, Ca, Mg, Sr, Ba, etc. can usually be used. From the viewpoint of facilitating crystal formation of a GIS type skeleton, Na and K are preferable, and Na is more preferable. Furthermore, the alkali metals and alkaline earth metals used as the alkali metal source/alkaline earth metal source may be used alone or in combination.
  • the alkali source includes, but is not limited to, for example, Sodium sulfate, sodium sulfite, sodium thiosulfate, sodium nitrite, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium acetate, sodium formate, sodium citrate, sodium oxalate, sodium fluoride, sodium chloride, odor Sodium chloride, sodium iodide, sodium thionate, sodium silicate, sodium metasilicate, sodium tetraborate, sodium chlorate, sodium perchlorate, sodium cyanide, sodium metastannate, sodium hexahydroxide stannate (IV), Sodium hexacyanide ferrate (II), sodium permanganate, sodium chromate, sodium dichromate, Potassium sulfate, potassium sulfite, potassium thiosulfate, potassium nitrite, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium phosphate, potassium phosphate
  • the alkali source When producing zeolite, the alkali source is used for the purpose of adjusting the alkalinity (pH) in the mixed gel in order to promote crystallization into a zeolite structure.
  • the alkali used may be any compound exhibiting alkalinity, and may be either an inorganic compound or an organic compound, but in terms of cost, inorganic compounds are preferred, and alkali metal hydroxides are more preferred.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc., preferably sodium hydroxide, potassium hydroxide, and more preferably hydroxide. Examples include sodium. These compounds may be used alone or in combination.
  • the phosphorus source is not particularly limited as long as it is commonly used, but specific examples include phosphoric acid aqueous solution, sodium phosphate, aluminum phosphate, potassium phosphate, lithium phosphate, calcium phosphate, and barium phosphate. etc. These compounds may be used alone or in combination.
  • phosphoric acid aqueous solution sodium phosphate, and aluminum phosphate are preferred because they tend to yield zeolite with a high degree of crystallinity. From the same viewpoint, phosphoric acid aqueous solution and sodium phosphate are more preferable, and phosphoric acid aqueous solution is even more preferable.
  • the organic structure directing agent When producing zeolite by hydrothermally synthesizing a mixed gel, the organic structure directing agent is a compound that acts to promote crystallization into a zeolite structure. In the crystallization of zeolite, an organic structure directing agent can be used as necessary.
  • the organic structure directing agent may be of any type as long as it can form the desired GIS type zeolite. Furthermore, the organic structure directing agents may be used alone or in combination.
  • organic structure directing agents include, but are not limited to, amines, quaternary ammonium salts, alcohols, ethers, amides, alkyl ureas, alkylthioureas, cyanoalkanes, and those containing nitrogen as a heteroatom.
  • Alicycloheterocyclic compounds can be used, preferably alkylamines, more preferably isopropylamine.
  • salts include anions.
  • anions include, but are not limited to, halogen ions such as Cl - , Br - , and I - , hydroxide ions, acetate ions, sulfate ions, nitrate ions, carbonate ions, and carbonate ions. Contains hydrogen ions. Among these, halogen ions and hydroxide ions are preferred, and halogen ions are more preferred, from the viewpoint of facilitating crystal formation of a GIS type skeleton.
  • composition ratio of mixed gel the selection of the silica source is important in order to synthesize a GIS type zeolite with an appropriate structure. Since the dissolution behavior of the silica source at the initial stage of the reaction greatly affects the binding mode of Al in the zeolite skeleton, it is necessary to select an appropriate silica source depending on the mixed gel composition.
  • the dissolution behavior of the silica source at the initial stage of the reaction depends on the amount of alkali metal/alkaline earth metal contained in the silica source itself, and the amount of alkali metal/alkaline earth metal contained in the silica source itself and SiO 2
  • the ratio is expressed as the additive molar ratio of L1 2 O and L2O to SiO 2 , that is, (L1 2 O+L2O)/SiO 2 .
  • L1 and L2 represent alkali metals and alkaline earth metals contained in the silica source, respectively, and are calculated as oxides.
  • the ratio of the added molar amount of the alkali metal/alkaline earth metal amount contained in the multiple silica sources themselves to the added molar amount of SiO 2 is preferably 0.30 or less, more preferably 0.25 or less, even more preferably 0.08 or less.
  • the ratio of alkali metal/alkaline earth metal amount and OH - in the mixed gel is most important for synthesizing a GIS type zeolite with an appropriate structure.
  • the ratio of the alkali metal/alkaline earth metal amount and OH ⁇ in the mixed gel is expressed as OH ⁇ to the added molar ratio of M1 2 O and M2O, ie, OH ⁇ /(M1 2 O+M2O). (Here, M1 indicates an alkali metal, and M2 indicates an alkaline earth metal.
  • OH - also refers to inorganic hydroxides such as NaOH and Ca(OH) 2
  • OH - is derived from organic hydroxides such as tetraethylammonium hydroxide, and is emitted when oxides such as sodium aluminate and sodium silicate or their hydrates are dissolved in water. It does not include OH - .
  • the silica source and aluminum source dissolved in the water solvent react and crystallize while being dissolved, but the ratio of the amount of alkali metal/alkaline earth metal and OH - in the mixed gel is adjusted to an appropriate range.
  • the ratio OH - / (M1 2 O + M2O) between the amount of alkali metal/alkaline earth metal and OH - is preferably 0.20 or less, and 0.20 or less, from the viewpoint of forming an ideal GIS-type skeleton crystal. It is more preferably 16 or less, and even more preferably 0.10 or less.
  • the ratio of silica source and aluminum source in the mixed gel is expressed as the molar ratio of the oxides of each element, that is, SiO 2 /Al 2 O 3 (note that the ratio of the synthesized zeolite and the silica-alumina ratio of the mixed gel are the same) (The silica-alumina ratio of synthetic zeolite is determined by other compositions and synthesis conditions.)
  • the SiO 2 /Al 2 O 3 in this mixed gel is not particularly limited as long as it has a ratio that allows the formation of zeolite, but since it tends to suppress the formation of zeolite having a skeleton different from the GIS type skeleton, 3. It is preferably 0 or more and 70.0 or less, more preferably 3.5 or more and 65.0 or less, and even more preferably 4.0 or more and 60.0 or less.
  • H 2 O/Al 2 O 3 the ratio of water to alumina
  • the components in the mixed gel will be more easily dispersed evenly, but if it is too high, the crystallization rate will be significantly reduced. Therefore, in order to synthesize a GIS type zeolite with an optimal crystal structure, it is necessary to optimally control H 2 O/Al 2 O 3 since it affects the equilibrium between crystallization and redissolution.
  • H2O / Al2O3 preferably satisfies 210 ⁇ H2O / Al2O3 ⁇ 780, more preferably 220 ⁇ H2O / Al2O3 ⁇ 778, More preferably, 230 ⁇ H 2 O/Al 2 O 3 ⁇ 775.
  • the ratio of phosphorus source to aluminum source in the mixed gel is expressed as the molar ratio of the oxides of the respective elements, ie, P 2 O 5 /Al 2 O 3 .
  • This P 2 O 5 /Al 2 O 3 ratio is not particularly limited as long as it allows the formation of zeolite, but since it tends to suppress the formation of zeolite having a skeleton different from the GIS type skeleton, it is less than 1.0. is preferable, 0.6 or less is more preferable, 0.4 or less is still more preferable, and 0 is especially preferable.
  • the ratio of the aluminum source to the organic structure directing agent in the mixed gel is expressed as the molar ratio of the organic structure directing agent to Al 2 O 3 , that is, R/Al 2 O 3 (R represents an organic structure directing agent here).
  • the value is preferably less than 7.0, and more preferably 6.0 or less, because crystal formation of the GIS type skeleton becomes easier and/or the synthesis time is shortened, resulting in excellent economic efficiency when producing zeolite. It is preferably 5.0 or less, and more preferably 5.0 or less.
  • the organic structure-directing agent remains in the zeolite pores, preventing carbon dioxide from entering the pores and reducing the amount of adsorption.
  • R/Al 2 O 3 is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the method for producing GIS type zeolite according to the present embodiment includes a silica source containing silicon, an aluminum source containing aluminum, an alkali metal/alkaline earth metal source, an alkali source, a phosphorus source, and a water source.
  • the molar ratio of each component in the mixed gel is adjusted to the silicon, aluminum, alkali metal (M1), alkaline earth metal (M2), and the alkali contained in the silica source.
  • the molar ratios ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are ⁇ 0.30, ⁇ 0.20, 3.0 ⁇ 70.0, 210 ⁇ 780, 0 ⁇ It is preferable to satisfy ⁇ 1.0, and it is more preferable to satisfy ⁇ 0.25, ⁇ 0.16, 3.5 ⁇ 65.0, 220 ⁇ 778, 0 ⁇ 0.6. Preferably, it is more preferable to satisfy ⁇ 0.08, ⁇ 0.10, 4.0 ⁇ 60.0, 230 ⁇ 775, and 0 ⁇ 0.4.
  • the GIS type zeolite according to the present embodiment is obtained by the method for producing a GIS type zeolite according to the present embodiment described above.
  • (L1 2 O+L2O)/SiO 2 (1)
  • OH ⁇ /(M1 2 O+M2O) (2)
  • SiO 2 /Al 2 O 3 (3)
  • H 2 O/Al 2 O 3 (4)
  • P 2 O 5 /Al 2 O 3 (5)
  • the GIS-type zeolite of this embodiment can also be obtained by adding a previously produced GIS-type zeolite to the mixed gel as a seed crystal.
  • the mixed gel preparation process is not particularly limited, but for example, a silica source, an aluminum source, an alkali metal source/alkaline earth metal source, water, and if necessary an alkali source, a phosphorus source, and an organic structure directing agent are added at once.
  • a silica source an aluminum source, an alkali metal source/alkaline earth metal source, water, and if necessary an alkali source, a phosphorus source, and an organic structure directing agent are added at once.
  • it may include a mixing step of mixing in multiple stages and an aging step of the mixture obtained in this mixing step.
  • these components including a silica source, an aluminum source, an alkali metal source/alkaline earth metal source, water, and if necessary an alkali source, a phosphorus source, and an organic structure directing agent are mixed all at once or in multiple stages. be able to.
  • the order of mixing in multiple stages is not limited and may be selected as appropriate depending on the conditions used. When mixing in multiple stages, it may be performed with or without stirring.
  • the stirring method is not particularly limited as long as it is a commonly used stirring method, but specific examples include methods using blade stirring, vibration stirring, rocking stirring, centrifugal stirring, and the like.
  • the rotational speed of stirring is not particularly limited as long as it is a commonly used stirring speed, but for example, it may be 1 rpm or more and less than 2000 rpm.
  • the temperature of the mixing step is not particularly limited as long as it is a commonly used temperature, but examples thereof include -20°C or higher and lower than 80°C.
  • the time of the mixing step is not particularly limited and can be appropriately selected depending on the temperature of the mixing step, and for example, it may be more than 0 minutes and less than 1000 hours.
  • the aging step may be performed either by standing still or by stirring.
  • stirring in the ripening process there is no particular limitation as long as it is a generally used stirring method, but specific examples include methods using blade stirring, vibration stirring, rocking stirring, centrifugal stirring, etc. .
  • the rotational speed of stirring is not particularly limited as long as it is a commonly used stirring speed, but for example, it may be 1 rpm or more and less than 2000 rpm.
  • the temperature of the aging step is not particularly limited as long as it is a commonly used temperature, but examples thereof include -20°C or higher and lower than 80°C.
  • the time for the aging step is not particularly limited and can be appropriately selected depending on the temperature of the aging step, and for example, may be more than 0 minutes and 1000 hours or less.
  • the mixing step and aging step it is important to sequentially add a silica source and control initial nucleation in zeolite precursor synthesis in order to synthesize a GIS type zeolite with an appropriate structure.
  • the molar amount S1 of the silica source present in the initial state when mixing the mixed gel containing the silica source, aluminum source, and water is started, and the molar amount S1 of the silica source in the gel subjected to the hydrothermal synthesis step.
  • the ratio of quantities S2 is of particular importance.
  • is preferably 0.90 or less, more preferably 0.80 or less, and even more preferably 0.50 or less.
  • the lower limit of ⁇ is not particularly limited, but if ⁇ is too small, the production of impurities such as ANA type zeolite will increase, and GIS may not be produced. Therefore, ⁇ is preferably 0.05 or more, more preferably 0. It is .08 or more, more preferably 0.10 or more.
  • the combined time of the mixing step and aging step is not particularly limited and may be adjusted as appropriate based on the composition of the raw materials, etc. in order to obtain a zeolite with an appropriate structure.
  • the above-mentioned time is preferably 1 minute or more and less than 24 hours, more preferably 3 minutes or more and less than 23 hours, further preferably 10 minutes or more and 18 hours or less, even more preferably 12 minutes or more and 15 hours or less, and even more preferably 12 minutes or more and less than 15 hours.
  • the time period is more preferably 6 hours or more.
  • the method for producing GIS-type zeolite according to the present embodiment preferably further includes a hydrothermal synthesis step in which the hydrothermal synthesis temperature is 80°C to 200°C, and the hydrothermal synthesis temperature is 100°C to 180°C. is more preferable. That is, hydrothermal synthesis is preferably carried out by holding the mixed gel obtained in the preparation step at a predetermined temperature for a predetermined period of time under stirring or in a stationary state.
  • the temperature for hydrothermal synthesis is not particularly limited as long as it is a commonly used temperature, but it is preferably 80° C. or higher because it shortens the synthesis time and is economical when producing zeolite. From the viewpoint of suppressing the formation of zeolite having a skeleton different from the GIS type skeleton, the temperature is more preferably 90°C or higher, and even more preferably 100°C or higher. From the viewpoint of suppressing the formation of zeolite having a skeleton different from the GIS type skeleton, the temperature is more preferably 200°C or lower, even more preferably 180°C or lower, and even more preferably 170°C or lower.
  • the temperature for hydrothermal synthesis may be constant or may be changed stepwise.
  • the time for hydrothermal synthesis is not particularly limited as long as it is a commonly used time, and can be appropriately selected depending on the temperature of hydrothermal synthesis.
  • the hydrothermal synthesis time is preferably 3 hours or more, more preferably 10 hours or more, from the viewpoint of forming a GIS skeleton. From the viewpoint of obtaining highly crystalline GIS type zeolite, the heating time is more preferably 24 hours or more. From the viewpoint of excellent economic efficiency in producing zeolite, the hydrothermal synthesis time is preferably 30 days or less, more preferably 20 days or less, and even more preferably 10 days or less.
  • the container in which the mixed gel is placed is not particularly limited as long as it is a commonly used container, but if the pressure inside the container increases at a predetermined temperature, or if it is under gas pressure that does not inhibit crystallization. In such cases, it is preferable to place the mixture in a pressure-resistant container and perform hydrothermal synthesis.
  • the pressure-resistant container is not particularly limited, and various shapes such as a spherical shape, a vertically long shape, and a horizontally long shape can be used, for example.
  • the pressure container When stirring the mixed gel in the pressure container, the pressure container is rotated vertically and/or horizontally, preferably in the vertical direction.
  • the rotation speed is not particularly limited as long as it is within a commonly used range, but is preferably 1 to 50 rpm, more preferably 10 to 40 rpm.
  • the separation method is not particularly limited as long as it is a common method, such as filtration, decantation, spray drying (rotary spray, Nozzle spraying, ultrasonic spraying, etc.), a drying method using a rotary evaporator, a vacuum drying method, a freeze-drying method, a natural drying method, etc. can be used, and separation can usually be performed by filtration or decantation.
  • the separated product may be used as is or washed with water or a specified solvent. If necessary, the separated material can be dried.
  • the temperature at which the separated product is dried is not particularly limited as long as it is a general drying temperature, but is usually from room temperature to 150° C. or lower.
  • the atmosphere for drying is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.
  • the GIS type zeolite can be calcined and used.
  • the firing temperature is not particularly limited as long as it is a commonly used temperature, but when it is desired to remove the organic structure directing agent, the remaining proportion can be reduced, so it is preferably 300°C or higher, and 350°C or higher. It is more preferable that The temperature is more preferably 360° C. or higher because the firing time is short and the zeolite is produced economically. Since the crystallinity of zeolite tends to be maintained, the temperature is preferably lower than 450°C, more preferably 420°C or lower, and even more preferably 400°C or lower.
  • the firing time is not particularly limited as long as the organic structure directing agent is sufficiently removed, and can be appropriately selected depending on the firing temperature, but it tends to reduce the proportion of the organic structure directing agent remaining. Therefore, the duration is preferably 0.5 hours or more, more preferably 1 hour or more, and even more preferably 3 hours or more. Since the crystallinity of the zeolite tends to be maintained, it is preferably 10 days or less, more preferably 7 days or less, and even more preferably 5 days or less.
  • the firing atmosphere is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.
  • Cation exchange If necessary, the GIS type zeolite can be cation-exchanged into a desired cation type.
  • Cation exchange includes, but is not limited to, carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, rubidium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, ammonium carbonate, or sodium nitrate.
  • Nitrates such as potassium nitrate, lithium nitrate, rubidium nitrate, cesium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate, barium nitrate, and ammonium nitrate, or carbonate ions and nitrate ions contained in the carbonates and nitrates, can be converted into halide ions, sulfate ions, Salts changed to carbonate ions, hydrogen carbonate ions, acetate ions, phosphate ions or hydrogen phosphate ions, and acids such as nitric acid and hydrochloric acid can be used. From the viewpoint of improving the selective adsorption ability of carbon dioxide, it is preferable that the zeolite contains a potassium atom as a cation species.
  • the temperature of cation exchange is not particularly limited as long as it is a general cation exchange temperature, but is usually from room temperature to 100°C or less.
  • the separation method is not particularly limited as long as it is a general method, such as filtration, decantation, spray drying method (rotary spray, nozzle spray, ultrasonic spray, etc.), rotary evaporator.
  • a drying method using a vacuum drying method, a freeze drying method, a natural drying method, etc. can be used, and separation can usually be performed by filtration or decantation.
  • the separated product may be used as is or washed with water or a specified solvent. If necessary, the separated material can be dried.
  • the temperature at which the separated product is dried is not particularly limited as long as it is a general drying temperature, but is usually from room temperature to 150°C or less.
  • the atmosphere for drying is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.
  • the zeolite molded article according to this embodiment includes the above-mentioned GIS type zeolite.
  • the content of the GIS type zeolite is preferably 50% by mass or more, 60% by mass or more, and 70% by mass or more, based on the total amount of 100% by mass of the zeolite molded body.
  • the content may be 80% by mass or more.
  • the content of the GIS type zeolite may be 99% by mass or less, 95% by mass or less, or 92% by mass or less with respect to the total amount of 100% by mass of the zeolite molded body. .
  • the zeolite molded article according to this embodiment preferably includes a carrier.
  • the carrier include inorganic binders and organic binders.
  • the inorganic binder examples include inorganic oxides such as alumina, silica, magnesia, zirconia, and titania, clay minerals such as bentonite and kaolin, calcium silicate, and calcium aluminate.
  • examples of alumina include ⁇ -alumina, ⁇ -alumina, boehmite, pseudoboehmite, bayerite, gibbsite, and diaspore.
  • silica include colloidal silica, water glass, fumed silica, silica sol, wet process silica, dry process silica, and natural silica. These inorganic binders may be used alone or in combination.
  • the content of the inorganic binder is preferably 1 to 90% by mass, more preferably 1 to 50% by mass, and even more preferably 5 to 40% by mass, based on the total amount of 100% by mass of the zeolite molded body. , more preferably 8 to 30% by mass.
  • organic binder examples include cellulose, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, latex, polyvinyl alcohol, vinyl acetate, polyvinyl acetal, vinyl chloride, acrylic, polyamide, urea, melamine, phenolic resin, polyester, polyurethane, polyamide, and polyester.
  • examples include benzimidazole, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, polysulfide, butyl rubber, silicone rubber, acrylic rubber, and urethane rubber. These organic binders may be used alone or in combination.
  • organic binders cellulose, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and polyvinyl alcohol are preferred, and cellulose, methylcellulose, and polyvinyl alcohol are more preferred, from the viewpoint of surface bonding with GIS type zeolite.
  • the content of the organic binder is preferably 1 to 90% by mass, more preferably 1 to 50% by mass, and even more preferably 5 to 40% by mass, based on the total amount of 100% by mass of the GIS type zeolite molded body. and even more preferably 8 to 30% by mass.
  • the carrier preferably contains an inorganic binder and an organic binder. That is, it is preferable to include one or more of each of the above-mentioned inorganic binder and organic binder.
  • the total content of the carrier is preferably 1 to 90% by mass, more preferably 1 to 50% by mass, and even more preferably 5 to 40% by mass, based on the total amount of 100% by mass of the zeolite molded body. Even more preferably, it is 8 to 30% by mass.
  • the content of the carrier may be adjusted in consideration of the strength and performance required depending on the application.
  • the shape of the zeolite molded body is not particularly limited, and examples thereof include spherical, cylindrical, elliptical, bag-shaped, trefoil-shaped, ring-shaped, and powder-shaped. Among these, spherical and cylindrical shapes are more preferable.
  • the size of the molded body is not particularly limited, but it changes depending on the conditions in which the molded body is used. For example, when using a process that uses a molded body in a state other than a fluidized state, such as a fixed bed or a moving bed, it is preferably cylindrical with a length of 3 mm or more and 30 mm or less and a diameter of 1 mm or more and 30 mm or less.
  • the length of the cylinder is more preferably 3 mm or more and 10 mm or less, and even more preferably 3 mm or more and 8 mm or less.
  • the diameter of the cylinder is more preferably 2 mm or more and 4 mm or less.
  • the above length and diameter are determined by measuring the pellet length and diameter on three samples using a caliper with a minimum reading of 0.1 mm or less, and using the average value as the length and diameter. It can be measured and adjusted to the above-mentioned range by, for example, operations such as classification.
  • the particles When used in a process such as a fluidized bed in which a molded article is fluidized, the particles preferably have a particle diameter of 20 ⁇ m or more and 300 ⁇ m or less.
  • the particle diameter is more preferably 20 ⁇ m or more and 200 ⁇ m or less, and even more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the particle size can be measured as a median diameter (D50) using a laser diffraction/scattering particle size analyzer (MT3000 manufactured by Microtrac) according to the attached manual.
  • the compressive strength of the zeolite molded body according to the present embodiment is preferably 1.0 MPa or more, more preferably 2.2 MPa or more, and still more preferably 3.4 MPa or more.
  • the above compressive strength can be measured as the average value of the values obtained by measuring 20 times using a micro compression tester (MCT-W500 manufactured by Shimadzu Corporation, compressive strength measurement). can be adjusted within the above-mentioned range.
  • the breaking strength of the zeolite molded body according to this embodiment is preferably 5N or more, more preferably 10N or more, and still more preferably 20N or more.
  • the above-mentioned range is satisfied.
  • the above breaking strength can be measured as the average value of the values obtained by measuring each 20 times using a digital hardness meter (KHT-40N manufactured by Fujiwara Seisakusho Co., Ltd., indenter 3 mm, breaking strength measurement). It can be adjusted within the above range by changing the firing temperature and firing time.
  • the method for producing the zeolite molded body according to the present embodiment is not particularly limited, but the raw material mixing step (X) in which the GIS type zeolite according to the present embodiment and other optional components (for example, a carrier) are mixed and prepared; , a molding treatment step (Y) in which the prepared raw material is subjected to molding treatment to obtain a precursor, and a firing step (Z) in which the precursor is fired to obtain a zeolite molded body.
  • Other methods for producing zeolite molded bodies include extrusion processing, injection treatment, injection/casting treatment, rolling granulation treatment, compression molding treatment, and spray drying, if the desired zeolite molded body can be obtained.
  • the molding may be performed by processing or by a combination of two or more of these methods.
  • the raw materials used may be in the form of powder, solvent dispersion, sol, liquid, etc. depending on the manufacturing method.
  • the raw materials used for example, when using an inorganic binder, it is used in the form of powder, solvent dispersion, sol, or liquid depending on the manufacturing method.
  • these inorganic binders may be used alone or in combination.
  • the temperature at which the raw materials are mixed is not particularly limited, but is preferably, for example, 10°C to 80°C, more preferably 15°C to 60°C.
  • the evaporation of water in the raw materials tends to be suppressed when the temperature of the raw materials is 80°C or lower; In the above cases, freezing in the slurry tends to be suppressed.
  • the clay-like region from the funicular to the capillary is formed after mixing the raw materials, if the temperature of the raw materials is below 80°C, the evaporation of water from the clay will be suppressed, and the moisture in the clay will be reduced.
  • any means can be used as the stirring means when preparing the raw materials.
  • a stirring blade is preferably used when the state after mixing the raw materials is in the form of a slurry.
  • Specific examples of the blades used for stirring include propeller shapes, paddle shapes, flat paddle shapes, turbine shapes, and cone shapes.
  • a baffle plate or the like may be installed in the tank. The optimum number of stirrers may be selected depending on the size of the catalyst raw material liquid tank, the shape of the stirring blades, etc.
  • the total stirring time of the raw materials is preferably 1 minute to 24 hours, more preferably 10 minutes to 5 hours, and even more preferably 15 minutes to 3 hours.
  • the stirring time of the mixed liquid is 1 minute or more, the composition in the raw material tends to become uniform, and when it is 24 hours or less, the influence of water evaporation in the raw material tends to be reduced.
  • the mixture becomes clay-like in the funicular to capillary region after mixing the raw materials, as in extrusion molding, for example, it is preferable to select a mixer, kneader, etc. according to the condition of the raw materials.
  • the total mixing and kneading time of the raw materials is preferably 1 minute to 24 hours, more preferably 2 minutes to 5 hours, and even more preferably 3 minutes to 3 hours.
  • the stirring time of the mixed liquid is 1 minute or more, the composition in the raw material tends to become uniform, and when it is 24 hours or less, the influence of water evaporation in the raw material tends to be reduced.
  • an organic binder that easily gels due to heat such as methylcellulose
  • the internal temperature of the mixer or kneader is maintained at a value lower than the thermal gelation temperature of the organic binder. It is possible to suppress gelation of the binder, and it tends to be easier to obtain raw materials with a uniform composition.
  • the clay-like raw material can be allowed to stand and mature. By aging, water tends to spread more easily between the raw zeolite, improving moldability, and it also tends to replace air and other gases that exist between the zeolites, resulting in a more dense molded product. It is in.
  • molding treatment in the molding treatment step (Y) examples include extrusion molding treatment, compression molding treatment, and spray drying treatment.
  • the extrusion molding process is not particularly limited, but for example, the temperature during extrusion molding is preferably 10°C to 80°C, depending on the properties of the raw material used (also referred to as "raw material clay" in extrusion molding processing). More preferably 15°C to 75°C.
  • the moisture content in the raw clay is preferably 35% by mass to 50% by mass, more preferably 38% by mass to 45% by mass. When the moisture content is 50% by mass or less, excessive improvement in the flexibility of the raw clay can be prevented and the moldability tends to improve, and when the moisture content is 35% by mass or more, the flexibility of the raw clay can be improved. Moderate deterioration can be prevented and moldability tends to improve.
  • the extrusion molding machine is not particularly limited, but examples include a screw type, roll type, blade type, self-molding type, ram type, disk pelleter type, etc. Can be mentioned. Among these, it is particularly preferable to carry out the extrusion molding process using a roll type, screw type, or disk pelleter type extrusion molding machine.
  • examples of the compression molding machine include, but are not particularly limited to, uniaxial press molding, hot press molding, and the like.
  • atomization of the slurry can be performed by a rotating disk method, a two-fluid nozzle method, a high-pressure nozzle method, etc., which are usually carried out industrially, but it is especially preferable to use the rotating disk method. is preferred.
  • a drying heat source for drying the sprayed droplets it is preferable to use air heated by steam, an electric heater, or the like.
  • the temperature at the inlet of the dryer can be about 100°C to 400°C, preferably 150°C to 300°C.
  • the temperature at the outlet of the dryer can be about 40°C to 150°C, preferably 50°C to 130°C.
  • the firing temperature in the firing step (Z) is not particularly limited as long as it is a commonly used temperature, but it is preferably less than 550°C because it tends to ensure strength while maintaining the crystallinity of the zeolite. , more preferably 530°C or lower, and even more preferably 500°C or lower. Further, the firing temperature is preferably 110°C or higher, more preferably 120°C or higher.
  • the firing time in the firing step (Z) is not particularly limited as long as the carrier is sufficiently dried and sintered, and can be appropriately selected depending on the firing temperature. It is preferable that the period of time is 20 days or less, more preferably 10 days or less, and even more preferably 7 days or less.
  • the firing atmosphere in the firing step (Y) is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used. Firing in the firing step (Z) can be performed using a firing furnace such as a rotary furnace, a tunnel furnace, a muffle furnace, or the like.
  • the uses of the GIS type zeolite according to this embodiment are not particularly limited, and include, for example, separation agents or separation membranes for various gases and liquids, electrolyte membranes for fuel cells, fillers for various resin moldings, and membrane reactors. or catalysts for hydrocracking, alkylation, etc., catalyst carriers for supporting metals, metal oxides, etc., adsorbents, desiccants, detergent aids, ion exchange agents, wastewater treatment agents, fertilizers, food additives, cosmetic additives. It can be used as, etc.
  • the GIS type zeolite according to this embodiment can be suitably used as a carbon dioxide adsorbent.
  • the adsorption device includes the zeolite molded body according to this embodiment. Since the adsorption device according to the present embodiment is configured as described above, it can sufficiently adsorb carbon dioxide and has high selectivity of carbon dioxide adsorption with respect to the amount of methane adsorbed. Therefore, it can be particularly preferably used for the purpose of selectively removing carbon dioxide from natural gas, for example.
  • the adsorption device includes a zeolite molded body containing the GIS type zeolite according to the present embodiment, and may have the configuration example shown in FIG. 2.
  • the zeolite molded body 4 is provided.
  • the filter 3 for example, a filter made of quartz can be used.
  • the zeolite molded body 4 selectively removes carbon dioxide. can be adsorbed and removed, and methane-rich gas can be taken out from the lower line.
  • the target to be subjected to the adsorption device is not limited to natural gas, and the internal structure of the adsorption device is not limited to the example shown in FIG. 2.
  • the method for producing purified gas according to the present embodiment uses an adsorption device containing the GIS type zeolite according to the present embodiment, and uses two types selected from the group consisting of H 2 , N 2 , O 2 , CO, and hydrocarbons.
  • One or more selected from the group consisting of CO 2 , H 2 O, He, Ne, Cl 2 , NH 3 , and HCl is separated from the mixture containing the above gases.
  • one or more gases selected from the group consisting of CO 2 and H 2 O are separated from one or more gases selected from the group consisting of N 2 , O 2 , CO, and hydrocarbons. It is preferable.
  • hydrocarbons include, but are not particularly limited to, methane, ethane, ethylene, propane, propylene, 1-butene, 2-butene, 2-methylpropene, dimethyl ether, acetylene, and the like.
  • the GIS type zeolite according to this embodiment has a large adsorption capacity for CO2 , and physical adsorption not via chemical bonds is observed.
  • the separation method using the GIS type zeolite according to this embodiment is not particularly limited, but a method that requires low energy during regeneration of the adsorbent and is excellent in economic efficiency is preferable. Specific examples of such methods are not particularly limited, but it is preferable to use any one of a pressure swing adsorption separation method, a temperature swing adsorption separation method, or a pressure/temperature swing adsorption separation method.
  • Pressure swing adsorption separation method is a method that lowers the pressure during desorption than the pressure during gas adsorption, and utilizes the difference between the amount of adsorption at high pressure and the amount of adsorption at low pressure. This is a method of separating gases.
  • the thermal swing adsorption separation method is a method in which the temperature during desorption is higher than the temperature during gas adsorption, and the difference between the amount of adsorption at low temperatures and the amount of adsorption at high temperatures is utilized. This is a method of separating gases.
  • PTSA pressure and temperature swing adsorption and desorption method
  • X-ray diffraction device Rigaku powder X-ray diffraction device “Ultima-IV” (product name) Measurement method: Transmission method X-ray source: Cu tube (40kV, 40mA) Measurement range: 5 ⁇ 90° (0.02°/step) Measurement speed: 0.5°/min Slit width (scattering, divergence, light reception): Open 1° (3)
  • the diffraction peak P de by X-ray diffraction under dehydrated and nitrogen adsorption conditions was measured using the following procedure. Nitrogen gas heated by a heater was directly blown onto the capillary containing the sample, and the temperature was calibrated using a thermocouple to 350°C.
  • the pressure inside the sample holder was reduced to 1.0 mmHg using a vacuum pump.
  • Diffraction peak P CO2 by X-ray diffraction under dehydrated and carbon dioxide adsorption conditions was determined by the following procedure.
  • Nitrogen gas heated by a heater was directly blown onto the capillary containing the sample, and the temperature was calibrated using a thermocouple to 350°C. Furthermore, the pressure inside the sample holder was reduced to 1.0 mmHg using a vacuum pump. After maintaining the temperature and degree of vacuum for 3 hours, N 2 is introduced into the sample holder from an N 2 cylinder, and the temperature is cooled to 25°C. After reducing the pressure inside the sample holder to 1.0 mmHg using the vacuum pump again, CO 2 was introduced into the sample holder from a CO 2 cylinder, the pressure inside the sample holder was set to 300 kPa, and X-ray diffraction was measured. . The diffraction angle (2 ⁇ ) of the diffraction peak having the strongest intensity in the obtained spectrum was defined as P CO2 .
  • the SAR of zeolite in a zeolite molded body can be determined by measuring 29 Si-MAS-NMR. First, to adjust the humidity of the zeolite, water was filled at the bottom of a desiccator, and the zeolite placed in a sample tube was held on top of the desiccator for 48 hours. After performing the humidity conditioning treatment, 29 Si-MAS-NMR measurements were performed under the following conditions.
  • Q4 (0Al) A peak of Si that is not bonded to Al through oxygen
  • Q4 (1Al) A peak of Si that is bonded to one Al through oxygen
  • Q4 (2Al) Peak of Si bonded to 2 Al via oxygen
  • Q4(3Al) Peak of Si bonded to 3 Al via oxygen
  • Q4(4Al ) peak of Si bonded to four Al atoms via oxygen
  • these peak positions generally exist from -112 ppm to -80 ppm, and in the high magnetic field From the side, it can be assigned to Q4 (0Al), Q4 (1Al), Q4 (2Al), Q4 (3Al), and Q4 (4Al).
  • the peak position may vary depending on the cation species present in the zeolite skeleton, but generally the peak position exists within the following range.
  • Q4 (0Al): -105ppm to -112ppm (2)
  • Q4 (1Al): -100ppm to -105ppm (3)
  • Q4 (2Al): -95ppm to -100ppm (4)
  • Q4 (4Al): -80ppm to -87ppm 29 The peak area intensity of the Si-MAS-NMR spectrum was analyzed using Gaussian and Lorentz functions using the analysis program dmfit (#202000113 version), and the amplitude (height of the maximum value of the spectrum), position (spectral position) , ppm), width (full width at half maximum of the spectrum, ppm), and Gauss/Lorentz ratio (xG/(1-x)L), which are obtained by optimizing the four parameters
  • test sample used for This was used as a test sample.
  • the test samples were dried under N2 atmosphere at 200°C for 3 hours. After cooling to room temperature under N2 atmosphere, it was exposed to room temperature CO2 for 30 minutes.
  • the value calculated using formula (1) is defined as the powdering rate [mass%] of the zeolite molded body, and the lower the powdery rate of the zeolite molded body, the more embrittlement resistance it has in a CO 2 atmosphere. And so.
  • Alkali metal content Zeolite is thermally dissolved in an aqueous sodium hydroxide solution or aqua regia, and the appropriately diluted solution is used for ICP-emission spectrometry analysis (hereinafter also referred to as "ICP-AES", SPS3520UV-DD manufactured by Hitachi High-Tech Science Co., Ltd.: device name).
  • the concentrations of aluminum and potassium in the zeolite were measured.
  • the content of potassium and lithium in the zeolite was calculated as the ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of each alkali metal (T) in the zeolite. . K/T was calculated in the same manner.
  • Example 1 61.93 g of water, 0.202 g of sodium hydroxide (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.39 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , 1.64 g of Fujifilm (manufactured by Wako Pure Chemical Industries, Ltd.) and 5.41 g of colloidal silica (Ludox AS-40, solid content concentration 40% by mass, manufactured by Grace) were mixed, and after stirring for 24 hours, colloidal silica (Ludox AS- 40 (solid content concentration 40% by mass, manufactured by Grace) was added thereto and stirred for 30 minutes to prepare a mixed gel.
  • NaOH sodium hydroxide
  • NaNO 3 sodium nitrate
  • NaNO 3 sodium nitrate
  • NaNO 3 sodium nitrate
  • NaNO 3 sodium nitrate
  • NaNO 3 sodium nitrate
  • NaNO 3 sodium
  • the mixed gel was placed in a 200 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 135°C using a stirring type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 4 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.
  • GIS-type zeolite obtained by synthesis 40 parts by mass of GIS-type zeolite obtained by synthesis, 1.2 parts by mass of methylcellulose (Selander YB-132A manufactured by Hi-Chem Corporation), 0.2 parts by mass of polyvinyl alcohol (Gohsenol N-300 manufactured by Mitsubishi Chemical Corporation), 10.4 parts by mass of powdered alumina hydrate (manufactured by JGC Catalysts & Chemicals Co., Ltd., alumina content: 70% by mass) and 48.2 parts by mass of alumina sol (manufactured by Nissan Chemical Co., Ltd., alumina content: 10.5% by mass) ) were mixed.
  • the mixture was manually extruded using a clay gun into a cylindrical shape with a diameter of 3 mm, and then fired in an air atmosphere at 350° C. for 24 hours using an electric furnace.
  • the pulverization rate of the GIS type zeolite molded body thus obtained was 0.1%.
  • Example 2 61.65 g of water, 0.30 g of a 48% by mass sodium hydroxide aqueous solution (NaOH, manufactured by Tokuyama Soda), 2.27 g of sodium carbonate (Na 2 CO 3 , manufactured by Tokuyama Soda), and sodium aluminate (NaAlO 2 , 1.64 g of colloidal silica (Ludox AS-40, solid content concentration 40% by mass, manufactured by Grace) were mixed and stirred for 30 minutes. A mixed gel was prepared by adding 10.00 g of solid content (40% by mass, manufactured by Grace) and stirring for 30 minutes.
  • NaOH sodium hydroxide aqueous solution
  • Na 2 CO 3 sodium carbonate
  • NaAlO 2 sodium aluminate
  • Lidox AS-40 solid content concentration 40% by mass, manufactured by Grace
  • the mixed gel was placed in a 200 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 5 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained.
  • Example 3 141.41 g of water, 8.53 g of sodium nitrate (NaNO 3 , manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.85 g of sodium aluminate (NaAlO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and precipitated silica (Perkasil SM500, After stirring for 60 minutes, 1.74 g of precipitated silica (Perkasil SM500, manufactured by Grace) was added and stirred for 15 minutes to prepare a mixed gel.
  • NaNO 3 sodium nitrate
  • NaAlO 2 sodium aluminate
  • the mixed gel was placed in a 300 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 4 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.
  • the mixed gel was placed in a 300 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 60 rpm at 150°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) in which the micro cylinder could be rotated vertically.
  • Hydrothermal synthesis was carried out for 3 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.
  • a mixed gel was prepared by mixing 207.30 g of water, 8.78 g of sodium hydroxide, 16.4 g of sodium aluminate, and 248.3 g of Water Glass No. 3 and stirring for 15 minutes. .
  • the mixed gel was placed in a 1000 mL stainless steel autoclave containing a fluororesin inner cylinder, and hydrothermally synthesized at 130 °C for 5 days without stirring.
  • the product was filtered and dried at 120 °C to obtain powdered zeolite. Ta. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.
  • the GIS type zeolite according to the present invention has the potential for industrial use as a carbon dioxide adsorbent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

脱水状態かつ二酸化炭素吸着条件下でのX線回折により得られるスペクトルにおける、回折角が2θ=25.81~34.57°の間で観測される回折ピークの内、最も強い強度を有する回折ピークPCO2の回折角(2θ)が、28.60~29.54°である、GIS型ゼオライト。

Description

GIS型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法
 本発明は、GIS型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法に関する。
 ゼオライトは、吸着剤、乾燥剤、分離剤、触媒、触媒用担体、洗剤助剤、イオン交換剤、排水処理剤、肥料、食品添加物、化粧品添加物などとして用いることができ、中でもガス分離用途として有用なものである。
 ゼオライトの中でも、IZA(International Zeolite Association)が定めるゼオライトの構造を規定するコードでGIS構造のものは、GIS型ゼオライトと呼ばれる。GIS型ゼオライトは酸素8員環で構成された細孔を有するゼオライトである。かかるGIS型ゼオライトについては、例えば、特許文献1において、二酸化炭素に対する吸着能を有するGIS型ゼオライトが合成されており、吸着材としてGIS型ゼオライトを用いた際に、二酸化炭素の分離、回収、精製に用いることが示されている。
国際公開WO2019/202933号
 吸着材を用いた二酸化炭素の分離、回収、精製を行う場合については、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法などが用いられる。これらの方法において、ゼオライトは、カラムなどに充填して用いられる。装置内で微粉状のゼオライトが流路に蓄積して閉塞しないようにするため、ゼオライトを賦形し、ペレット状のゼオライト成形体として用いられる。当該ゼオライト成形体の性能として、使用条件に対して十分な耐久性を有することが求められる。GIS型ゼオライトを含むゼオライト成形体に多量の二酸化炭素を吸着すると、ゼオライト成形体が脆化するという課題を見出した。当該脆化によって、例えば、吸着装置内で微粉が発生し圧力損失などにより装置の連続運転が難しくなる。
 また、吸着材の性能として、二酸化炭素の吸脱着ヒステリシスがないことが求められる。吸脱着ヒステリシスは二酸化炭素の吸脱着等温線において吸着と脱着においてヒステリシスが生じる現象を表すが、吸着材を用いる際に、加熱したり、真空引きして二酸化炭素を脱離・再生する工程において、吸着時の吸着量、再生時の脱離量が多いことが求められる。吸脱着ヒステリシスは、吸着時の吸着量が少なくなり、またそれに伴い、再生時の脱離量が少なくなるため、吸着材として使用する際に、望ましい特性とは言い難い。特許文献1では、Li、Na、K、Rb、及びCsにゼオライト中のカチオンを置換したGIS型ゼオライトについて示されているが、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスが観測されている。
 本発明は、成形体として用いたときの二酸化炭素の吸着に対する耐脆化性に優れ、かつ、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスを低減可能なGIS型ゼオライト、これを含む成形体、これを含む吸着材、及びこれを用いる精製ガスの製造方法を提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、以下に示す回折ピークPCO2が所定の範囲にあるとき、又は、以下に示す回折ピークの比PCO2/Pdeが所定の範囲にあるとき、成形体として用いたときの二酸化炭素の吸着に対する耐脆化性に優れ、かつ、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスを低減可能であることを見出し、本発明をなすに至った。
 すなわち、本発明は以下の実施形態を含む。
<1>
 脱水状態かつ二酸化炭素吸着条件下でのX線回折により得られるスペクトルにおける、回折角が2θ=25.81~34.57°の間で観測される回折ピークの内、最も強い強度を有する回折ピークPCO2の回折角(2θ)が、28.60~29.54°である、GIS型ゼオライト。
<2>
 脱水状態かつ窒素吸着条件下でのX線回折により得られるスペクトルにおける、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークPdeとしたとき、PCO2/Pde≧0.969を満たす、GIS型ゼオライト。
<3>
 脱水状態かつ窒素吸着条件下でのX線回折により得られるスペクトルにおける、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークPdeとしたとき、PCO2/Pde≧0.969を満たす、<1>に記載のGIS型ゼオライト。
<4>
 前記GIS型ゼオライトのシリカアルミナ比が3.40以上である、<1>~<3>のいずれかに記載のGIS型ゼオライト。
<5>
 GIS型ゼオライト中のカチオン種としてカリウム又はリチウムを含む、<1>~<4>のいずれかに記載のGIS型ゼオライト。
<6>
 GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)が、0.05以上である、<5>に記載のGIS型ゼオライト。
<7>
 29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たす、<1>~<6>のいずれかに記載のGIS型ゼオライト。
<8>
 <1>~<7>のいずれかに記載のGIS型ゼオライトを含む、ゼオライト成形体。
<9>
 担体を含む、<8>に記載のゼオライト成形体。
<10>
 前記担体が、無機結合剤及び有機結合剤を含む、<8>又は<9>に記載のゼオライト成形体。
<11>
 前記担体の合計含有量が、ゼオライト成形体の全量100質量%に対し、1~99質量%である、<8>~<10>のいずれかに記載のゼオライト成形体。
<12>
 円柱状の形状を有する、<8>~<11>のいずれかに記載のゼオライト成形体。
<13>
 長さが3mm以上30mm以下であり、かつ、直径が1mm以上30mm以下である、<12>に記載のゼオライト成形体。
<14>
 <8>~<13>のいずれかに記載のゼオライト成形体を含む、吸着装置。
<15>
 <14>に記載の吸着装置を用い、H、N、O、Ar、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO、HO、He、Ne、Cl、NH、及びHClからなる群より選択される1種以上を分離する分離工程を含む、精製ガスの製造方法。
<16>
 前記分離工程にける圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法により前記気体の分離を行う、<15>に記載の製造方法。
 本発明によれば、成形体として用いたときの二酸化炭素の吸着に対する耐脆化性に優れ、かつ、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスを低減可能なGIS型ゼオライト、これを含む成形体、これを含む吸着材、及びこれを用いる精製ガスの製造方法を提供することができる。
図1は、比較例1で得られたGIS型ゼオライトの二酸化炭素の吸着等温線及び脱着等温線図である。 図2は、本発明の一実施形態に係る吸着材を例示する図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
[GIS型ゼオライト]
 本実施形態のGIS型ゼオライトは、脱水状態かつ二酸化炭素吸着条件下でのX線回折により得られるスペクトルにおける、回折角が2θ=25.81~34.57°の間で観測される回折ピークの内、最も強い強度を有する回折ピークPCO2の回折角(2θ)が、28.60~29.54°である。
 また、本実施形態のGIS型ゼオライトは、脱水状態かつ窒素吸着条件下でのX線回折により得られるスペクトルにおける、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークPdeとしたとき、PCO2/Pde≧0.969を満たす。
 前記いずれかのGIS型ゼオライトは、成形体として用いたときに二酸化炭素の吸着に対する耐脆化性に優れ、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスが低減されている。
 特定のX線回折ピークはゼオライト骨格中に存在するSi及びAlの結合様式に影響された結晶の剛直性に関連し、当該回折ピークについて所定の制御を行えば、二酸化炭素のゼオライトへの吸着時における構造の変化を抑制することができると考えられる。すなわち、本実施形態によれば、Si及びAlの結合様式を制御することで、ゼオライト自体の剛直性を制御し、膨張収縮に応じて生じるエネルギー消費を低減することでヒステリシスを低減し、かつ吸着材として使用する際に膨張収縮に応じて生じる最大応力を低減することが可能となると考えられる。これらの特徴から、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスが低減され、成形体として用いたときの二酸化炭素の吸着に対する耐脆化性を有するGIS型ゼオライトが提供されると考えられる。
 PCO2の回折角(2θ)は、成形体として用いたときの二酸化炭素の吸着に対する耐脆化性を向上させる観点、二酸化炭素の吸脱着等温線において吸脱着ヒステリシスを低減する観点から、好ましくは28.60~29.50°であり、より好ましくは28.60~29.10°であり、更に好ましくは28.60~28.90°である。
 PCO2/Pdeは、好ましくは0.969以上であり、より好ましくは0.974以上であり、さらに好ましくは0.985以上である。PCO2/Pdeは、その上限は特に制限されないが、1.33以下であってもよく、1.20以下であってもよく、1.01以下であってもよい。
 PCO2及びPdeの回折角(2θ)は、より詳細には、実施例に記載の方法により測定することができる。PCO2及びPdeの回折角(2θ)は、例えば、後述のGIS型ゼオライトの製造方法における、熟成工程において、シリカ源を逐次的に添加し、ゼオライト前駆体合成における初期の核形成を制御すること等により得られる。
 本実施形態に係るGIS型ゼオライトについては特に制限がないが、シリカアルミナ比(SiO/Alで表記されるシリカとアルミナのモル比を表し、以下、「SAR」ともいう)が低い程、親水性となり、二酸化炭素のような極性分子の吸着力が強くなる。SARが低いと、吸着力が強すぎるために、加熱や真空引きによって脱着させるために必要なエネルギーが大きくなるため、SARは高い方が好ましい。好ましいSARは3.40以上であり、より好ましくは4.40以上であり、より好ましくは4.50以上であり、さらに好ましくは4.69以上であり、さらに好ましくは4.90以上であり、さらに好ましくは5.40以上であり、さらに好ましくは6.01以上である。SARの上限は特に制限されないが、SARが高すぎると吸着質に対する相互作用が小さくなるため、SARは、3000以下が好ましく、より好ましくは500以下であり、さらに好ましくは100以下である。ゼオライト成形体におけるゼオライトのSARは29Si-MAS-NMRを測定することで求める。SARは、より詳細には、後述する実施例に記載の方法により測定することができる。SARは、混合ゲル中の水とOHの量比等により調整可能である。
 脱着させるために必要なエネルギーの観点から、SARは高い方が好ましい一方で、GIS型ゼオライトにおいてSARが高くなると、二酸化炭素の吸脱着等温線における吸脱着ヒステリシスが顕在化することが確認される。本実施形態に係るGIS型ゼオライトでは、ゼオライト骨格中のSi及びAlの結合様式を制御することで、二酸化炭素の吸脱着等温線における吸脱着ヒステリシスを解消できる。具体的には、29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たすことが好ましく、より好ましくは0.913≧(a+d)/(b+c)≧0.195であり、さらに好ましくは0.519≧(a+d)/(b+c)≧0.199である。29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)といったピークはゼオライト骨格中におけるSi及びAlの結合様式を表し、面積強度の和である(a+d)、(b+c)はそれらの結合様式の存在量の和、(a+d)/(b+c)は存在比を表す。Si及びAlの結合様式の存在比は吸着時、脱着時におけるゼオライト骨格自体の構造変化に影響を与えるため、ゼオライト骨格中におけるSi及びAlの結合様式の存在比である(a+d)/(b+c)を適切な範囲とすることで吸脱着等温線における吸脱着ヒステリシスを解消できる。(a+d)/(b+c)は、後述する実施例に記載の方法により測定することができる。(a+d)/(b+c)を所定範囲とするためには、合成時における混合ゲルのアルカリ金属/アルカリ土類金属量とOH-の量比等により調整することが可能である。
 二酸化炭素の選択的吸着能を向上させる観点から、GIS型ゼオライト中のカチオン種として、カリウム又はリチウムを含むことが好ましく、カリウムを含むことがより好ましい。また、ゼオライト中のカリウム及びリチウムの合計含有量は、GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)として算出する。Z/Tは、0.05以上であることが好ましく、より好ましくは0.10以上であり、さらに好ましくは0.15以上である。Z/Tの上限は特に制限されないが、Z/Tは1.00以下であってもよい。Z/Tは、ゼオライトを水酸化ナトリウム水溶液又は王水で熱溶解し、適宜希釈した液を用いてICP-発光分光分析することで測定することができる。Z/Tは、より詳細には、後述する実施例に記載の方法により測定することができる。Z/Tは、GIS型ゼオライトのカチオン種のカリウム及びリチウムの割合を変更することで調整できる。
 GIS型ゼオライト中のアルカリ金属の各々の物質量の合計値(T)に対するカリウムの物質量の合計値(K)の割合(K/T)が、0.05以上であることが好ましく、より好ましくは0.10以上であり、さらに好ましくは0.15以上である。K/Tの上限は特に制限されないが、K/Tは1.00以下であってもよい。
 GIS型ゼオライトは、10cm/g以上の二酸化炭素吸着量を有することが好ましい。ゼオライトの二酸化炭素吸着量は、好ましくは20cm/g以上であり、より好ましくは40cm/g以上であり、更に好ましくは50cm/g以上である。ゼオライトの二酸化炭素吸着量は、その上限は特に限定されないが、例えば100cm/g以下である。二酸化炭素吸着量は、25℃におけるゼオライト1g当たりの二酸化炭素吸着容量(cm)である。より詳細には、実施例に記載の方法により測定される。
 GIS型ゼオライトのメタン吸着量は、10cm/g未満であることが好ましい。ゼオライトのメタン吸着量は、より好ましくは9cm/g以下であり、更に好ましくは8cm/g以下である。メタン吸着量は、25℃におけるゼオライト1g当たりのメタン吸着容量(cm)である。より詳細には、実施例に記載の方法により測定される。
 GIS型ゼオライトの二酸化炭素吸着量/メタン吸着量で表される選択率は、好ましくは10以上であり、より好ましくは13以上であり、更に好ましくは15以上である。ゼオライトの吸着選択率は、その上限は特に限定されないが、例えば100以下である。
 ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対して、好ましくは、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、GIS型ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対して98質量%以下であってもよく、95質量%以下であってもよい。
(GIS型ゼオライトの合成方法)
 本実施形態に係るGIS型ゼオライトの製造方法は、例えば、珪素を含むシリカ源、アルミニウムを含むアルミ源、アルカリ金属(M1)及びアルカリ土類金属(M2)から選ばれる少なくとも1種を含むアルカリ金属源/アルカリ土類金属源、アルカリ源、リンを含むリン源、有機構造規定剤及び水を含有する混合ゲルの調製工程を含むものとすることができる。以下、混合ゲル及びこれに含まれる各成分について説明する。
〔混合ゲル〕
 本実施形態における混合ゲルとは、シリカ源、アルミ源、アルカリ金属源/アルカリ土類金属源、及び水を成分として含み、必要に応じてアルカリ源、リン源、有機構造規定剤を含む混合物のことである。
 シリカ源とは、該混合ゲルから製造されたゼオライトに含まれる珪素の原料となる該混合ゲル中の成分をいい、アルミ源とは、該混合ゲルから製造されたゼオライトに含まれるアルミニウムの原料となる該混合ゲル中の成分をいい、アルカリ金属源/アルカリ土類金属源とは、該混合ゲルから製造されたゼオライトに含まれるアルカリ金属及び/又はアルカリ土類金属の原料となる該混合ゲル中の成分をいい、アリカリ源とは、混合ゲル中のアルカリ性(pH)を調整する目的で用いる成分をいい、リン源とは、該混合ゲルから製造されたゼオライトに含まれるリンの原料となる該混合ゲル中の成分をいう。
〔シリカ源〕
 シリカ源としては、一般的に使用されるものであれば特に限定されず、結晶性シリカ、非晶性シリカ、ケイ酸、ケイ酸塩、有機ケイ酸化合物等が挙げられる。より具体例には、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ヒュームドシリカ、沈降シリカ、シリカゲル、コロイダルシリカ、アルミノシリケート、テトラエトキシシラン(TEOS)、トリメチルエトキシシラン等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。ここで、アルミノシリケートは、シリカ源であるとともにアルミ源となる。
 これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、ヒュームドシリカ、コロイダルシリカ、又は沈降シリカであることが好ましい。
〔アルミ源〕
 アルミ源としては、一般的に使用されるものであれば特に限定されないが、具体例としては、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、塩化アルミニウム、アルミニウムアルコキシド、金属アルミニウム、無定形アルミノシリケートゲル等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。
 これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム、水酸化アルミニウム、塩化アルミニウム、アルミニウムアルコキシドであることが好ましい。同様の観点からアルミン酸ナトリウム、水酸化アルミニウムであることがより好ましく、アルミン酸ナトリウムであることがさらに好ましい。
〔アルカリ金属源/アルカリ土類金属源〕
 アルカリ金属源/アルカリ土類金属源におけるアルカリ金属/アルカリ土類金属の種類は特に限定されず、任意のアルカリ金属化合物、及び/又は任意のアルカリ土類金属化合物を使用することができる。
 アルカリ金属源/アルカリ土類金属源は、以下に限定されないが、例えば、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸水素塩、炭酸塩、酢酸塩、硫酸塩、硝酸塩などが挙げられる。これらの化合物は、単独でも、複数を組み合わせて使用してもよい。
 アルカリ源として用いるアルカリ金属及びアルカリ土類金属は、通常Li、Na、K、Rb、Cs、Ca、Mg、Sr、Ba等を用いることができる。GIS型骨格の結晶形成がより容易となる観点から、Na、Kであることが好ましく、Naであることがより好ましい。また、アルカリ金属源/アルカリ土類金属源として用いるアルカリ金属及びアルカリ土類金属は単独でも、複数を組み合わせて使用してもよい。
 具体的には、アルカリ源としては、以下に限定されないが、例えば、
 硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、酢酸ナトリウム、ギ酸ナトリウム、クエン酸ナトリウム、シュウ酸ナトリウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、チオナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、四ホウ酸ナトリウム、塩素酸ナトリウム、過塩素酸ナトリウム、シアン化ナトリウム、メタスズ酸ナトリウム、ヘキサヒドロキシドスズ(IV)酸ナトリウム、ヘキサシアニド鉄(II)酸ナトリウム、過マンガン酸ナトリウム、クロム酸ナトリウム、ニクロム酸ナトリウム、
 硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、亜硝酸カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、酢酸カリウム、ギ酸カリウム、クエン酸カリウム、シュウ酸カリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、チオカリウム、ケイ酸カリウム、メタケイ酸カリウム、四ホウ酸カリウム、塩素酸カリウム、過塩素酸カリウム、シアン化カリウム、メタスズ酸カリウム、ヘキサヒドロキシドスズ(IV)酸カリウム、ヘキサシアニド鉄(II)酸カリウム、過マンガン酸カリウム、クロム酸カリウム、ニクロム酸カリウム、
 硫酸リチウム、亜硫酸リチウム、チオ硫酸リチウム、亜硝酸リチウム、硝酸リチウム、炭酸リチウム、炭酸水素リチウム、リン酸リチウム、酢酸リチウム、ギ酸リチウム、クエン酸リチウム、シュウ酸リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、チオリチウム、ケイ酸リチウム、メタケイ酸リチウム、四ホウ酸リチウム、塩素酸リチウム、過塩素酸リチウム、シアン化リチウム、メタスズ酸リチウム、ヘキサヒドロキシドスズ(IV)酸リチウム、ヘキサシアニド鉄(II)酸リチウム、過マンガン酸リチウム、クロム酸リチウム、ニクロム酸リチウム、
 硫酸ルビジウム、亜硫酸ルビジウム、チオ硫酸ルビジウム、亜硝酸ルビジウム、硝酸ルビジウム、炭酸ルビジウム、炭酸水素ルビジウム、リン酸ルビジウム、酢酸ルビジウム、ギ酸ルビジウム、クエン酸ルビジウム、シュウ酸ルビジウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、チオルビジウム、ケイ酸ルビジウム、メタケイ酸ルビジウム、四ホウ酸ルビジウム、塩素酸ルビジウム、過塩素酸ルビジウム、シアン化ルビジウム、メタスズ酸ルビジウム、ヘキサヒドロキシドスズ(IV)酸ルビジウム、ヘキサシアニド鉄(II)酸ルビジウム、過マンガン酸ルビジウム、クロム酸ルビジウム、ニクロム酸ルビジウム、
 硫酸セシウム、亜硫酸セシウム、チオ硫酸セシウム、亜硝酸セシウム、硝酸セシウム、炭酸セシウム、炭酸水素セシウム、リン酸セシウム、酢酸セシウム、ギ酸セシウム、クエン酸セシウム、シュウ酸セシウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、チオセシウム、ケイ酸セシウム、メタケイ酸セシウム、四ホウ酸セシウム、塩素酸セシウム、過塩素酸セシウム、シアン化セシウム、メタスズ酸セシウム、ヘキサヒドロキシドスズ(IV)酸セシウム、ヘキサシアニド鉄(II)酸セシウム、過マンガン酸セシウム、クロム酸セシウム、ニクロム酸セシウム、
 硫酸マグネシウム、亜硫酸マグネシウム、チオ硫酸マグネシウム、亜硝酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、炭酸水素マグネシウム、リン酸マグネシウム、酢酸マグネシウム、ギ酸マグネシウム、クエン酸マグネシウム、シュウ酸マグネシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、チオマグネシウム、ケイ酸マグネシウム、メタケイ酸マグネシウム、四ホウ酸マグネシウム、塩素酸マグネシウム、過塩素酸マグネシウム、シアン化マグネシウム、メタスズ酸マグネシウム、ヘキサヒドロキシドスズ(IV)酸マグネシウム、ヘキサシアニド鉄(II)酸マグネシウム、過マンガン酸マグネシウム、クロム酸マグネシウム、ニクロム酸マグネシウム、
 硫酸カルシウム、亜硫酸カルシウム、チオ硫酸カルシウム、亜硝酸カルシウム、硝酸カルシウム、炭酸カルシウム、炭酸水素カルシウム、リン酸カルシウム、酢酸カルシウム、ギ酸カルシウム、クエン酸カルシウム、シュウ酸カルシウム、フッ化カルシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、チオカルシウム、ケイ酸カルシウム、メタケイ酸カルシウム、四ホウ酸カルシウム、塩素酸カルシウム、過塩素酸カルシウム、シアン化カルシウム、メタスズ酸カルシウム、ヘキサヒドロキシドスズ(IV)酸カルシウム、ヘキサシアニド鉄(II)酸カルシウム、過マンガン酸カルシウム、クロム酸カルシウム、ニクロム酸カルシウム、
 硫酸ストロンチウム、亜硫酸ストロンチウム、チオ硫酸ストロンチウム、亜硝酸ストロンチウム、硝酸ストロンチウム、炭酸ストロンチウム、炭酸水素ストロンチウム、リン酸ストロンチウム、酢酸ストロンチウム、ギ酸ストロンチウム、クエン酸ストロンチウム、シュウ酸ストロンチウム、フッ化ストロンチウム、塩化ストロンチウム、臭化ストロンチウム、ヨウ化ストロンチウム、チオストロンチウム、ケイ酸ストロンチウム、メタケイ酸ストロンチウム、四ホウ酸ストロンチウム、塩素酸ストロンチウム、過塩素酸ストロンチウム、シアン化ストロンチウム、メタスズ酸ストロンチウム、ヘキサヒドロキシドスズ(IV)酸ストロンチウム、ヘキサシアニド鉄(II)酸ストロンチウム、過マンガン酸ストロンチウム、クロム酸ストロンチウム、ニクロム酸ストロンチウム、
 硫酸バリウム、亜硫酸バリウム、チオ硫酸バリウム、亜硝酸バリウム、硝酸バリウム、炭酸バリウム、炭酸水素バリウム、リン酸バリウム、酢酸バリウム、ギ酸バリウム、クエン酸バリウム、シュウ酸バリウム、フッ化バリウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、チオバリウム、ケイ酸バリウム、メタケイ酸バリウム、四ホウ酸バリウム、塩素酸バリウム、過塩素酸バリウム、シアン化バリウム、メタスズ酸バリウム、ヘキサヒドロキシドスズ(IV)酸バリウム、ヘキサシアニド鉄(II)酸バリウム、過マンガン酸バリウム、クロム酸バリウム、ニクロム酸バリウム、
等が挙げられる。
〔アルカリ源〕
 アルカリ源は、ゼオライトを製造する場合に、ゼオライト構造への結晶化を促進するために、混合ゲル中のアルカリ性(pH)を調整する目的で用いられる。用いるアルカリはアルカリ性を示す化合物であればよく、無機化合物、有機化合物どちらでもよいが、コストの面から無機化合物である方が好ましく、より好ましくはアルカリ金属水酸化物が挙げられる。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムが挙げられ、より好ましくは水酸化ナトリウムが挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。
 リン源としては、一般的に使用されるものであれば特に限定されないが、具体例としては、リン酸水溶液、リン酸ナトリウム、リン酸アルミニウム、リン酸カリウム、リン酸リチウム、リン酸カルシウム、リン酸バリウム等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。
 これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、リン酸水溶液、リン酸ナトリウム、リン酸アルミニウムであることが好ましい。同様の観点からリン酸水溶液、リン酸ナトリウムであることがより好ましく、リン酸水溶液であることがさらに好ましい。
〔有機構造規定剤〕
 混合ゲルを水熱合成することによってゼオライトを製造する場合の有機構造規定剤は、ゼオライト構造への結晶化を促進する作用をする化合物である。ゼオライトの結晶化においては、必要に応じて有機構造規定剤を用いることができる。
 有機構造規定剤は、所望のGIS型ゼオライトを形成しうるものであれば種類は問わず、如何なるものであってもよい。また、有機構造規定剤は単独でも、複数を組み合わせて使用してもよい。
 有機構造規定剤としては、以下に限定されないが、例えば、アミン類、4級アンモニウム塩類、アルコール類、エーテル類、アミド類、アルキル尿素類、アルキルチオ尿素類、シアノアルカン類、ヘテロ原子として窒素を含む脂環式複素環化合物類を用いることができ、好ましくはアルキルアミン類、より好ましくはイソプロピルアミンを用いる。
 このような塩は、アニオンを伴うものがある。このようなアニオンを代表するものには、以下に限定されないが、例えば、Cl、Br、Iなどのハロゲンイオンや水酸化物イオン、酢酸イオン、硫酸イオン、硝酸イオン、炭酸イオン及び炭酸水素イオンが含まれる。これらの中で、GIS型骨格の結晶形成がより容易となる観点からハロゲンイオン、水酸化物イオンであることが好ましく、ハロゲンイオンであることがより好ましい。
〔混合ゲルの組成比〕
 本実施形態において、適切な構造を持ったGIS型ゼオライトを合成するためにシリカ源の選択は重要である。反応初期におけるシリカ源の溶解挙動は、ゼオライト骨格中のAlの結合様式に大きく影響を与えるため、混合ゲル組成に応じて、適切なシリカ源を選択する必要がある。また反応初期におけるシリカ源の溶解挙動は、シリカ源自体に含有されるアルアルカリ金属/アルカリ土類金属の量に依存し、シリカ源自体に含有されるアルカリ金属/アルカリ土類金属量とSiOの比は、SiOに対するL1OとL2Oの加算モル比、すなわち、(L1O+L2O)/SiOとして表す。(ここで、L1、L2はシリカ源に含有されるアルカリ金属、アルカリ土類金属をそれぞれ表し、これらを酸化物として算出する。)
 なお、複数のシリカ源を用いた場合であっても、複数のシリカ源自体に含有されるアルカリ金属/アルカリ土類金属量の加算モル量とSiOの加算モル量の比で考慮すればよい。適切なシリカ源を選択し、反応初期におけるシリカ源の溶解挙動を制御する観点から、シリカ源自体に含有されるアルカリ金属/アルカリ土類金属量とSiOの比(L1O+L2O)/SiOは、0.30以下であることが好ましく、0.25以下であることがより好ましく、0.08以下あることがさらに好ましい。
 混合ゲル中のアルカリ金属/アルカリ土類金属量とOHの比は、適切な構造を持ったGIS型ゼオライトを合成するために最も重要である。混合ゲル中のアルカリ金属/アルカリ土類金属量とOHの比は、M1OとM2Oの加算モル比に対するOH、すなわち、OH/(M1O+M2O)として表す。(ここで、M1はアルカリ金属を示し、M2はアルカリ土類金属を示す。これらを酸化物として算出する。)また、OHとは、NaOHやCa(OH)等の無機水酸化物やテトラエチルアンモニウムヒドロキシド等の有機水酸化物に由来するOHであり、アルミン酸ナトリウムやケイ酸ナトリウムのように酸化物で表されるものや、その水和物を水に溶解させた際に排出されるOHは含まない。
 ゼオライトの生成は、水溶媒に溶解したシリカ源、アルミ源が溶解しながら反応し、結晶化していくが、混合ゲル中のアルカリ金属/アルカリ土類金属量とOHの比を適切な範囲とすることによって、ゼオライト骨格中のAlの結合様式を制御することが可能で、理想的な結晶構造を有するGIS型ゼオライトを合成することができる。このアルカリ金属/アルカリ土類金属量とOHの比OH/(M1O+M2O)は、理想的なGIS型骨格の結晶を形成する観点から、0.20以下であることが好ましく、0.16以下であることがより好ましく、0.10以下あることがさらに好ましい。
 混合ゲル中のシリカ源とアルミ源の比は、それぞれの元素の酸化物のモル比、すなわちSiO/Alとして表す(なお、合成したゼオライトの比と混合ゲルのシリカアルミナ比は一致しない。その他の組成や合成条件によって、合成ゼオライトのシリカアルミナ比は決まる。)。この混合ゲル中のSiO/Alは、ゼオライトが形成可能な比であれば特に限定されないが、GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる傾向にあることから、3.0以上70.0以下が好ましく、3.5以上65.0以下がより好ましく、4.0以上60.0以下であることがさらに好ましい。
 また、水とアルミナの比(HO/Al)が高いと混合ゲル中の成分がより均一に分散されやすくなるが、高すぎると結晶化速度を著しく低下させてしまう。したがって、結晶化と再溶解の平衡に影響を及ぼすことから、最適な結晶構造を持つGIS型ゼオライトを合成するためには、HO/Alを最適に制御する必要がある。
 以上の観点から、HO/Alは、好ましくは210≦HO/Al≦780であり、より好ましくは220≦HO/Al≦778であり、さらに好ましくは230≦HO/Al≦775である。
 混合ゲル中のリン源とアルミ源の比は、それぞれの元素の酸化物のモル比、すなわちP/Alとして表す。このP/Alは、ゼオライトが形成可能な比であれば特に限定されないが、GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる傾向にあることから、1.0未満が好ましく、0.6以下であることがより好ましく、0.4以下であることがさらに好ましく、0であることがとりわけ好ましい。
 混合ゲル中に有機構造規定剤を含む場合は、混合ゲル中のアルミ源と有機構造規定剤の比は、Alに対する有機構造規定剤のモル比、すなわちR/Alとして表す(ここでRは有機構造規定剤を示す)。GIS型骨格の結晶形成がより容易となる、及び/又は合成時間が短くなり、ゼオライトを製造する際の経済性に優れる点から、7.0未満であることが好ましく、6.0以下がより好ましく、5.0以下であることがさらに好ましい。有機構造規定剤を用いた場合、ゼオライト細孔内に有機構造規定剤が残存し、二酸化炭素が細孔内に入れず、吸着量が減る。有機構造規定剤を除去するためには少なくとも400℃以上に加熱する必要があるが、GIS型ゼオライトは350℃以上で結晶が崩壊、アモルファス化するため、有機構造規定剤は少ない方が好ましい。その観点での好ましいR/Alは4.0以下であり、3.5以下がより好ましく、3.0以下であることがさらに好ましい。
 以上のとおり、本実施形態に係るGIS型ゼオライトの製造方法は、珪素を含むシリカ源と、アルミニウムを含むアルミ源と、アルカリ金属/アルカリ土類金属源と、アルカリ源と、リン源と、水と、を含有する混合ゲルの調製工程を含み、前記混合ゲルにおける各成分のモル比を、前記珪素、アルミニウム、アルカリ金属(M1)及びアルカリ土類金属(M2)、シリカ源に含有されるアルカリ金属(L1)及びアルカリ土類金属(L2)、リン源については各元素の酸化物として算出するとき、下記式(1)、(2)、(3)、(4)、(5)及び(6)で表されるモル比α、β、γ、δ、εが、α≦0.30、β≦0.20、3.0≦γ≦70.0、210≦δ≦780、0≦ε<1.0を満たすことが好ましく、α≦0.25、β≦0.16、3.5≦γ≦65.0、220≦δ≦778、0≦ε≦0.6を満たすことがより好ましく、α≦0.08、β≦0.10、4.0≦γ≦60.0、230≦δ≦775、0≦ε≦0.4を満たすことがさらに好ましい。本実施形態に係るGIS型ゼオライトは、上述した本実施形態に係るGIS型ゼオライトの製造方法により得られるものであることが特に好ましい。
  α=(L1O+L2O)/SiO (1)
  β=OH/(M1O+M2O)  (2)
  γ=SiO/Al  (3)
  δ=HO/Al   (4)
  ε=P/Al  (5)
 さらに、本実施形態に係るGIS型ゼオライトの製造方法において、モル比α、β、γ、δ、εが上記範囲を満たし、かつ、混合ゲルが、さらに有機構造規定剤Rを含む場合、下記式(6)で表されるモル比ζが、ζ≦4を満たすことが好ましい。
  ζ=R/Al   (6)
 必ずしも混合ゲル中に種結晶を存在させる必要は無いが、予め製造したGIS型ゼオライトを種結晶として混合ゲルに添加して、本実施形態のGIS型ゼオライトを得ることもできる。
〔混合ゲルの調製工程〕
 混合ゲルの調製工程は、特に限定されないが、例えば、シリカ源、アルミ源、アルカリ金属源/アルカリ土類金属源、水、及び必要に応じてアルカリ源、リン源、有機構造規定剤を一時にあるいは多段階で混合する混合工程と、この混合工程で得られた混合物の熟成工程とを含んでもよい。
 混合工程は、シリカ源、アルミ源、アルカリ金属源/アルカリ土類金属源、水、及び必要に応じてアルカリ源、リン源、有機構造規定剤を含むこれら成分を一時にあるいは多段階で混合することができる。
 多段階で混合する際の順序は限定されず、用いる条件により適宜選択すればよい。多段階で混合する際には、撹拌あるいは無撹拌のどちらで行ってもよい。撹拌する際には、一般的に使用される撹拌方法であれば特に限定されないが、具体例としては、翼撹拌、振動撹拌、揺動撹拌、遠心式撹拌などを用いる方法が挙げられる。
 撹拌の回転速度は一般的に用いられる撹拌速度であれば特に限定されないが、例えば、1rpm以上2000rpm未満であることが挙げられる。
 混合工程の温度は一般的に用いられる温度であれば特に限定されないが、例えば、-20℃以上80℃未満が挙げられる。
 混合工程の時間は、特に限定されず、混合工程の温度により適宜選択することができるが、例えば、0分を超え、1000時間以下が挙げられる。
 熟成工程は静置あるいは撹拌のどちらで行ってもよい。熟成工程で撹拌する際には、一般的に使用される撹拌方法であれば特に限定されないが、具体例としては、翼撹拌、振動撹拌、揺動撹拌、遠心式撹拌などを用いる方法が挙げられる。
 撹拌の回転速度は一般的に用いられる撹拌速度であれば特に限定されないが、例えば、1rpm以上2000rpm未満であることが挙げられる。
 熟成工程の温度は一般的に用いられる温度であれば特に限定されないが、例えば、-20℃以上80℃未満が挙げられる。
 熟成工程の時間は、特に限定されず、熟成工程の温度により適宜選択することができるが、例えば、0分を超え、1000時間以下が挙げられる。
 ゼオライトは原料の混合工程、熟成工程において、原料の溶解とゼオライト前駆体の生成及び再溶解が起きていると考えられる。該混合工程、熟成工程において、シリカ源を逐次的に添加し、ゼオライト前駆体合成における初期の核形成を制御することは、適切な構造を持ったGIS型ゼオライトを合成するために重要である。混合工程、熟成工程において、シリカ源、アルミ源、及び水を含む混合ゲルを混合開始した初期状態において存在するシリカ源のモル量S1と水熱合成工程に供されるゲル中のシリカ源のモル量S2の比は特に重要である。当該モル比をψとした場合、ψ=S1/S2で表す。ψを適切な範囲とし、初期の核形成を制御することにより、ゼオライト骨格中におけるSi及びAlの結合様式やその存在比を調整することが可能で、理想的な結晶構造を有するGISを合成することが可能となる。以上の観点からψは、好ましくは0.90以下であり、より好ましくは0.80以下であり、さらに好ましくは0.50以下である。ψの下限は特に制限されないが、ψが小さすぎるとANA型ゼオライトなどの不純物の生成が増加し、GISが生成しないこともあることから、ψは、0.05以上が好ましく、より好ましくは0.08以上であり、さらに好ましくは0.10以上である。原料は十分に混合し、原料ゲルが均一な状態が好ましい。混合工程と熟成工程を合わせた時間は、適切な構造のゼオライトを得るため、原料の組成等に基づいて適宜調整すればよく、特に限定されない。上記時間は、典型的には、1分以上24時間未満が好ましく、3分以上23時間未満がより好ましく、10分以上18時間以下がさらに好ましく、12分以上15時間以下がよりさらに好ましく、20分以上6時間以下が一層好ましい。
〔水熱合成工程〕
 本実施形態に係るGIS型ゼオライトの製造方法において、水熱合成温度が80℃~200℃である水熱合成工程をさらに含むことが好ましく、当該水熱合成温度は100℃~180℃であることがより好ましい。すなわち、好ましくは、調製工程により得た混合ゲルを所定の温度で、所定の時間、撹拌又は静置状態で保持することにより水熱合成する。
 水熱合成の温度は、一般的に用いられる温度であれば特に限定されないが、合成時間が短くなり、ゼオライト製造する際の経済性に優れる点から、80℃以上であることが好ましい。GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる観点から、90℃以上であることがより好ましく、100℃以上であることがさらに好ましい。GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる観点から、200℃以下であることがより好ましく、180℃以下であることがさらに好ましく、170℃以下であることがさらに好ましい。水熱合成の温度は一定でもよいし、段階的に変化させてもよい。
 水熱合成の時間は一般的に用いられる時間であれば特に限定されず、水熱合成の温度により適宜選択することができる。水熱合成の時間は、GIS骨格が形成される点から、3時間以上であることが好ましく、10時間以上であることがより好ましい。高結晶性のGIS型ゼオライトが得られる観点から、さらに好ましくは24時間以上である。ゼオライト製造する際の経済性に優れる点から、水熱合成の時間は30日以下であることが好ましく、20日以下であることがより好ましく、10日以下であることがさらに好ましい。
 水熱合成工程において、混合ゲルを入れる容器は一般的に用いられる容器であれば特に限定されないが、所定の温度において容器内の圧力が高まる場合、又は、結晶化を阻害しない気体加圧下とする場合には、耐圧容器に入れ、水熱合成することが好ましい。耐圧容器は、特に限定されず、例えば、球形状、縦長状、横長状等の各種の形状を用いることができる。
 耐圧容器内の混合ゲルを撹拌する際には、耐圧容器を上下方向に及び/又は左右方向に回転させるが、好ましくは上下方向に回転させる。耐圧容器を上下方向に回転させる場合、その回転速度は一般的に用いられる範囲であれば特に限定されないが、1~50rpmが好ましく、10~40rpmであることがより好ましい。
 水熱合成工程において、混合ゲルを好ましく撹拌するには、耐圧容器として縦長のものを用い、これを上下方向に回転させる方法が挙げられる。
〔分離・乾燥工程〕
 水熱合成工程後、生成物である固体と水を含む液体とを分離するが、その分離方法は一般的な方法であれば特に限定されず、濾過、デカンテーション、噴霧乾燥法(回転噴霧、ノズル噴霧及び超音波噴霧など)、回転蒸発器を用いた乾燥法、真空乾燥法、凍結乾燥法、又は自然乾燥法等を用いることができ、通常は濾過又はデカンテーションにより分離することができる。
 分離されたものはそのまま用いても、水、又は所定の溶剤で洗浄しても構わない。必要に応じ、分離されたものを乾燥することができる。分離されたものを乾燥する温度は、一般的な乾燥する温度であれば特に限定されないが、通常、室温から150℃以下である。乾燥する際の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。
〔焼成工程〕
 必要に応じて、GIS型ゼオライトを焼成して用いることができる。焼成する温度は、一般的に用いられる温度であれば特に限定されないが、有機構造規定剤を除去したい場合、その残っている割合を少なくできることから、300℃以上であることが好ましく、350℃以上であることがより好ましい。焼成の時間が短くなり、ゼオライトを製造する際の経済性に優れる点から、360℃以上であることがさらに好ましい。ゼオライトの結晶性が保持される傾向にあることから、450℃未満であることが好ましく、420℃以下であることがより好ましく、400℃以下であることがさらに好ましい。
 焼成する時間は、有機構造規定剤が十分除去される時間であれば特に限定されず、焼成の温度により適宜選択することができるが、有機構造規定剤が残っている割合を少なくできる傾向にあることから、0.5時間以上であることが好ましく、1時間以上であることがより好ましく、3時間以上であることがさらに好ましい。ゼオライトの結晶性が保持される傾向にあることから、10日以下であることが好ましく、7日以下であることがより好ましく、5日以下であることがさらに好ましい。
 焼成の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。
〔カチオン交換〕
 必要に応じて、GIS型ゼオライトを、所望のカチオン型へカチオン交換を行うことができる。カチオン交換は、以下に限定されないが、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸アンモニウムなどの炭酸塩、あるいは硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸ルビジウム、硝酸セシウム、硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム、硝酸アンモニウムなどの硝酸塩、あるいは前記炭酸塩、硝酸塩に含まれる炭酸イオン、硝酸イオンをハロゲン化物イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、酢酸イオン、リン酸イオン又はリン酸水素イオンに変更した塩、硝酸や塩酸などの酸を用いることができる。二酸化炭素の選択的吸着能を向上させる観点から、ゼオライト中のカチオン種としてカリウム原子を含むことが好ましい。
 カチオン交換の温度は、一般的なカチオン交換の温度であれば特に限定されないが、通常、室温から100℃以下である。
 カチオン交換後のゼオライトを分離する際、その分離方法は一般的な方法であれば特に限定されず、濾過、デカンテーション、噴霧乾燥法(回転噴霧、ノズル噴霧及び超音波噴霧など)、回転蒸発器を用いた乾燥法、真空乾燥法、凍結乾燥法、又は自然乾燥法等を用いることができ、通常は濾過又はデカンテーションにより分離することができる。
 分離されたものはそのまま用いても、水、又は所定の溶剤で洗浄しても構わない。必要に応じ、分離されたものを乾燥することができる。
 分離されたものを乾燥する温度は、一般的な乾燥する温度であれば特に限定されないが、通常、室温から150℃以下である。
 乾燥する際の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。
[ゼオライト成形体]
 本実施形態に係るゼオライト成形体は、上述のGIS型ゼオライトを含む。
 GIS型ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対して、好ましくは、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、GIS型ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対し、99質量%以下であってもよく、95質量%以下であってもよく、92質量%以下であってもよい。
〔担体〕
 本実施形態に係るゼオライト成形体は、担体を含むことが好ましい。担体としては、例えば、無機結合剤、有機結合剤が挙げられる。
 無機結合剤としては、例えば、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の無機酸化物、ベントナイト、カオリン等の粘土鉱物、ケイ酸カルシウム、アルミン酸カルシウムが挙げられる。アルミナとしては、例えば、α-アルミナ、γ-アルミナ、ベーマイト、擬ベーマイト、バイヤライト、ギブサイト、ダイアスポアが挙げられる。シリカとしては、例えば、コロイダルシリカ、水ガラス、ヒュームドシリカ、シリカゾル、湿式法シリカ、乾式法シリカ、天然シリカが挙げられる。これらの無機結合剤は単独で使用しても、複数を組み合わせて使用してもよい。これらの無機結合剤の中でも、ゼオライト成形体の強度を高める観点から、アルミナ、シリカ、マグネシア、ジルコニア、チタニアが好ましく、シリカ及びアルミナがより好ましい。
 無機結合剤の含有量は、ゼオライト成形体の全量100質量%に対し、好ましくは1~90質量%であり、より好ましくは1~50質量%であり、更に好ましくは5~40質量%であり、より更に好ましくは8~30質量%である。
 有機結合剤としては、例えば、セルロース、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ラテックス、ポリビニルアルコール、酢酸ビニル、ポリビニルアセタール、塩化ビニル、アクリル、ポリアミド、ウレア、メラミン、フェノール樹脂、ポリエステル、ポリウレタン、ポリアミド、ポリベンズイミダゾール、クロロプレンゴム、ニトリルゴム、スチレンブタジエンゴム、ポリサルファイド、ブチルゴム、シリコーンゴム、アクリルゴム、ウレタンゴムが挙げられる。これらの有機結合剤は単独で使用しても、複数を組み合わせて使用してもよい。これらの有機結合剤の中でも、GIS型ゼオライトとの表面結合の観点から、セルロース、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコールが好ましく、セルロース、メチルセルロース、及びポリビニルアルコールがより好ましい。
 有機結合剤の含有量は、GIS型ゼオライト成形体の全量100質量%に対し、好ましくは1~90質量%であり、より好ましくは1~50質量%であり、更に好ましくは5~40質量%であり、より更に好ましくは8~30質量%である。
 担体は、無機結合剤及び有機結合剤を含むことが好ましい。つまり、上述の無機結合剤、有機結合剤をそれぞれ1種類以上含むことが好ましい。
 担体の合計含有量は、ゼオライト成形体の全量100質量%に対し、好ましくは1~90質量%であり、より好ましくは1~50質量%であり、更に好ましくは5~40質量%であり、より更に好ましくは8~30質量%である。担体の含有量を高くすると、成形体は強度が高くなる傾向にあるが、ゼオライト自体の含有量が低くなる傾向にある。そのため、担体の含有量は、用途により求められる強度や性能などを考慮し、調整してもよい。
 ゼオライト成形体の形状は、特に限定されないが、例えば、球状、円柱状、楕円状、俵型、三つ葉型、リング状、粉状などが挙げられる。これらの中でも、球状、円柱状がさらに好ましい。成形体の大きさは特に制限ないが、成形体を使用する状況により変化する。例えば、固定床や移動床など、流動状態以外で成形体を用いるプロセスの使用においては、長さ3mm以上30mm以下及び直径1mm以上30mm以下の円柱状であることが好ましい。円柱の長さは、より好ましくは3mm以上10mm以下であり、さらに好ましくは3mm以上8mm以下である。円柱の直径は、より好ましくは2mm以上4mm以下である。
 上記長さ及び直径は、最小読み取り値が0.1mm以下のノギスを用いた、ノギス法によりペレットの長さ及び直径を3つのサンプルに対して測定を行い、その平均値を長さ及び直径として測定することができ、例えば分級等の操作によって上述した範囲に調整することができる。
 流動床など成形体を流動させて用いるプロセスへの使用においては、粒子径20μm以上300μm以下の粒子であることが好ましい。上記粒子径は、より好ましくは20μm以上200μm以下であり、さらに好ましくは30μm以上100μm以下である。粒子径は、レーザー回折・散乱式粒度分析計(Microtrac社製MT3000)を用い、付属のマニュアルに従いメディアン径(D50)として測定できる。
 本実施形態に係るゼオライト成形体の圧縮強度は、1.0MPa以上であることが好ましく、より好ましくは2.2MPa以上であり、さらに好ましくは3.4MPa以上である。とりわけ、本実施形態に係るゼオライト成形体が粉状である場合、上述の範囲を満たすことが好ましい。
 上記圧縮強度は、微小圧縮試験機(島津製作所製MCT-W500、圧縮強度測定)を用い、20回測定して得られた値の平均値として、測定することができ、例えば焼成温度や焼成時間によって上述した範囲に調整することができる。
 本実施形態に係るゼオライト成形体の破壊強度は、5N以上であることが好ましく、より好ましくは10N以上であり、さらに好ましくは20N以上である。とりわけ、本実施形態に係るゼオライト成形体がペレットである場合、上述の範囲を満たすことが好ましい。
 上記破壊強度は、デジタル硬度計(株式会社藤原製作所製KHT-40N、圧子3mm、破壊強度測定)を用い、それぞれ20回測定して得られた値の平均値として、測定することができ、例えば焼成温度や焼成時間によって上述した範囲に調整することができる。
[ゼオライト成形体の製造方法]
 本実施形態に係るゼオライト成形体の製造方法としては、特に限定されないが、本実施形態に係るGIS型ゼオライトと、その他の任意成分(例えば担体)とを混合して調製する原料混合工程(X)と、調製した原料を成形処理に供して前駆体を得る成形処理工程(Y)と、前記前駆体を焼成してゼオライト成形体を得る焼成工程(Z)と、を含んでいてもよい。
 その他、ゼオライト成形体の製造方法としては、所望のゼオライト成形体が得られる場合には、例えば、押出し成形処理、射出処理、射出・鋳込処理、転動造粒処理、圧縮成形処理、噴霧乾燥処理もしくはこれらの方法を2種以上を組み合わせた方法等により成形してもよい。
〔原料混合工程(X)〕
 原料混合工程(X)において、使用される原料は、粉体、溶媒分散、ゾル状、液状など製法に合わせた状態で使用してよい。使用される原料のうち、例えば、無機結合剤を用いる場合においては、粉体、溶媒分散、ゾル状、液状など製法に合わせた状態で使用されるが、取り扱い容易性の観点から粉体、ゾル状が好ましい。これらの無機結合剤は単独で使用しても、複数を組み合わせて使用してもよい。原料を混合する温度としては、特に限定されないが、例えば、10℃~80℃が好ましく、15℃~60℃がより好ましい。例えば噴霧乾燥処理の様に、原料混合後の状態がスラリー状であると、原料の温度が80℃以下の場合は、原料中の水の蒸発が抑制できる傾向にあり、原料の温度が10℃以上の場合は、スラリー中の凍結を抑制できる傾向にある。また、例えば押出成形処理の様に、原料混合後にファニキュラーからキャピラリー域の粘土状であると、原料の温度が80℃以下の場合は、粘土からの水分の蒸発が抑制され、粘土中の水分量を一定に保持しやすい傾向にあり、原料の温度が10℃以上の場合は、粘土中の水分の凍結を抑制できる傾向にある。原料を調製する際の撹拌手段としては、任意の手段を採用することがでる。例えば噴霧乾燥処理の様に、原料混合後の状態がスラリー状である場合、好ましくは撹拌翼があげられる。撹拌に使用する翼としては、具体的には、プロペラ形、パドル形、フラットパドル形、タービン形、コーン形などが挙げられる。また、効率的な撹拌を行なうために、槽内に邪魔板等を設置してもよい。撹拌機の数は、触媒原料液槽の大きさ、撹拌翼の形状などに応じて最適な条件を選択すればよい。本実施形態において、原料の撹拌時間の合計は、1分~24時間であることが好ましく、より好ましくは10分~5時間であり、更に好ましくは15分~3時間である。混合液の撹拌時間が、1分以上の場合は、原料中の組成が均一になりやすく、24時間以下の場合は、原料中の水分蒸発の影響が小さくなる傾向にある。また、例えば押出成形処理の様に、原料混合後にファニキュラーからキャピラリー域の粘土状となる場合、原料の状態に合わせて、混合機や混練機 などを選択することが好ましい。本実施形態において、原料の混合や混練時間の合計は、1分~24時間であることが好ましく、より好ましくは2分~5時間であり、更に好ましくは3分~3時間である。混合液の撹拌時間が、1分以上の場合は、原料中の組成が均一になりやすく、24時間以下の場合は、原料中の水分蒸発の影響が小さくなる傾向にある。またメチルセルロースなど、熱によりゲル化しやすい有機結合剤を配合している場合、混合機や混練機などの内部温度を前記有機結合剤の熱ゲル化温度よりも低い値で維持することにより、前記有機結合剤のゲル化を抑制でき、均一な組成の原料を得やすい傾向にある。
さらに粘土状となった原料を静置し、熟成することもできる。熟成することにより、水分が原料ゼオライトの間に行き渡りやすくなり、成形性が向上しやすくなる傾向にあるほか、ゼオライトの間に存在する空気などの気体と入れ替わり、より緻密な成形体を得られる傾向にある。
〔成形処理工程(Y)〕
 成形処理工程(Y)における成形処理としては、例えば、押出し成形処理、圧縮成形処理、噴霧乾燥処理が挙げられる。
 押出し成形処理としては、特に限定されないが、例えば、用いる原料(押出し成形処理においては「原料粘土」ともいう。)の性状に合わせて、押出し成形時の温度としては10℃~80℃が好ましく、15℃~75℃がより好ましい。原料粘土中の水分量は35質量%~50質量%が好ましく、38質量%~45質量%がより好ましい。水分量が50質量%以下である場合、原料粘土の柔軟性の過度な向上を防止でき、成形性が向上する傾向にあり、水分量が35質量%以上である場合、原料粘土の柔軟性の適度な低下を防止でき、成形性が向上する傾向にある。
 成形処理工程(Y)として、押出し成形処理を用いる場合、押出成形機としては、特に限定されないが、例えば、スクリュー型、ロール型、ブレード型、自己成形型、ラム型、ディスクペレッター型などが挙げられる。これらの中でも特にロール型、スクリュー型、ディスクペレッター型の押出成形機で押出し成形処理を実施することが好ましい。
 成形処理工程(Y)として、圧縮成形処理を用いる場合、圧縮成形機としては、特に限定されないが、例えば、一軸プレス成型、ホットプレス成型などが挙げられる。
 噴霧乾燥処理においては、例えば、スラリーの噴霧化は、通常工業的に実施される回転円盤方式、二流体ノズル方式および高圧ノズル方式等の方法によって行うことができるが、特に回転円盤方式で行うことが好ましい。噴霧された液滴の乾燥における乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることが好ましい。乾燥機入口の温度は100℃~400℃程度とすることができ、好ましくは150℃~300℃である。乾燥機出口の温度は40℃~150℃程度とすることができ、好ましくは50℃~130℃である。
〔焼成工程(Z)〕
 焼成工程(Z)における焼成温度は、一般的に用いられる温度であれば特に限定されないが、ゼオライトの結晶性を保持しつつ強度を確保できる傾向にあることから、550℃未満であることが好ましく、530℃以下であることがより好ましく、500℃以下であることがさらに好ましい。また、焼成温度は、110℃以上であることが好ましく、より好ましくは120℃以上である。
 焼成工程(Z)における焼成時間は、担体が十分に乾燥や焼結される時間であれば特に限定されず、焼成の温度により適宜選択することができるが、ゼオライトの結晶性を保持しつつ強度を確保できる傾向にあることから、20日以下であることが好ましく、10日以下であることがより好ましく、7日以下であることがさらに好ましい。
 焼成工程(Y)における焼成の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。
 焼成工程(Z)における焼成は、回転炉、トンネル炉、マッフル炉等の焼成炉を用いて行うことができる。
 本実施形態に係るGIS型ゼオライトの用途は、特に限定されるものではなく、例えば、各種ガス及び液などの分離剤あるいは分離膜、燃料電池などの電解質膜、各種樹脂成形体のフィラー、メンブランリアクター、あるいはハイドロクラッキング、アルキレーションなどの触媒、金属、金属酸化物などの担持用触媒担体、吸着剤、乾燥剤、洗剤助剤、イオン交換剤、排水処理剤、肥料、食品添加物、化粧品添加物等として用いることができる。
 上述した中でも、本実施形態に係るGIS型ゼオライトは二酸化炭素吸着剤として好適に用いることができる。
[吸着装置]
 本実施形態に係る吸着装置は、本実施形態に係るゼオライト成形体を備える。本実施形態に係る吸着装置は、このように構成されているため、二酸化炭素を十分に吸着できると共にメタンの吸着量に対する二酸化炭素吸着の選択性が高い。そのため、例えば、天然ガスからの二酸化炭素の選択的除去等の目的にとりわけ好ましく用いることができる。
 本実施形態に係る吸着装置は、本実施形態に係るGIS型ゼオライトを含むゼオライト成形体を備え、図2に示す構成例であってもよい。図2に例示する本実施形態に係る吸着装置1は、容器2の内部において、入り口側と出口側の2か所に配されたフィルター3と、2つのフィルター3の間に充填された複数のゼオライト成形体4とを備えている。フィルター3としては、例えば、石英から構成されるフィルターを使用することができる。例えば、天然ガスから二酸化炭素を分離するために吸着装置1を使用する場合、上方のラインから天然ガスを導入し、フィルター3で不純物を除去した後、さらにゼオライト成形体4により選択的に二酸化炭素を吸着除去し、下方のラインからメタンリッチガスを取り出すことができる。ただし、吸着装置に供する対象は天然ガスに限定されず、吸着装置の内部構造についても図2に示す例に限定されるものではない。
[精製ガスの製造方法]
 本実施形態に係る精製ガスの製造方法は、本実施形態に係るGIS型ゼオライトを含む吸着装置を用い、H、N、O、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO、HO、He、Ne、Cl、NH、及びHClからなる群より選択される1種以上を分離する。本実施形態においては、N、O、CO、及び炭化水素からなる群より選択される1種以上の気体から、CO、HOからなる群より選択される1種以上を分離することが好ましい。なお、炭化水素としては、特に限定されないが、メタン、エタン、エチレン、プロパン、プロピレン、1-ブテン、2-ブテン、2-メチルプロペン、ジメチルエーテル、アセチレン等が挙げられる。
 本実施形態に係るGIS型ゼオライトはCOの吸着容量が多く、化学結合を介さない物理吸着が観測される。かかる本実施形態に係るGIS型ゼオライトを用いた分離方法としては、特に限定されるものではないが、吸着材の再生時のエネルギーが低く経済性に優れる方法が好ましい。かかる方法の具体例としては、特に限定されないが、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法のいずれかを用いることが好ましい。圧力スイング式吸着分離方法(PSA:Pressure Swing Adsorption)とは、ガスの吸着時の圧力より脱離時の圧力を下げ、高圧力時の吸着量と低圧力時の吸着量の差を利用してガスの分離を行う方法である。また、温度スイング式吸着分離方法(TSA:Thermal Swing Adsorption)とは、ガスの吸着時の温度より脱離時の温度を上げ、低温時の吸着量と高温時の吸着量の差を利用してガスの分離を行う方法である。さらに、これらを組み合わせた方法が、圧力・温度スイング式吸着脱離法(PTSA:Pressure and Therml Swing Adsorption)である。これらの方法は、種々公知の条件にて実施することができる。
 以下に実施例等を挙げて本実施形態を更に詳細に説明するが、これらは例示的なものであり、本実施形態は以下の実施例に限定されるものではない。
〔X線回折;結晶構造解析(PCO2、Pde)〕
 X線回折は以下の手順で行った。
(1)各実施例及び比較例で得られたゼオライト成形体(350℃で24時間処理した後の乾燥物)を試料として、メノウ乳鉢で粉砕した。さらに結晶性シリコン(株式会社レアメタリック製)をゼオライト成形体(乾燥物)に対して、10質量%加え、メノウ乳鉢で均一になるまで混合したものを構造解析の試料とした。
(2)上記(1)の試料を石英キャピラリ(0.5mmΦ)に入れたものを、Nボンベ、COボンベ、真空ポンプ、圧力計、試料ホルダーをガス配管で接合させた試料ホルダーに取り付けたのちX線回折装置に取り付け、下記条件で測定を行った。
  X線回折装置(XRD):リガク社製粉末X線回折装置「Ultima―IV」(商品名)
  測定法:透過法
  X線源:Cu管球(40kV、40mA)
  測定範囲:5~90°(0.02°/step)
  測定速度:0.5°/分
  スリット幅(散乱、発散、受光):解放 1°
(3)脱水状態かつ窒素吸着条件下でのX線回折による回折ピークPdeは、以下の手順で測定を行った。
 ヒーターで加熱した窒素ガスを試料が入ったキャピラリに直接吹き付けて熱電対を用いて温度校正し、350℃とした。さらに真空ポンプにより試料ホルダー内の圧力を1.0mmHgに減圧した。温度と減圧度を3時間保持した後に、NボンベよりNを試料ホルダー内に導入し、温度を25℃に冷却した後に、X線回折の測定を行った。得られたスペクトルから、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークをPdeとした。
(4)脱水状態かつ二酸化炭素吸着条件下でのX線回折による回折ピークPCO2は、以下の手順で行った。
 ヒーターで加熱した窒素ガスを試料が入ったキャピラリに直接吹き付けて熱電対を用いて温度校正し、350℃とした。さらに真空ポンプにより試料ホルダー内の圧力を1.0mmHgに減圧した。温度と減圧度を3時間保持した後に、NボンベよりNを試料ホルダー内に導入し、温度を25℃に冷却する。再度真空ポンプにより試料ホルダー内の圧力を1.0mmHgに減圧した後に、COボンベより、COを試料ホルダー内に導入し、試料ホルダー内の圧力を300kPaとし、X線回折の測定を行った。得られたスペクトルにおける、最も強い強度を有する回折ピークの回折角(2θ)をPCO2とした。
29Si-MAS-NMRスペクトル、SARの測定〕
 ゼオライト成形体におけるゼオライトのSARは29Si-MAS-NMRを測定することで求めることができる。まず、ゼオライトの調湿として、デシケーターの底に水を張っておき、その上部に試料管に入れたゼオライトを48時間保持した。調湿処理を行った後、下記条件で29Si-MAS-NMRの測定を行った。
 装置:JEOL RESONANCE ECA700
 磁場強度:16.44 T(H共鳴周波数700MHz)
 測定核:29Si
 共鳴周波数:139.08MHz
 NMR管:4mmφ(ジルコニア製ローター)
 測定方法:DD/MAS(dipolar decoupling magic angle spinning)
 パルス幅:45°
 待ち時間:50sec
 積算回数:800回 (測定時間;約22時間)
 MAS:10,000Hz
 化学シフト基準:シリコーンゴム(-22.34ppm)外部基準
 GIS型ゼオライトを含む成形体では、29Si-MAS-NMRスペクトルにおいて、次の5つのピークを示す。
(1)Q4(0Al):酸素を介してAlと全く結合していないSiのピーク
(2)Q4(1Al):酸素を介して1個のAlと結合しているSiのピーク
(3)Q4(2Al):酸素を介して2個のAlと結合しているSiのピーク
(4)Q4(3Al):酸素を介して3個のAlと結合しているSiのピーク
(5)Q4(4Al):酸素を介して4個のAlと結合しているSiのピーク
 また、29Si-MAS-NMRスペクトルにおいて、それらのピーク位置は、一般的には-112ppmから-80ppmに存在し、高磁場側からQ4(0Al)、Q4(1Al)、Q4(2Al)、Q4(3Al)、Q4(4Al)に帰属できる。ゼオライト骨格中に存在するカチオン種によってピーク位置は変化し得るが、一般的には以下の範囲にピーク位置が存在する。
(1)Q4(0Al):-105ppmから-112ppm
(2)Q4(1Al):-100ppmから-105ppm
(3)Q4(2Al):-95ppmから-100ppm
(4)Q4(3Al):-87ppmから-95ppm
(5)Q4(4Al):-80ppmから-87ppm
 29Si-MAS-NMRスペクトルのピーク面積強度については、解析プログラムdmfit(♯202000113バージョン)を用いて、ガウス及びローレンツ関数により解析を行い、振幅(スペクトルの最大値の高さ)、位置(スペクトル位置、ppm)、幅(スペクトルの半値全幅、ppm)、ガウス/ローレンツ比(xG/(1-x)L)の4つのパラメーターを最小二乗法のアルゴリズムで最適化計算することで得られる。こうして求められたQ4(0Al)、Q4(1Al)、Q4(2Al)、Q4(3Al)、Q4(4Al)それぞれのピーク面積をA_Q4(0Al)、A_Q4(1Al)、A_Q4(2Al)、A_Q4(3Al)、A_Q4(4Al)とし、A_Q4(0Al)、A_Q4(1Al)、A_Q4(2Al)、A_Q4(3Al)、A_Q4(4Al)の合計値をA_totalするとSARとしては以下で求めることが可能である。
 SAR=100/〔A_Q4(1Al)/4+2×A_Q4(2Al)/4
+3×A_Q4(3Al)/4+4×A_Q4(4Al)/4〕×2
〔ゼオライト成形体のCO雰囲気下での耐脆化性評価〕
 実施例及び比較例で得られたゼオライト成形体のCO雰囲気下での耐脆化性評価は以下の手順で行った。
(1)ゼオライト成形体を100g秤量し、ゼオライト成形体の短径の測定を行い、当該ゼオライト成形体の短径の平均値をdsとした。dsより小さく、かつ最も大きな目開きを有するふるいをJISZ8801-1の公開目開きから選定、用意し、当該ふるいにかけて、ふるい上に残ったゼオライト成形体をCO雰囲気下での耐脆化性評価に用いる。試験サンプルとした。
(2)試験サンプルを200℃のN雰囲気下で3時間乾燥させた。N雰囲気下で室温まで冷却後、室温のCOに30分間暴露した。
(3)CO暴露後の試験サンプルの質量W1を測定した後、上記目開きのふるいにかけ、ふるいを通過したゼオライト成形体の質量W2を測定した。式(1)にて算出した値をゼオライト成形体の粉化率[質量%]と定義し、粉化率が低いゼオライト成形体ほどCO雰囲気下での耐脆化性を有する成形体であるとした。
Figure JPOXMLDOC01-appb-M000001
 
〔アルカリ金属の含有量〕
 ゼオライトを水酸化ナトリウム水溶液あるいは王水で熱溶解し、適宜希釈した液を用いてICP-発光分光分析(以下、「ICP-AES」ともいう、株式会社日立ハイテクサイエンス製SPS3520UV-DD:装置名)によってゼオライト中のアルミニウム、カリウムの濃度を測定した。ゼオライト中のカリウム及びリチウムの含有量は、ゼオライト中のアルカリ金属の各々の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)として算出した。K/Tも同様にして算出した。
〔CO吸着量及びヒステリシス量;ガス吸脱着等温線測定〕
 ガス吸脱着等温線測定は以下の手順で行った。
(1)各実施例及び比較例で得られたゼオライト成形体(350℃で24時間処理した後の乾燥物)を試料とし、12mmセル(Micro Meritics社製)に0.2g入れた。
(2)上記(1)のセルに入れた試料をMicro Meritics社製ガス吸着測定装置「3-Flex」(商品名)に設置し、250℃、0.001mmHg以下で12時間加熱真空脱気処理した。
(3)上記(2)の処理後のセルに入れた試料を25℃の恒温循環水中に入れ、試料の温度が25±0.2℃になった後、液化炭酸ガス(住友精化株式会社製、純度99.9質量%以上)を用いて絶対圧0.25~760mmHgまで測定した。なお、上記測定中、圧力を経時的に測定し、その圧力変動が0.001%/10sec以下となったときに飽和吸着量に達したものと判定し、25℃におけるCO吸着量(単位:cm/g)とした。
(4)上記(3)の測定に続き、絶対圧760~0.25mmHgまで経時的に減圧処理を行い二酸化炭素の脱着等温線の測定を行った。なお、平衡判断としては、(3)と同様に、圧力変動が0.001%/10sec以下として測定を行った。
(5)二酸化炭素の吸脱着等温線におけるヒステリシス量を示す指標としては、(3)にて測定した吸着等温線75mmHgにおける平衡吸着量と、(4)にて測定した脱着等温線75mmHgにおける平衡吸着量をそれぞれ、q(Ad),q(De)としたとき、q(Ad)/q(De)をヒステリシス量を示す指標とした。q(Ad)/q(De)=1.00である場合は、ヒステリシスがないことを示し、q(Ad)/q(De)が小さいほどヒステリシスが大きい状態を示す。
〔CH吸着量;ガス吸着等温線測定〕
 ガス吸着等温線測定は以下の手順で行った。
(1)各実施例及び比較例で得られた乾燥物を試料とし、12mmセル(Micro Meritics社製)に0.2g入れた。
(2)上記(1)のセルに入れた試料をMicro Meritics社製ガス吸着測定装置「3-Flex」(商品名)に設置し、250℃、0.001mmHg以下で12時間加熱真空脱気処理した。
(3)上記(2)の処理後のセルに入れた試料を25℃の恒温循環水中に入れ、試料の温度が25±0.2℃になった後、メタンガス(藤井商事株式会社製、純度99.99質量%以上)を用いて絶対圧0.25~760mmHgまで測定した。なお、上記測定中、圧力を経時的に測定し、その圧力変動が0.001%/10sec以下となったときに飽和吸着量に達したものと判定し、25℃におけるCH吸着量(単位:cm/g)とした。
〔実施例1〕
 水61.93gと水酸化ナトリウム(NaOH、富士フイルム和光純薬社製)0.202gと、硝酸ナトリウム(NaNO、富士フイルム和光純薬社製)3.39gと、アルミン酸ナトリウム(NaAlO、富士フイルム和光純薬社製)1.64gとコロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)5.41gを混合し、24時間撹拌した後、コロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)5.41gを添加し、30分間攪拌して、混合ゲルを調製した。混合ゲルの組成は、α=(L1O+L2O)/SiO=0.00、β=OH/(M1O+M2O)=0.14、γ=SiO/Al=8.17、δ=HO/Al=431.0、ε=P/Al=0.00、ζ=R/Al=0.00、ψ=S1/S2=0.50であった。混合ゲルをフッ素樹脂内筒の入った200mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、135℃、4日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
 得られたゼオライトの29Si-MAS-NMRスペクトルより、シリカアルミナ比を算出した結果、SAR=6.92であり、また、(a+d)/(b+c)=0.305であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。また、上述のX線回折の測定を行った結果、PCO2=28.84、Pde=28.86、PCO2/Pde=1.00であった。
 合成で得たGIS型ゼオライト40質量部と、メチルセルロース(ハイケム株式会社製セランダーYB-132A)1.2質量部と、ポリビニルアルコール0.2質量部(三菱ケミカル株式会社製ゴーセノールN-300)と、粉末アルミナ水和物10.4質量部(日揮触媒化成株式会社製、アルミナ含有率:70質量%)と、アルミナゾル48.2質量部(日産化学株式会社製、アルミナ含有率:10.5質量%)を混合した。
 上記混合物をクレイガンにて手動で押出成形して直径3mmの円柱状に押し出した後、電気炉を用いて350℃で24時間、空気雰囲気下で焼成した。こうして得られたGIS型ゼオライト成形体の粉化率は0.1%であった。
 得られたGIS型ゼオライト成形体のCOの脱着等温線を測定すると、760mmHgでの吸着量は59.6cm/gであり、q(Ad)/q(De)=1.000であった。また、同様にCHの吸着等温線について測定を行うと、760mmHgでの吸着量は3.2cm/gであった。
〔実施例2〕
 水61.65gと48質量%水酸化ナトリウム水溶液(NaOH、トクヤマソーダ社製)0.30gと、炭酸ナトリウム(NaCO、トクヤマソーダ社製)2.27gと、アルミン酸ナトリウム(NaAlO、北陸化成工業所製)1.64gとコロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)0.82gを混合し、30分間撹拌した後、コロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)10.00gを添加し、30分間攪拌して、混合ゲルを調製した。混合ゲルの組成は、α=(L1O+L2O)/SiO=0.00、β=OH/(M1O+M2O)=0.10、γ=SiO/Al=8.17、δ=HO/Al=431.2、ε=P/Al=0.00、ζ=R/Al=0.00、ψ=S1/S2=0.082であった。混合ゲルをフッ素樹脂内筒の入った200mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、5日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。得られたゼオライト1gを、炭酸カリウム(KCO、日本曹達社製)を用いて調整した0.05Nの炭酸カリウム水溶液500mLに入れ、室温で3時間、500rpmで攪拌した。生成物をろ過して120℃で乾燥し、カチオンの一部がカリウムに交換された粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
 実施例1と同じ方法で各値を測定したところ、29Si-MAS-NMRスペクトルより、SAR=7.20であり、また、(a+d)/(b+c)=0.244であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.98(=K/T)であった。また、上述のX線回折の測定を行った結果、PCO2=29.02、Pde=29.12、PCO2/Pde=0.997であった。
また、実施例1と同様に成形した後、得られたGIS型ゼオライト成形体の粉化率を測定すると0.9%であり、COの脱着等温線を測定すると、760mmHgでの吸着量は61.0cm/gであり、q(Ad)/q(De)=1.000であった。また、同様にCHの吸着等温線について測定を行うと、760mmHgでの吸着量は0.1cm/gであった。
〔実施例3〕
 水141.41gと、硝酸ナトリウム(NaNO、富士フイルム和光純薬社製)8.53gと、アルミン酸ナトリウム(NaAlO、富士フイルム和光純薬社製)3.85gと沈降シリカ(Perkasil SM500、Grace社製)15.67gを混合し、60分間撹拌した後、沈降シリカ(Perkasil SM500、Grace社製)1.74gを添加し、15分間攪拌して、混合ゲルを調製した。混合ゲルの組成は、α=(L1O+L2O)/SiO=0.00、β=OH/(M1O+M2O)=0.00、γ=SiO/Al=14.00、δ=HO/Al=379.3、ε=P/Al=0.00、ζ=R/Al=0.00、ψ=S1/S2=0.90であった。混合ゲルをフッ素樹脂内筒の入った300mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、4日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
 実施例1と同じ方法で各値を測定したところ、29Si-MAS-NMRスペクトルより、SAR=10.40であり、また、(a+d)/(b+c)=0.192であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。また、上述のX線回折の測定を行った結果、PCO2=28.60、Pde=29.51、PCO2/Pde=0.969であった。
また、実施例1と同様に成形した後、得られたGIS型ゼオライト成形体の粉化率を測定すると1.4%であり、COの脱着等温線を測定すると、760mmHgでの吸着量は58.0cm/gであり、q(Ad)/q(De)=1.000であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は4.1cm/gであった。
〔比較例1〕
 非特許文献1の内容に基づき、水143.10gと50%水酸化ナトリウム水溶液(NaOH、固形分濃度50質量%、Aldrich社製)40.00gと、アルミニウムパウダー(Al、富士フイルム和光純薬社製)2.70gと、コロイダルシリカ(Ludox HS-40、固形分濃度40質量%、Aldrich社製)75.10gを混合し、24時間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=(L1O+L2O)/SiO=0.00、β=OH/(M1O+M2O)=1.00、γ=SiO/Al=10.00、δ=HO/Al=220.0、ε=P/Al=0.00、ζ=R/Al=0.00であった。混合ゲルをフッ素樹脂内筒の入った300mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度60rpm、150℃、3日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
 実施例1と同じ方法で各値を測定したところ、29Si-MAS-NMRスペクトルより、SAR=6.00であり、また、(a+d)/(b+c)=0.176であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。また、上述のX線回折の測定を行った結果、PCO2=34.04、Pde=28.05、Pde/PCO2=0.824であった。また、同様にCHの吸着等温線について測定を行うと、760mmHgでの吸着量は7.3cm/gであった。
また、実施例1と同様に成形した後、得られたGIS型ゼオライト成形体の粉化率を測定すると52%であり、COの脱着等温線を測定すると、q(Ad)/q(De)=0.365であった。
〔比較例2〕
 特許文献1の内容に基づき、水207.30gと水酸化ナトリウム8.78gと、アルミン酸ナトリウム16.4gと水ガラス3号248.3gを混合し、15分間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=(L1O+L2O)/SiO=0.32、β=OH/(M1O+M2O)=0.35、γ=SiO/Al=12.40、δ=HO/Al=197.9、ε=P/Al=0.00、ζ=R/Al=0.00であった。混合ゲルをフッ素樹脂内筒の入った1000mLのステンレス製オートクレーブに仕込み、撹拌なしで130℃、5日間水熱合成し、生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
 実施例1と同じ方法で各値を測定したところ、29Si-MAS-NMRスペクトルより、SAR=4.10であり、また、(a+d)/(b+c)=0.151であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。また、上述のX線回折の測定を行った結果、PCO228.05=、Pde=29.55、PCO2/Pde=0.949であった。
また、実施例1と同様に成形した後、得られたGIS型ゼオライト成形体の粉化率を測定すると39%であり、COの脱着等温線を測定すると、760mmHgでの吸着量は37.8cm/gであり、q(Ad)/q(De)=0.365であった。また、同様にCHの吸着等温線について測定を行うと、760mmHgでの吸着量は8.0cm/gであった。
 本発明に係るGIS型ゼオライトは、二酸化炭素の吸着剤として産業上利用の可能性を有する。
 1  吸着装置
 2  容器
 3  フィルター
 4  ゼオライト成形体
 

Claims (17)

  1.  脱水状態かつ二酸化炭素吸着条件下でのX線回折により得られるスペクトルにおける、回折角が2θ=25.81~34.57°の間で観測される回折ピークの内、最も強い強度を有する回折ピークPCO2の回折角(2θ)が、28.60~29.54°である、GIS型ゼオライト。
  2.  脱水状態かつ窒素吸着条件下でのX線回折により得られるスペクトルにおける、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークPdeとしたとき、PCO2/Pde≧0.969を満たす、GIS型ゼオライト。
  3.  脱水状態かつ窒素吸着条件下でのX線回折により得られるスペクトルにおける、回折角2θ=25.81~34.57°の間で観測される最も強い強度を有する回折ピークPdeとしたとき、PCO2/Pde≧0.969を満たす、請求項1に記載のGIS型ゼオライト。
  4.  前記GIS型ゼオライトのシリカアルミナ比が3.40以上である、請求項1~3のいずれか一項に記載のGIS型ゼオライト。
  5.  GIS型ゼオライト中のカチオン種としてカリウム又はリチウムを含む、請求項1~3のいずれか一項に記載のGIS型ゼオライト。
  6.  GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)が、0.05以上である、請求項5に記載のGIS型ゼオライト。
  7.  29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たす、請求項1~3のいずれか一項に記載のGIS型ゼオライト。
  8.  10cm/g以上の二酸化炭素吸着量を有する、請求項1~3のいずれか一項に記載のGIS型ゼオライト。
  9.  請求項1~3のいずれか一項に記載のGIS型ゼオライトを含む、ゼオライト成形体。
  10.  担体を含む、請求項9に記載のゼオライト成形体。
  11.  前記担体が、無機結合剤及び有機結合剤を含む、請求項10に記載のゼオライト成形体。
  12.  前記担体の合計含有量が、ゼオライト成形体の全量100質量%に対し、1~99質量%である、請求項10のいずれか一項に記載のゼオライト成形体。
  13.  円柱状の形状を有する、請求項9に記載のゼオライト成形体。
  14.  長さが3mm以上30mm以下であり、かつ、直径が1mm以上30mm以下である、請求項13に記載のゼオライト成形体。
  15.  請求項9に記載のゼオライト成形体を含む、吸着装置。
  16.  請求項15に記載の吸着装置を用い、H、N、O、Ar、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO、HO、He、Ne、Cl、NH、及びHClからなる群より選択される1種以上を分離する分離工程を含む、精製ガスの製造方法。
  17.  前記分離工程にける圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法により前記気体の分離を行う、請求項16に記載の製造方法。
PCT/JP2023/012681 2022-03-29 2023-03-28 Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法 WO2023190603A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053929 2022-03-29
JP2022053929 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190603A1 true WO2023190603A1 (ja) 2023-10-05

Family

ID=88201899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012681 WO2023190603A1 (ja) 2022-03-29 2023-03-28 Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法

Country Status (1)

Country Link
WO (1) WO2023190603A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444939B1 (ko) * 2013-04-30 2014-09-30 충남대학교산학협력단 단상 GIS-NaP1 제올라이트 및 그의 제조방법
CN105460953A (zh) * 2014-09-09 2016-04-06 中国石油化工股份有限公司 Scm-8分子筛及其制备方法
WO2018110559A1 (ja) * 2016-12-13 2018-06-21 旭化成株式会社 Gis型ゼオライト
WO2019202933A1 (ja) * 2018-04-16 2019-10-24 旭化成株式会社 Gis型ゼオライト
JP2020014978A (ja) * 2018-07-23 2020-01-30 旭化成株式会社 ガス分離方法
JP2020203284A (ja) * 2018-09-25 2020-12-24 積水化学工業株式会社 ゼオライト吸着材の再利用方法および再生吸着材
JP2021109818A (ja) * 2020-01-15 2021-08-02 旭化成株式会社 Gis型ゼオライト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444939B1 (ko) * 2013-04-30 2014-09-30 충남대학교산학협력단 단상 GIS-NaP1 제올라이트 및 그의 제조방법
CN105460953A (zh) * 2014-09-09 2016-04-06 中国石油化工股份有限公司 Scm-8分子筛及其制备方法
WO2018110559A1 (ja) * 2016-12-13 2018-06-21 旭化成株式会社 Gis型ゼオライト
WO2019202933A1 (ja) * 2018-04-16 2019-10-24 旭化成株式会社 Gis型ゼオライト
JP2020014978A (ja) * 2018-07-23 2020-01-30 旭化成株式会社 ガス分離方法
JP2020203284A (ja) * 2018-09-25 2020-12-24 積水化学工業株式会社 ゼオライト吸着材の再利用方法および再生吸着材
JP2021109818A (ja) * 2020-01-15 2021-08-02 旭化成株式会社 Gis型ゼオライト

Similar Documents

Publication Publication Date Title
JP6552728B2 (ja) Gis型ゼオライト
JP6714789B2 (ja) Gis型ゼオライト
JP6505323B2 (ja) Mwf型ゼオライト
CN111573693A (zh) 新型沸石
KR20150005538A (ko) 베타형 제올라이트 및 그의 제조 방법
JP2019073435A (ja) 金属含有cha型ゼオライト及びその製造方法
EP3257813B1 (en) Method for producing beta zeolite
JP7185433B2 (ja) ガス分離方法
WO2023190603A1 (ja) Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法
WO2023190600A1 (ja) Gis型ゼオライト、ゼオライト成形体、吸着装置、及び精製ガスの製造方法
JP2023146805A (ja) ゼオライト成形体、吸着装置、及び精製ガスの製造方法
JP2023146647A (ja) ゼオライト成形体、吸着装置、及び精製ガスの製造方法
WO2023190609A1 (ja) ゼオライト成形体、吸着装置、精製ガスの製造方法、及びゼオライト成形体の製造方法
CN112551543B (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
JP2023147269A (ja) ゼオライト成形体、吸着装置、及び精製ガスの製造方法
WO2022259880A1 (ja) Gis型ゼオライト成形体、吸着装置、分離方法、及びgis型ゼオライト
JP6797045B2 (ja) Mwf型ゼオライト
WO2023067841A1 (ja) Gis型ゼオライト、吸着材、及び分離方法
WO2023067840A1 (ja) Gis型ゼオライト、吸着材、及び分離方法
WO2022025247A1 (ja) Gis型ゼオライト
JP2019115895A (ja) Mwf型ゼオライト、及び気体の分離方法
JP2019116404A (ja) Mwf型ゼオライト
JP2014196228A (ja) シリコアルミノリン酸塩を含む水蒸気吸脱着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780612

Country of ref document: EP

Kind code of ref document: A1