RU2687424C2 - Способ обработки материала на основе лигнина - Google Patents

Способ обработки материала на основе лигнина Download PDF

Info

Publication number
RU2687424C2
RU2687424C2 RU2016103929A RU2016103929A RU2687424C2 RU 2687424 C2 RU2687424 C2 RU 2687424C2 RU 2016103929 A RU2016103929 A RU 2016103929A RU 2016103929 A RU2016103929 A RU 2016103929A RU 2687424 C2 RU2687424 C2 RU 2687424C2
Authority
RU
Russia
Prior art keywords
lignin
temperature
carbon
stabilization
containing product
Prior art date
Application number
RU2016103929A
Other languages
English (en)
Other versions
RU2016103929A (ru
RU2016103929A3 (ru
Inventor
Туомо ХИЛЛИ
Пекка ТЮНЬЯЛЯ
Хенрик РОМАР
Original Assignee
Вальмет Текнолоджиз Ой
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вальмет Текнолоджиз Ой filed Critical Вальмет Текнолоджиз Ой
Publication of RU2016103929A publication Critical patent/RU2016103929A/ru
Publication of RU2016103929A3 publication Critical patent/RU2016103929A3/ru
Application granted granted Critical
Publication of RU2687424C2 publication Critical patent/RU2687424C2/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

Изобретение относится к способу обработки материала на основе лигнина. Способ включает обработку лигнина, извлеченного из лигноцеллюлозного сырья способом гидротермальной карбонизации при повышенной температуре, в результате чего получают карбонизированный лигнин с повышенным содержанием углерода, и стабилизацию полученного карбонизированного лигнина в инертной атмосфере при температуре проведения стабилизации, которая превышает температуру осуществления способа гидротермальной карбонизации. Процесс стабилизации включает повышение температуры от исходной температуры до температуры проведения стабилизации, которая составляет 300-600°С, выдерживание полученного карбонизированного лигнина при температуре проведения стабилизации в течение 10 минут - 10 часов и превращение полученного карбонизированного лигнина в устойчивую стабилизированную форму. Обеспечивается получение более глубоко очищенного продукта. 16 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу обработки материала на основе лигнина. Материал, подвергаемый обработке, представляет собой карбонизированный материал, который получают посредством гидротермальной карбонизации (сокращенно ГТК, англ. hydrothermal carbonization, сокращенно НТС) лигнина.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Способы извлечения лигнина, компонента древесины, из черного щелочного раствора («черного щелока») древесно-массных производств известны. Отделенный таким образом лигнин может быть использован как топливо. Упрощенное описание известного способа отделения лигнина от черного щелочного раствора древесно-массных производств включает осаждение лигнина при понижении pH черного щелочного раствора и обезвоживание осажденного лигнина. Подобные способы рассмотрены, например, в Европейских патентах EP 1797236 В1 и EP 1794363 В1 и в патентной заявке US 2010/0325947 A1, в которой также рассмотрено повторное суспендирование обезвоженного лигнина в воде с понижением pH посредством добавления кислоты и последующее обезвоживание полученной суспензии.
Рассмотренный выше способ отделения лигнина зарегистрирован под товарным знаком LignoBoost™. В способе LignoBoost получают лигнинсодержащий продукт, который может быть использован как топливо. Такое применение лигнина уже известно, поскольку обычно лигнин сжигают в котле-утилизаторе, направляя в котел черный щелочной раствор, содержащий лигнин.
Известно, что содержащиеся в лигнине волокна, полученные экструзией в расплаве из лигнина, отделенного от черного щелочного раствора (например, способом LignoBoost™), могут быть подвергнуты стабилизации при температуре, составляющей от 200 до 250°C, как рассмотрено в международной патентной заявке WO 2013112100.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задача изобретения состоит в предоставлении более глубоко очищенного продукта, получаемого из лигнина. Этот продукт может быть использован не только для сжигания, благодаря его теплотворной способности, но и для других целей.
Согласно изобретению, лигнин, содержащийся в жидкостной среде или извлеченный из нее, обрабатывают способом гидротермальной карбонизации (ГТК), получая карбонизированный лигнин, и после проведения способа гидротермальной карбонизации, полученный карбонизированный лигнин подвергают стабилизации при температуре, превышающей температуру проведения ГТК. Стабилизирующая обработка представляет собой термическую стабилизацию, задача которой состоит в получении материала, пригодного для проведения этапов окончательной обработки углеродсодержащего продукта.
Материал, который подвергают стабилизации, т.е. карбонизированный лигнин, представляет собой твердое вещество, получаемое из лигнина, но отличающееся от лигнина более высоким, по сравнению с исходным материалом (лигнином), подаваемым в способ ГТК, содержанием углерода, достигаемым в результате проведения ГТК. Материал, являющийся продуктом ГТК, также может быть назван "ГТК углеродом на основе лигнина".
Перед стабилизирующей обработкой необязательно проводят предварительную механическую обработку карбонизированного лигнина. Предварительная обработка может представлять собой измельчение, гранулирование или получение волокон из материала. Если необходимо получить волокна, то в материал перед проведением стабилизации предпочтительно добавляют вспомогательное полимерное вещество, способствующее связыванию частиц карбонизированного лигнина в виде волокон. Благодаря своему происхождению, карбонизированный лигнин может все еще содержать компоненты, способные плавиться, которые могут быть использованы во время предварительной обработки для придания материалу требуемой формы, в частности, волокон. Такие способные плавиться компоненты могут действовать на материал как таковые или в комбинации с полимерными вспомогательными веществами.
Стабилизирующая обработка, которую проводят в соответствии с заданной временно-температурной программой, обеспечивает стабильность карбонизированного продукта и облегчает манипуляции с ним, например, механическую обработку. Обработку выполняют в подходящей атмосфере, предпочтительно в инертной атмосфере, но атмосфера также может включать неинертные газы, например, диоксид углерода. Уменьшение массы при проведении стабилизации обусловлено удалением водорода и кислорода. Стабилизация повышает выход углерода в необязательно проводимом последующем этапе активации, поскольку соединения углерода после полимеризации и удаления некоторых функциональных групп переходят в более стабильную форму.
Конечный продукт (готовый углеродсодержащий продукт) может представлять собой стабилизированный продукт, который может применяться в конструкционных материалах, например, может применяться в качестве добавки в композицию. Он может быть, например, введен в качестве добавки в изделия, получаемые из каучука или эластомера (шины, ремни и т.д.), для их упрочнения, повышения износоустойчивости и/или теплопроводности.
В альтернативном варианте для получения конечного продукта стабилизированный материал может быть подвергнут дополнительной тепловой обработке. Такая тепловая обработка может представлять собой дополнительную карбонизацию, повышающую содержание углерода, или активацию, повышающую удельную площадь поверхности.
Температурно-временная программа, применяемая при стабилизации карбонизированного лигнина (ГТК углерода на основе лигнина) включает повышение температуры от исходной температуры до конечной температуры. Материал выдерживают при конечной температуре в течение достаточного периода времени, например, от 10 минут до 10 часов, обычно от 1 до 3 часов. При проведении стабилизации регулируют скорость повышения температуры (°C/мин). Слишком быстрое нагревание делает материал липким и комкообразным, имеющим непроницаемую, подобную коже структуру, которая затрудняет манипуляции и делает дополнительную обработку (механическую обработку, активацию) затруднительной или даже невозможной. Для предотвращения таких результатов повышение скорости должно быть умеренным. Скорость повышения температуры составляет от 0,1 до 20°C/мин, предпочтительно от 1 до 20°C/мин.
В предпочтительном примере осуществления карбонизированный лигнин подвергают стабилизации при температуре, составляющей от 200 до 700°C, предпочтительно от 300 до 600°C. Конечная температура стабилизации, при которой материал выдерживают после повышения температуры, находится в указанных выше диапазонах, и подходящая продолжительность выдерживания при конечной температуре указана выше.
Способ обработки повышает ценность лигнина и конечного продукта, получаемого в результате гидротермальной карбонизации лигнина, последующей стабилизации ГТК-углеродсодержащего продукта на основе лигнина посредством температурной обработки и окончательной обработки стабилизированного материала. Вместо использования лигнина только в виде топлива, конечный продукт может быть применен в качестве конструкционного или функционального материала.
В целом, углерод может быть извлечен из лигнинсодержащих жидкостных сред способом, имеющим высокую эффективность получения углерода (выход углерода).
Рассматриваемый способ не зависит от вида способа извлечения лигнина из первичной природной биомассы, которая представляет собой лигноцеллюлозное сырье, обычно древесину. Наиболее удобным способом отделения лигнина от биомассы является преобразование биомассы, которое позволяло бы использовать биомассу в промышленности. В способе этого типа в результате фракционирования биомассы лигнин оказывается в отработанном щелоке. В частности, фракционирование представляет собой способ, согласно которому лигнин отделяют от целлюлозы способом, который может быть назван удалением лигнина (то есть лигнин удаляют из лигноцеллюлозного сырья), и он может представлять собой сульфитное, натронное или сульфатное (крафт-способ) удаление лигнина. Таким образом, отработанный щелок может представлять собой, например, черный щелочной раствор сульфатной варки древесины.
Следует отметить, что состав лигнина и форма лигнина в отработанном щелоке зависит от предшествующего способа обработки и условий, при которых лигнин переходит в отработанный щелок, и химически он может не соответствовать в точности природному лигнину, содержащемуся в первоначальном лигноцеллюлозном сырье, т.е. древесине. Термин "лигнин" для удобства означает как природный лигнин, так и формы, содержащие лигнин после его извлечения из лигноцеллюлозного сырья.
Лигнин, отделенный от лигноцеллюлозного сырья, затем подвергают гидротермальной карбонизации для получения карбонизированного материала, который затем подвергают стабилизации при повышенной температуре, как было указано выше.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Ниже изобретение рассмотрено более подробно со ссылками на прилагаемые графические материалы, в которых:
На Фиг. 1 представлена блок-схема способа согласно одному из примеров осуществления изобретения, и
На Фиг. 2 представлено снижение массы материала, наблюдаемое во время стабилизирующей обработки материала.
СВЕДЕНИЯ. ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже изобретение раскрыто более полно с помощью некоторых примеров осуществления, которые не ограничивают объем изобретения.
На Фиг. 1 представлена блок-схема способа согласно одному из примеров осуществления изобретения. Источником лигнина является черный щелочной раствор сульфатной варки (стрелка слева), который представляет собой отработанный щелок, оставшийся после варки древесины сульфатным способом, также называемым крафт-способом. Лигнин может быть отделен от черного щелочного раствора осаждением лигнина в виде частиц такого размера, которые могут быть отделены от черного щелочного раствора физическими способами, например, фильтрованием. Осаждение обычно вызывают понижением pH сильнощелочного отработанного щелока, обычно до значения pH, составляющего от 9,5 до 11,5, которое благоприятно для осаждения лигнина. В альтернативном варианте черный щелочной раствор может быть введен как таковой в следующий этап.
Отработанный щелок может быть продуктом не сульфатного способа, а других способов преобразования биомассы, при условии, что он содержит лигнин, который может быть использован. Таким образом, изобретение не привязано к одному источнику лигнина или способу его отделения.
В следующем этапе лигнин подвергают гидротермальной карбонизации (ГТК). Гидротермальная карбонизация основана на карбонизации органического вещества при повышенной температуре и высоком давлении в водной фазе. Гидротермальная карбонизация представляет собой известный способ, который применяют для получения карбонизированного материала из множества различных биомасс, и он рассмотрен, например, в патентной заявке US 2012/0103040. Поскольку ГТК осуществляют в присутствии большого количества воды, и этот способ работает в широком диапазоне отношений жидкость/твердое в суспензии лигнина, то лигнин, отделяемый от отработанного щелока, не нужно сушить. Лигнин, отделяемый от отработанного щелока, может быть повторно суспендирован в другой жидкостной среде, предпочтительно воде, и pH может быть доведен до величины, подходящей для осуществления способа, предпочтительно, превышающей 8. Лигнин, находящийся в этой суспензии, направляют в способ ГТК. Обогащенный лигнином отработанный щелок также может быть необязательно подан как таковой в способ ГТК без предварительного осаждения и отделения лигнина, и в этом случае другие составные компоненты отработанного щелока также поступают в способ ГТК.
Способ ГТК осуществляют при температуре, составляющей от 150 до 300°C, предпочтительно приблизительно от 150 до 250°C. Способ осуществляют при повышенном давлении. Давление при проведении ГТК предпочтительно составляет от приблизительно 20 до 40 бар (от приблизительно 2⋅106 Па до 4⋅106 Па). Продолжительность гидротермальной карбонизации в заданных условиях составляет от 1 до 10 часов, предпочтительно от 2 до 4 часов. Содержание углерода в материале повышается по сравнению с его содержанием в исходном лигниновом сырье. Способ отличается высокой эффективностью получения углерода, и лигнин извлекают из ГТК в виде водной суспензии карбонизированного лигнина, который может рассматриваться как "ГТК углерод на основе лигнина".
Извлекаемый из способа ГТК твердый продукт, карбонизированный лигнин, отделяют от суспензии, образовавшейся в реакции ГТК. Отделение может быть произведено любыми обезвоживающими средствами, такими как фильтр-пресс.
Затем карбонизированный лигнин может быть подвергнут предварительной обработке. Она может представлять собой измельчение, гранулирование или получение волокон (образование волокон из ГТК углерода на основе лигнина). Задача этого необязательного этапа физической предварительной обработки состоит в придании материалу формы, облегчающей манипуляции с ним и/или делающей обработку в следующем этапе более эффективной. Получение волокна включает использование полимерной добавки и/или способных плавиться компонентов, получаемых из лигнина, способствующих удержанию ГТК углерода в виде волокна. Добавки могут быть целлюлозными или представлять собой полимеры на основе масла.
Затем ГТК углерод на основе лигнина подвергают стабилизации при тепловой обработке. Тепловую обработку проводят в соответствии с регулируемой температурно-временной программой, согласно которой температуру повышают с заранее заданной скоростью до достижения конечной температуры стабилизации. Материал выдерживают при конечной температуре в течение определенного времени. При умеренной скорости повышения температуры и обработке при конечной температуре в течение достаточного периода времени получают стабилизированный ГТК углерод на основе лигнина, который может быть дополнительно обработан, в результате чего получают очищенные углеродсодержащие продукты.
Стабилизацию осуществляют в подходящей атмосфере и при температуре, которая по меньшей мере на +30°C превышает температуру проведения предшествующего способа гидротермальной карбонизации. После стабилизации ГТК углерод на основе лигнина превращается в более стабильную стабилизированную форму, с которой легче производить манипуляции, и которая более чувствительна к активации, если необходимо провести активацию углеродсодержащего продукта. Атмосфера состоит из инертного газа или смеси инертных газов. Инертный газ представляет собой азот или благородный газ.
Таким образом, в качестве атмосферы для проведения стабилизации предпочтительно используют азот или благородный газ. Однако, на выбор газа могут влиять и другие факторы, в частности, доступность газов по низкой цене, и поэтому в способе могут быть использованы даже неинертные газы. Например, если на производственном предприятии имеется диоксид углерода, то он может быть использован для проведения стабилизации. Соответственно, может быть использован топочный газ, содержащий диоксид углерода, азот и водяной пар. Неинертные газы, используемые для создания атмосферы этапа стабилизации, могут быть продуктами другого предприятия, расположенного вблизи производственного предприятия, на котором производят углеродсодержащий продукт, например, промышленного предприятия или фабрики, с которым производственное предприятие интегрировано. Поскольку температура стабилизирующей обработки относительно низка (ниже 700°C, предпочтительно ниже 600°C), возможные потери углерода остаются на достаточно низком уровне даже при использовании неинертных газов.
Если готовый углеродсодержащий продукт, получаемый из стабилизированного ГТК углерода, представляет собой активированный уголь, то в качестве атмосферы для стабилизации может с успехом быть использован диоксид углерода или топочный газ. В этом случае тот же газ или газовая смесь может быть использована при стабилизации ГТК углерода и в последующей активации стабилизированного ГТК углерода, приводящей к получению активированного угля.
Температура проведения стабилизации составляет от 200 до 700, предпочтительно от 300 до 600°C. Полагают, что оптимальная температура проведения стабилизации составляет от 500 до 600°C. Скорость повышения температуры до достижения температуры проведения стабилизации составляет от 0,1 до 20°C/мин, предпочтительно от 1 до 20°C/мин. Газ или газовую смесь, которая образует атмосферу, предпочтительно транспортируют при указанных условиях таким образом, что газы, пропускаемые через материал во время стабилизирующей обработки (в основном кислород и водород), выбрасываются за пределы способа.
ПРИМЕР 1
Карбонизированный лигнин (ГТК углерод на основе лигнина), полученный способом гидротермальной карбонизации (сокращенно ГТК, англ. hydrothermal carbonization, сокращенно НТС), был подвергнут стабилизирующей обработке в соответствии с регулируемым временно-температурным режимом.
На Фиг. 2 представлена зависимость массы ГТК углерода на основе лигнина от температуры во время стабилизирующей обработки. Скорость повышения температуры постоянна и составляет 5°C/мин, температуру повышают от 20°C до 800°C, и скорость подачи газообразного диоксида углерода в камеру обработки, в которую помещен материал, составляет 50 мл/мин. На диаграмме показано, что минимальная скорость снижения массы наблюдается в температурном интервале от 500 до 600°C. После прохождения этого интервала снижение массы указывает на начало активации (в атмосфере диоксида углерода). При использовании вместо диоксида углерода инертного газа, такого как азот, получают приблизительно аналогичную зависимость от температуры в температурном диапазоне, указанном для стабилизации.
Поскольку в основном из материала удаляются элементы, которые не являются углеродом, содержание углерода в процессе обработки возрастает от приблизительно 70% до приблизительно 90-95%. Стабилизирующая обработка также повышает выход углерода в последующих этапах окончательной обработки углеродсодержащего продукта по сравнению с нестабилизированным углеродсодержащим продуктом. Выход углерода определяют как отношение количества элементарного углерода в углеродсодержащем продукте к количеству элементарного углерода, содержащегося в исходном материале (ГТК продукте на основе лигнина).
ПРИМЕР 2
Влияние стабилизации исследовали, подвергая различным видам обработки сырьевой материал, который представлял собой ГТК углерод на основе лигнина. Результаты представлены в нижеследующей таблице. Таблица 1.
Испытание - активация ГТК углерода на основе лигнина (сырьевого материала)
ОУ = Общий углерод, НУ = Неорганический углерод и ООУ = Органический углерод. Выход рассчитан на основании общей массы, включая золу.
Figure 00000001
Можно отметить, что в "Образце 280-800° активация CO2 при 800°C, проведенная после стабилизации при 280°C, снижает выход (в пересчете на общую массу) с 88% масс., до 31% масс., но он остается более высоким, чем в случае "Образца 800", который подвергали прямой активации в присутствии CO2 при 800°C без стабилизации (снижение выхода с 88% до 10%).
Из полученных результатов также можно заключить, что различие в выходах углерода в "Образце 280-800" и "Образце 800" в действительности еще более значительно, чем разность, рассчитанная только на основании оставшейся массы продукта.
Окончательная обработка и применение продукта
Этапы окончательной обработки способа получения углеродсодержащего продукта могут включать активацию. Активацию осуществляют при температуре, превышающей температуру проведения стабилизации и составляющей более 700°C, в атмосфере неинертных газов (CO2 или Н2O или топочных газов); активацию проводят для увеличения площади поверхности углеродсодержащего продукта, и конечным продуктом активации является активированный уголь. Окончательная обработка также может представлять собой карбонизацию, которую проводят при температуре выше 800°C в инертной атмосфере, такой как газообразный азот, для достижения максимального содержания углерода. Обработка может быть продолжена после достижения конечной температуры стабилизации непосредственно как активация или карбонизация стабилизированного ГТК углерода посредством повышения температуры выше конечной температуры в соответствии с временно-температурной программой, созданной для проведения активации или стабилизации, и, при необходимости, с заменой атмосферы проведения обработки.
Конечными продуктами этапов термической обработки являются углеродсодержащие продукты (активированный уголь, углеродная сажа, углеродное волокно и т.д.) технической чистоты, которые могут иметь функциональное и конструкционное применение.
Окончательная обработка также может включать механическую обработку, такую как дробление, измельчение и т.д., которой может быть подвергнут стабилизированный карбонизированный лигнин (стабилизированный ГТК углерод) или стабилизированный карбонизированный лигнин, дополнительно карбонизированный для получения максимального содержания углерода. Задача такой обработки состоит в придании стабилизированному ГТК углероду физической формы, более подходящей для конечного применения. Механическая обработка может не производиться, если стабилизированный ГТК углерод уже имеет подходящую форму, например, благодаря предварительной обработке ГТК углерода до проведения стабилизации. Например, если в результате этапа предварительной обработки, проведенного до стабилизации, ГТК углероду придана форма волокон, то ГТК углерод также будет иметь форму волокон после стабилизации. Стабилизированный ГТК углерод в форме волокон затем может быть подвергнут термической обработке в этапе окончательной обработки, который может представлять собой карбонизацию для получения максимального содержания углерода, и в этом случае продуктом будут углеродные волокна, или этот этап может представлять собой активацию, и в этом случае продуктом будет активированный уголь в виде волокна. Если ГТК углерод перед стабилизацией гранулируют, то он может быть оставлен в виде гранул также после стабилизации и при проведении этапов окончательной обработки подвергнут термической обработке, аналогичной описанной выше обработке волокон.
Активированный уголь, полученный после активации стабилизированного ГТК углерода, также может быть подвергнут механической обработке с целью его подготовки к конечному применению.
Углеродсодержащий продукт, полученный рассмотренным способом, может по существу быть использован для замены углерода, получаемого из ископаемых источников. В конструкционных материалах готовый углеродсодержащий продукт может быть использован, например, при получении изделий из каучука или эластомеров, например, шин или ремней. Готовый углеродсодержащий продукт, полученный способом согласно изобретению, также может быть использован в качестве сырья при производстве стали и для получения углеродных электродов. При функциональном применении углеродсодержащий продукт может быть использован в качестве активированного угля для адсорбции различных веществ. Готовый углеродсодержащий продукт, в частности, активированный уголь, также может найти применение в качестве носителя для катализаторов.
Как было уже отмечено выше, стабилизированный ГТК углерод после необязательной механической обработки может быть применен как готовый продукт без дальнейшей обработки, то есть без термической обработки для получения активированного угля или карбонизированного углерода. Стабилизированный ГТК углерод может быть применен в конструкционных материалах, например, как добавка в различные композиции.
Специалисты в данной области техники после прочтения настоящего подробного описания могут создать множество вариантов примеров осуществления настоящего изобретения. Все эти очевидные варианты включены в объем прилагаемых пунктов формулы изобретения.

Claims (23)

1. Способ обработки лигнина, извлеченного из лигноцеллюлозного сырья, отличающийся тем, что он включает следующие этапы:
- обработку лигнина, извлеченного из лигноцеллюлозного сырья, способом гидротермальной карбонизации при повышенной температуре, в результате чего получают карбонизированный лигнин с повышенным содержанием углерода, и
- стабилизацию полученного карбонизированного лигнина в инертной атмосфере при температуре проведения стабилизации, которая превышает температуру осуществления способа гидротермальной карбонизации,
где процесс стабилизации включает:
- повышение температуры от исходной температуры до температуры проведения стабилизации, где температура проведения стабилизации составляет от 300 до 600°С,
- выдерживание полученного карбонизированного лигнина при температуре проведения стабилизации в течение периода времени от 10 минут до 10 часов и
- превращение полученного карбонизированного лигнина в устойчивую стабилизированную форму в результате выдерживания в течение указанного периода времени при температуре проведения стабилизации.
2. Способ по п. 1, отличающийся тем, что способ дополнительно включает тепловую обработку карбонизированного лигнина в соответствии с температурно-временной программой и во время тепловой обработки температуру повышают со скоростью, составляющей от 0,1 до 20°С/мин, до достижения температуры проведения стабилизации.
3. Способ по п. 1, отличающийся тем, что способ дополнительно включает тепловую обработку карбонизированного лигнина в соответствии с температурно-временной программой и во время тепловой обработки температуру повышают со скоростью, составляющей от 1 до 20°С/мин, до достижения температуры проведения стабилизации.
4. Способ по п. 1, отличающийся тем, что перед проведением стабилизации карбонизированный лигнин подвергают предварительной механической обработке.
5. Способ по п. 1, отличающийся тем, что после стабилизации проводят этапы окончательной обработки стабилизированного карбонизированного лигнина для получения готового углеродсодержащего продукта.
6. Способ по п. 5, отличающийся тем, что этапы окончательной обработки стабилизированного карбонизированного лигнина включают по меньшей мере один из карбонизации, осуществляемой для достижения максимального содержания углерода, или активации.
7. Способ по п. 5, отличающийся тем, что этапы окончательной обработки стабилизированного карбонизированного лигнина включают механическую обработку.
8. Способ по п. 5, отличающийся тем, что дополнительно включают применение готового углеродсодержащего продукта для функциональных или конструкционных применений.
9. Способ по п. 6, отличающийся тем, что дополнительно включают применение готового углеродсодержащего продукта для функциональных или конструкционных применений.
10. Способ по п. 7, отличающийся тем, что дополнительно включают применение готового углеродсодержащего продукта для функциональных или конструкционных применений.
11. Способ по п. 8, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, при получении стали или углеродных электродов или в качестве активированного угля.
12. Способ по п. 9, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, при получении стали или углеродных электродов или в качестве активированного угля.
13. Способ по п. 10, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, при получении стали или углеродных электродов или в качестве активированного угля.
14. Способ по п. 11, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, представляющих собой шины или ремни.
15. Способ по п. 12, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, представляющих собой шины или ремни.
16. Способ по п. 13, отличающийся тем, что готовый углеродсодержащий продукт применяют при получении изделий из каучука или эластомеров, представляющих собой шины или ремни.
17. Способ по п. 1, отличающийся тем, что после процесса стабилизации стабилизированный карбонизированный лигнин используют для конструкционных применений.
RU2016103929A 2015-02-06 2016-02-08 Способ обработки материала на основе лигнина RU2687424C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20155081A FI126818B (en) 2015-02-06 2015-02-06 A method for treating lignin-based material
FI20155081 2015-02-06

Publications (3)

Publication Number Publication Date
RU2016103929A RU2016103929A (ru) 2017-08-11
RU2016103929A3 RU2016103929A3 (ru) 2019-03-07
RU2687424C2 true RU2687424C2 (ru) 2019-05-13

Family

ID=55451150

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016103929A RU2687424C2 (ru) 2015-02-06 2016-02-08 Способ обработки материала на основе лигнина

Country Status (8)

Country Link
US (1) US10035957B2 (ru)
EP (1) EP3053929B1 (ru)
CN (1) CN105862484B (ru)
BR (1) BR102016002499A2 (ru)
CA (1) CA2917508A1 (ru)
CL (1) CL2016000165A1 (ru)
FI (1) FI126818B (ru)
RU (1) RU2687424C2 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201801A1 (de) 2015-11-21 2017-05-24 Suncoal Industries Gmbh Partikelförmiges Kohlenstoffmaterial herstellbar aus nachwachsenden Rohstoffen und Verfahren zu dessen Herstellung
FI126848B (fi) 2016-01-08 2017-06-15 Vapo Oy Menetelmä vähätuhkaisen aktiivihiilen valmistamiseksi
US10920048B2 (en) * 2016-05-09 2021-02-16 Nokian Renkaat Oyj Tyre comprising hydrothermally carbonized lignin
EP3243877B1 (en) 2016-05-09 2018-03-14 Nokian Renkaat Oyj A tyre comprising hydrothermally carbonized lignin
BR112019012493B1 (pt) * 2016-12-21 2023-10-31 Teknologian Tutkimuskeskus Vtt Oy Método para produzir lignina reativa
FI3470457T4 (fi) 2017-10-10 2023-12-19 Continental Reifen Deutschland Gmbh Rikin avulla silloitettava kautsuseos, kautsuseoksen vulkanoitu kumi ja ajoneuvon rengas
ES2715527A1 (es) * 2017-12-04 2019-06-04 Univ Valencia Politecnica Material carbonoso renovable y procedimiento para su producción a partir de biomasa
US11724941B2 (en) 2018-02-15 2023-08-15 North Carolina State University Synthesis of micron and nanoscale carbon spheres and structures using hydrothemal carbonization
CN108217625B (zh) * 2018-03-16 2020-01-24 伍鹏 纳米碳微粒子的制造方法
WO2020202125A1 (en) * 2019-04-05 2020-10-08 Bridgestone Europe Nv/Sa Rubber compound for an innerliner
SE544157C2 (en) * 2020-06-11 2022-02-08 Stora Enso Oyj Process for producing thermally stabilized lignin
SE544158C2 (en) * 2020-06-11 2022-02-08 Stora Enso Oyj Process for producing carbon from heat treated lignin
KR20230055401A (ko) 2020-08-26 2023-04-25 선콜 인더스트리즈 게엠베하 개질된 미립자 탄소 재료 및 그 제조 방법
HRP20230784T1 (hr) * 2020-09-23 2023-10-27 Suncoal Industries Gmbh Kaučukova smjesa za unutarnju oblogu pneumatskih guma za vozila
CN112624086B (zh) * 2020-11-03 2022-10-11 中南林业科技大学 一种木质素基微纳米碳球的可控制备方法
WO2022125677A1 (en) 2020-12-09 2022-06-16 Beyond Lotus Llc Method of preparing a compound having elastomer and filler
WO2022125675A1 (en) 2020-12-09 2022-06-16 Beyond Lotus Llc Methods of preparing a composite having elastomer and filler
US20240026094A1 (en) 2020-12-09 2024-01-25 Beyond Lotus Llc Methods of preparing a composite comprising never-dried natural rubber and filler
JP2023554609A (ja) 2020-12-09 2023-12-28 ビヨンド ロータス リミテッド ライアビリティ カンパニー エラストマー、充填剤および架橋剤を含む複合材の調製方法
ES2965335A2 (es) 2021-07-20 2024-04-12 Beyond Lotus Llc Compuestos elastoméricos almacenados
TW202319207A (zh) 2021-09-03 2023-05-16 美商畢揚羅特斯公司 製備具有彈性體及填料的複合材料之方法
CN113998682B (zh) * 2021-11-10 2023-05-30 青岛农业大学 一种绿色简便的木质素基泡沫碳及其制备方法和应用
FR3129942A1 (fr) 2021-12-08 2023-06-09 Beyond Lotus Llc Méthodes de préparation d’un composite comportant des résines
WO2023122582A2 (en) 2021-12-21 2023-06-29 Beyond Lotus Llc Method of enhancing carbon product performance in elastomers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080006518A1 (en) * 2004-07-28 2008-01-10 Jgc Corporation Process For Reforming Biomass And Apparatus For Reforming Biomass
RU2355739C1 (ru) * 2005-01-24 2009-05-20 Осака Индастриал Промоушн Организейшн Отвержденная биомасса и способ ее получения
WO2013112100A1 (en) * 2012-01-23 2013-08-01 Innventia Ab Method for stabilizing lignin fiber for further conversion to carbon fiber
WO2014096544A1 (en) * 2012-12-19 2014-06-26 Teknologian Tutkimuskeskus Vtt Process for the hydrothermal treatment of high molar mass biomaterials
EP2796561A1 (en) * 2011-12-20 2014-10-29 Kao Corporation Method for producing lignin degradation product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0402201D0 (sv) 2004-09-14 2004-09-14 Stfi Packforsk Ab Method for separating lignin from black liquor
SE0402437D0 (sv) 2004-10-07 2004-10-07 Stfi Packforsk Ab Method for separating lignin from a lignin containing liquid/slurry
WO2008017145A1 (en) 2006-08-07 2008-02-14 Emicellex Energy Corporation Process for recovery of holocellulose and near-native lignin from biomass
US7678358B2 (en) 2007-06-25 2010-03-16 Weyerhaeuser Nr Company Carbon fibers from kraft softwood lignin
WO2009104995A1 (en) 2008-02-21 2009-08-27 Lignoboost Ab A method for separating lignin from black liquor, a lignin product, and use of a lignin product for the production of fuels or materials
UA106229C2 (ru) 2009-04-01 2014-08-11 Санкоуль Індустріс Гмбх Способ гидротермической карбонизации восстанавливаемых видов сырья и органических остатков
JP2011178851A (ja) 2010-02-26 2011-09-15 Hitachi Cable Ltd 耐水性リグニン炭化物及びこれを含有したプラスチック材料
DE202011110246U1 (de) 2011-03-04 2013-04-25 Ava-Co2 Schweiz Ag Vorrichtung zur hydrothermalen Karbonisierung
WO2012125839A1 (en) * 2011-03-15 2012-09-20 University Of Kentucky Research Foundation Carbon particles
WO2013002687A1 (en) 2011-06-28 2013-01-03 Metso Power Ab Method for lignin separation from black liquor comprising removal of sulphur compounds from formed water effluent
US20140271443A1 (en) 2013-03-15 2014-09-18 University Of Tennessee Research Foundation High Glass Transition Lignins and Lignin Derivatives for the Manufacture of Carbon and Graphite Fibers
NO2681404T3 (ru) 2014-08-08 2018-03-17

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080006518A1 (en) * 2004-07-28 2008-01-10 Jgc Corporation Process For Reforming Biomass And Apparatus For Reforming Biomass
RU2355739C1 (ru) * 2005-01-24 2009-05-20 Осака Индастриал Промоушн Организейшн Отвержденная биомасса и способ ее получения
EP2796561A1 (en) * 2011-12-20 2014-10-29 Kao Corporation Method for producing lignin degradation product
WO2013112100A1 (en) * 2012-01-23 2013-08-01 Innventia Ab Method for stabilizing lignin fiber for further conversion to carbon fiber
WO2014096544A1 (en) * 2012-12-19 2014-06-26 Teknologian Tutkimuskeskus Vtt Process for the hydrothermal treatment of high molar mass biomaterials

Also Published As

Publication number Publication date
FI126818B (en) 2017-06-15
EP3053929B1 (en) 2020-01-08
US10035957B2 (en) 2018-07-31
RU2016103929A (ru) 2017-08-11
CN105862484A (zh) 2016-08-17
CN105862484B (zh) 2020-09-18
FI20155081A (fi) 2016-08-07
CL2016000165A1 (es) 2016-07-08
CA2917508A1 (en) 2016-08-06
BR102016002499A2 (pt) 2016-11-16
RU2016103929A3 (ru) 2019-03-07
EP3053929A1 (en) 2016-08-10
US20160230099A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
RU2687424C2 (ru) Способ обработки материала на основе лигнина
Garlapalli et al. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation
RU2741550C2 (ru) Способ получения малозольного активированного древесного угля
RU2369631C2 (ru) Способ получения топливных гранул
CA2920702C (en) Method for extracting lignin from black liquor and products produced thereby
KR102028442B1 (ko) 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템
KR102125536B1 (ko) 탄소 농축 바이오매스 재료의 제조 방법
DK2376599T3 (en) PROCEDURE FOR MANUFACTURING A BIO-OIL WITH REDUCED MINERAL CONTENT
KR101369960B1 (ko) 열수탄화 반응을 이용한 고형연료 생산방법
EP3160913B1 (en) A method for the treatment of biosludge
Machado et al. Production and characterization of energy materials with adsorbent properties by hydrothermal processing of corn stover with subcritical H2O
CN102001653A (zh) 一种用于水处理的活性焦的制备方法
JP2006315875A (ja) 醤油粕活性炭及びその製造方法
JP2019206684A (ja) バイオマス燃料の製造方法及びバイオマス燃料
UA120091C2 (uk) Спосіб перетворення біомаси щонайменше в біовугілля
Yang et al. Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization
Mazurek et al. The Application of Pyrolysis Biochar Obtained from Waste Rapeseed Cake to Remove Copper from Industrial Wastewater: An Overview
KR102601416B1 (ko) 식물원료로부터 실리카를 추출 및 분리하는 방법
JP2012255223A (ja) 炭素繊維の製造方法
Rasat et al. Effects of Torrefaction Process on Chemical Properties of Small Diameter Acacia mangium Wood
Lee et al. Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch
Prawisudha et al. Hydrothermal treatment of oil Palm empty fruit bunch to produce green solid fuel
FR3131320A1 (fr) Intégration d’une matière riche en lignine à une biomasse avant vapocraquage pour la production de granulés combustibles
Kabadayi Investigation of reusability of process water in the hydrothermal carbonization of biomass
WO2020259991A1 (en) Processed lignin and process to prepare such