RU2684462C1 - Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию - Google Patents

Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию Download PDF

Info

Publication number
RU2684462C1
RU2684462C1 RU2017103146A RU2017103146A RU2684462C1 RU 2684462 C1 RU2684462 C1 RU 2684462C1 RU 2017103146 A RU2017103146 A RU 2017103146A RU 2017103146 A RU2017103146 A RU 2017103146A RU 2684462 C1 RU2684462 C1 RU 2684462C1
Authority
RU
Russia
Prior art keywords
vanadium
titanium
iron
slag
enriched
Prior art date
Application number
RU2017103146A
Other languages
English (en)
Inventor
Тао ЦИ
Дэшэн ЧЭНЬ
Линюнь И
Лина ВАН
Хунсинь ЧЖАО
Яхуэй ЛЮ
Вэйцзин ВАН
Хундун ЮЙ
Original Assignee
Инститьют Оф Проусес Энжиниринг, Чайниз Экэдеми Оф Сайенсиз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инститьют Оф Проусес Энжиниринг, Чайниз Экэдеми Оф Сайенсиз filed Critical Инститьют Оф Проусес Энжиниринг, Чайниз Экэдеми Оф Сайенсиз
Application granted granted Critical
Publication of RU2684462C1 publication Critical patent/RU2684462C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1204Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium

Abstract

Изобретение относится к способу извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Способ включает следующие стадии. (1) Концентрат на основе ванадия-титана-железа смешивают и обжигают вместе с добавкой и восстанавливающим средством, при этом получают ванадийсодержащий чугун и обогащенный ванадием шлак. (2) Обогащенный ванадием-титаном шлак выщелачивают в воде и отфильтровывают, при этом получают ванадийсодержащий раствор и титановый шлак. Получают три продукта, а именно ванадийсодержащий чугун, ванадийсодержащий раствор и титановый шлак. Техническим результатом являются низкие капиталовложения, низкая стоимость производства, уменьшение загрязнения окружающей среды. 4 з.п. ф-лы, 1 ил., 2 табл., 6 пр.

Description

Область техники
Настоящее изобретение относится к области комплексного использования металлургической технологии и минеральных ресурсов, в частности, к способу преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию.
Предшествующий уровень техники
В наши дни в мире существуют следующие способы утилизации концентрата на основе ванадия-титана-железа. (1) В способе с доменной печью-конвертером можно только извлекать железо и часть ванадия, тогда как титан входит в доменный шлак, и его нельзя эффективно и экономично извлекать и использовать. Большое количество доменного титанового шлака, который образуется дополнительно, вызывает огромные потери источников титана и серьезное загрязнение окружающей среды. (2) В способе с печью с вращающимся подом-электрической печью, ванадийсодержащий титаномагнетит сперва предварительно восстанавливают в печи с вращающимся подом, а затем плавят и отделяют в электрической печи, так что получают горячий металл и обогащенный титаном шлак. Однако расположение ванадия тяжело регулировать, и коэффициент использования ванадия невысокий. Кроме того, минеральная фаза разделяемого плавлением титанового шлака стабильна и характеризуется плотной структурой. В настоящее время нет готового способа для решения вопросов, связанных с разделяемым плавлением титановым шлаком. Только небольшое количество разделяемого плавлением титанового шлака используют в качестве сырьевого материала для получения пигмента на основе диоксида титана в сульфатном способе. (3) В способе обогащения прямым восстановлением и измельчением достигают разделения железа и ванадия-титана и получают порошкообразное железо и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак затем подвергают способу солевого обжига. Ванадий экстрагируют выщелачиванием водой. Получают раствор ванадия и обогащенный титаном шлак. (4) В способе, в котором сначала экстрагируют ванадий, концентрат на основе ванадия-титана-железа сначала подвергают процессу солевого обжига и экстракции путем выщелачивания ванадия водой. Затем проводят процесс получения чугуна при помощи доменной печи или печи, не являющейся доменной. После экстракции ванадия, поскольку содержание остаточного натрия является высоким, это негативно сказывается на ровном течении процесса производства чугуна. Кроме того, полученный титановый шлак все еще нельзя использовать так же, как и в вышеуказанных способах. Более того, эти способы требуют проведения двух или трех высокотемпературных стадий для достижения эффективного разделения железа, ванадия и титана. Недостатки состоят в длительном процессе, больших капиталовложениях, высокой стоимости, серьезном загрязнении и низкой степени использования. В связи с вышеизложенным, независимо от того, какой вид использования проводят, извлечение и использование железа, ванадия и титана из ванадийсодержащего титаномагнетита нельзя достичь одновременно, что вызывает непроизводительное расходование ресурсов. В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Достигается эффективное и чистое извлечение ванадия, титана и железа. Способ имеет значительные преимущества, состоящие в коротком процессе, низких капиталовложениях, низкой стоимости производства, уменьшенном загрязнении окружающей среды, эффективном общем извлечении и имеет перспективы для широкого применения.
Краткое описание
В отношении недостатков существующих способов, которые включают две или три стадии для осуществления полного использования концентрата на основе ванадия-титана-железа, в настоящем изобретении разработали способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. При этом способ имеет значительные преимущества, состоящие в уменьшенном загрязнении окружающей среды, высоком полном коэффициенте использования и имеет перспективы для широкого применения.
Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию, обеспечиваемый в настоящем изобретении, включает следующие стадии.
(1) Концентрат на основе ванадия-титана-железа смешивают с добавкой и восстанавливающим средством. Обжиг проводят в течение 0,5-4 часов при температуре 1100-1400oC, так что получают ванадийсодержащий чугун и обогащенный ванадием-титаном шлак, причем массовое отношение концентрат на основе ванадия-титана-железа:добавка:восстанавливающее средство = 100: (40-80): (20-50).
(2) Обогащенный ванадием-титаном шлак, полученный на стадии (1), выщелачивают в воде и отфильтровывают, и при этом получают ванадийсодержащий раствор и титановый шлак.
Способ по п. 1 отличается тем, что концентрат на основе ванадия-титана-железа на стадии (1) может представлять собой любой тип концентрата на основе ванадия-титана-железа, известный в данной области. Основные композиции включают железо с общей массовой долей 30%-60%, V2O5 с массовой долей 0,15%-2,0% и TiO2 с массовой долей 5%-35%.
В способе согласно настоящему изобретению добавка стадии (1) представляет собой один элемент или смесь более чем одного элемента, выбранных из группы, состоящей из карбоната натрия, гидроксида натрия, сульфата натрия, хлорида натрия, бората натрия и бикарбоната натрия.
В способе согласно настоящему изобретению восстанавливающее средство стадии (1) представляет собой один элемент или смесь более чем одного элемента, выбранных из группы, состоящей из антрацита, битуминозного угля, бурого угля и кокса.
В способе согласно настоящему изобретению ванадийсодержащий чугун на стадии (1) имеет массовую долю железа 90%-98% и массовую долю ванадия 0,05%-1%.
В способе согласно настоящему изобретению предпочтительно отношение выщелачивающей жидкости к твердому веществу на стадии (2) составляет 1:1-5:1, а температура выщелачивания составляет 30-100°C, а время выщелачивания составляет 0,5-4 часа.
Технические способы в уровне техники следует проводить в две или даже три высокотемпературные стадии для достижения разделения ванадия, титана и железа. В частности, способ с доменной печью-конвертером можно только экстрагировать железо и часть ванадия, тогда как титан входит в доменный шлак, и его нельзя извлечь эффективно и экономично. В способе с прямым восстановлением-электрической печью местонахождение ванадия тяжело регулировать, и титановый шлак трудно использовать. Существуют проблемы, заключающиеся в длительном процессе и низком коэффициенте использования ценных компонентов.
Технические признаки настоящего изобретения являются следующими. Посредством нового способа с солевым обжигом и восстановительным связыванием разработана новая система разделения путем многофазной реакции и при низкотемпературном плавлении. Восстановление железа, солевой обжиг ванадия и способ разделения плавлением обогащенного ванадием-титаном шлака и железа осуществляют на одной стадии. Получают три продукта, т.е. ванадийсодержащий чугун, ванадийсодержащий раствор и титановый шлак. Разработан новый, эффективный и экономичный способ комплексного использования концентрата на основе ванадия-титана-железа. По сравнению с обычными способами с “доменной печью-конвертером” или “прямым восстановлением-разделением плавлением/обогащением измельчением” настоящее изобретение имеет значительные преимущества, состоящие в коротком процессе, низких капиталовложениях, низкой стоимости производства, незначительном загрязнении окружающей среды и высоком общем коэффициенте использования. Представлена новая технология эффективного и комплексного использования ванадий-титан-железных минеральных источников, которая имеет перспективы для широкого применения.
Конкретные преимущества настоящего изобретения являются следующими.
(1) В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию, избегая проблем с повторяющимся высокотемпературным обжигом, высокой стоимостью и серьезным загрязнением в обычном способе плавления ванадийсодержащего титаномагнетита.
(2) В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Коэффициенты извлечения железа, ванадия и титана являются высокими. Железо получают в виде ванадийсодержащего чугуна, который имеет высокую  дополнительную стоимость, и полученный титановый шлак имеет хорошую растворимость в кислотах.
Краткое описание чертежей
Фиг. 1 представляет собой блок-схему способа преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию по настоящему изобретению.
Подробное описание
Подробное описание настоящего изобретения совместно с конкретными вариантами осуществления будет описано ниже.
Вариант осуществления 1
Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №1, 40 частей карбоната натрия и 20 частей антрацита. Затем смесь выдерживали в течение 3 часов в муфельной печи при температуре 1200°C. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 2 часов при условии 30oC и отношения жидкость-твердое вещество 2:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,62%, а коэффициент извлечения составлял до 99,40%. Концентрация ванадийсодержащего раствора V2O5 составляла 3,2 г/л, а коэффициент извлечения ванадия составлял 70,46%. Содержание TiO2 в обогащенном титаном шлаке составляло 35,67%, а коэффициент извлечения титана составлял 99,77%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Вариант осуществления 2
Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №2, 60 частей бикарбоната натрия и 30 частей кокса. Затем смесь выдерживали в течение 4 часов в муфельной печи при температуре 1100°С. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 2 часов при условии 30oC и отношения жидкость-твердое вещество 1:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 95,38%, а коэффициент извлечения составлял до 98,71%. Концентрация ванадийсодержащего раствора V2O5 составляла 5,2 г/л, а коэффициент извлечения ванадия составлял 90,50%. Содержание TiO2 в обогащенном титаном шлаке составляло 42,67%, а коэффициент извлечения титана составлял 99,54%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Вариант осуществления 3
Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №3, 70 частей сульфата натрия и 40 частей битуминозного угля. Затем смесь выдерживали в течение получаса в муфельной печи при температуре 1300oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали и выщелачивали в течение получаса при условии 100oC и отношения жидкость-твердое вещество 4:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 96,54%, а коэффициент извлечения составлял до 99,10%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,5 г/л, а коэффициент извлечения ванадия составлял 88,56%. Содержание TiO2 в обогащенном титаном материале составляло 39,52%, а коэффициент извлечения титана составлял 99,61%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Вариант осуществления 4
Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №4, 80 частей смеси карбоната натрия и сульфата натрия (моль(Na2CO3/NaCl)=1:1) и 40 частей бурого угля. Затем смесь выдерживали в течение 2 часов в муфельной печи при температуре 1400°С. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали и выщелачивали в течение 1 часа при условии 90°C и отношения жидкость-твердое вещество 3:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,38%, а коэффициент извлечения составлял до 99,85%. Концентрация ванадийсодержащего раствора V2O5 составляла 2,8 г/л, а коэффициент извлечения ванадия составлял 80,30%. Содержание TiO2 в обогащенном титаном шлаке составляло 46,69%, а коэффициент извлечения титана составлял 99,74%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Вариант осуществления 5
Тщательно перемешивали 100 частей концентрата на основе ванадия-титана-железа №5, 50 частей гидроксида натрия и 30 частей антрацита. Затем смесь выдерживали в течение 1 часа в муфельной печи при температуре 1250oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 3 часов при условии 70oC и отношения жидкость-твердое вещество 5:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результат разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показан в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,02%, а коэффициент извлечения составлял до 98,60%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,1 г/л, а коэффициент извлечения ванадия составлял 86,22%. Содержание TiO2 в обогащенном титаном материале составляло 48,12%, а коэффициент извлечения титана составлял 99,73%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Вариант осуществления 6
Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №6, 70 частей смеси карбоната натрия и хлорида натрия (моль(Na2CO3/NaCl)=1:1) и 30 частей кокса. Затем смесь выдерживали в течение 2 часов в муфельной печи при температуре 1300oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 1 часа при условии 90oC и отношения жидкость-твердое вещество 4:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа полученного ванадийсодержащего чугуна составляла 98,12%, а коэффициент извлечения составлял до 99,85%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,7 г/л, а коэффициент извлечения ванадия составлял 83,40%. Содержание TiO2 в обогащенном титаном шлаке составляло 40,67%, а коэффициент извлечения титана составлял 99,01%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.
Таблица 1. Анализ шести ванадий-титан-железных концентратов в вариантах осуществления /%
Figure 00000001
Таблица 2. Результаты реакций и разделения “одностадийного способа” шести ванадий-титан-железных концентратов в вариантах осуществления
Figure 00000002
Более того, настоящее изобретение может также иметь множество вариантов осуществления. Специалисты в данной области могут осуществить различные соответствующие модификации и изменения на основании раскрытия настоящего изобретения без отклонения от идей и сущности настоящего изобретения. Однако соответствующие модификации и изменения должны относиться к объему защиты формулы настоящего изобретения.

Claims (7)

1. Способ извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа, включающий стадии:
(1) смешивание концентрата на основе ванадия-титана-железа с восстанавливающим средством и добавкой, представляющей собой один элемент или смесь из элементов, выбранных из группы, включающей карбонат натрия, гидроксид натрия, сульфат натрия, хлорид натрия, борат натрия и бикарбонат натрия, проведение обжига в течение 0,5-4 часов при температуре 1100-1400°C с получением ванадийсодержащего чугуна и обогащенного ванадием и титаном шлака в виде твердого вещества, причем массовое отношение концентрат на основе ванадия-титана-железа : добавка : восстанавливающее средство составляет 100:(40-80):(20-50);
(2) выщелачивание обогащенного ванадием и титаном шлака, полученного на стадии (1), в воде и фильтрование с получением ванадийсодержащего раствора и титанового шлака.
2. Способ по п. 1, в котором составы концентрата на основе ванадия-титана-железа на стадии (1) содержат железо при общей массовой доле 30-60%, V2O5 при массовой доле 0,15-2,0% и TiO2 при массовой доле 5-35%.
3. Способ по п. 1, в котором восстанавливающее средство на стадии (1) представляет собой один элемент или смесь элементов, выбранных из группы, включающей антрацит, битуминозный уголь, бурый уголь и кокс.
4. Способ по п. 1, в котором ванадийсодержащий чугун на стадии (1) имеет массовую долю железа 90-98% и массовую долю ванадия 0,05-1%.
5. Способ по п. 1, в котором отношение воды к обогащенному ванадием и титаном шлаку в виде твердого вещества на стадии (2) составляет 1:1-5:1, температура выщелачивания составляет 30-100°C, а время выщелачивания составляет 0,5-4 часа.
RU2017103146A 2015-12-09 2017-01-31 Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию RU2684462C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510903560.2 2015-12-09
CN201510903560.2A CN106854702B (zh) 2015-12-09 2015-12-09 一步转化分离钒钛铁精矿中铁、钒和钛的方法

Publications (1)

Publication Number Publication Date
RU2684462C1 true RU2684462C1 (ru) 2019-04-09

Family

ID=59098801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017103146A RU2684462C1 (ru) 2015-12-09 2017-01-31 Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию

Country Status (5)

Country Link
US (1) US10316392B2 (ru)
CN (1) CN106854702B (ru)
AU (1) AU2017200247B2 (ru)
NZ (1) NZ728271A (ru)
RU (1) RU2684462C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019007087B3 (de) 2019-10-11 2020-06-10 Bernd Kunze Verfahren, um Vanadium aus Sekundärrohstoffen zu entfernen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862077B (zh) * 2017-01-21 2018-10-19 中国矿业大学 一种潮湿细粒煤分选与干燥的耦合系统及方法
CN108018437B (zh) * 2017-10-24 2020-04-24 钢研晟华科技股份有限公司 一种钒钛磁铁矿铁、钒、钛低温综合回收工艺
CN109355451A (zh) * 2018-08-01 2019-02-19 江苏钛谷科技有限公司 一种低温直接还原钒钛磁铁矿中铁的工艺
CN111850216B (zh) * 2019-04-26 2022-07-12 中冶长天国际工程有限责任公司 一种利用生物质还原钒钛磁铁矿联产合成气的方法
CN111235389B (zh) * 2020-03-30 2024-01-23 中国恩菲工程技术有限公司 一种钒钛磁铁矿的冶炼方法及装置
CN111748694A (zh) * 2020-06-28 2020-10-09 中冶赛迪工程技术股份有限公司 一种富集回收富钒渣中钒资源的方法
CN112024121B (zh) * 2020-08-31 2023-05-23 重庆优钛实业有限公司 一种钒钛磁铁矿分离提取方法
CN112725629A (zh) * 2020-12-30 2021-04-30 北京光明橡塑制品厂 一种从钢渣中提炼有色金属及还原铁的制备方法
CN113737026A (zh) * 2021-08-04 2021-12-03 云南国钛金属股份有限公司 一种四氯化钛精制钒渣清洁提钒的方法
CN113774237A (zh) * 2021-09-15 2021-12-10 中冶赛迪工程技术股份有限公司 一种用富钒渣制备富钒液的方法
CN114410966A (zh) * 2021-12-20 2022-04-29 苏州大学 一种钒钛磁铁矿中回收铁、钒和钛的方法
CN114672645B (zh) * 2022-03-30 2024-01-30 攀枝花学院 利用钒钛磁铁矿尾矿制备钛铁合金的方法
CN114774612A (zh) * 2022-04-15 2022-07-22 黑龙江建龙钢铁有限公司 一种钒钛矿气基竖炉还原-电炉熔分还原的方法
CN115522114B (zh) * 2022-09-26 2023-09-12 中国科学院过程工程研究所 一种短流程制备高洁净度中高碳钢液的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822909B1 (ru) * 1967-08-30 1973-07-10
US3929461A (en) * 1974-02-27 1975-12-30 Ferrovanadium Corp N I Fusion-oxidation process for recovering vanadium and titanium from iron ores
US4448402A (en) * 1980-09-12 1984-05-15 Korf Engineering Gmbh Apparatus for directly making liquid pig-iron from coarse iron ore
EP0179734A2 (de) * 1984-10-12 1986-04-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Verfahren und Vorrichtung zur Herstellung eines Eisenschwamms bzw. Roheisens
DE3536495A1 (de) * 1985-10-05 1987-04-16 Elektrometallurgie Gmbh Verfahren zur extraktion von vanadium aus vanadiumhaltigen rohstoffen
JPH0611266A (ja) * 1992-03-13 1994-01-21 Leybold Durferrit Gmbh 非反応性の雰囲気において材料を溶融して排出する誘導炉
RU2365649C1 (ru) * 2008-04-30 2009-08-27 Общество с ограниченной ответственностью "Ариком" Способ извлечения ванадия из титанованадиевых шлаков
RU2492245C1 (ru) * 2012-02-28 2013-09-10 ООО "Управление и Инновации" Способ переработки ванадийсодержащего титаномагнетитового концентрата
RU2013128260A (ru) * 2013-06-19 2014-12-27 Федеральное государственное бюджетное учреждение науки Институт горного дела Уральского отделения Российской академии наук (ИГД УрО РАН) Способ извлечения титана из шлака
JP6011266B2 (ja) * 2012-11-19 2016-10-19 ブラザー工業株式会社 通信中継プログラム、通信中継方法、情報処理装置及び画像処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733193A (en) * 1970-07-22 1973-05-15 Union Carbide Corp Recovery of vanadium from titaniferous iron ores
CN1034264C (zh) * 1991-03-23 1997-03-19 冶金工业部长沙矿冶研究院 用还原磨选法制取微合金铁粉的方法
CN1264993C (zh) * 2005-01-07 2006-07-19 四川龙蟒集团有限责任公司 从钒钛磁铁矿中分离提取金属元素的方法
CN101418370B (zh) * 2008-11-21 2012-05-02 长沙市岳麓区东新科技开发有限公司 一种新的综合利用钒钛铁精矿的产业化方法
CN102433436B (zh) * 2011-11-18 2013-07-31 攀枝花昆钢矿业有限公司 从钒钛磁铁矿中分离铁和钒钛的方法
CN103276213B (zh) * 2013-05-23 2014-08-06 长沙市东新矿冶科技开发有限公司 一种分离钒钛铁精矿中铁、钛、钒的工艺
CN103757199B (zh) * 2013-12-05 2016-02-17 中国科学院过程工程研究所 一种利用高铬型钒钛磁铁精矿制备钒铬钛渣的方法
CN105734266A (zh) * 2016-02-25 2016-07-06 钢研晟华工程技术有限公司 一种钠化法直接处理钒钛铁精矿的综合回收工艺
CN105671306A (zh) * 2016-03-21 2016-06-15 攀钢集团攀枝花钢铁研究院有限公司 分离钒钛磁铁矿中铁、钒、钛的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822909B1 (ru) * 1967-08-30 1973-07-10
US3929461A (en) * 1974-02-27 1975-12-30 Ferrovanadium Corp N I Fusion-oxidation process for recovering vanadium and titanium from iron ores
US4448402A (en) * 1980-09-12 1984-05-15 Korf Engineering Gmbh Apparatus for directly making liquid pig-iron from coarse iron ore
EP0179734A2 (de) * 1984-10-12 1986-04-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Verfahren und Vorrichtung zur Herstellung eines Eisenschwamms bzw. Roheisens
DE3536495A1 (de) * 1985-10-05 1987-04-16 Elektrometallurgie Gmbh Verfahren zur extraktion von vanadium aus vanadiumhaltigen rohstoffen
JPH0611266A (ja) * 1992-03-13 1994-01-21 Leybold Durferrit Gmbh 非反応性の雰囲気において材料を溶融して排出する誘導炉
RU2365649C1 (ru) * 2008-04-30 2009-08-27 Общество с ограниченной ответственностью "Ариком" Способ извлечения ванадия из титанованадиевых шлаков
RU2492245C1 (ru) * 2012-02-28 2013-09-10 ООО "Управление и Инновации" Способ переработки ванадийсодержащего титаномагнетитового концентрата
JP6011266B2 (ja) * 2012-11-19 2016-10-19 ブラザー工業株式会社 通信中継プログラム、通信中継方法、情報処理装置及び画像処理装置
RU2013128260A (ru) * 2013-06-19 2014-12-27 Федеральное государственное бюджетное учреждение науки Институт горного дела Уральского отделения Российской академии наук (ИГД УрО РАН) Способ извлечения титана из шлака

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019007087B3 (de) 2019-10-11 2020-06-10 Bernd Kunze Verfahren, um Vanadium aus Sekundärrohstoffen zu entfernen

Also Published As

Publication number Publication date
AU2017200247B2 (en) 2018-11-15
CN106854702B (zh) 2019-03-15
US10316392B2 (en) 2019-06-11
AU2017200247A1 (en) 2017-06-29
NZ728271A (en) 2018-02-23
CN106854702A (zh) 2017-06-16
US20170218479A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
RU2684462C1 (ru) Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию
CA2954871C (en) Method for converting and separating vanadium, titanium, and iron from vanadium-titanium-iron concentrate
CN101463426B (zh) 一种赤泥的综合利用方法
CN102363522B (zh) 一种从低品位含硒物料中提取硒的工艺
CN110205503B (zh) 一种分解氟碳铈矿的方法
CN105568003B (zh) 一种从白云鄂博尾矿中富集铌的方法
CN103276219B (zh) 一种处理红土镍矿还原焙烧镍铁废渣的清洁生产方法
CN101450814A (zh) 一种新的从石煤钒矿中提取五氧化二钒的方法
CN104131167A (zh) 一种利用微波回收锰阳极泥中硒和锰的方法
CN108165767A (zh) 一种基于微波和压力场联合溶浸锂辉石的方法
CN101864520B (zh) 金精矿中铁的回收方法
CN104131157A (zh) 氧化钨褐铁矿提炼钨的湿法冶炼方法
CN101787431B (zh) 一种微波辐照高钛渣制备酸溶性钛渣的方法
CN101906538A (zh) 一种用低浓度组合酸和氧化剂从镍钼共生矿中提取镍钼的方法
CN104495758A (zh) 一种从火法熔炼烟灰中提取硒碲的方法
CN107142378A (zh) 一种烧结烟尘中铅的提取方法
CN111074076B (zh) 一种冶金固体废弃物的综合利用系统及方法
CN113122718B (zh) 一种黑铜泥的两段浸出工艺
CN105110300A (zh) 一种含硫化锰的复合锰矿提取锰及硫的方法
CN102703716B (zh) 一种从含铼烟尘尾气中提取铼的方法
CN102765750A (zh) 一种富钛料的制备方法
FI127866B (en) A process for converting and separating vanadium, titanium and iron from vanadium-titanium-iron concentrate
CN104404258B (zh) 铁矿烧结烟尘灰的综合利用工艺
CN102703737A (zh) 一种从含铼料渣中提取分离铼的方法
CN101544399B (zh) 一种利用锡原料直接生产锡酸钾的方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20211123