RU2668384C2 - Устройство управления мотором и способ управления мотором - Google Patents

Устройство управления мотором и способ управления мотором Download PDF

Info

Publication number
RU2668384C2
RU2668384C2 RU2017105575A RU2017105575A RU2668384C2 RU 2668384 C2 RU2668384 C2 RU 2668384C2 RU 2017105575 A RU2017105575 A RU 2017105575A RU 2017105575 A RU2017105575 A RU 2017105575A RU 2668384 C2 RU2668384 C2 RU 2668384C2
Authority
RU
Russia
Prior art keywords
temperature
motor
torque
cooling water
coolant
Prior art date
Application number
RU2017105575A
Other languages
English (en)
Other versions
RU2017105575A (ru
RU2017105575A3 (ru
Inventor
Хацуки МОРИНАГА
Ютака КОБАЯСИ
Original Assignee
Ниссан Мотор Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниссан Мотор Ко., Лтд. filed Critical Ниссан Мотор Ко., Лтд.
Publication of RU2017105575A publication Critical patent/RU2017105575A/ru
Publication of RU2017105575A3 publication Critical patent/RU2017105575A3/ru
Application granted granted Critical
Publication of RU2668384C2 publication Critical patent/RU2668384C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Control Of Electric Motors In General (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Изобретение относится к двигателям. Устройство управления мотором приводной системы, содержащей мотор, трансмиссию, датчик температуры масла и механизм охлаждения, содержит контроллер, который управляет крутящим моментом мотора. При этом контроллер выбирает температуру смазочного масла в качестве определенной температуры, когда истекшее время меньше предварительно заданного времени, и истекшее время является истекшим временем с момента, когда механизм охлаждения приводится в действие. Затем контроллер применяет ограничение к крутящему моменту на основе определенной температуры. Крутящий момент благодаря такой работе ограничивается надлежащим образом. 2 н. и 3 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к устройству управления мотора и к способу управления мотором.
Уровень техники
[0002] Относительно транспортного средства, содержащего мотор, допускающий вывод мощности в ведущий вал, раскрыт способ управления устройства вывода мощности, как показано ниже. В способе управления, температура Toil масла для смазочного и охлаждающего масла, которое смазывает и охлаждает трансмиссию, определяется посредством температурного датчика, смонтированного на маслосборнике, и температура Toil* масла для работы задается. Затем на основе температуры Toil* масла для работы и температуры Tcoil2 обмотки мотора, задается коэффициент R2 нагрузки мотора MG2. Коэффициент R2 нагрузки задается таким образом, что он значительно уменьшается по мере того, как температура Toil* масла для работы становится более высокой, когда температура Tcoil2 обмотки превышает предварительно заданную температуру. Команда Tm2* управления крутящим моментом мотора задается с использованием заданного коэффициента R2 нагрузки, и приведение в действие мотора управляется таким образом, что выводится крутящий момент команды Tm2* управления крутящим моментом. Таким образом, по мере того, как температура Toil масла для работы становится более высокой, приведение в действие мотора управляется гораздо более оптимально (патентный документ 1).
Документы предшествующего уровня техники
Патентные документы
[0003] Патентный документ 1. JP 2008-99424 A
Сущность изобретения
Задачи, решаемые изобретением
[0004] В приводной системе, в которой смазочное масло и мотор трансмиссии размещаются таким образом, что они могут обмениваться теплом, по мере того, как температура смазочного масла увеличивается, температура охлаждающей воды мотора также увеличивается. Более того, когда охлаждающая вода циркулирует в инверторе, температура элемента, составляющего инвертор, также увеличивается. Дополнительно, в такой приводной системе, чтобы не допускать повышения температуры мотора и температуры элемента инвертора, крутящий момент мотора должен быть ограничен в соответствии с температурой мотора или температурой элемента инвертора.
[0005] Когда способ управления, раскрытый в патентном документе 1, применяется к вышеуказанной приводной системе посредством замены температуры Toil масла для работы на температуру охлаждающей воды, может рассматриваться определение температуры охлаждающей воды посредством датчика для охлаждающей воды и более значительное ограничение приведения в действие мотора по мере того, как определенная температура охлаждающей воды становится высокой.
[0006] Тем не менее, поскольку скорость отклика датчика для охлаждающей воды является недостаточной, возникает такая проблема, что крутящий момент не может быть надлежащим образом ограничен, к примеру, когда температура охлаждающей воды повышается за короткое время.
[0007] Задача настоящего изобретения заключается в том, чтобы предоставлять устройство управления мотора и способ управления мотором, которые позволяют надлежащим образом ограничивать крутящий момент.
Средство решения задач
[0008] Настоящее изобретение разрешает вышеуказанную проблему посредством выбора температуры смазочного масла, определенной посредством датчика температуры масла, и ограничения крутящего момента на основе определенной температуры.
Преимущества изобретения
[0009] В настоящем изобретении, для температуры, используемой при ограничении крутящего момента, температура смазочного масла является выбираемой. Соответственно, даже в состоянии, в котором соответствующее ограничение крутящего момента не может выполняться с определенным значением датчика теплоносителя, определенное значение датчика температуры масла может использоваться при выполнении ограничения крутящего момента.
Краткое описание чертежей
[0010] Фиг. 1 является блок-схемой, иллюстрирующей приводную систему транспортного средства согласно настоящему варианту осуществления.
Фиг. 2 является блок-схемой последовательности операций способа, иллюстрирующей последовательность операций управления приводной системы транспортного средства.
Фиг. 3 является графиком, иллюстрирующим характеристики пиковой температуры охлаждающей воды относительно температуры масла.
Фиг. 4 является графиком, иллюстрирующим характеристики предельного значения крутящего момента относительно температуры охлаждающей воды.
Фиг. 5 является графиком, иллюстрирующим переход фактической температуры охлаждающей воды и переход определенного значения датчика температуры воды.
Режимы для осуществления изобретения
[0011] Далее описываются варианты осуществления настоящего изобретения со ссылками на прилагаемые чертежи.
[0012] Фиг. 1 является блок-схемой приводной системы транспортного средства согласно варианту осуществления настоящего изобретения. Устройство управления мотора согласно настоящему варианту осуществления применяется к приводной системе транспортного средства. Транспортное средство представляет собой транспортное средство, включающее в себя мотор, к примеру, электротранспортное средство или гибридное транспортное средство.
[0013] Как показано на фиг. 1, приводная система транспортного средства включает в себя мотор 1, инвертор 2, силовой элемент 3, трансмиссию 4, датчик 5 температуры масла, радиатор 6, насос 7 для подачи охлаждающей воды, охлаждающий канал 8, датчик 9 температуры воды, расширительный бачок 10 и контроллер 100. Более того, приводная система может включать в себя ведущее колесо и т.п. в дополнение к конфигурации, проиллюстрированной на фиг. 1.
[0014] Мотор 1 представляет собой, например, синхронный мотор-генератор, который включает в себя ротор, постоянный магнит, встраиваемый в ротор, статор и обмотку статора, намотанную на статор. Мотор 1 выступает в качестве электромотора, а также в качестве генератора мощности. Когда трехфазная мощность переменного тока подается из инвертора 2, мотор 1 начинает вращательное приведение в действие (движение за счет электроэнергии). В связи с тем, что когда ротор вращается посредством внешней силы, мотор 1 формирует мощность переменного тока посредством формирования электродвижущей силы на обоих концах обмотки статора (рекуперации).
[0015] Инвертор 2 представляет собой схему преобразования для преобразования мощности смонтированного в транспортном средстве аккумулятора (не показан на чертежах) в мощность переменного тока и вывода преобразованной мощности в мотор 1. Инвертор 2 обеспечивает протекание тока в мотор 1 на основе значения команды управления крутящим моментом, отправленного из контроллера 100, чтобы формировать крутящий момент мотора. Кроме того, когда мотор 1 выступает в качестве генератора мощности, инвертор 2 преобразует мощность переменного тока, сформированную посредством мотора, в мощность постоянного тока и выводит преобразованную мощность в аккумулятор. Инвертор 2 соединяется с мотором 1.
[0016] Дополнительно, сигнал переключения на основе значения команды управления крутящим моментом вводится в инвертор 2, и инвертор 2 приводится в действие посредством включения и выключения переключающего элемента согласно сигналу переключения. Сигнал переключения формируется на основе значения команды управления крутящим моментом, частоты вращения и т.п. мотора 1. Контроллер 100 формирует сигнал переключения.
[0017] Более того, инвертор 2 включает в себя силовой элемент 3, в котором сформирован из модулей переключающий элемент, такой как IGBT. Когда инвертор 2 приводится в действие, потери силового элемента 3 вырабатывают тепло, и температура силового элемента 3 повышается. Соответственно, охлаждающая вода циркулирует, с тем чтобы понижать температуру силового элемента 3.
[0018] Трансмиссия 4 представляет собой механизм бесступенчатой трансмиссии (CVT), который задает передаточное отношение бесступенчатой трансмиссии посредством изменения контактного диаметра ремня, проходящего вдоль множества шкивов. Входной вал трансмиссии 4 соединяется с вращательным валом мотора 1, и вращательная движущая сила из мотора 1 вводится в трансмиссию 4. Выходной вал трансмиссии 4 соединяется с ведущим колесом через вал, с тем чтобы передавать выходную силу вращательного приведения в действие из трансмиссии 4 на ведущее колесо.
[0019] Чтобы смазывать или охлаждать часть механизма трансмиссии 4, смазочное масло протекает в трансмиссию 4. Датчик 5 температуры масла располагается в трансмиссии 4. Датчик 5 температуры масла представляет собой датчик для того, чтобы определять температуру смазочного масла. Датчик 5 температуры масла выводит определенное значение в контроллер 100.
[0020] Мотор 1 располагается рядом с трансмиссией 4 или около мотора 1. Мотор 1 и трансмиссия 4 располагаются таким образом, что тепло передается, по меньшей мере, между мотором 1 и трансмиссией 4. В качестве примера расположения мотора 1 рядом с трансмиссией 4, когда мотор 1 включен в трансмиссию 4, теплообмен выполняется между смазочным маслом и мотором 1 в трансмиссии 4. Кроме того, когда мотор 1 и трансмиссия 4 интегрированы, мотор 1 и трансмиссия 4 находятся в состоянии, в котором они располагаются рядом друг с другом. Дополнительно, даже когда мотор 1 и трансмиссия 4 располагаются с пространством, размещенным между ними, в отношении передачи тепла трансмиссии 4 в мотор 1, считается, что мотор 1 располагается около трансмиссии 4.
[0021] Датчик 5 температуры масла представляет собой датчик для того, чтобы определять температуру смазочного масла. Датчик 5 температуры масла выводит определенное значение (определенную температуру) в контроллер 100.
[0022] Радиатор 6 представляет собой обменник для того, чтобы обмениваться теплом охлаждающей воды. Насос 7 для подачи охлаждающей воды представляет собой механический или электрический насос, и насос 7 для подачи охлаждающей воды представляет собой устройство для того, чтобы обеспечивать циркуляцию охлаждающей воды в охлаждающем канале 8. Охлаждающий канал 8 представляет собой проточный канал для того, чтобы обеспечивать протекание охлаждающей воды. Охлаждающий канал 8 размещается в моторе 1 и инверторе 2, с тем чтобы обмениваться теплом между охлаждающей водой и мотором 1 и с тем чтобы обмениваться теплом между охлаждающей водой и силовым элементом 3. Более того, охлаждающий канал 8 формируется посредством циркуляционного канала, с тем чтобы обеспечивать циркуляцию охлаждающей воды через мотор 1, инвертор 2, датчик 9 температуры воды и расширительный бачок 10.
[0023] Датчик 9 температуры воды представляет собой датчик для того, чтобы определять температуру охлаждающей воды. Датчик температуры воды выводит определенное значение (определенную температуру) в контроллер 100. Расширительный бачок 10 представляет собой бачок для того, чтобы накапливать охлаждающую воду.
[0024] Контроллер 100 представляет собой контроллер для того, чтобы управлять всем транспортным средством, и контроллер 100 управляет мотором 1, инвертором 2 и насосом 7 для подачи охлаждающей воды. Контроллер 100 содержит ROM, в котором различные программы сохраняются, CPU в качестве функциональной схемы для того, чтобы выполнять программы, сохраненные в ROM, и RAM, к примеру, доступное запоминающее устройство и т.д. Контроллер 100 также включает в себя модуль 101 управления насосом, модуль 102 вычисления предельных значений крутящего момента, модуль 103 вычисления запрошенного крутящего момента и модуль 104 вычисления значений команд управления крутящим моментом, в качестве функционального блока для управления мотором 1, инвертором 2 и насосом 7 для подачи охлаждающей воды.
[0025] В этой связи, трансмиссия 4 вырабатывает тепло в то время, когда транспортное средство приводится в движение. После этого, когда транспортное средство паркуется и главный переключатель выключается, температура трансмиссии 4 становится высокой. По мере того как тепло передается между мотором 1 и трансмиссией 4 в то время, когда транспортное средство паркуется, тепло передается из трансмиссии 4 в мотор 1, и охлаждающая вода в моторе 1 нагревается. Затем, при следующем приведении в движении, когда главный переключатель включается, и когда насос 7 для подачи охлаждающей воды начинает приведение в действие, нагретая охлаждающая вода в моторе 1 протекает в инвертор 2. Соответственно, при начале приведения в движение транспортного средства, состояние температуры силового элемента 3 или температуры обмотки и т.п. мотора 1 становится высоким. Затем, когда мотор 1 приводится в действие при таких условиях, в которых температура является высокой, и мотор 1 приводится в действие, с тем чтобы удовлетворять высокому запрошенному крутящему моменту, температура силового элемента 3 и т.п. становится еще более высокой.
[0026] Чтобы подавлять температуру силового элемента 3 и т.п., ограничение должно применяться к крутящему моменту мотора согласно температуре охлаждающей воды. В качестве способа управления для ограничения крутящего момента, задается предельное значение крутящего момента, и когда запрошенный крутящий момент выше предельного значения крутящего момента, значение команды управления крутящим моментом ограничивается предельным значением крутящего момента. Таким образом, ограничение применяется к запрошенному крутящему моменту.
[0027] Тем не менее, возникает задержка во времени отклика датчика 9 температуры воды. Когда насос 7 для подачи охлаждающей воды начинает приведение в действие, и нагретая охлаждающая вода протекает в датчик 9 температуры воды, датчик 9 температуры воды не может определять температуру воды после роста температуры. Таким образом, температура, определенная посредством датчика 9 температуры воды, становится ниже фактической температуры охлаждающей воды. Соответственно, имеется проблема в том, что ограничение крутящего момента становится недостаточным, когда ограничение применяется к выходному крутящему моменту мотора 1 на основе определенного значения посредством датчика 9 температуры воды.
[0028] Дополнительно, в качестве другого способа ограничения крутящего момента, может рассматриваться способ задания предельного значения крутящего момента постоянным в течение определенного периода после начала приведения в действие насоса 7 для подачи охлаждающей воды. Чтобы не позволять температуре силового элемента 3 и т.п. превышать допустимую температуру, даже когда охлаждающая вода с наибольшей ожидаемой температуры протекает внутрь охлаждающего канала 8 из мотора 1 после начала приведения в действие насоса 7 для подачи охлаждающей воды, предельное значение постоянного крутящего момента должно задаваться равным низкому значению заранее. Тем не менее, частота возникновения того, что охлаждающая вода становится выше ожидаемой температуры, является низкой. Соответственно, имеется проблема в том, что ограничение крутящего момента выполняется течение более чем ожидаемого определенного периода времени.
[0029] В настоящем варианте осуществления, чтобы разрешать вышеуказанные проблемы, выполняется следующее управление. Ссылаясь на фиг. 2-4, поясняется управление приводной системой транспортного средства. Фиг. 2 является блок-схемой последовательности операций способа, иллюстрирующей последовательность операций управления контроллера 100. Фиг. 3 является графиком, иллюстрирующим взаимосвязь между температурой смазочного масла (температурой масла) и пиковой температурой охлаждающей воды. Фиг. 4 является графиком, иллюстрирующим взаимосвязь между температурой охлаждающей воды (температурой охлаждающей воды) и предельным значением крутящего момента.
[0030] Когда главный переключатель транспортного средства переключается из выключенного во включенное состояние в то время, когда транспортное средство паркуется, начинается последовательность операций управления, проиллюстрированная на фиг. 2. На этапе S1, модуль 101 управления насосом отправляет команду управления приведением в действие в насос 7 для подачи охлаждающей воды. Насос 7 для подачи охлаждающей воды начинает приведение в действие при приеме команды управления приведением в действие. Охлаждающая вода циркулирует в охлаждающем канале 8.
[0031] На этапе S2, датчик 5 температуры масла определяет температуру смазочного масла. Модуль 102 вычисления предельных значений крутящего момента получает температуру смазочного масла из датчика 5 температуры масла. На этапе S3, датчик 9 температуры воды определяет температуру охлаждающей воды. Модуль 102 вычисления предельных значений крутящего момента получает температуру охлаждающей воды из датчика 9 температуры воды.
[0032] На этапе S4, модуль 102 вычисления предельных значений крутящего момента сравнивает продолжительности времени приведения в действие насоса 7 для подачи охлаждающей воды с первым предварительно заданным временем. Время приведения в действие насоса 7 для подачи охлаждающей воды является истекшим временем от начала приведения в действие насоса 7 для подачи охлаждающей воды до текущего времени. Первое предварительно заданное время является временем, заданным заранее в соответствии со временем задержки определения посредством датчика 9 температуры воды. После того, как насос 7 для подачи охлаждающей воды приводится в действие, когда температура охлаждающей воды быстро изменяется, требуется время до тех пор, пока определенное значение посредством датчика 9 температуры воды не достигнет фактической температуры охлаждающей воды. Первое предварительно заданное время указывает время, требуемое до тех пор, пока определенное значение посредством датчика 9 температуры воды не достигнет фактической температуры охлаждающей воды от начала приведения в действие насоса 7 для подачи охлаждающей воды. Другими словами, первое предварительно заданное время является временем, которое представляет состояние наличия разности между определенным значением посредством датчика 9 температуры воды и фактической температурой охлаждающей воды, представленной во времени, когда датчик 9 температуры воды не может придерживаться изменений температуры вследствие быстрого изменения температуры охлаждающей воды. Дополнительно, при задании продолжительности первого раза, время, требуемое для того, чтобы полностью согласовывать определенное значение посредством датчика 9 температуры воды и фактическую температуру охлаждающей воды, не должно обязательно задаваться в качестве первого предварительно заданного времени. Время, требуемое для того, чтобы переходить в состояние, в котором разность между определенным значением посредством датчика 9 температуры воды и фактической температурой охлаждающей воды является небольшой, может задаваться в качестве первого предварительно заданного времени.
[0033] Затем, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды меньше первого предварительно заданного времени, модуль 102 вычисления предельных значений крутящего момента определяет то, что фактическая температура охлаждающей воды выше определенного значения посредством датчика 9 температуры воды, и процесс переходит к этапу S5. Другими словами, когда температура охлаждающей воды изменяется быстро до того, как время приведения в действие достигает первого предварительно заданного времени, датчик 9 температуры воды не может сразу определять фактическую температуру охлаждающей воды. Соответственно, модуль 102 вычисления предельных значений крутящего момента предполагает из времени приведения в действие то, что фактическая температура выше определенного значения посредством датчика 9 температуры воды.
[0034] На этапе S5, модуль 102 вычисления предельных значений крутящего момента обращается к первой карте и вычисляет пиковую температуру охлаждающей воды, которая соответствует температуре смазочного масла, определенной посредством датчика 5 температуры масла. Пиковая температура охлаждающей воды указывает максимальную температуру охлаждающей воды согласно фактической температуре смазочного масла. Когда температура смазочного масла является высокой, то температура трансмиссии 4 также является высокой. Дополнительно, тепло трансмиссии 4 передается в мотор 1, и температура охлаждающей воды становится высокой. Другими словами, температура смазочного масла и температура охлаждающей воды коррелируются, и чем выше температура смазочного масла, тем выше становится пиковая температура охлаждающей воды, как только насос 7 для подачи охлаждающей воды приводится в действие.
[0035] Модуль 102 вычисления предельных значений крутящего момента сохраняет первую карту, которая указывает относительную взаимосвязь между температурой смазочного масла и пиковой температурой охлаждающей воды. Относительная взаимосвязь может быть представлена посредством графика, показанного на фиг. 3, и представляет собой взаимосвязь, в которой чем выше температура смазочного масла, тем выше становится пиковая температура охлаждающей воды.
[0036] На этапе S6, модуль 102 вычисления предельных значений крутящего момента вычисляет, при обращении ко второй карте, предельное значение крутящего момента, которое соответствует пиковой температуре охлаждающей воды. Модуль 102 вычисления предельных значений крутящего момента сохраняет вторую карту, которая указывает относительную взаимосвязь между температурой охлаждающей воды и предельным значением крутящего момента. Относительная взаимосвязь может быть представлена посредством графика, показанного на фиг. 4. Когда температура охлаждающей воды ниже T1, предельное значение крутящего момента становится постоянным значением (A1). Когда температура охлаждающей воды составляет T1 или выше и T2 или ниже, по мере того, как температура охлаждающей воды становится высокой, предельное значение крутящего момента становится низким между диапазоном A1-A2. Когда температура охлаждающей воды выше T2, предельное значение крутящего момента становится постоянным значением (A2). Предельное значение крутящего момента A1 выше предельного значения крутящего момента A2. Дополнительно, относительная взаимосвязь между температурой охлаждающей воды и предельным значением крутящего момента не ограничена взаимосвязью, показанной на фиг. 4, и может представлять собой взаимосвязь, показанную в других характеристиках.
[0037] Модуль 102 вычисления предельных значений крутящего момента назначает пиковую температуру охлаждающей воды для температуры охлаждающей воды, указываемой на второй карте для вычисления предельного значения крутящего момента. Модуль 102 вычисления предельных значений крутящего момента выводит предельное значение крутящего момента в модуль 104 вычисления значений команд управления крутящим моментом. Затем процесс переходит к этапу S10.
[0038] Таким образом, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды меньше первого предварительно заданного времени, модуль 102 вычисления предельных значений крутящего момента выбирает определенное значение датчика 5 температуры масла между температурой смазочного масла, определенной посредством датчика 5 температуры масла, и температурой охлаждающей воды, определенной посредством датчика 9 температуры воды. Затем модуль 102 вычисления предельных значений крутящего момента вычисляет, на основе выбранного определенного значения, предельное значение крутящего момента.
[0039] На этапе S4, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды равна первому предварительно заданному времени или более, процесс переходит к этапу S7. На этапе S7, модуль 102 вычисления предельных значений крутящего момента сравнивает время приведения в действие со вторым предварительно заданным временем. Второе предварительно заданное время указывает продолжительность, в течение которой температура охлаждающей воды становится расчетной температурой воды или ниже. Например, расчетная температура воды может задаваться равной верхней предельной температуре охлаждающей воды, предполагаемой при обычном приведении в движение транспортного средства.
[0040] Когда продолжительность времени приведения в действие меньше второго предварительно заданного времени, процесс переходит к этапу S8. На этапе S8, модуль 102 вычисления предельных значений крутящего момента вычисляет, при обращении ко второй карте, предельное значение крутящего момента, которое соответствует определенному значению посредством датчика 9 температуры воды. Модуль 102 вычисления предельных значений крутящего момента назначает определенное значение посредством датчика 9 температуры воды для температуры охлаждающей воды, указываемой на второй карте для вычисления предельного значения крутящего момента. Модуль 102 вычисления предельных значений крутящего момента выводит предельное значение крутящего момента в модуль 104 вычисления значений команд управления крутящим моментом.
[0041] Затем, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды равна первому предварительно заданному времени или более, модуль 102 вычисления предельных значений крутящего момента выбирает температуру охлаждающей воды, определенную посредством датчика 9 температуры воды, между температурой смазочного масла, определенной посредством датчика 5 температуры масла, и температурой охлаждающей воды, определенной посредством датчика 9 температуры воды. Затем модуль 102 вычисления предельных значений крутящего момента вычисляет предельное значение крутящего момента на основе выбранного определенного значения.
[0042] На этапе S7, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды равна второму предварительно заданному времени или более, процесс переходит к этапу S9. На этапе S9, модуль 102 вычисления предельных значений крутящего момента задает максимальное значение выходного крутящего момента мотора 1 равным предельному значению крутящего момента. Модуль 102 вычисления предельных значений крутящего момента выводит предельное значение крутящего момента в модуль 104 вычисления значений команд управления крутящим моментом. Таким образом, снимается ограничение крутящего момента на основе температуры охлаждающей воды или температуры смазочного масла. Затем процесс переходит к этапу S10.
[0043] На этапе S10, модуль 103 вычисления запрошенного крутящего момента вычисляет, на основе открытия акселератора, крутящий момент, который должен запрашиваться в мотор 1, в качестве запрошенного крутящего момента. Модуль 103 вычисления запрошенного крутящего момента выводит запрошенный крутящий момент в модуль 104 вычисления значений команд управления крутящим моментом.
[0044] На этапе S11, модуль 104 вычисления значений команд управления крутящим моментом сравнивает запрошенный крутящий момент с предельным значением крутящего момента. Когда запрошенный крутящий момент равен предельному значению крутящего момента или более, модуль 104 вычисления значений команд управления крутящим моментом вычисляет предельное значение крутящего момента в качестве значения команды управления крутящим моментом на этапе S12 и выводит значение команды управления крутящим моментом в инвертор 2. Таким образом, запрошенный крутящий момент ограничен предельным значением крутящего момента.
[0045] В связи с тем, что когда запрошенный крутящий момент ниже предельного значения крутящего момента, на этапе S13, модуль 104 вычисления значений команд управления крутящим моментом вычисляет запрошенный крутящий момент в качестве значения команды управления крутящим моментом без выполнения ограничения крутящего момента и выводит значение команды управления крутящим моментом в инвертор 2.
[0046] На этапе S14, контроллер 100 определяет то, находится или нет главный переключатель в отключенном состоянии. Когда главный переключатель находится во включенном состоянии, процесс переходит к этапу S2. Затем в то время как включенное состояние главного переключателя продолжается, последовательность операций управления этапов S2-S14 многократно выполняется. Когда главный переключатель находится в отключенном состоянии, последовательность операций управления завершается.
[0047] Дополнительно, в последовательности операций управления на этапе S9, при снятии ограничения крутящего момента, модуль 104 вычисления значений команд управления крутящим моментом может плавно выполнять высвобождение крутящего момента посредством обработки постепенного изменения. Например, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды равна второму предварительно заданному времени или более, процесс переходит к этапу S9, и ограничение крутящего момента снимается. В это время, модуль 102 вычисления предельных значений крутящего момента выполняет следующую обработку без изменения предельного значения крутящего момента, заданного на этапе S8 посредством предыдущей последовательности операций управления равным максимальному значению выходного крутящего момента. Во-первых, модуль 102 вычисления предельных значений крутящего момента вычисляет температуру охлаждающей воды посредством выполнения обработки постепенного изменения для определенного значения охлаждающей воды. Для обработки постепенного изменения, может использоваться, например, обработка сглаживания. Вычисленная температура охлаждающей воды плавно переходит относительно истечения времени. Затем модуль 102 вычисления предельных значений крутящего момента вводит вычисленную температуру охлаждающей воды во вторую карту и вычисляет предельное значение крутящего момента.
[0048] Другими словами, при снятии ограничения крутящего момента согласно температуре охлаждающей воды, обработка постепенного изменения выполняется для температуры охлаждающей воды, и также ограничение крутящего момента выполняется на основе температуры после выполнения обработки постепенного изменения. После этого, как только ограничение крутящего момента выполняется, ограничение крутящего момента снимается. Таким образом, даже когда время приведения в действие насоса 7 для подачи охлаждающей воды достигает второго предварительно заданного времени, ограничение крутящего момента сразу не снимается, и быстрое изменение значения команды управления крутящим моментом может подавляться. Как результат, может не допускаться снижение удобства использования транспортного средства.
[0049] С другой стороны, когда продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды меньше второго предварительно заданного времени, ограничение крутящего момента выполняется в соответствии с температурой охлаждающей воды. При выполнении ограничения крутящего момента модуль 102 вычисления предельных значений крутящего момента не выполняет обработку постепенного изменения для температуры охлаждающей воды. Таким образом, когда ограничение крутящего момента выполняется, крутящий момент может быть сразу ограничен, и ввиду этого мотор 1 или инвертор 2 может быть защищен от нагрева.
[0050] Затем, при указании перехода температуры охлаждающей воды и перехода определенных значений посредством датчика 9 температуры воды на фиг. 5, поясняется управление контроллером 100. Температурный переход является переходом после начала приведения в действие насоса 7 для подачи охлаждающей воды. Горизонтальная ось на фиг. 5 указывает продолжительность времени приведения в действие насоса 7 для подачи охлаждающей воды, а вертикальная ось указывает температуру охлаждающей воды (температуру охлаждающей воды). Пунктирный график указывает определенные значения посредством датчика 9 температуры воды (температура датчика температуры воды), и график в форме сплошной линии указывает фактическую температуру охлаждающей воды. Дополнительно, время t1 представляет первое предварительно заданное время, а время t2 представляет второе предварительно заданное время.
[0051] Когда начинается приведение в действие насоса 7 для подачи охлаждающей воды, и продолжительность времени приведения в действие становится временем ta, охлаждающая вода, нагретая посредством тепла трансмиссии 4, протекает в мотор 1 и инвертор 2. Соответственно, температура охлаждающей воды, циркулирующей в охлаждающем канале 8, повышается. Датчик 9 температуры воды не может придерживаться быстрого изменения температуры охлаждающей воды. До тех пор, пока время приведения в действие не достигнет первого предварительно заданного времени t1, разность между фактической температурой охлаждающей воды и определенным значением посредством датчика 9 температуры воды становится большой.
[0052] В отличие от настоящего варианта осуществления, когда ограничение крутящего момента выполняется в соответствии с определенным значением посредством датчика 9 температуры воды в состоянии, в котором продолжительность времени приведения в действие меньше первого предварительно заданного времени t1, поскольку определенное значение является низким, предельное значение крутящего момента задается равным высокому значению, как показано на фиг. 4. Как результат, соответствующее ограничение крутящего момента не применяется. С другой стороны, в настоящем варианте осуществления, модуль 102 вычисления предельных значений крутящего момента выбирает, при вычислении предельного значения крутящего момента, определенное значение датчика 5 температуры масла и вычисляет предельное значение крутящего момента на основе определенного значения датчика 5 температуры масла. Таким образом, предельное значение крутящего момента задается равным низкому значению, и соответствующее ограничение крутящего момента может выполняться.
[0053] Когда продолжительность времени приведения в действие превышает первое предварительно заданное время t1, изменение температуры охлаждающей воды становится медленным, и определенное значение посредством датчика 9 температуры воды начинает придерживаться фактической температуры. Модуль 102 вычисления предельных значений крутящего момента выбирает, при вычислении предельного значения крутящего момента, определенное значение посредством датчика 9 температуры воды и вычисляет предельное значение крутящего момента на основе определенного значения посредством датчика 9 температуры воды. Таким образом, как только температура охлаждающей воды становится стабильной, ограничение крутящего момента может выполняться согласно фактической температуре охлаждающей воды.
[0054] Когда продолжительность времени приведения в действие превышает второе предварительно заданное время t2, ограничение крутящего момента в соответствии с температурой охлаждающей воды снимается по мере того, как температура охлаждающей воды становится ниже расчетной температуры.
[0055] В настоящем варианте осуществления, контроллер 100 выбирает либо температуру смазочного масла, определенную посредством датчика 5 температуры масла, либо температуру охлаждающей воды, определенную посредством датчика 9 температуры воды, и применяет ограничение к крутящему моменту на основе выбранной температуры. Таким образом, например, даже когда соответствующее ограничение крутящего момента не может применяться с ограничением крутящего момента на основе определенного значения посредством датчика 9 температуры воды, ограничение крутящего момента может применяться посредством использования определенного значения датчика 5 температуры масла. Как результат, соответствующее ограничение крутящего момента может выполняться.
[0056] Более того, в настоящем варианте осуществления, когда контроллер 100 определяет то, что фактическая температура охлаждающей воды находится в состоянии, в котором она выше определенного значения датчика 9 температуры воды, контроллер 100 применяет ограничение к крутящему моменту на основе выбранного значения при выборе определенного значения датчика 5 температуры масла. Таким образом, например, в состоянии, в котором температура охлаждающей воды повышается за короткое время, и фактическая температура охлаждающей воды выше определенного значения датчика 9 температуры воды, ограничение крутящего момента может надлежащим образом выполняться.
[0057] Кроме того, хотя вода используется в качестве теплоносителя для того, чтобы охлаждать мотор 1 или силовой элемент 3 в настоящем варианте осуществления, теплоноситель может представлять собой другой теплоноситель, отличный от воды.
[0058] Вышеуказанный контроллер соответствует "контроллеру" настоящего изобретения. Насос 7 для подачи охлаждающей воды, охлаждающий канал 8 и расширительный бачок 10 соответствуют "механизму охлаждения" настоящего изобретения. Датчик 9 температуры воды соответствует "датчику теплоносителя" настоящего изобретения.
Описание номеров ссылок
[0059] 1 - мотор
2 - инвертор
3 - силовой элемент
4 - трансмиссия
5 - датчик температуры масла
7 - насос для подачи охлаждающей воды
8 - охлаждающий канал
9 - датчик температуры воды
10 - расширительный бачок
100 - контроллер

Claims (24)

1. Устройство управления мотором приводной системы, причем приводная система содержит:
- мотор;
- трансмиссию, расположенную рядом с мотором или около мотора;
- датчик температуры масла, который определяет температуру смазочного масла трансмиссии; и
- механизм охлаждения, который охлаждает мотор посредством теплоносителя;
причем устройство управления мотором содержит контроллер, который управляет крутящим моментом мотора,
- при этом контроллер:
- выбирает температуру смазочного масла, определенную посредством датчика температуры масла, в качестве определенной температуры, когда истекшее время меньше предварительно заданного времени и истекшее время является истекшим временем с момента, когда механизм охлаждения приводится в действие; и
- применяет ограничение к крутящему моменту на основе определенной температуры.
2. Устройство управления мотором приводной системы по п. 1, в котором приводная система дополнительно содержит:
- датчик теплоносителя, который определяет температуру теплоносителя;
- причем контроллер выбирает температуру теплоносителя, определенную датчиком теплоносителя, в качестве определенной температуры, когда истекшее время превышает предварительно заданное время.
3. Устройство управления мотором приводной системы по п. 2, в котором контроллер:
- выполняет ограничение крутящего момента без проведения обработки постепенного изменения для температуры теплоносителя, определенной датчиком теплоносителя, когда ограничение применяется к крутящему моменту на основе температуры теплоносителя; и
- проводит обработку постепенного изменения для температуры теплоносителя и снимает ограничение крутящего момента после выполнения ограничения крутящего момента на основе температуры теплоносителя, обработанной посредством обработки постепенного изменения, когда ограничение крутящего момента снимается.
4. Устройство управления мотором приводной системы по п. 1, в котором приводная система дополнительно содержит датчик теплоносителя, который определяет температуру теплоносителя,
- причем контроллер:
- выполняет ограничение крутящего момента без проведения обработки постепенного изменения для температуры теплоносителя, определенной датчиком теплоносителя, когда ограничение применяется к крутящему моменту на основе температуры теплоносителя; и
- проводит обработку постепенного изменения для температуры теплоносителя и снимает ограничение крутящего момента после выполнения ограничения крутящего момента на основе температуры теплоносителя, обработанной посредством обработки постепенного изменения, когда ограничение крутящего момента снимается.
5. Способ управления мотором для управления крутящим моментом мотора, содержащий этапы, на которых:
- определяют температуру смазочного масла трансмиссии, расположенной рядом с мотором или около мотора, посредством датчика температуры масла;
- охлаждают мотор посредством теплоносителя;
- выбирают температуру смазочного масла, определенную посредством датчика температуры масла, в качестве определенной температуры, когда истекшее время меньше предварительно заданного времени и истекшее время является истекшим временем с момента, когда механизм охлаждения приводится в действие; и
- применяют ограничение к крутящему моменту на основе определенной температуры.
RU2017105575A 2014-07-23 2014-07-23 Устройство управления мотором и способ управления мотором RU2668384C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069395 WO2016013063A1 (ja) 2014-07-23 2014-07-23 モータ制御装置及びモータ制御方法

Publications (3)

Publication Number Publication Date
RU2017105575A RU2017105575A (ru) 2018-08-30
RU2017105575A3 RU2017105575A3 (ru) 2018-08-30
RU2668384C2 true RU2668384C2 (ru) 2018-09-28

Family

ID=55162619

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017105575A RU2668384C2 (ru) 2014-07-23 2014-07-23 Устройство управления мотором и способ управления мотором

Country Status (8)

Country Link
US (1) US10427543B2 (ru)
EP (1) EP3173281B1 (ru)
JP (1) JP6252681B2 (ru)
CN (1) CN106573541B (ru)
MX (1) MX359048B (ru)
MY (1) MY188451A (ru)
RU (1) RU2668384C2 (ru)
WO (1) WO2016013063A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531705B2 (ja) * 2016-04-21 2019-06-19 株式会社デンソー 回転電機の制御装置
JP6531706B2 (ja) * 2016-04-21 2019-06-19 株式会社デンソー 回転電機の制御装置
JP6726314B2 (ja) * 2017-02-02 2020-07-22 日立オートモティブシステムズ株式会社 モータ制御装置
JP6951090B2 (ja) * 2017-03-10 2021-10-20 Ntn株式会社 駆動制御装置
JP6560720B2 (ja) * 2017-08-10 2019-08-14 本田技研工業株式会社 油圧制御装置
CN107599890B (zh) * 2017-08-30 2019-10-18 北京新能源汽车股份有限公司 一种电动汽车驱动电机的温度控制方法、装置及电动汽车
US20210044247A1 (en) * 2018-04-11 2021-02-11 Nissan Motor Co., Ltd. Machine protection device and machine protection method
CN109130867A (zh) * 2018-09-23 2019-01-04 王虹 基于冷链运输的充电提醒方法、装置及移动终端
JP2021005967A (ja) * 2019-06-27 2021-01-14 Ntn株式会社 駆動制御装置
DE102022210124A1 (de) * 2022-09-26 2024-03-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer elektrischen Antriebseinrichtung, Vorrichtung zum Betreiben einer elektrischen Antriebseinrichtung, Elektrische Antriebseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965501A (ja) * 1995-08-29 1997-03-07 Toyota Motor Corp 車両用パワープラント
WO2008047649A1 (fr) * 2006-10-11 2008-04-24 Toyota Jidosha Kabushiki Kaisha Dispositif de puissance de sortie, procede de commande associe et vehicule
JP2010095152A (ja) * 2008-10-16 2010-04-30 Toyota Motor Corp 温度制御装置
JP2012075228A (ja) * 2010-09-28 2012-04-12 Toyota Motor Corp 冷却システムの診断装置
JP2014093845A (ja) * 2012-11-02 2014-05-19 Ntn Corp インホイールモータ駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651425B2 (ja) * 2001-08-28 2005-05-25 トヨタ自動車株式会社 動力出力装置およびこれを備えるハイブリッド自動車
US20040045749A1 (en) * 2002-09-06 2004-03-11 Ford Global Technologies, Inc. Cooling system and method for a hybrid electric vehicle
US8060266B2 (en) * 2006-12-26 2011-11-15 Nissan Motor Co., Ltd. Mode changeover control device for a hybrid vehicle
JP5134663B2 (ja) * 2010-09-10 2013-01-30 ジヤトコ株式会社 変速機のオイル供給装置
JP5760865B2 (ja) * 2011-08-30 2015-08-12 トヨタ自動車株式会社 車両用モータ温度検出装置
JP5413440B2 (ja) * 2011-12-07 2014-02-12 株式会社デンソー 回転機の制御装置
US9352656B2 (en) * 2012-08-31 2016-05-31 Ford Global Technologies, Llc Temperature based electric machine control
KR101628513B1 (ko) * 2014-11-04 2016-06-08 현대자동차주식회사 Tmed 하이브리드 차량의 주행중 모터 과온 방지를 위한 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965501A (ja) * 1995-08-29 1997-03-07 Toyota Motor Corp 車両用パワープラント
WO2008047649A1 (fr) * 2006-10-11 2008-04-24 Toyota Jidosha Kabushiki Kaisha Dispositif de puissance de sortie, procede de commande associe et vehicule
JP2010095152A (ja) * 2008-10-16 2010-04-30 Toyota Motor Corp 温度制御装置
JP2012075228A (ja) * 2010-09-28 2012-04-12 Toyota Motor Corp 冷却システムの診断装置
JP2014093845A (ja) * 2012-11-02 2014-05-19 Ntn Corp インホイールモータ駆動装置

Also Published As

Publication number Publication date
EP3173281B1 (en) 2021-04-07
CN106573541B (zh) 2019-03-22
RU2017105575A (ru) 2018-08-30
RU2017105575A3 (ru) 2018-08-30
CN106573541A (zh) 2017-04-19
US20170203670A1 (en) 2017-07-20
MX2017001033A (es) 2017-05-09
JP6252681B2 (ja) 2017-12-27
MX359048B (es) 2018-09-13
MY188451A (en) 2021-12-09
EP3173281A4 (en) 2017-08-02
EP3173281A1 (en) 2017-05-31
US10427543B2 (en) 2019-10-01
WO2016013063A1 (ja) 2016-01-28
JPWO2016013063A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
RU2668384C2 (ru) Устройство управления мотором и способ управления мотором
EP3517335B1 (en) Electric vehicle
CN111347939B (zh) 车辆及其动力电池温度控制装置
JP5177324B2 (ja) 車両用制御装置および車両用制御方法
JP2010213461A (ja) 車両用モータ温度制御装置
JP2009029187A (ja) ハイブリッド車両の電力変換器用冷却装置
JP2009261197A (ja) 回転電機駆動回路の冷却装置及び方法
JP2016047001A (ja) 電動車両
JP6705341B2 (ja) ハイブリッド車
JP2012166593A (ja) ハイブリッド車両用駆動装置及び制御方法
JP2005253213A (ja) 多軸モータ制御方法および装置
JP4967868B2 (ja) ハイブリッド車両用駆動装置及び制御方法
WO2021171050A1 (ja) 電動車両の制御方法および電動車両
JP2005022321A (ja) 成形機
KR101125005B1 (ko) 하이브리드 차량용 전동식 워터펌프 제어 방법
JP5985844B2 (ja) 車両制御システム
JP2016043741A (ja) ハイブリッド自動車および温度管理方法
JP2012034433A (ja) モータ駆動システム
US20240039452A1 (en) Drive device, drive method, and storage medium
JP7453427B2 (ja) 電動車両制御装置および電動車両制御装置の制御方法
JP2022125582A (ja) 電動車両の冷却装置
KR102391004B1 (ko) 워터 펌프 제어 방법 및 시스템
JP2023170540A (ja) スイッチング制御方法及びスイッチング制御装置
JP2018034672A (ja) ハイブリッド車両およびその制御方法
JP2014045557A (ja) 電動負荷の駆動装置