JP6705341B2 - ハイブリッド車 - Google Patents

ハイブリッド車 Download PDF

Info

Publication number
JP6705341B2
JP6705341B2 JP2016168416A JP2016168416A JP6705341B2 JP 6705341 B2 JP6705341 B2 JP 6705341B2 JP 2016168416 A JP2016168416 A JP 2016168416A JP 2016168416 A JP2016168416 A JP 2016168416A JP 6705341 B2 JP6705341 B2 JP 6705341B2
Authority
JP
Japan
Prior art keywords
motor
engine
frequency
map
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016168416A
Other languages
English (en)
Other versions
JP2018034609A (ja
Inventor
翼 中満
翼 中満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016168416A priority Critical patent/JP6705341B2/ja
Publication of JP2018034609A publication Critical patent/JP2018034609A/ja
Application granted granted Critical
Publication of JP6705341B2 publication Critical patent/JP6705341B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、ハイブリッド車に関する。
ハイブリッド車は、走行用のモータと、直流電源の出力を交流に変換してモータに供給するインバータを備える。走行用のモータは出力が大きく、インバータは大電流を扱うことから、インバータのスイッチング素子は発熱量が大きい。スイッチング素子の発熱を抑える一つの方法として、スイッチング素子の駆動信号を生成するためのキャリア信号の周波数を下げることが知られている(例えば、特許文献1、2)。キャリア信号の周波数は、スイッチング素子のスイッチング周波数に対応する。キャリア信号の周波数を下げると、スイッチング周波数が下がり、スイッチング動作に伴う単位時間当たりの発熱量が小さくなる。以下では、説明の便宜上、キャリア信号の周波数を単純にキャリア周波数と称することがある。
特許文献1に開示された技術では、インバータのスイッチング素子の温度が閾値を超えたらキャリア周波数を下げる。特許文献2のハイブリッド車は、モータがエンジンスタータと発電機を兼ねる。エンジンの始動には比較的に大きなトルクが必要とされるため、エンジンスタータとして動作するときにモータの発熱量は大きくなる。特許文献2では、インバータの温度が高いほど、キャリア周波数を下げるとともに、インバータのエンジン始動限界温度を上げる。ここで、エンジン始動限界温度とは、インバータの温度がエンジン始動限界温度よりも高いと、エンジンを始動したときにインバータが過熱状態に陥るおそれが生じる、という温度である。従って、特許文献2のハイブリッド車では、インバータの温度がエンジン始動限界を超えている間は、エンジンを停止しない。さらに、特許文献2のハイブリッド車では、キャリア信号の周波数を下げるとともに、エンジン始動限界温度を高くする。キャリア信号の周波数を下げると、エンジンを始動するときのインバータの発熱量が小さくなるため、エンジン始動に伴うインバータの温度上昇分が小さくなる。その分、エンジン始動限界温度を高くすることで、エンジンを停止する機会を増やす。
特開平02−065672号公報 特開2013−133062号公報
キャリア周波数を下げるとインバータの発熱量は小さくなるが、スイッチング素子のスイッチング動作に伴うノイズ(スイッチングノイズ)が大きくなるという短所がある。本明細書は、ハイブリッド車においてエンジンの始動時にできる限りキャリア周波数を下げずにインバータのスイッチング素子の温度上昇を抑制する技術を提供する。
ハイブリッド車は、一般に、インバータのスイッチング素子を冷却する冷却器を備える。本明細書が開示するハイブリッド車では、冷却器を効果的に使い、エンジン始動時にキャリア周波数をできるだけ下げないようにする。
本明細書が開示するハイブリッド車は、エンジンと、第1モータと、第2モータと、インバータと、冷却器と、コントローラを備えている。第1モータはエンジンを始動するのに用いられる。第2モータは、走行用の駆動力を出力する。インバータは、電力変換用のスイッチング素子を備えており、直流電源の出力を第1モータと第2モータの夫々に適した交流電力に変換する。冷却器は、冷媒を循環させてインバータのスイッチング素子を冷却する。コントローラは、スイッチング素子の駆動信号を生成するためのキャリア信号の周波数(キャリア周波数)を規定するマップ(周波数マップ)に従ってキャリア周波数を決定する。周波数マップは、第1モータの回転数と出力トルクを軸とする二次元平面を、通常周波数の第1領域と、通常周波数よりも低い周波数の第2領域に区分している。コントローラは、第1モータでエンジンを始動する間、冷却器の流量をそれまでよりも増加させるとともに、周波数マップを、冷却器の流量増加前に用いていた第1マップから、第2領域(低い周波数の領域)が第1マップよりも高トルク側にシフトした第2マップに切り換える。エンジン始動時に冷却器の冷媒流量を増すことで、キャリア周波数を下げずともスイッチング素子の温度上昇を抑えることができる。
コントローラは、エンジン停止時であって、エンジン始動の条件が成立することが予想された時点で冷媒流量を増し、マップを第1マップから第2マップに切り換えておくことも好適である。エンジン始動に先立って冷媒流量を増すことで、エンジン始動時のインバータの温度上昇を効果的に抑制することができる。
上記した第2マップの極限の態様は、マップの全域が第1領域(通常周波数の領域)に割り当てられているマップである。そのような第2マップを採用することは、実施的には、エンジン始動時に流量を増加させるとともにキャリア周波数を下げることを禁止することに相当する。本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例のハイブリッド車の駆動系のブロック図である。 動力分配機構のスケルトン図である。 通常時のキャリア周波数マップの一例を示す。 エンジン始動時のキャリア周波数マップの一例を示す。 エンジン始動時の冷却処理のフローチャートである。
図面を参照して実施例のハイブリッド車2を説明する。図1に、ハイブリッド車2の駆動系のブロック図を示す。ハイブリッド車2は、走行用にエンジン7と2個のモータ(第1モータ21と第2モータ)を備える。なお、第1モータ21と第2モータ22は、駆動トルクを出力するだけでなく、発電する場合がある。
第1モータ21と第2モータ22とエンジン7の出力軸は、動力分配機構30に連結されている。動力分配機構30は、エンジン7の出力トルクと第1モータ21と第2モータ22の出力トルクを適宜に合成、分配する。合成あるいは、分配されたトルクは車軸23とデファレンシャルギア24を介して車輪25に伝達される。動力分配機構30では、エンジン7の出力トルクが車軸23と第1モータ21に分配される場合がある。このとき、ハイブリッド車2は、エンジン7の出力トルクで走行しながら第1モータ21で発電する。発電で得た電力は高圧バッテリ3の充電に用いられる。ハイブリッド車2は、また、ブレーキペダルが踏まれたとき、車両の運動エネルギを使って第1モータ21と第2モータ22で発電する。発電で得た電力は高圧バッテリ3の充電に用いられる。
図2を使って動力分配機構30について説明する。図2は、動力分配機構30のスケルトン図である。動力分配機構30は、プラネタリギア31を主な部品とするギアセットである。プラネタリギア31のサンギア31aが第1モータ21に係合しており、キャリア31bがエンジン7に係合しており、リングギア31cがアイドルギア32を介して車軸23に係合している。車軸23の先はデファレンシャルギア24が連結され、その先に車輪25が取り付けられている。車軸23には、リダクションギア33を介して第2モータ22が係合している。なお、サンギア31aと第1モータ21の間、あるいは、エンジン7とキャリア31bの間には別のギアが介在してもよい。第2モータ22と車軸23の間にリダクションギア33とは別のギアが介在してもよい。
ハイブリッド車2は、発進時、及び、中低速域のエンジン効率の低い車速領域では、エンジン7を停止し、第2モータ22で走行する。中高速域のエンジン効率の高い車速領域では、エンジン7を作動させる。エンジン7で走行する場合、車軸23に連結されているリングギア31cの出力トルクが所望のトルクとなるように、サンギア31aに現れる反力を第1モータ21が支える。このとき、第1モータ21は、サンギア31aに現れる反力で発電する。発電で得た電力で第2モータ22を駆動し、車両の推進力を補助する。サンギア31aに現れる反力を支える第1モータ21のトルクを、負のトルクと称する場合がある。
仮にサンギア31aが無負荷であると、プラネタリギア31の特性により、リングギア31cにトルクが伝わらずにエンジン7の回転数が上昇してしまう。即ちエンジン7が吹き上がってしまう。第1モータ21は、エンジン7の出力トルクに対して逆向きのトルク(負のトルク)を与え、エンジン7の吹き上がりを抑えるとともにエンジン7のトルクの一部がリングギア31c(即ち車軸23)に伝達されるように補助する。
第1モータ21が与える負のトルクとは、出力軸側から駆動されることを意味し、第1モータ21は負のトルク(即ち出力軸側から駆動されるトルク)によって回転し、発電する。第1モータ21の負のトルクの大きさは、第1モータ21の起電力に依存し、その起電力はインバータ回路41のスイッチング動作により調整される。第1モータ21は、エンジン7の始動(クランキング)にも用いられる。なお、エンジン始動時に第1モータ21に要求されるトルクの絶対値は、エンジン7の吹き上がりの反力を抑える負のトルクの絶対値よりもはるかに大きい。第1モータ21が出力する正のトルクもインバータ回路41によって調整される。即ち、第1モータ21が正のトルクを出力する場合も負のトルクを出力する場合もインバータ回路41によって制御される。
ハイブリッド車2は、大きな加速力が必要な場合には高圧バッテリ3の電力を使って第2モータ22の出力を高める。ハイブリッド車2は、ブレーキペダルが踏まれたときには、エンジン7を停止し、車両の運動エネルギによって逆駆動される第1モータ21、第2モータ22によって発電する。発電で得た電力は高圧バッテリ3の充電や、補機の駆動に用いられる。
第2モータ22の出力トルクもインバータ回路41によって調整される。先に述べたようにブレーキペダルが踏まれたときには第2モータ22も発電する。第2モータ22の発電力は、第2モータ22の起電力に依存し、その起電力はインバータ回路41のスイッチング動作により調整される。即ち、第2モータ22も、正のトルク出力と負のトルク出力に関わらずにインバータ回路41によって制御される。
以上の通り、第1モータ21と第2モータ22は、プラネタリギア31を介してエンジン7と連動して回転する。
図1に戻り、ハイブリッド車2の駆動系の説明を続ける。ハイブリッド車2は、エンジン7と第1モータ21と第2モータ22のほか、高圧バッテリ3、インバータ40、冷却器10、コントローラ50を備えている。インバータ40は、高圧バッテリ3の直流電力を第1、第2モータ21、22の夫々に適した交流に変換する。従って、インバータ40は、2セットのインバータ回路41を備えている。インバータ回路41は、複数のスイッチング素子を備えており、各スイッチング素子のオンオフのタイミングで交流出力が決まる。エンジン7と第1モータ21、第2モータ22は、コントローラ50によって制御される。
コントローラ50は、各種センサの情報に基づき、エンジン7の目標トルクと、第1モータ21、第2モータ22の目標トルクを算出する。各種センサとは、例えば、高圧バッテリ3の残量を計測するバッテリセンサ4、車輪25の回転を計測する回転数センサ26、インバータ回路41の温度(スイッチング素子の温度)を計測する温度センサ42、アクセルペダルの開度を計測するアクセルペダルセンサ5、ブレーキペダルの踏み込み量を計測するブレーキセンサ6などである。
エンジン7の目標トルクは、エンジンコントローラ8に送られ、エンジンコントローラ8が、その目標トルクを実現するようにエンジン7を制御する。コントローラ50は、第1モータ21と第2モータ22の目標トルクを実現するように、インバータ回路41の各スイッチング素子の駆動信号PWM_Sgを生成し、インバータ回路41へ送信する。駆動信号PWM_Sgは、PWM信号(パルス幅変調信号)であり、いわゆるデューティ比により、インバータ回路41の出力(即ちモータの出力)が決まる。PWM信号は、各モータの回転数と目標トルクの関数で表された時系列信号に、キャリア信号発生器51が発生するキャリア信号を掛け合せることにより生成される。
コントローラ50は、また、インバータ40に備えられた温度センサ42により、インバータ40のスイッチング素子の温度を計測し、スイッチング素子が過熱しないように、冷却器10のポンプ14の出力(冷媒の吐出量)を制御する。ポンプ14は、PWM信号のデューティ比で制御される。図中のWP_Sgが、コントローラ50がポンプ14に与える駆動信号を示している。
冷却器10は、先に述べたポンプ14のほか、冷媒循環路12、ラジエータ13、リザーブタンク15を備えている。冷媒循環路12は、ラジエータ13と、インバータ40と、モータハウジング20を通過している。モータハウジング20は、2個のモータ21、22と動力分配機構30を収容したケースである。冷却器10は、インバータ40のスイッチング素子とモータ21、22を冷却する。ポンプ14が、リザーブタンク15に蓄えられた冷媒をラジエータ13へ送る。ラジエータ13で冷却された冷媒は、インバータ40を通り、内部のスイッチング素子を冷却する。インバータ40を通過した冷媒は、次にモータハウジング20にて、第1モータ21と第2モータ22を冷却する。モータハウジング20を通過した冷媒は、リザーブタンク15へ戻る。冷媒は、水あるいは、LLC(Long Life Coolant)である。図1には図示していないが、ハイブリッド車2は、図示した冷却器10の他、オイルを冷媒とした冷却器を備えており、その冷却器でもモータ21、22を冷却する。
コントローラ50は、第1モータ21、第2モータ22、及び、インバータ40のスイッチング素子が過熱しないように、冷却器10を制御する。ここでは、インバータ40のスイッチング素子の過熱防止について説明する。コントローラ50は、温度センサ42の計測するスイッチング素子の温度が高くなるにつれて、ポンプ14の吐出流量を増加させる。
コントローラ50は、スイッチング素子の過熱を抑える別の方法として、スイッチング素子の駆動信号を生成するためのキャリア信号の周波数(キャリア周波数)を下げることも行う。キャリア周波数を下げると、スイッチング周波数が下がり、スイッチング動作に伴う単位時間当たりの発熱量が小さくなる。コントローラ50は、所定の条件が成立すると、キャリア周波数を通常キャリア周波数から、通常キャリア周波数よりも低い低キャリア周波数に変更する。なお、低キャリア周波数とは、例えば、通常キャリア周波数の半分の周波数、あるいは、1/4の周波数である。
キャリア周波数を下げる所定の条件の一つが、コントローラ50が記憶している第1周波数マップ52aと第2周波数マップ52bである。第1周波数マップ52aと第2周波数マップ52bは、第1モータ21の回転数と出力トルクを軸とする二次元平面上で、キャリア周波数を規定しているマップである。図3に、第1周波数マップ52aを示す。第1モータ21のトルクと回転数が図3において白抜きの領域(第1領域A1)に属するとき、コントローラ50は、キャリア周波数を通常キャリア周波数に設定する。コントローラ50は、第1モータ21のトルクと回転数が斜線ハッチングを施した第2領域A2に属するとき、キャリア周波数を、通常キャリア周波数よりも低い低キャリア周波数に切り換える。図3に示すように、低キャリア周波数が割り当てられる第2領域A2は、第1モータ21が高トルク域で作動する範囲に設定されている。これは、高トルクを出力する場合とは、インバータ回路41のスイッチング素子に大電流が流れて発熱し易いときに相当するからである。
コントローラ50は、キャリア信号発生器51を制御し、キャリア周波数を調整することができる。なお、キャリア周波数を下げると、スイッチング素子の発熱量が小さくなるという利点があるが、同時に、スイッチングノイズが大きくなるという短所もある。
ところで、先に述べたように、第1モータ21は、エンジン7を始動するスタータとしても機能する。エンジン7を始動するのに第1モータ21は比較的に大きいトルクが要求される。即ち、エンジン7を始動するとき、第1モータ21は、図3の第2領域A2で作動する蓋然性が高い。ハイブリッド車2は、エンジン始動時にできる限りキャリア周波数を下げずにスイッチング素子の温度上昇を抑えるべく、冷却器10を活用する。即ち、コントローラ50は、第1モータ21でエンジン7を始動する間、冷却器10の冷媒循環路12を流れる冷媒の流量を、それまでよりも増加させる。具体的には、コントローラ50は、ポンプ14に供給する駆動信号WP_Sgのデューティ比を所定の割合で増加させる。冷媒流量を増加させることで、冷却器10によるスイッチング素子の冷却能力が高まる。同時にコントローラ50は、先に説明した周波数マップを、第1周波数マップ52aから、キャリア周波数が低い第2領域A2が高トルク側(図中のグラフ領域の上側)にシフトした第2周波数マップ52bに切り換える。図4に、第2周波数マップ52bの一例を示す。図4において二点鎖線で囲った領域は、図3の第1周波数マップ52aにおける第2領域A2を示している。図4における第2領域A2と二点鎖線の領域を比較すると理解されるように、第2周波数マップ52bは、低キャリア周波数が割り当てられている第2領域A2が、第1周波数マップ52aと比較して、高トルク側にシフトしている。第1周波数マップ52aよりも第2領域A2が高トルク側にシフトしている、とは、別言すれば、第1周波数マップ52aよりも第1領域A1が高トルク側に拡大している、ということである。
例えば、エンジン始動時の第1モータ21の状態が図4のポイントP1(図3の第1周波数マップ52aでは第2領域A2に属する)のとき、図3の第1周波数マップ52aが用いられていた場合には、コントローラ50は、キャリア周波数を下げることになった。一方、ハイブリッド車2の場合、エンジン始動時には図4の第2周波数マップ52bに切り換えられる。第2周波数マップ52bでは、ポイントP1は第1領域A1に属するので、コントローラ50は、キャリア周波数を下げない。その結果、スイッチングノイズの増大が抑えられる。一方、エンジン始動の前後でインバータ40の温度が変化せずとも冷媒流量が増加されているので、エンジン始動に伴うスイッチング素子の発熱が抑えられる。
他方、エンジン始動時の第1モータ21の状態が図4のポイントP2の場合は、図4の第2周波数マップ52bでもキャリア周波数を下げる第2領域A2に属する。それゆえ、コントローラ50は、エンジン始動中にキャリア周波数を通常キャリア周波数から低キャリア周波数に下げる。ポイントP2は、要求されるモータトルクが大きいので、冷媒流量増加だけではスイッチング素子の発熱を抑制することができず、キャリア周波数を下げてスイッチング素子の発熱を抑制する。
上記説明した処理を、図5のフローチャートを参照しつつ再度説明する。図5のフローチャートは、エンジン7を始動する条件が成立したときに起動される。なお、エンジンを始動する条件とは例えば、次の3つである。(1)高圧バッテリ3の残量が所定の閾値残量を下回ったとき。(2)アクセル開度で決定される要求総トルクが所定の閾値トルクを上回った場合。(3)車速が所定の領域内に属する場合。(1)のケースは、高圧バッテリ3を充電すべく、エンジン7を始動して発電する場合である。(2)のケースは、第1モータ21と第2モータ22だけでは運転者の要求するトルクを達成することができず、エンジン7を始動して駆動トルクを補う場合である。(3)のケースは、エンジンを高効率で作動させることのできる車速域となり、エンジン7を始動して第1モータ21で発電し、高圧バッテリ3を充電する場合である。
エンジン7を始動する条件が成立すると、コントローラ50は、ポンプ14の駆動信号のデューティ比を高め、冷媒の流量を増加する(S2)。次にコントローラ50は、駆動信号のデューティ比を高めた後の冷媒流量が、所定の流量閾値よりも大きいか否かをチェックする(S3)。冷媒流量が流量閾値よりも大きい場合(ステップS3:YES)、コントローラ50は、周波数マップを第1周波数マップ52aから第2周波数マップ52bへ切り換える(S4)。一方、冷媒流量が流量閾値よりも大きくない場合(ステップS3:NO)、コントローラ50は、周波数マップを切り換えることなく、そのまま処理を終了する。流量閾値とは、その流量閾値以下の冷媒流量では、エンジン始動時に予想されるスイッチング素子の発熱量を抑制することが難しいとされる値に設定されている。別言すれば、流量閾値とは、周波数マップを切り換える処理を実施するための下限冷媒流量である。
以上説明した技術により、エンジン始動時にできる限りキャリア周波数を下げることなく、スイッチング素子の温度上昇を抑えることができる。
実施例の技術の改良例を説明する。実施例では、エンジン7を始動する条件が成立したときに、コントローラ50は、冷媒の流量を増加するとともに、周波数マップを切り換えた。コントローラ50は、エンジン始動の条件が間もなく成立することが予想されたときに、冷媒の流量を増加するとともに、周波数マップを第1周波数マップ52aから第2周波数マップ52bに切り換えてもよい。そのような処理により、エンジン7の始動に先立ってスイッチング素子の冷却能力を高めておき、エンジン始動時のスイッチング素子の発熱量の増加に前もって準備しておくことができる。
なお、エンジン始動の条件が間もなく成立することが予想される場合とは、例えば次の状況である。(1)高圧バッテリ3の残量が、充電を必要とする残量閾値に所定のマージンを加えた値を下回ったとき。(2)第2モータ22が最大出力に近い所定の出力閾値を超えるトルクを出力しているとき。(3)エンジン効率のよい回転数に近い車速で走行しているとき。(1)のケースは、高圧バッテリ3の残量が間もなく充電を必要とする残量閾値に達し、エンジン始動条件が成立する。(2)のケースは、さらにアクセルが踏み込まれると、第2モータ22の最大出力でもユーザが望む出力に足りず、エンジンを始動して駆動力を補うことになる。(3)のケースは、間もなくエンジン効率のよい回転数域に入る可能性があり、その回転数域に達するとエンジン始動の条件が成立する。(1)から(3)のいずれの場合も、あくまでも予想であり、必ずしもその後にエンジン始動の条件が成立するわけではない。(1)から(3)のいずれかの条件が成立し、冷媒流量を増加させるとともに周波数マップを切り換えた後、所定時間が経過してもエンジン始動の条件が成立しない場合は、冷媒流量をもとに戻し、周波数マップを第1周波数マップに戻せばよい。
また、実施例では、第1モータ21でエンジン7を始動する間、コントローラ50は、冷却器10の流量を増加させるとともに、周波数マップを、冷却器10の流量増加前に用いていた第1周波数マップ52aから、第2領域A2がより高トルク側にシフトした第2周波数マップ52bに切り換えた。コントローラ50は、第2周波数マップの極限として、全域が第1領域に割り当てられている周波数マップに切り換えてもよい。この場合は別言すれば、コントローラ50は、第1モータ21でエンジン7を始動する間、冷却器10の流量を増加させるとともに、キャリア周波数を下げることを禁止することに相当する。
実施例で説明した技術に関する留意点を述べる。第1周波数マップ52aが請求項の第1マップの一例に相当し、第2周波数マップ52bが請求項の第2マップの一例に相当する。第2周波数マップは、第1周波数マップよりも、低いキャリア周波数が割り当てられている第2領域が高トルク側にシフトしていればよく、図3と図4の例に限られない。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:ハイブリッド車
3:高圧バッテリ
4:バッテリセンサ
5:アクセルペダルセンサ
6:ブレーキセンサ
7:エンジン
8:エンジンコントローラ
10:冷却器
12:冷媒循環路
13:ラジエータ
14:ポンプ
15:リザーブタンク
20:モータハウジング
21:第1モータ
22:第2モータ
23:車軸
24:デファレンシャルギア
25:車輪
26:回転数センサ
30:動力分配機構
31:プラネタリギア
31a:サンギア
31b:キャリア
31c:リングギア
32:アイドルギア
33:リダクションギア
40:インバータ
41:インバータ回路
42:温度センサ
50:コントローラ
51:キャリア信号発生器
52a:第1周波数マップ
52b:第2周波数マップ

Claims (2)

  1. エンジンと、
    前記エンジンを始動する第1モータと、
    走行用の駆動力を出力する第2モータと、
    電力変換用のスイッチング素子を備えており、直流電源の出力を前記第1モータと前記第2モータの夫々に適した交流電力に変換するインバータと、
    冷媒を循環させて前記スイッチング素子を冷却する冷却器と、
    前記スイッチング素子の駆動信号を生成するためのキャリア信号の周波数を規定するマップであって、前記第1モータの回転数と出力トルクを軸とする二次元平面を、通常周波数の第1領域と、前記通常周波数よりも低い周波数の第2領域に区分している周波数マップに従って、前記キャリア信号の周波数を決定するコントローラと、
    を備えており、
    前記コントローラは、前記第1モータで前記エンジンを始動する間、および、エンジン停止時であってエンジン始動の条件が成立することが予測されたときに、前記冷却器の流量をそれまでの流量よりも増加させるとともに、前記周波数マップを、前記冷却器の流量増加前に用いていた第1マップから、前記第2領域が前記第1マップよりも高トルク側にシフトした第2マップに切り換える、ハイブリッド車。
  2. 前記第2マップは、全域が前記第1領域に割り当てられている、請求項1に記載のハイブリッド車。
JP2016168416A 2016-08-30 2016-08-30 ハイブリッド車 Expired - Fee Related JP6705341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168416A JP6705341B2 (ja) 2016-08-30 2016-08-30 ハイブリッド車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168416A JP6705341B2 (ja) 2016-08-30 2016-08-30 ハイブリッド車

Publications (2)

Publication Number Publication Date
JP2018034609A JP2018034609A (ja) 2018-03-08
JP6705341B2 true JP6705341B2 (ja) 2020-06-03

Family

ID=61566276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168416A Expired - Fee Related JP6705341B2 (ja) 2016-08-30 2016-08-30 ハイブリッド車

Country Status (1)

Country Link
JP (1) JP6705341B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545310B1 (ja) * 2018-03-22 2019-07-17 三菱電機株式会社 電力変換装置
EP3799296A1 (de) * 2019-09-27 2021-03-31 Siemens Aktiengesellschaft Elektrischer antrieb mit schaltfrequenzgeregelter motortemperatur
CN112590760B (zh) * 2020-12-22 2022-03-22 江苏大学 一种考虑模式切换频繁度的双电机混合动力汽车能量管理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830462B2 (ja) * 2005-11-18 2011-12-07 トヨタ自動車株式会社 電動車両の制御装置
JP2008072818A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 冷却システムおよびそれを備える車両
JP5162950B2 (ja) * 2007-04-26 2013-03-13 トヨタ自動車株式会社 モータ制御装置
JP2012044772A (ja) * 2010-08-18 2012-03-01 Toyota Motor Corp 車両のインバータ冷却制御装置
JP2012165588A (ja) * 2011-02-08 2012-08-30 Toyota Motor Corp 冷却システム
JP2013133062A (ja) * 2011-12-27 2013-07-08 Toyota Motor Corp ハイブリッド車

Also Published As

Publication number Publication date
JP2018034609A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
US7823669B2 (en) Hybrid vehicle
JP4595829B2 (ja) 二次電池の制御装置および制御方法
JP6032216B2 (ja) ハイブリッド車制御装置
JP5177324B2 (ja) 車両用制御装置および車両用制御方法
JP5200991B2 (ja) 電動車両のモータ制御方法及びその装置
JP2015071334A (ja) ハイブリッド車制御装置
JP5895548B2 (ja) 車両の冷却装置
JPWO2013051141A1 (ja) ハイブリッド車両の制御装置
JP6705341B2 (ja) ハイブリッド車
US9637106B2 (en) Power-generation control device and power-generation control method for hybrid vehicle
JP2001023666A (ja) 廃熱回収装置およびその制御方法
JP5382232B2 (ja) エンジンの制御装置および制御方法
JP5042816B2 (ja) 内燃機関制御装置
JP5286743B2 (ja) 出力トルク制御装置、車両駆動システムおよび車両駆動システムを備える車両
JP5206131B2 (ja) 冷却装置
JP2009261197A (ja) 回転電機駆動回路の冷却装置及び方法
JP2016208687A (ja) 電動車両
KR101125005B1 (ko) 하이브리드 차량용 전동식 워터펌프 제어 방법
JP2014141954A (ja) 車両用冷却装置
JP2013133062A (ja) ハイブリッド車
JP6003698B2 (ja) 車両
JP5549730B2 (ja) ハイブリッド車の制御装置、ハイブリッド車の制御方法およびハイブリッド車
JP7035559B2 (ja) 電動車両
JP2017100475A (ja) ハイブリッド車両
JP2022125582A (ja) 電動車両の冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R151 Written notification of patent or utility model registration

Ref document number: 6705341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees