RU2662488C1 - Способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора - Google Patents
Способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора Download PDFInfo
- Publication number
- RU2662488C1 RU2662488C1 RU2016121911A RU2016121911A RU2662488C1 RU 2662488 C1 RU2662488 C1 RU 2662488C1 RU 2016121911 A RU2016121911 A RU 2016121911A RU 2016121911 A RU2016121911 A RU 2016121911A RU 2662488 C1 RU2662488 C1 RU 2662488C1
- Authority
- RU
- Russia
- Prior art keywords
- powder
- sintering
- hdd
- hours
- ethanol
- Prior art date
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 14
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 61
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 58
- 238000005245 sintering Methods 0.000 claims description 48
- 239000011259 mixed solution Substances 0.000 claims description 26
- 239000008367 deionised water Substances 0.000 claims description 18
- 229910021641 deionized water Inorganic materials 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000002474 experimental method Methods 0.000 claims description 17
- 238000000227 grinding Methods 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 11
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000007873 sieving Methods 0.000 claims description 9
- 238000009694 cold isostatic pressing Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 5
- 238000003760 magnetic stirring Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 230000032683 aging Effects 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000002243 precursor Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- -1 insulating Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical group ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
- C01B21/0648—After-treatment, e.g. grinding, purification
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/6262—Milling of calcined, sintered clinker or ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62807—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62886—Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6316—Binders based on silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/668—Pressureless sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Products (AREA)
Abstract
Изобретение относится к изготовлению керамического материала высокой плотности на основе гексагонального нитрида бора (ГНБ), который имеет большие перспективы применения в авиационно-космической промышленности. В соответствии с данным способом поверхность порошка ГНБ покрывают равномерным слоем наночастиц SiO2, используя тетраэтилортосиликат в качестве прекурсора. Обработанный порошок предварительно спекают, измельчают и просеивают, формуют изделия и спекают при температуре 1600-1900°С без давления в среде азота с выдержкой при конечной температуре 1-3 часа. Относительная плотность готового керамического материала из ГНБ составляет более 80%. Настоящий способ изготовления является простым и низкозатратным, а его технологические параметры легко поддаются контролю. Благодаря применению SiO2 улучшаются устойчивость к воздействию высоких температур и рабочие характеристики ГНБ. 8 з.п. ф-лы, 5 пр., 1 табл., 1 ил.
Description
Область техники изобретения
Настоящее изобретение относится к области обработки материалов, в частности, к способу изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора.
Уровень техники изобретения
Гексагональный нитрид бора (ГНБ) также известен как нитрид бора и имеет слоистую структуру, которая подобна графиту. Благодаря таким преимуществам, как хорошая электроизоляционная способность, низкая диэлектрическая проницаемость и диэлектрические потери, устойчивость к воздействию высоких температур, смазочная способность, химическая инертность и несмачиваемость металла, гексагональный нитрид бора широко используется в качестве твердого смазочного вещества в высокотемпературной среде, как вымывающее вещество при литье без давления и под давлением, в лодочковых испарителях для вакуумного алитирования, как материал, передающий волны, и т.д.
Как правило, керамика из гексагонального нитрида бора изготавливается путем того, что порошок, образовавшийся после азотирования или аммиачного распада трихлорида бора, подвергается шаровому помолу и смешиванию со связующим веществом оксида бора, спеканию без давления, горячему прессованию, термическому распаду или сжиганию. Однако сила связи ГНБ в направлении оси С значительно меньше, чем сила связи в направлении, перпендикулярном направлению оси С. В основном, кристаллы растут в направлении поверхности пластины, а рост в направлении толщины происходит медленно, тем самым, формируя пластинчатую кристаллическую структуру. Последняя, в свою очередь, образует вставочную мостиковую структуру в ходе спекания для достижения эффекта взаимной опоры и предотвращения сжатия материала. Таким образом, полученная керамика из ГНБ обладает низкой плотностью. К примеру, после того как Хагио и соавт. ввели способ шарового помола для механохимической активации на порошке ГНБ, плотность керамического материала из ГНБ, полученного при температуре спекания 2000°С, равнялась 1,64 г⋅см-3, что составляет только 70% от теоретической плотности (Американское общество специалистов по керамике, 72(8) 1482-1484 (1989 г.)). Курита и соавт. ввели нитрид алюминия и аморфный бор в качестве добавок и получили материал из ГНБ с относительной плотностью 75,8% путем спекания без давления в среде N2 при температуре 1500°С (Сигэн-то-Содзаи; 105(2) 201-204 (1989 г.)).
Эффективной мерой решения проблемы плотности керамики из ГНБ является добавление оксидов, таких как В2О3, Al2O3, Y2O3 и SiO2, в качестве спекающих добавок, а также улучшение коэффициента диффузии и мощности спекания в ходе спекания посредством жидкой фазы, образованной во время спекания. В частности, SiO2 может не только способствовать спеканию и уплотнению ГНБ, но и улучшить окислительную устойчивость ГНБ и устойчивость к воздействию высоких температур. Таким образом, SiO2 имеет широкое распространение. Чэнь и соавт. изготовили керамику из ГНБ путем сжигания в среде азота под высоким давлением и изучили влияние SiO2 на плотность ГНБ. По результатам исследования обнаружено, что плотность ГНБ без добавления SiO2 составляет 71-75%, в то время как плотность ГНБ повышается до 75,4-78% после добавления SiO2 с массовым процентом 10% масс., свидетельствуя о том, что добавление SiO2 определенно улучшает плотность ГНБ. С другой стороны, так как SiO2 едва ли равномерно распределяется при смешивании с материалом шарового помола, относительная плотность все еще остается низкой (менее 80%) (Журнал материаловедения, 19 (2000 г.) 81-83). В соответствующем патенте (китайский патент на изобретение с номером публикации CN 1310149 A) Хань Цзе-цай и соавт. изготовили керамику из ГНБ, применив способ синтеза в процессе горения. После предварительного прессования в заготовку реагирующие исходные материалы подверглись самораспространяющейся реакции горения в среде N2 под давлением не менее 70 МПа, и был добавлен порошок SiO2 с массовым отношением не более 60%, чтобы синтезировать композитный материал ГНБ-SiO2. Но, аналогичным образом, в силу того, что исходные материалы не были смешаны равномерно, плотность композитного материала осталась низкой.
Сущность изобретения
Цель изобретения: для решения технических проблем на известном уровне техники настоящее изобретение предусматривает способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора, который является простым в осуществлении и контроле технологического процесса; благодаря его применению улучшаются плотность и окислительная устойчивость керамического материала из гексагонального нитрида бора.
Техническое решение: для решения вышеуказанной технической проблемы настоящее изобретение предусматривает способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора, включающий следующие этапы:
(1) добавление порошка ГНБ в деионизированную воду и равномерное перемешивание порошка ГНБ для получения смеси порошка ГНБ и деионизированной воды;
(2) добавление этанола по каплям в смесь, полученную на этапе (1), чтобы массовое отношение добавленного по каплям этанола к смеси составляло 0,08-0,1; добавление концентрированной аммиачной воды по каплям в смесь, чтобы pH раствора составлял 9-10, причем массовая доля концентрированной аммиачной воды составляет 28%; после равномерного перемешивания смеси, медленное добавление смешанного раствора тетраэтил-ортосиликата и этанола по каплям до тех пор, пока мольное отношение тетраэтил-ортосиликата в смешанном растворе к деионизированной воде на этапе (1) не достигнет (1:4)-(1:8); после добавления смешанного раствора по каплям, герметизация сосуда и осуществление реакции в течение 5-20 ч;
(3) после завершения реакции на этапе (2), фильтрация, сушка, измельчение и просеивание полученного порошка;
(4) предварительное спекание просеянного порошка, полученного на этапе (3), в печи высокого вакуума, и повторное равномерное измельчение и просеивание порошка после предварительного спекания;
(5) холодное изостатическое прессование порошка, полученного на этапе (4), его спекание без давления при высокой температуре в среде N2, а затем теплое консервирование в течение 1-3 ч для получения пробы;
(6) после завершения опыта по спеканию, охлаждение и извлечение пробы;
при этом чистота порошка ГНБ составляет более 98%, а размер его частиц не превышает 10 микрон; массовое отношение порошка ГНБ к деионизированной воде составляет 0,008-0,015. В частности, условия перемешивания на этапе (1) предполагают магнитное перемешивание; скорость перемешивания составляет 10-1000 об/мин, а время перемешивания составляет 1-10 ч. Предпочтительно, условия перемешивания предполагают магнитное перемешивание в течение 6-8 ч на скорости 600-800 об/мин.
В предпочтительном варианте, на этапе (2) скорость добавления этанола составляет 1-10 мл/мин; скорость добавления концентрированной аммиачной воды составляет 1-10 мл/мин; а скорость добавления смешанного раствора тетраэтил-ортосиликата и этанола составляет 1-20 мл/мин. Более предпочтительно, скорость добавления этанола составляет 4-6 мл/мин; скорость добавления концентрированной аммиачной воды составляет 4-6 мл/мин; а скорость добавления смешанного раствора тетраэтил-ортосиликата и этанола составляет 10-15 мл/мин.
Предпочтительно, на этапе (2) в смешанном растворе тетраэтил-ортосиликата и этанола массовое отношение первого ко второму составляет (1:5)-(1:10).
На этапе (3) условия сушки порошка предполагают его сушку в течение 10-30 ч при температуре 90-110°С; а условия измельчения порошка предполагают его просеивание через сито с размером ячеек 200 2-4 раза.
На этапе (4) условия предварительного спекания порошка предполагают, что температура предварительного спекания составляет 700-900°С, а время предварительного спекания составляет 0,5-5 ч; условия измельчения предполагают просеивание порошка через сито с размером ячеек 200 2-4 раза.
На этапе (5) давление холодного изостатического прессования составляет 100-200 МПа.
На этапе (5) температура спекания составляет 1600-1900°С.
Преимущества: по сравнению с известным уровнем техники данный способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора (ГНБ) имеет следующие преимущества:
(1) поверхность порошка ГНБ покрывают нанослоем SiO2 в режиме гидролиза тетраэтил-ортосиликата - данный способ является простым и низкозатратным;
(2) равномерное распределение спекающей добавки SiO2 достигается путем покрытия поверхности порошка ГНБ SiO2, а керамику высокой плотности из ГНБ получают в сочетании со спеканием без давления при высокой температуре. Устойчивость к воздействию высоких температур и рабочие характеристики ГНБ при высоких температурах улучшаются, в то время как используемое количество SiO2 сокращается.
Краткое описание чертежей
На фиг. 1 показан снимок ПЭМ (просвечивающего электронного микроскопа) поверхности порошка ГНБ, покрытого нанослоем SiO2 в опыте №2-1 согласно варианту 2 осуществления изобретения.
Подробное описание изобретения
Вариант 1 осуществления изобретения
10 г коммерчески доступного порошка ГНБ (с чистотой более 98% и размером частиц 1 микрон) добавляют в 1000 мл деионизированной воды и подвергают магнитному перемешиванию в течение 7 ч на скорости перемешивания 600 об/мин в магнитной мешалке, чтобы получить смешанный раствор порошка ГНБ и деионизированной воды. 100 мл этанола добавляют по каплям в смешанный раствор на скорости 5 мл/мин, а концентрированную аммиачную воду 28% масс. добавляют по каплям на скорости 5 мл/мин до тех пор, пока рН раствора не достигнет 9. После равномерного перемешивания раствора, данный смешанный раствор (массовое отношение тетраэтил-ортосиликата к этанолу 1:5) тетраэтил-ортосиликата и этанола медленно добавляют по каплям на скорости 8 мл/мин и перемешивают в магнитной мешалке до тех пор, пока мольное отношение Н2О к тетраэтил-ортосиликату (ТЭОС) не достигнет 8:1. Сосуд герметизируют поливинилхлоридной пленкой, и реакцию продолжают выполнять в течение 20 ч. Порошок фильтруют и сушат в течение 30 ч при температуре 90°С, и, после измельчения в ступке, трижды просеивают через сито с размером ячеек 200. Порошок предварительно спекают в течение 2 ч при температуре 900°С в печи высокого вакуума, повторно равномерно измельчают и трижды просеивают через сито с размером ячеек 200. Предварительно спеченный и измельченный порошок подвергают холодному изостатическому прессованию под давлением 180 МПа и спеканию без давления в среде N2. Температура спекания составляет 1900°С, а время теплового изолирования - 3 ч. После завершения опыта по спеканию, выполняют охлаждение и извлекают пробу. Вышеописанный опыт повторяют дважды, и эти опыты помечают как 1-1,1-2 и 1-3 соответственно.
Вариант 2 осуществления изобретения
10 г коммерчески доступного порошка ГНБ (с чистотой более 98% и размером частиц 3 микрон) добавляют в 1000 мл деионизированной воды и подвергают магнитному перемешиванию в течение 8 ч на скорости перемешивания 800 об/мин в магнитной мешалке, чтобы получить смешанный раствор порошка ГНБ и деионизированной воды. 100 мл этанола добавляют по каплям в смешанный раствор на скорости 8 мл/мин, а концентрированную аммиачную воду 28% масс. добавляют по каплям на скорости 8 мл/мин до тех пор, пока рН раствора не достигнет 9. После равномерного перемешивания раствора, данный смешанный раствор (массовое отношение тетраэтил-ортосиликата к этанолу 1:6) тетраэтил-ортосиликата и этанола медленно добавляют по каплям на скорости 10 мл/мин и перемешивают в магнитной мешалке до тех пор, пока мольное отношение Н2О к тетраэтил-ортосиликату (ТЭОС) не достигнет 7:1. Отверстие сосуда укупоривают поливинилхлоридной пленкой, и реакцию продолжают выполнять в течение 10 ч. Порошок фильтруют и сушат в течение 24 ч при температуре 100°С, и, после измельчения в ступке, трижды просеивают через сито с размером ячеек 200. Сухой порошок предварительно спекают в течение 4 ч при температуре 800°С в печи высокого вакуума, повторно равномерно измельчают после предварительного спекания и трижды просеивают через сито с размером ячеек 200. Предварительно спеченный и измельченный порошок подвергают холодному изостатическому прессованию под давлением 200 МПа и спеканию без давления в среде N2. Температура спекания составляет 1800°С, а время теплового изолирования - 3 ч. После завершения опыта по спеканию, выполняют охлаждение и извлекают пробу. Проба проходит исследование ПЭМ, результат которого показан на фиг. 1. Вышеописанный опыт повторяют дважды, и эти опыты помечают как 2-1, 2-2 и 2-3 соответственно.
Вариант 3 осуществления изобретения
10 г коммерчески доступного порошка ГНБ (с чистотой более 98% и размером частиц 5 микрон) добавляют в 1000 мл деионизированной воды и подвергают магнитному перемешиванию в течение 9 ч на скорости перемешивания 700 об/мин в магнитной мешалке, чтобы получить смешанный раствор порошка ГНБ и деионизированной воды. 100 мл этанола добавляют по каплям в смешанный раствор на скорости 10 мл/мин, а концентрированную аммиачную воду 28% масс. добавляют по каплям на скорости 10 мл/мин до тех пор, пока рН раствора не достигнет 9. После равномерного перемешивания раствора, данный смешанный раствор (массовое отношение тетраэтил-ортосиликата к этанолу 1:7) тетраэтил-ортосиликата и этанола медленно добавляют по каплям на скорости 12 мл/мин и перемешивают в магнитной мешалке до тех пор, пока мольное отношение Н2О к ТЭОС не достигнет 6:1. Сосуд герметизируют поливинилхлоридной пленкой, и реакцию продолжают выполнять в течение 15 ч. Порошок фильтруют и сушат в течение 20 ч при температуре 110°С, и, после измельчения в ступке, трижды просеивают через сито с размером ячеек 200. Сухой порошок предварительно спекают в печи высокого вакуума при температуре 900°С, повторно равномерно измельчают после предварительного спекания и трижды просеивают через сито с размером ячеек 200. Предварительно спеченный и измельченный порошок подвергают холодному изостатическому прессованию под давлением 150 МПа и спеканию без давления в среде N2. Температура спекания составляет 1800°С, а время теплового изолирования - 2 ч. После завершения опыта по спеканию, выполняют охлаждение и извлекают пробу. Вышеописанный опыт повторяют дважды, и эти опыты помечают как 3-1, 3-2 и 3-3 соответственно.
Вариант 4 осуществления изобретения
20 г коммерчески доступного порошка ГНБ (с чистотой более 98% и размером частиц 8 микрон) добавляют в 1000 мл деионизированной воды и подвергают магнитному перемешиванию в течение 7 ч на скорости перемешивания 900 об/мин в магнитной мешалке, чтобы получить смешанный раствор порошка ГНБ и деионизированной воды. 100 мл этанола добавляют по каплям в смешанный раствор на скорости 8 мл/мин, а концентрированную аммиачную воду 28% масс. добавляют по каплям на скорости 8 мл/мин до тех пор, пока рН раствора не достигнет 9. После равномерного перемешивания раствора, данный смешанный раствор (массовое отношение тетраэтил-ортосиликата к этанолу 1:8) тетраэтил-ортосиликата и этанола медленно добавляют по каплям на скорости 15 мл/мин и перемешивают в магнитной мешалке до тех пор, пока мольное отношение Н2О к ТЭОС не достигнет 5:1. Сосуд герметизируют поливинилхлоридной пленкой, и реакцию продолжают выполнять в течение 10 ч. Порошок фильтруют и сушат в течение 24 ч при температуре 100°С, и, после измельчения в ступке, трижды просеивают через сито с размером ячеек 200. Сухой порошок предварительно спекают в печи высокого вакуума в течение 5 ч при температуре 700°С, повторно равномерно измельчают после предварительного спекания и трижды просеивают через сито с размером ячеек 200. Предварительно спеченный и измельченный порошок подвергают холодному изостатическому прессованию под давлением 160 МПа и спеканию без давления в среде N2. Температура спекания составляет 1700°С, а время теплового изолирования - 2 ч. После завершения опыта по спеканию, выполняют охлаждение и извлекают пробу. Вышеописанный опыт повторяют дважды, и эти опыты помечают как 4-1, 4-2 и 4-3 соответственно.
Вариант 5 осуществления изобретения
10 г коммерчески доступного порошка ГНБ (с чистотой более 98% и размером частиц 10 микрон) добавляют в 1000 мл деионизированной воды и подвергают магнитному перемешиванию в течение 6 ч на скорости перемешивания 800 об/мин в магнитной мешалке, чтобы получить смешанный раствор порошка ГНБ и деионизированной воды. 100 мл этанола добавляют по каплям в смешанный раствор на скорости 5 мл/мин, а концентрированную аммиачную воду 28% масс. добавляют по каплям на скорости 5 мл/мин до тех пор, пока рН раствора не достигнет 9. После равномерного перемешивания раствора, данный смешанный раствор (массовое отношение тетраэтил-ортосиликата к этанолу 1:10) тетраэтил-ортосиликата и этанола медленно добавляют по каплям на скорости 20 мл/мин и перемешивают в магнитной мешалке до тех пор, пока мольное отношение Н2О к ТЭОС не достигнет 4:1. Сосуд герметизируют поливинилхлоридной пленкой, и реакцию продолжают выполнять в течение 5 ч. Порошок фильтруют и сушат в течение 24 ч при температуре 100°С, и, после измельчения в ступке, трижды просеивают через сито с размером ячеек 200. Сухой порошок предварительно спекают в печи высокого вакуума в течение 3 ч при температуре 900°С, повторно равномерно измельчают после предварительного спекания и трижды просеивают через сито с размером ячеек 200. Предварительно спеченный и измельченный порошок подвергают холодному изостатическому прессованию под давлением 140 МПа и спеканию без давления в среде N2. Температура спекания составляет 1600°С, а время теплового изолирования - 1 ч. После завершения опыта по спеканию, выполняют охлаждение и извлекают пробу. Вышеописанный опыт повторяют дважды, и эти опыты помечают как 5-1, 5-2 и 5-3 соответственно.
В заключение, в соответствии с настоящим изобретением, поверхность ГНБ равномерно покрывают SiO2 простым и практичным способом, чтобы достичь равномерного распределения SiO2 и ГНБ. Керамику высокой плотности из ГНБ (плотность более 80%) получают способом без приложения давления, что имеет большое значение для улучшения плотности и окислительной устойчивости ГНБ. Выступая в качестве материала, передающего волны, изоляционного, огнеупорного материала и т.д., керамика высокой плотности из гексагонального нитрида бора, которая изготавливается по новому способу для достижения уплотнения керамического материала из гексагонального нитрида бора путем равномерного покрытия поверхности порошка гексагонального нитрида бора нанослоем спекающей добавки SiO2 в сочетании со спеканием без давления при высокой температуре, имеет большие перспективы применения в таких областях, как авиационно-космическая промышленность.
В таблице 1 представлены размер частиц и содержание SiO2, покрывающего порошок ГНБ, и показатель качества порошка ГНБ после спекания согласно вариантам 1-5 осуществления изобретения
Claims (15)
1. Способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора (ГНБ), включающий следующие этапы:
(1) добавление порошка ГНБ в деионизированную воду и равномерное перемешивание порошка ГНБ для получения смеси порошка ГНБ и деионизированной воды;
(2) добавление этанола по каплям в смесь, полученную на этапе (1), при этом массовое отношение добавленного по каплям этанола к смеси составляло 0,08-0,1; добавление концентрированной аммиачной воды по каплям в смесь, чтобы pН раствора составлял 9-10; после равномерного перемешивания смеси, медленное добавление смешанного раствора тетраэтилортосиликата и этанола по каплям до тех пор, пока мольное отношение тетраэтилортосиликата в смешанном растворе к деионизированной воде на этапе (1) не достигнет (1:4)-(1:8); после добавления смешанного раствора по каплям, герметизация сосуда и осуществление реакции в течение 5-20 ч;
(3) после завершения реакции на этапе (2), фильтрация, сушка, измельчение и просеивание полученного порошка;
(4) предварительное спекание просеянного порошка, полученного на этапе (3), в печи высокого вакуума, и повторное равномерное измельчение и просеивание порошка после предварительного спекания;
(5) холодное изостатическое прессование порошка, полученного на этапе (4), его спекание без давления при высокой температуре в среде N2, а затем теплое изолирование в течение 1-3 ч для получения пробы;
(6) после завершения опыта по спеканию, охлаждение и извлечение пробы.
2. Способ по п. 1, отличающийся тем, что чистота порошка ГНБ составляет более 98%, а размер его частиц не превышает 10 микрон; массовое отношение порошка ГНБ к деионизированной воде составляет 0,008-0,015.
3. Способ по п. 1, отличающийся тем, что условия перемешивания на этапе (1) предполагают магнитное перемешивание; скорость перемешивания составляет 500-1000 об/мин, а время перемешивания составляет 1-10 ч.
4. Способ по п. 1, отличающийся тем, что на этапе (2) скорость добавления этанола составляет 1-10 мл/мин; скорость добавления концентрированной аммиачной воды составляет 1-10 мл/мин; а скорость добавления смешанного раствора тетраэтилортосиликата и этанола составляет 1-20 мл/мин.
5. Способ по п. 1, отличающийся тем, что на этапе (2) в смешанном растворе тетраэтилортосиликата и этанола массовое отношение первого ко второму составляет (1:5)-(1:10).
6. Способ по п. 1, отличающийся тем, что на этапе (3) условия сушки порошка предполагают его сушку в течение 10-30 ч при температуре 90-110°С; а условия измельчения порошка предполагают его просеивание через сито с размером ячеек 200-меш 2-4 раза.
7. Способ по п. 1, отличающийся тем, что на этапе (4) условия предварительного спекания порошка предполагают, что температура предварительного спекания составляет 700-900°С, а время предварительного спекания составляет 0,5-5 ч; условия измельчения предполагают просеивание порошка через сито с размером ячеек 200-меш 2-4 раза.
8. Способ по п. 1, отличающийся тем, что на этапе (5) давление холодного изостатического прессования составляет 100-200 МПа.
9. Способ по п. 1, отличающийся тем, что на этапе (5) температура спекания составляет 1600-1900°С.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410393724.7A CN104177091B (zh) | 2014-08-11 | 2014-08-11 | 一种高致密度六方氮化硼陶瓷材料的制备方法 |
CN2014103937247 | 2014-08-11 | ||
PCT/CN2014/084358 WO2016023200A1 (zh) | 2014-08-11 | 2014-08-14 | 一种高致密度六方氮化硼陶瓷材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2662488C1 true RU2662488C1 (ru) | 2018-07-26 |
Family
ID=51958476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016121911A RU2662488C1 (ru) | 2014-08-11 | 2014-08-14 | Способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора |
Country Status (7)
Country | Link |
---|---|
US (1) | US10106412B2 (ru) |
KR (1) | KR101821218B1 (ru) |
CN (1) | CN104177091B (ru) |
AU (1) | AU2014403693B2 (ru) |
GB (1) | GB2534530B (ru) |
RU (1) | RU2662488C1 (ru) |
WO (1) | WO2016023200A1 (ru) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104974817B (zh) * | 2015-06-08 | 2017-12-19 | 齐鲁工业大学 | 球形纳米二氧化硅包覆六方氮化硼复合粉体的制备方法 |
US11390527B2 (en) | 2017-12-28 | 2022-07-19 | Texas Instruments Incorporated | Multi-layered SP2-bonded carbon tubes |
US11938715B2 (en) | 2017-12-28 | 2024-03-26 | Texas Instruments Incorporated | SP2-bonded carbon structures |
US11370662B2 (en) * | 2017-12-28 | 2022-06-28 | Texas Instruments Incorporated | Hexagonal boron nitride structures |
US11254775B2 (en) | 2017-12-28 | 2022-02-22 | Texas Instruments Incorporated | Filler particles for polymers |
CN111171382B (zh) * | 2018-11-12 | 2021-02-19 | 北京化工大学 | 一种氮化硼纳米片原位负载纳米氧化硅杂化填料、制备方法及橡胶复合材料 |
US10748999B2 (en) | 2018-12-21 | 2020-08-18 | Texas Instruments Incorporated | Multi-super lattice for switchable arrays |
WO2021006310A1 (ja) * | 2019-07-11 | 2021-01-14 | 昭和電工株式会社 | シリカ被覆窒化ホウ素粒子の製造方法、シリカ被覆窒化ホウ素粒子 |
CN111848180A (zh) * | 2019-10-22 | 2020-10-30 | 齐鲁工业大学 | 一种氧化铝包覆立方氮化硼的复合粉体及其制备方法 |
CN111534287B (zh) * | 2019-12-22 | 2021-10-01 | 辽东学院 | 纳米SiO2包覆BN复合粉体、其制备方法和导热型材料 |
CN111689778B (zh) * | 2020-06-30 | 2023-01-17 | 哈尔滨工业大学 | 一种高致密SiBCN陶瓷材料及其制备方法 |
CN112919542B (zh) * | 2021-03-05 | 2024-04-19 | 赵琳琳 | 一种复合电镀用改性颗粒的制备方法 |
CN113511913B (zh) * | 2021-04-27 | 2022-09-23 | 中国科学院兰州化学物理研究所 | 一种仿生纤维独石结构氮化硼高温自润滑材料及其制备方法 |
CN114195538A (zh) * | 2021-12-24 | 2022-03-18 | 中国科学院上海硅酸盐研究所 | 一种致密六方氮化硼陶瓷材料的制备方法 |
CN114455597B (zh) * | 2022-02-17 | 2022-08-12 | 金三江(肇庆)硅材料股份有限公司 | 一种塑料薄膜用二氧化硅开口剂及其制备方法 |
CN114874006B (zh) * | 2022-05-19 | 2023-06-20 | 郑州大学 | 一种高熵复合陶瓷及其制备方法 |
CN115384137A (zh) * | 2022-06-15 | 2022-11-25 | 杭州汉美新材料有限公司 | 一种用于同轴电缆的阻燃铝塑复合带及其制备方法 |
CN115180957B (zh) * | 2022-07-11 | 2023-03-31 | 哈尔滨工业大学 | 一种具有优异热透波性能的六方氮化硼陶瓷的制备方法 |
CN115594509A (zh) * | 2022-09-27 | 2023-01-13 | 中国有色桂林矿产地质研究院有限公司(Cn) | 一种含棒晶结构的聚晶立方氮化硼复合材料及其制备方法和应用 |
CN116332654B (zh) * | 2023-03-23 | 2024-02-09 | 西安理工大学 | 一种具有类洋葱微结构的BN/SiBN/Si3N4/Si2N2O/Si3N4复合材料的制备方法 |
CN116751065B (zh) * | 2023-08-11 | 2023-11-03 | 山东博奥新材料技术有限公司 | 一种无压烧结氮化硼的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528326B1 (ru) * | 1970-09-21 | 1977-03-08 | ||
SU973510A1 (ru) * | 1979-08-27 | 1982-11-15 | Институт теплофизики СО АН СССР | Состав дл защитной огнеупорной обмазки |
WO2012027194A2 (en) * | 2010-08-25 | 2012-03-01 | Saint-Gobain Ceramics And Plastics, Inc. | Boron nitride with attached mettalic particles, methods of making, and uses thereof |
CN103819180A (zh) * | 2014-03-13 | 2014-05-28 | 哈尔滨工业大学 | 一种bn-mas陶瓷复合材料及其制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1448732A (en) * | 1973-04-10 | 1976-09-08 | Lucas Industries Ltd | Sintered ceramic articles |
CN1300056C (zh) * | 2005-07-19 | 2007-02-14 | 武汉理工大学 | 一种低温快速制备高纯六方氮化硼陶瓷材料的方法 |
CN100360471C (zh) * | 2005-12-14 | 2008-01-09 | 吉林大学 | 预水解制备核壳型无机纳米晶-二氧化硅复合粒子的方法 |
DE102008062155B4 (de) * | 2008-12-16 | 2015-08-27 | Henze Boron Nitride Products Ag | Verfahren zur Herstellung eines verfestigten, einsatzbereiten keramischen Sinterkörpers, Sinterkörper und Verwendung einer keramischen Masse |
CN101648809B (zh) * | 2009-09-25 | 2012-06-27 | 哈尔滨工业大学 | 氮化硼基复合陶瓷透波材料及其制备方法 |
CN103170327B (zh) * | 2011-12-23 | 2015-02-18 | 中国科学院大连化学物理研究所 | 一种具有核壳结构铬催化剂的合成方法 |
CN103193488B (zh) * | 2013-04-01 | 2015-03-04 | 漳州师范学院 | 无机纳米材料包覆的耐高温陶瓷抗菌剂及其制备技术 |
CN103553637B (zh) * | 2013-11-06 | 2015-01-21 | 禹州市和汇超硬材料有限公司 | 一种具有表面包覆结构的立方氮化硼聚晶复合材料及其制备方法 |
CN104844178B (zh) * | 2015-06-08 | 2016-09-21 | 齐鲁工业大学 | 添加球形纳米二氧化硅包覆六方氮化硼复合粉体的自润滑陶瓷刀具材料的制备方法 |
-
2014
- 2014-08-11 CN CN201410393724.7A patent/CN104177091B/zh not_active Expired - Fee Related
- 2014-08-14 US US15/100,837 patent/US10106412B2/en not_active Expired - Fee Related
- 2014-08-14 AU AU2014403693A patent/AU2014403693B2/en not_active Ceased
- 2014-08-14 GB GB1609488.0A patent/GB2534530B/en not_active Expired - Fee Related
- 2014-08-14 WO PCT/CN2014/084358 patent/WO2016023200A1/zh active Application Filing
- 2014-08-14 RU RU2016121911A patent/RU2662488C1/ru not_active IP Right Cessation
- 2014-08-14 KR KR1020167015455A patent/KR101821218B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528326B1 (ru) * | 1970-09-21 | 1977-03-08 | ||
SU973510A1 (ru) * | 1979-08-27 | 1982-11-15 | Институт теплофизики СО АН СССР | Состав дл защитной огнеупорной обмазки |
WO2012027194A2 (en) * | 2010-08-25 | 2012-03-01 | Saint-Gobain Ceramics And Plastics, Inc. | Boron nitride with attached mettalic particles, methods of making, and uses thereof |
CN103819180A (zh) * | 2014-03-13 | 2014-05-28 | 哈尔滨工业大学 | 一种bn-mas陶瓷复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US10106412B2 (en) | 2018-10-23 |
GB201609488D0 (en) | 2016-07-13 |
CN104177091A (zh) | 2014-12-03 |
GB2534530B (en) | 2017-01-25 |
GB2534530A (en) | 2016-07-27 |
AU2014403693B2 (en) | 2017-11-02 |
AU2014403693A1 (en) | 2016-06-16 |
KR101821218B1 (ko) | 2018-01-23 |
WO2016023200A1 (zh) | 2016-02-18 |
KR20160091922A (ko) | 2016-08-03 |
US20160304346A1 (en) | 2016-10-20 |
CN104177091B (zh) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2662488C1 (ru) | Способ изготовления керамического материала высокой плотности с использованием гексагонального нитрида бора | |
JP7412019B2 (ja) | 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法 | |
CN107188567B (zh) | 一种高热导率氮化铝陶瓷的制备方法 | |
CN102730690B (zh) | 一种Al4SiC4材料的合成方法 | |
US20120276365A1 (en) | Refractory Porous Ceramics | |
CN105272269A (zh) | 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法 | |
CN104649709A (zh) | 一种多孔碳化硅陶瓷的制造方法 | |
CN114804912A (zh) | 一种高韧性耐高温的定向排列氮化硅独石多孔陶瓷制备的方法 | |
CN109970443B (zh) | 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法 | |
CN101318636B (zh) | 一种原位氮化制备含六方氮化硼的复合材料的方法 | |
CN103466646B (zh) | 一种陶瓷硅酸镱粉体的固相反应制备方法 | |
Parya et al. | Co-precipitated ZnAl2O4 spinel precursor as potential sintering aid for pure alumina system | |
CN112341207B (zh) | 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法 | |
CN104418608B (zh) | 碳化硅多孔陶瓷的低温烧成方法 | |
CN116855113B (zh) | 一种高熵复合氧化物阻氢涂层及制备方法 | |
CN106747574B (zh) | 一种微波窑用Si2N2O透波-隔热一体化内衬材料及其制备方法 | |
CN117735994A (zh) | 一种具有蜂窝状定向结构的AlN多孔陶瓷制备方法 | |
RU2525892C1 (ru) | Способ получения кварцевой керамики | |
Tatli et al. | Low temperature densification of silicon nitride using Li2O-based surface coatings | |
RU2761797C1 (ru) | Способ изготовления композита титанат бария - феррит бария в алюминийсодержащих тиглях | |
CN104086183A (zh) | 一种气孔率可控多孔Si3N4的制备方法 | |
JP5067781B2 (ja) | 水和反応を利用したバインダーレス成形による無機材料成形体の製造方法及びその成形体 | |
JP2543408B2 (ja) | セラミックス製断熱部材及びその製造方法 | |
CN115959893B (zh) | 一种低成本非金属矿质微波介质陶瓷材料及其制备方法 | |
Yokoi et al. | Preparing dense Yb2SiO5 sintered bodies from Yb–Si–O powder synthesized by the polymerizable complex method and appropriate calcination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200815 |