RU2650410C1 - Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения - Google Patents

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения Download PDF

Info

Publication number
RU2650410C1
RU2650410C1 RU2017124151A RU2017124151A RU2650410C1 RU 2650410 C1 RU2650410 C1 RU 2650410C1 RU 2017124151 A RU2017124151 A RU 2017124151A RU 2017124151 A RU2017124151 A RU 2017124151A RU 2650410 C1 RU2650410 C1 RU 2650410C1
Authority
RU
Russia
Prior art keywords
scandium
divinylbenzene
styrene
tributyl phosphate
isododecane
Prior art date
Application number
RU2017124151A
Other languages
English (en)
Inventor
Дмитрий Алексеевич Кондруцкий
Евгений Владимирович Кириллов
Владимир Николаевич Рычков
Сергей Владимирович Кириллов
Григорий Михайлович Буньков
Евгений Сергеевич Востров
Виталий Александрович Третьяков
Гаджи Рабаданович Гаджиев
Николай Анатольевич Попонин
Денис Валерьевич Смышляев
Original Assignee
Акционерное общество "Аксион - Редкие и Драгоценные Металлы"
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Акционерное общество "Далур"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Аксион - Редкие и Драгоценные Металлы", Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина", Акционерное общество "Далур" filed Critical Акционерное общество "Аксион - Редкие и Драгоценные Металлы"
Priority to RU2017124151A priority Critical patent/RU2650410C1/ru
Application granted granted Critical
Publication of RU2650410C1 publication Critical patent/RU2650410C1/ru
Priority to PCT/RU2018/050070 priority patent/WO2019009768A1/ru
Priority to AU2018297906A priority patent/AU2018297906B2/en
Priority to CA3064860A priority patent/CA3064860A1/en
Priority to CN201880033668.2A priority patent/CN110741102B/zh
Priority to US16/615,943 priority patent/US11505632B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/092Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой. При этом он дополнительно содержит три-н-октилфосфиноксид, трибутилфосфат, изододекан при следующем соотношении компонентов, мас.%: ди-(2-этилгексил)фосфорная кислота 32,0-37,5, три-н-октилфосфиноксид 4,2-8,0, трибутилфосфат 0,8-1,7, изододекан 16,7-20,0, стиролдивинилбензол остальное, причем соотношение между стиролом и дивинилбензолом в матрице равно 75-80 к 20-25 мас. %. Предложен также способ получения вышеуказанного ТВЭКС. Технический результат заключается в получении селективного к скандию ТВЭКС с высокой динамической обменной емкостью. 2 н.п. ф-лы, 2 пр.

Description

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов в экстракционных процессах гидрометаллургического производства после извлечения урана, никеля, меди или других металлов при их добыче методом подземного выщелачивания.
В настоящее время для извлечения скандия известны фосфорсодержащие ионообменные смолы, импрегнированные сорбенты (импрегнаты) и твердые экстрагенты (ТВЭКСы). При этом ионообменные смолы, импрегнаты и ТВЭКСы имеют как присущие им достоинства, так и свои недостатки.
Известен способ получения сорбента для селективного извлечения ионов скандия с пространственно-затрудненной группой α-гидроксифосфоновой кислоты путем ацилирования сополимера стирола с дивинилбензолом в присутствии катализатора Фриделя-Крафтса с последующим фосфорилированием ацилированного сополимера треххлористым фосфором. Сорбент, полученный по заявленному способу, обладает значительно большим сродством к скандию, чем к железу (III) (RU 2531916, 26.04.2013).
Недостатком данного способа получения сорбента является его невысокая емкость при извлечении скандия, что обусловлено низкой степенью доступности функциональных групп за счет стерических затруднений, создаваемых полимерной матрицей, а также за счет значительной сорбции ионов урана и тория из сульфатных растворов, что затрудняет использование полученного по данному способу сорбента для извлечения скандия из растворов, содержащих уран и торий.
Известны полимерные импрегнированные сорбенты (импрегнаты), содержащие экстрагент и полимерную смолу, для извлечения редкоземельных металлов, в том числе скандия из растворов выщелачивания. Экстрагент может быть катионный, анионный или неионогенный. Полимерная смола может быть без функциональных групп или с сульфогруппами, карбоксильными, иминодиуксусными, фосфорнокислыми или аминогруппами. Способ получения импрегнированных сорбентов включает насыщение полимерной смолы в растворе экстрагента, отделение насыщенной экстрагентом смолы от раствора на фильтре и сушку насыщенной экстрагентом смолы для удаления остатков растворителя (WO 2017074921, 04.05.2017).
Недостатком данных импрегнированных полимерных сорбентов, полученных методом пропитки раствором экстрагента полимерных смол, является повышенная склонность к вымыванию экстрагента в мобильную фазу при эксплуатации сорбентов, что сокращает срок службы сорбента и приводит к нежелательному образованию «хвоста», загрязняющего экстрагентом исходные растворы и получаемые скандиевые концентраты.
В настоящее время наиболее перспективными сорбентами для извлечения скандия из продуктивных сернокислых растворов являются твердые экстрагенты (ТВЭКСы). Проведено сравнительное изучение селективности ТВЭКСов с различными экстрагентами по отношению к скандию, содержащемуся в сернокислом растворе выщелачивания урановых руд. Исследованы характеристики таких ТВЭКСов, содержащих в качестве экстрагентов ди-2-этилгексилфосфорную кислоту, ди-(2,4,4-триметилпентил)фосфиновую кислоту, аминометилфосфоновую кислоту, полученные сополимеризацией указанных экстрагентов в смеси со стиролом и дивинилбензолом. В результате исследований сделан вывод, что ТВЭКСы на основе ди-2-этилгексилфосфорной кислоты обладают высокой селективностью и емкостью к скандию в диапазоне pH 1,1-2,0 возвратного раствора, что позволяет снизить расход реагентов на корректирование pH, обеспечить высокую степень извлечения, а также получение более чистого конечного раствора скандия, направляемого на получение товарного соединения (RU 2417267, 17.09.2009; RU 2613246, 09.06.2016; RU 2612107, 22.07.2015).
На основе анализа известного уровня техники перспективным представляется синтез сорбентов-ТВЭКСов для извлечения скандия на основе ди-2-этилгексилфосфорной кислоты, которые по комплексу показателей (цена, pH сорбции скандия, емкость и селективность) являются вполне приемлемыми для производственных нужд.
Наиболее близким по технической сущности и достигаемому результату является способ получения сорбента (ТВЭКСа) для селективного извлечения скандия, включающий получение исходной смеси компонентов, содержащей фосфорорганическое соединение (ди-2-этилгексилфосфорную кислоту), инициатор полимеризации, стирол и дивинилбензол, интенсивное перемешивание смеси и выдержку с последующим повышением температуры до 90°С и выдержкой при этой температуре при перемешивании, охлаждение реакционной смеси, фильтрацию полученного продукта, промывку и сушку (RU 2487184, 03.11.2011).
Основными недостатками известного сорбента и способа его получения являются низкая динамическая обменная емкость, связанная с образованием в процессе синтеза закрытых микропор и отсутствием макропор, что приводит к низкой кинетике сорбции, а следовательно, и динамической обменной емкости, а также дороговизна и низкая промышленная доступность краун-эфиров (дибензо-18-краун-6), что затрудняет использование сорбента и способа его получения в промышленных масштабах и делает нерентабельным промышленный процесс извлечения скандия из растворов подземного выщелачивания, например, урановых руд.
Задачей предлагаемого изобретения является разработка сорбента (ТВЭКС) с высокой динамической обменной емкостью для извлечения скандия и технологичного способа его получения. Высокая динамическая обменная емкость позволяет проводить процесс сорбции скандия при удельных нагрузках 10 и более колоночных объемов в час и уменьшить объем смолы, загружаемой в колонну, что в свою очередь приводит к увеличению удельного количества снимаемого при десорбции скандия с единицы объема смолы, что положительно сказывается на рентабельности процесса извлечения скандия из растворов подземного выщелачивания.
Поставленная задача решается описываемым способом получения твердого экстрагента (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, который включает получение смеси исходных компонентов, содержащей фосфорорганическое соединение на основе ди-2-этилгексилфосфорной кислоты, стирол и дивинилбензол, диспергирование смеси в 0,7% растворе крахмала в воде при интенсивном перемешивании смеси, выдержку с последующим повышением температуры до 90°С и выдержку при этой температуре при перемешивании, охлаждение реакционной смеси, промывку продукта, при этом к смеси стирола, дивинилбензола, ди-2-этилгексилфосфорной кислоты добавляют три-н-октилфосфиноксид, трибутилфосфат, изододекан, пероксид бензоила при следующем соотношении компонентов, мас.%:
ди-(2-этилгексил)фосфорная кислота 8,74-9,93
три-н-октилфосфиноксид 1,10-2,18
трибутилфосфат 0,22-0,44
пероксид бензоила 0,22-0,25
изододекан 4,41-5,46
0,7%-ный раствор крахмала в воде 72,48-73,26
стирол 8,03-8,48
дивинилбензол 2,12-2,68
повышение температуры осуществляют со скоростью 0,5°С/мин, выдержка при 80°С составляет 5 ч, выдержка при 90°С - 2 ч.
В настоящее время из патентной и научно-технической литературы не известен твердый экстрагент для извлечения скандия из скандийсодержащих растворов с предлагаемым количественным соотношением компонентов, а также способ его получения.
В объеме вышеуказанной совокупности признаков достигается технический результат, поскольку при проведении процесса в заявленных условиях обеспечивается образование открытых макропор за счет использования изододекана, обладающего расслаивающими свойствами для мономер-полимерной смеси при проведении полимеризации, создается необходимое внутреннее поровое пространство, три-н-октилфосфиноксид и трибутилфосфат выступают интермедиатами, увеличивающими скорость комплексообразования ди-2-этилгексилфосфорной кислоты со скандием, что в свою очередь приводит к увеличению кинетики и динамической обменной емкости ТВЭКС.
Не ограничивая себя определенной теорией, можно предположить следующее.
Изододекан является хорошим растворителем для стирола и дивинилбензола, однако, не растворяет стиролдивинилбензольный полимер, который в процессе синтеза выпадает из гомогенной смеси и приводит к агрегации раствора экстрагента в микрокапли, которые впоследствии образуют макропоры гранулы, улучшающие кинетику сорбции скандия. С другой стороны добавка три-н-октилфосфиноксида и трибутилфосфата также меняет коэффициент поверхностного натяжения на границе раздела фаз полимер-мономерная смесь, приводя к формированию более проникающей для скандийсодержащего раствора полимерной структуры по сравнению со способом, описанным в прототипе. Остатки растворителя после синтеза внутри гранул ТВЭКС положительно влияют на кинетику сорбции, благодаря снижению вязкости ди-2-этилгексилфосфорной кислоты и увеличению подвижности функциональных групп, что положительно сказывается на скорости формирования комплексных соединений с ионами скандия. Другим возможным объяснением положительного влияния на кинетику сорбции и динамическую обменную емкость добавки соединений три-н-октилфосфиноксида и трибутилфосфата является их поляризующий эффект, приводящий к снижению энергии комплексообразования скандия с ди-2-этилгексилфосфорной кислотой, что увеличивает скорость поглощения скандия ТВЭКСом.
В способе-прототипе полученный ТВЭКС является полимером с гелевой структурой матрицы, в которой отсутствует свободный внутренний объем, что снижает динамическую обменную емкость.
В отличие от прототипа ТВЭКС, полученный в соответствии с заявленным способом, имеет свободный внутренний объем. Для образования внутреннего порового пространства в реакционную массу вводят изододекан.
Все упомянутое выше принципиально отличает полученный нами ТВЭКС и способ его получения от ТВЭКСа и способа получения, известного из прототипа. Предлагаемый способ может быть осуществлен следующим образом. В емкости, снабженной холодильником и механическим перемешивающим устройством, готовят дисперсионную среду (0,7% раствор крахмала в дистиллированной воде) при интенсивном перемешивании и нагревании до 90°С с последующим охлаждением охлаждают до 55°С со скоростью 1°С/мин.
В отдельной емкости, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь путем последовательного смешивания при работающей мешалке стирола, дивинилбензола, пероксида бензоила, ди-2-этилгексилфосфорной кислоты, три-н-октилфосфиноксида, трибутилфосфата и изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.
Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в емкости, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:
ди-(2-этилгексил)фосфорная кислота 8,74-9,93
три-н-октил фосфиноксид 1,10-2,18
трибутилфосфат 0,22-0,44
пероксид бензоила 0,22-0,25
изододекан 4,41-5,46
0,7%-ный раствор крахмала в воде 72,48-73,26
стирол 8,03-8,48
дивинилбензол 2,12-2,68
При работающей мешалке полимеризационную смесь тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.
Далее реакционную массу охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала деионизированной водой при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.
Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм.
Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):
ди-(2-этилгексил)фосфорная кислота 32,0-37,5
три-н-октилфосфиноксид 4,2-8,0
трибутилфосфат 0,8-1,7
изододекан 16,7-20,0
стиролдивинилбензол остальное
при этом соотношение между стиролом и дивинилбензолом в матрице равно 75-80 к 20-25 мас.%.
Ниже приведены конкретные примеры, не ограничивающие, а лишь иллюстрирующие возможность осуществления изобретения.
Пример.
Пример 1. В трехгорлой колбе объемом 5 л, снабженной холодильником и механическим перемешивающим устройством, погруженной в обогреваемую баню, готовят дисперсионную среду (0,7% раствор крахмала). Для этого загружают 2,59 л дистиллированной воды и нагревают до 90°С. Далее при работающей мешалке загружают 2,02 г суспензии крахмала в 300 мл воды. Перемешивают в течение 10 минут и охлаждают до 55°С со скоростью 1°С/мин.
Отдельно в трехгорлой колбе объемом 2 л, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь.
При работающей мешалке последовательно смешивают 0,3205 кг стирола (без удаления ингибитора), 0,1068 кг дивинилбензола (без удаления ингибитора), 0,0087 кг пероксида бензоила, 0,3488 кг ди-2-этилгексилфосфорной кислоты, 0,0872 кг три-н-октилфосфиноксида, 0,0087 кг трибутилфосфата и 0,218 кг изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.
Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в трехгорлой колбе, объемом 5 л, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:
ди-(2-этилгексил)фосфорная кислота 8,74
три-н-октилфосфиноксид 2,18
трибутилфосфат 0,22
пероксид бензоила 0,22
изододекан 5,46
0,7%-ный раствор крахмала в воде 72,48
стирол 8,03
дивинилбензол 2,68
При работающей мешалке полимеризационную смесь, полученную в 2 л трехгорлой колбе, тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.
Далее реакционную массу в 5 л трехгорлой колбе охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала 2,5 кг деионизированной воды при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.
Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм. Выход твердого экстрагента составляет 1,1 кг.
Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):
ди-(2-этилгексил)фосфорная кислота 32,0
три-н-октилфосфиноксид 8,0
трибутилфосфат 0,8
изододекан 20,0
стиролдивинилбензол 39,2
при этом соотношение между звеньями стирола и дивинилбензола в матрице равно 75:25.
Пример 2. В трехгорлой колбе объемом 5 л, снабженной холодильником и механическим перемешивающим устройством, погруженной в обогреваемую баню, готовят дисперсионную среду (0,7% раствор крахмала). Для этого загружают 2,59 л дистиллированной воды и нагревают до 90°С. Далее при работающей мешалке загружают 2,02 г суспензии крахмала в 300 мл воды. Перемешивают в течение 10 минут и охлаждают до 55°С со скоростью 1°С/мин.
Отдельно в трехгорлой колбе объемом 2 л, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь. При работающей мешалке последовательно смешивают 0,3348 кг стирола (без удаления ингибитора), 0,0837 кг дивинилбензола (без удаления ингибитора), 0,0099 кг пероксида бензоила, 0,3924 кг ди-2-этилгексилфосфорной кислоты, 0,0436 кг три-н-октилфосфиноксида, 0,0174 кг трибутилфосфата и 0,1744 кг изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.
Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в трехгорлой колбе, объемом 5 л, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:
ди-(2-этилгексил)фосфорная кислота 9,93
три-н-октилфосфиноксид 1,10
трибутилфосфат 0,44
пероксид бензоила 0,25
изододекан 4,41
0,7%-ный раствор крахмала в воде 73,26
стирол 8,48
дивинилбензол 2,12
При работающей мешалке полимеризационную смесь, полученную в 2 л трехгорлой колбе, тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.
Далее реакционную массу в 5 л трехгорлой колбе охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала 2,5 кг деионизированной воды при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.
Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм. Выход твердого экстрагента составляет 1,0 кг.
Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):
ди-(2-этилгексил)фосфорная кислота 37,5
три-н-октилфосфиноксид 4,2
трибутилфосфат 1,7
изододекан 16,7
стиролдивинилбензол 39,9
при этом соотношение между звеньями стирола и дивинилбензола в матрице равно 80:20.
Исследование свойств полученного ТВЭКС на динамическую обменную емкость по скандию представлено ниже.
Определение динамической обменной емкости по скандию.
Испытания сорбентов, полученных по примерам 1 и 2, проводили в динамических условиях сорбции скандия из сульфатного раствора, моделирующего раствор подземного выщелачивания урановой руды. Состав сульфатного раствора мг/л: Na - 1568,2; K - 122,4; В - 22,1; Са - 487,4; Mg - 412,5; Al - 1191,2; Mo - 1,2; Fe - 1110,2; V - 21,0; Sc - 0,7; Y - 7,3; La - 3,8; Ce - 9,8; Pr - 1,5; Nd - 6,7; Sm - 1,5; Eu - 0,4; Gd - 1,6; Tb - 0,2; Dy - 1,2; Ho - 0,2; Er - 0,6; Tm - 0,1; Yb - 0,5; Lu - 0,1; U - 1,4; Th - 1,7; P - 4,9; H2SO4 – 7500; pH=1,3-1,4.
Для проведения испытаний использовалась лабораторная установка, состоящая из перистальтического насоса, емкости с исходным раствором, вместимостью не менее 5 дм3, стеклянной колонки с внутренним диаметром 7±1 мм и высотой 120±5 мм, в нижнюю часть которой впаяна стеклянная пластина из пористого стекла, не пропускающая зерен ТВЭКС и обладающая малым сопротивлением фильтрации, и емкости-приемника.
Испытания проводили по следующей методике.
ТВЭКС отмеряют мерным цилиндром, объемом 10 см3, несколько раз уплотняя его, постукивая дном цилиндра о деревянную поверхность, и добиваются объема сорбента в мерном цилиндре 2,7 см3. Количественно переносят ТВЭКС в колонку (соотношение диаметра колонки к высоте слоя загрузки ТВЭКС 1:10) с помощью подкисленной до pH=1,8 серной кислотой дистиллированной воды. Запирают слой ТВЭКСа, предотвращая его всплытие при проведении эксперимента, уплотняя сверху слой фторопластовой стружкой. Следят за тем, чтобы между гранул не попали пузырьки воздуха. Сливают избыток раствора из колонки, оставляя над слоем сорбента объем раствора 10-15 мм.
Подключают шланг для подачи раствора к верхней части колонки. Включают насос, установив расход рабочего раствора для насыщения, равный 10 колоночным объемам в час (27 мл/ч). Включают подачу рабочего раствора. Каждые 2 часа отбирают порции фильтрата, измеряя их объем с точностью до 0,1 см3. От каждой порции фильтрата, а также исходного раствора, отбирают пробы и контролируют в ходе проведения эксперимента появление скандия в фильтратах. Завершают эксперимент при появлении проскока по скандию в фильтрате, равного 10% от исходной концентрации скандия.
По результатам анализов проб рассчитывают значение динамической обменной емкости по скандию ДОЕ(Sc) (в мг/см3) по формуле:
Figure 00000001
где V1 - общий объем рабочего скандийсодержащего раствора, пропущенный через колонну с сорбентом до достижения в фильтрате 10% от исходной концентрации скандия в растворе, дм3;
С(Sc)исх - концентрация скандия в исходном рабочем растворе, мг/дм3;
VC - объем сорбента в колонке, см3.
По результатам испытаний ДOE(Sc) для ТВЭКСов из примеров 1 и 2 составила 2,0 и 1,8 мг/см3, соответственно, что в 2,6-2,8 раза больше ДОЕ(Sc) для ТВЭКС по прототипу (0,7 мг/см3).
Таким образом, проведенные нами исследования показали, что ТВЭКС, полученный в соответствии с заявленным способом, обеспечивает повышенную динамическую обменную емкость при извлечении скандия из сульфатных растворов. Помимо этого, способ получения ТВЭКС характеризуется технологичностью, а сам ТВЭКС промышленной применимостью для извлечения скандия из растворов подземного выщелачивания урановых руд.

Claims (6)

1. Твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий матрицу из стиролдивинилбензола с фосфорорганическим соединением на основе ди-2-этилгексилфосфорной кислоты, отличающийся тем, что он дополнительно содержит три-н-октилфосфиноксид, трибутилфосфат, изододекан при следующем соотношении компонентов, мас.%:
ди-(2-этилгексил)фосфорная кислота 32,0-37,5 три-н-октилфосфиноксид 4,2-8,0 трибутилфосфат 0,8-1,7 изододекан 16,7-20,0 стиролдивинилбензол остальное
при этом отношение стирола и дивинилбензола в матрице составляет 75-80 : 20-25 мас.%.
2. Способ получения твердого экстрагента (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, включающий получение смеси исходных компонентов, содержащей фосфорорганическое соединение на основе ди-2-этилгексилфосфорной кислоты, стирол и дивинилбензол, диспергирование смеси в 0,7%-ном растворе крахмала в воде при интенсивном перемешивании смеси, выдержку с последующим повышением температуры до 90°C и выдержку при этой температуре при перемешивании, охлаждение реакционной смеси и промывку продукта, отличающийся тем, что к смеси стирола, дивинилбензола и ди-2-этилгексилфосфорной кислоты добавляют три-н-октилфосфиноксид, трибутилфосфат, изододекан и пероксид бензоила при следующем соотношении компонентов, мас.%:
ди-(2-этилгексил)фосфорная кислота 8,74-9,93 три-н-октилфосфиноксид 1,10-2,18 трибутилфосфат 0,22-0,44 пероксид бензоила 0,22-0,25 изододекан 4,41-5,46 0,7%-ный раствор крахмала в воде 72,48-73,26 стирол 8,03-8,48 дивинилбензол 2,12-2,68
а температуру повышают со скоростью 0,5°C/мин с выдержкой в течение 5 часов при 80°C и выдержкой в течение 2 часов при 90°C.
RU2017124151A 2017-07-07 2017-07-07 Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения RU2650410C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2017124151A RU2650410C1 (ru) 2017-07-07 2017-07-07 Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения
PCT/RU2018/050070 WO2019009768A1 (ru) 2017-07-07 2018-06-28 Твердый экстрагент для извлечения скандия и способ его изготовления
AU2018297906A AU2018297906B2 (en) 2017-07-07 2018-06-28 Solid extractant for the recovery of scandium and method for producing same
CA3064860A CA3064860A1 (en) 2017-07-07 2018-06-28 Solid extracting agent with high dynamic exchange capacity for extraction of scandium and method of its production
CN201880033668.2A CN110741102B (zh) 2017-07-07 2018-06-28 用于萃取钪的固体萃取剂及其生产方法
US16/615,943 US11505632B2 (en) 2017-07-07 2018-06-28 Solid extracting agent with high dynamic exchange capacity for extraction of scandium and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017124151A RU2650410C1 (ru) 2017-07-07 2017-07-07 Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Publications (1)

Publication Number Publication Date
RU2650410C1 true RU2650410C1 (ru) 2018-04-13

Family

ID=61976683

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017124151A RU2650410C1 (ru) 2017-07-07 2017-07-07 Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Country Status (6)

Country Link
US (1) US11505632B2 (ru)
CN (1) CN110741102B (ru)
AU (1) AU2018297906B2 (ru)
CA (1) CA3064860A1 (ru)
RU (1) RU2650410C1 (ru)
WO (1) WO2019009768A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527552B (zh) * 2021-07-08 2022-04-05 北京科技大学 一种修饰二烷基次膦酸官能团的氯球改性方法
CN116272891A (zh) * 2022-12-02 2023-06-23 厦门紫金矿冶技术有限公司 一种盐湖提锂吸附材料的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2063458C1 (ru) * 1994-09-29 1996-07-10 Московская государственная академия тонкой химической технологии им.М.В.Ломоносова Экстрагент для извлечения скандия
CN1127791A (zh) * 1995-11-08 1996-07-31 北京大学 一种从含钪稀土混合物中富集和制备高纯钪的方法
WO2008101396A1 (fr) * 2007-02-08 2008-08-28 General Research Institute For Nonferrous Metals Procédé de prétraitement d'un solvant d'extraction organique, produit prétraité et son utilisation
RU2008144647A (ru) * 2008-11-11 2010-05-20 ООО "Далматовский скандий" (RU) Способ извлечения скандия из техногенных растворов производства урана, никеля, меди
CN102011010A (zh) * 2009-09-07 2011-04-13 杨秋良 用钛白水解废酸浸取含钒钢渣全萃取钒、镓和钪的方法
RU2417267C1 (ru) * 2009-09-17 2011-04-27 Закрытое акционерное общество "Далур" СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ, ТВЕРДЫЙ ЭКСТРАГЕНТ (ТВЭКС) ДЛЯ ЕГО ИЗВЛЕЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТВЭКСа
RU2487184C1 (ru) * 2011-11-03 2013-07-10 Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН Твердый экстрагент для извлечения скандия и способ его получения

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679158B2 (ja) 2010-07-05 2015-03-04 信越化学工業株式会社 希土類金属の溶媒抽出用有機相の製造方法
RU2531916C1 (ru) 2013-04-26 2014-10-27 Закрытое Акционерное Общество "Аксион-Редкие И Драгоценные Металлы" Способ получения сорбента для селективного извлечения ионов скандия
RU2612107C2 (ru) 2015-07-22 2017-03-02 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ извлечения скандия из скандийсодержащего продуктивного раствора
CN106702180B (zh) * 2015-07-29 2018-09-18 王艳良 一种钪元素的萃取方法
EP3369097B1 (en) 2015-10-30 2022-06-29 II-VI Incorporated Method and usage of composite extractant-enhanced polymer resin for extraction of valuable metal
RU2613246C1 (ru) 2016-06-09 2017-03-15 Акционерное общество "Научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" (АО "Гипроцветмет") Способ извлечения скандия из продуктивных растворов
CN106521153B (zh) 2016-11-17 2018-08-03 中国科学院长春应用化学研究所 含氨基中性膦萃取剂用于萃取分离铀的用途和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2063458C1 (ru) * 1994-09-29 1996-07-10 Московская государственная академия тонкой химической технологии им.М.В.Ломоносова Экстрагент для извлечения скандия
CN1127791A (zh) * 1995-11-08 1996-07-31 北京大学 一种从含钪稀土混合物中富集和制备高纯钪的方法
WO2008101396A1 (fr) * 2007-02-08 2008-08-28 General Research Institute For Nonferrous Metals Procédé de prétraitement d'un solvant d'extraction organique, produit prétraité et son utilisation
RU2008144647A (ru) * 2008-11-11 2010-05-20 ООО "Далматовский скандий" (RU) Способ извлечения скандия из техногенных растворов производства урана, никеля, меди
CN102011010A (zh) * 2009-09-07 2011-04-13 杨秋良 用钛白水解废酸浸取含钒钢渣全萃取钒、镓和钪的方法
RU2417267C1 (ru) * 2009-09-17 2011-04-27 Закрытое акционерное общество "Далур" СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ, ТВЕРДЫЙ ЭКСТРАГЕНТ (ТВЭКС) ДЛЯ ЕГО ИЗВЛЕЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТВЭКСа
RU2487184C1 (ru) * 2011-11-03 2013-07-10 Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН Твердый экстрагент для извлечения скандия и способ его получения

Also Published As

Publication number Publication date
CN110741102A (zh) 2020-01-31
US11505632B2 (en) 2022-11-22
AU2018297906A1 (en) 2019-11-21
CA3064860A1 (en) 2019-01-10
AU2018297906B2 (en) 2023-11-02
US20200270721A1 (en) 2020-08-27
CN110741102B (zh) 2021-12-07
WO2019009768A1 (ru) 2019-01-10

Similar Documents

Publication Publication Date Title
RU2650410C1 (ru) Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения
Vigneau et al. Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides (III) separation
CN109293938A (zh) 制备金属骨架化合物结合分子印迹聚合物的复合材料
CN111471147A (zh) 双模板分子氨基功能化金属有机骨架印迹聚合物及其合成方法和应用
Tang et al. Effect of support properties on preparation process and adsorption performances of solvent impregnated resins
CN106076288B (zh) 一种多孔离子/分子印迹聚合物的制备方法
EP2997073B1 (en) Sulfonyl-containing polymers based on free-radically polymerizable spirobisindane monomers
CN107090059A (zh) 一种水相应用的表面分子印迹聚合物的制备方法
CN101274154A (zh) 表面被含萃取剂的离子液膜覆盖的浸渍树脂及其制法和应用
RU2487184C1 (ru) Твердый экстрагент для извлечения скандия и способ его получения
CN106146716A (zh) 一种原花青素b2分子印迹聚合物及其制备方法和应用
CN106927482B (zh) 一种超稳y型分子筛的制备方法
Zulfikar et al. Separation of yttrium from aqueous solution using ionic imprinted polymers
CN110343222A (zh) 用于分离高铼酸根离子的温敏性离子印迹聚合物及其制备方法和应用
EP3105268B1 (en) Crosslinked polymers prepared from functional monomers and use thereof
CN113292676B (zh) 一种选择性分离富集鬼臼毒素复合材料及其制备方法
CN102172516A (zh) 一种树脂包覆硅胶吸附新材料
CN105749879B (zh) 一种孔道填充型分子/离子双位点印迹聚合物的制备方法
CN114456399A (zh) 一种四齿氮含氟金属有机框架材料及其制备方法和应用
CN110885394B (zh) 一种三嗪基团修饰的大孔树脂及其制备方法
CN110508262B (zh) 一种铅镉离子印迹磁性sba-15微粒及其制备方法
Akser et al. Synthesis of new phosphonate ester resins for adsorption of gold from alkaline cyanide solution
KR100500730B1 (ko) 희토류 원소의 추출분리를 위한 추출수지의 제조방법
EP0252912A1 (en) FIXED EXTRACTORS.
CN108350527A (zh) 从含磷酸的水性溶液中提取和回收铀的方法