RU2620085C2 - Ионные жидкости на фосфониевой основе и катализаторы алкилирования, их содержащие - Google Patents

Ионные жидкости на фосфониевой основе и катализаторы алкилирования, их содержащие Download PDF

Info

Publication number
RU2620085C2
RU2620085C2 RU2015124038A RU2015124038A RU2620085C2 RU 2620085 C2 RU2620085 C2 RU 2620085C2 RU 2015124038 A RU2015124038 A RU 2015124038A RU 2015124038 A RU2015124038 A RU 2015124038A RU 2620085 C2 RU2620085 C2 RU 2620085C2
Authority
RU
Russia
Prior art keywords
ionic liquid
catalyst
compound
formula
carbon atoms
Prior art date
Application number
RU2015124038A
Other languages
English (en)
Other versions
RU2015124038A (ru
Inventor
Сюзи К. МАРТИНЗ
Дуглас А. НАФИС
Алакананда БХАТТАЧАРИИЯ
Original Assignee
Сайтек Индастриз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сайтек Индастриз, Инк. filed Critical Сайтек Индастриз, Инк.
Publication of RU2015124038A publication Critical patent/RU2015124038A/ru
Application granted granted Critical
Publication of RU2620085C2 publication Critical patent/RU2620085C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/22Aliphatic saturated hydrocarbons with more than fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0287Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
    • B01J31/0288Phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/125Compounds comprising a halogen and scandium, yttrium, aluminium, gallium, indium or thallium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к галогеналюминатному соединению четвертичного фосфония формулы (I), в которой R1-R3 представляют собой одинаковые алкильные группы, содержащие от 1 до 8 атомов углерода, R4 отличается от R1-R3 и выбран из С412 алкилов, а X представляет собой галоген. Также изобретение относится к катализатору в виде ионной жидкости, предназначенному для проведения реакции олефинов с изопарафинами для образования алкилата, содержащему указанное соединение. Данная ионная жидкость не требует использования экстремальных температур. 2 н. и 14 з.п. ф-лы, 4 табл., 30 пр., 4 ил.
Figure 00000002

Description

Заявление приоритета
Данная заявка заявляет преимущества предварительных заявок США №№61/664,385; 61/664,405; и 61/664,430; которые были поданы 26 июня 2012 года.
Область техники, к которой относится изобретение
Данное изобретение относится к способам алкилирования парафинов. В частности, к использованию ионных жидкостей для алкилирования олефин-парафин.
Уровень техники
Алкилирование парафинов олефинами для получения алкилата для бензинов может использовать широкий спектр катализаторов. Выбор катализатора зависит от конечного продукта, который желателен для производителя. Ионные жидкости представляют собой катализаторы, которые могут быть использованы в широком спектре каталитических реакций, включая алкилирование парафинов олефинами. Ионные жидкости, в первую очередь, представляют собой смеси солей, которые плавятся ниже комнатной температуры и будут образовывать жидкие композиции при температуре ниже индивидуальных температур плавления компонентов.
Ионные жидкости представляют собой, по существу, соли в жидком состоянии и описываются в публикациях US 4,764,440; US 5,104,840; и US 5,824,832. Свойства для различных ионных жидкостей варьируются в широком диапазоне, и использование ионных жидкостей зависит от свойств данной ионной жидкости. В зависимости от органического катиона ионной жидкости и аниона ионная жидкость может обладать очень разными свойствами. Поведение в значительной степени варьируется для различных температурных диапазонов, и предпочитается отыскать ионные жидкости, которые не требуют проведения операции в более экстремальных условиях, таких как замораживание.
Краткое изложение изобретения
Настоящее изобретение включает способ алкилирования парафина олефинами. Парафины включают поток парафинов и изопарафинов, содержащих от 2 до 10 атомов углерода, при этом предпочтительный поток включает изопарафины, содержащие от 4 до 8 атомов углерода. Поток олефинов включает олефины, содержащие от 2 до 10 атомов углерода, при этом предпочтительный поток включает олефины, содержащие от 3 до 8 атомов углерода. Способ включает пропускание парафинов и олефинов в реактор алкилирования, функционирующий в условиях проведения реакции, приводящих к образованию алкилата.
Реактор алкилирования включает катализатор в виде ионной жидкости, который представляет собой галогеналюминат четвертичного фосфония. Ионная жидкость включает структуру PR1R2R3R4-Al2X7, при этом Р представляет собой фосфониевую группу, а R1, R2, R3 и R4 представляют собой алкильные группы, присоединенные к фосфониевой группе. Алкильные группы R1, R2 и R3 являются идентичными алкильными группами, а R4 представляет собой алкильную группу, содержащую большее количество атомов углерода. Алкильная группа, которая включает R1, R2 и R3, содержит от 1 до 8 атомов углерода, а алкильная группа, которая включает R4, содержит от 4 до 12 атомов углерода. Анионная часть ионной жидкости содержит Al2X7, где Х представляет собой галогенид, выбираемый из группы F, Cl, Br или I.
В одном варианте осуществления алкильные группы для настоящего изобретения включают алкильную группу R4, содержащую, по меньшей мере, на 1 больше атомов углерода, чем группа R1, при этом алкильные группы R2 и R3 являются идентичными группе R1.
В еще одном варианте осуществления группы R1 и R4 выбирают таким образом, чтобы в случае, когда группы R1 и R4 являются парафинами, или HR1 и HR4, то HR4 выбирают, основываясь на том, что его температура кипения при атмосферном давлении, по меньшей мере, на 30°С больше, чем температура кипения HR1.
Другие цели, преимущества и области применения настоящего изобретения станут очевидными для специалистов в соответствующей области техники исходя из следующих далее подробного описания изобретения и чертежей.
Краткое описание чертежей
Фигура 1 демонстрирует влияние длины асимметричной боковой цепи на эксплуатационные характеристики при алкилировании для ионных жидкостей на основе хлоралюмината фосфония;
фигура 2 демонстрирует влияние длины симметричной боковой цепи на эксплуатационные характеристики при алкилировании для ионных жидкостей на основе хлоралюмината фосфония;
фигура 3 демонстрирует сопоставление эксплуатационных характеристик при алкилировании для ионных жидкостей на фосфониевой основе и азотной основе; и
фигура 4 демонстрирует влияние температуры на селективность по продукту при сопоставлении для ионных жидкостей на основе хлоралюминатов на Р-основе и N-основе.
Подробное раскрытие изобретения
Ионные жидкости были представлены в литературе и в патентах. Ионные жидкости могут быть использованы для широкого спектра каталитических реакций, и особенный интерес представляет использование ионных жидкостей в реакциях алкилирования. Ионные жидкости, использующиеся ниже в настоящем документе, относятся к комплексу смесей, где ионная жидкость включает органический катион и анионное соединение, где анионное соединение обычно представляет собой неорганический анион. Несмотря на возможность очень большой активности данных катализаторов, для доведения качества алкилата до максимума, в случае реакций алкилирования требуется проводить реакции при низких температурах, обычно в диапазоне от – 10°С до 0°С. Это требует охлаждения реактора и исходного сырья, подаваемого в реакторы, и добавляет существенные затраты в форме дополнительных оборудования и энергии для использования ионных жидкостей в способе алкилирования. Наиболее часто встречающиеся предшественники катализаторов в виде ионных жидкостей для области применения алкилирования включают катионы на основе имидазолия или пиридиния в сочетании с хлоралюминатным анионом (Al2Cl7 ).
Анионный компонент ионной жидкости в общем случае включает галогеналюминат в форме AlnX3n + 1, где n находится в диапазоне от 1 до 5. Наиболее часто встречающийся галоген (На) представляет собой хлор, или Cl. Смесь ионных жидкостей может включать смесь из галогеналюминатов, где n составляет 1 или 2, и включать небольшое количество галогеналюминатов при равенстве n 3 и более. При поступлении воды в реакцию либо при введении совместно с подаваемым исходным сырьем, либо другим образом может иметь место превращение, при котором галогеналюминат образует гидроксидный комплекс, или вместо AlnX3n+1 образуется AlnXm(OH)x, где m+x=3n+1. Преимущество ионных жидкостей (ИЖ) в отношении их использования в качестве катализатора заключается в переносимости ими присутствия некоторого количества влаги. В то время как влага является нежелательной, катализаторы, переносящие присутствие влаги, обеспечивают получение преимущества. В противоположность этому, твердые катализаторы, использующиеся при алкилировании, в общем случае быстро дезактивируются в присутствии воды. Ионные жидкости также обладают некоторыми преимуществами в сопоставлении с другими жидкими катализаторами алкилирования, такими как меньшая коррозионная активность, чем у катализаторов, подобных HF, и нелетучесть.
Как было установлено, реакции алкилирования, использующие некоторые ионные жидкости на фосфониевой основе, приводят к получению высокооктановых продуктов при проведении реакций при температурах, больших, чем температура окружающей среды, или близких к ней. Это обеспечивает проведение операции, которая может в существенной степени сэкономить накладные расходы в результате удаления из способа холодильного оборудования. Настоящее изобретение предлагает способ алкилирования парафинов при использовании ионной жидкости на фосфониевой основе. Способ настоящего изобретения может быть реализован при комнатной и более высокой температуре в реакторе алкилирования для получения потока алкилатного продукта, характеризующегося высоким октановым числом. Способ включает пропускание парафина, содержащего от 2 до 10 атомов углерода, в реактор алкилирования, а в частности изопарафина, содержащего от 4 до 10 атомов углерода, в реактор алкилирования. В реактор алкилирования пропускают олефин, содержащий от 2 до 10 атомов углерода. Олефин и изопарафин вводят в реакцию в присутствии катализатора в виде ионной жидкости и в условиях проведения реакции, приводящих к образованию алкилата. Катализатор в виде ионной жидкости представляет собой ионную жидкость на основе галогеналюмината на фосфониевой основе в сочетании с сокатализатором в виде кислоты Бренстеда, выбираемым из группы, состоящей из HCl, HBr, HI и их смесей.
Работающие ионные жидкости, как было установлено, включают ионные жидкости на фосфониевой основе, выбираемые из группы, состоящей из тригексилтетрадецилфосфоний-Al2X7, трибутилгексилфосфоний-Al2X7, трипропилгексилфосфоний-Al2X7, трибутилметилфосфоний-Al2X7, трибутилпентилфосфоний-Al2X7, трибутилгептилфосфоний-Al2X7, трибутилоктилфосфоний-Al2X7, трибутилнонилфосфоний-Al2X7, трибутилдецилфосфоний-Al2X7, трибутилундецилфосфоний-Al2X7, трибутилдодецилфосфоний-Al2X7, трибутилтетрадецилфосфоний-Al2X7 и их смесей. Х включает ион галогена, выбранного из группы, состоящей из F, Cl, Br, I и их смесей. Предпочтительная ионная жидкость представляет собой три-н-бутилгексилфосфоний-Al2Ha7, где предпочтительный галоген Х выбирают из Cl, Br, I и их смесей. Еще одна предпочтительная ионная жидкость представляет собой трибутилпентилфосфоний-Al2X7, где Х включает ион галогена, выбранный из группы, состоящей из Cl, Br, I и их смесей. Еще одна предпочтительная ионная жидкость представляет собой трибутилоктилфосфоний-Al2X7, где Х включает ион галогена, выбранный из группы, состоящей из Cl, Br, I и их смесей. В частности, наиболее часто встречающийся используемый Х представляет собой Cl.
В конкретных примерах ионных жидкостей в настоящем изобретении используют ионные жидкости на фосфониевой основе, смешанные с хлоридом алюминия. Для обеспечения получения подходящих для использования условий проведения алкилирования необходимо контролировать кислотность. Ионную жидкость в общем случае получают при высокой концентрации кислоты при наличии баланса благодаря присутствию сокатализатора, такого как кислота Бренстеда. Для улучшения активности катализатора в результате увеличения совокупной кислотности катализатора в виде ионной жидкости в качестве сокатализатора могут быть использованы HCl или любая кислота Бренстеда.
Условия проведения реакции включают температуру, большую, чем 0°С, при этом предпочтительная температура является большей, чем 20°С. Ионные жидкости также могут затвердевать при умеренно высоких температурах, и поэтому предпочитается иметь ионную жидкость, которая сохраняет свое жидкое состояние на протяжении разумного температурного диапазона. Предпочтительное рабочее условие проведения реакции включает температуру, большую или равную 20°С и меньшую или равную 70°С. Более предпочтительный рабочий диапазон включает температуру, большую или равную 20°С и меньшую или равную 50°С.
Вследствие низкой растворимости углеводородов в ионных жидкостях алкилирование олефины-изопарафины, подобно большинству реакций в ионных жидкостях, в общем случае является двухфазным и происходит на межфазной поверхности в жидкой фазе. Каталитическую реакцию алкилирования в общем случае проводят в жидкой углеводородной фазе, в периодической системе, полупериодической системе или непрерывной системе при использовании одной ступени реакции, как это обычно имеет место для алифатического алкилирования. Изопарафин и олефин могут быть введены раздельно или в виде смеси. Молярное соотношение между изопарафином и олефином находится в диапазоне от 1 до 100, например, в выгодном случае в диапазоне от 2 до 50, предпочтительно в диапазоне от 2 до 20.
В полупериодической системе сначала вводят изопарафин, после олефин, или вводят смесь из изопарафина и олефина. Катализатор измеряют в реакторе по отношению к количеству олефинов, при этом массовое соотношение между катализатором и олефином находится в диапазоне от 0,1 до 10, а предпочтительно от 0,2 до 5 и более предпочтительно от 0,5 до 2. Для обеспечения хорошего контакта между реагентами и катализатором желательным является интенсивное перемешивание. Температура реакции может находиться в диапазоне от 0 до 100°С, предпочтительно в диапазоне от 20 до 70°С. Давление может находиться в диапазоне от атмосферного давления до 8000 кПа, предпочтительно являясь достаточным для удерживания реагентов в жидкой фазе. Время пребывания реагентов в емкости находится в диапазоне от нескольких секунд до часов, предпочтительно от 0,5 до 60 мин. Тепло, производимое в реакции, может быть отведено при использовании любого из способов, известных специалистам в соответствующей области техники. На выходе из реактора углеводородную фазу отделяют от фазы ионной жидкости в результате гравитационного осаждения, основанного на разностях плотностей, или при использовании других методик разделения, известных специалистам в соответствующей области техники. После этого углеводороды отделяют в результате перегонки, а исходный изопарафин, который не был подвергнут превращению, отправляют на рецикл в реактор.
Типичные условия проведения алкилирования могут включать объем катализатора в реакторе в диапазоне от 1 до 50 % (об.), температуру в диапазоне от 0 до 100°С, давление в диапазоне от 300 до 2500 кПа, молярное соотношение между изобутаном и олефином в диапазоне от 2 до 20 и время пребывания в диапазоне от 5 мин до 1 часа.
Парафин, использующийся в способе алкилирования, предпочтительно включает изопарафин, содержащий от 4 до 8 атомов углерода, а более предпочтительно содержащий от 4 до 5 атомов углерода. Олефин, использующийся в способе алкилирования, предпочтительно содержит от 3 до 8 атомов углерода, а более предпочтительно от 3 до 5 атомов углерода. Одна из целей заключается в модернизации малоценных С4 углеводородов для получения более ценных алкилатов. В данном отношении один конкретный вариант осуществления представляет собой алкилирование бутанов под действием бутенов для получения С8 соединений. Предпочтительные продукты включают триметилпентан (ТМП), а в то время когда получают другие С8 изомеры, один конкурирующий изомер будет представлять собой диметилгексан (ДМГ). Качество потока продуктов может быть измерено по соотношению между реагентами ТМП и ДМГ, при этом желательным является большое соотношение.
В еще одном варианте осуществления изобретение включает пропускание изопарафина и олефина в реактор алкилирования, где реактор алкилирования включает катализатор в виде ионной жидкости, для проведения реакции между олефином и изопарафином в целях получения алкилата. Изопарафин может включать парафины и содержит от 4 до 10 атомов углерода, а олефин содержит от 2 до 10 атомов углерода. Катализатор в виде ионной жидкости содержит ионную жидкость на фосфониевой основе, которая представляет собой галогеналюминат четвертичного фосфония. Ионная жидкость обладает структурой в форме PR1R2R3R4-Al2X7, где Р соотносится с фосфониевой частью ионной жидкости, R1, R2, R3 и R4 представляют собой алкильные группы, содержащие от 4 до 12 атомов углерода, а Х представляет собой галоген, выбираемый из группы F, Cl, Br, I и их смесей.
Структура, кроме того, включает то, что алкильные группы R1, R2 и R3 являются идентичными алкильными группами, а R4 включает другую алкильную группу, где группа R4 является большей, чем группа R1, и то, что реагент HR4 характеризуется температурой кипения, по меньшей мере, на 30°С большей, чем температура кипения реагента HR1 при атмосферном давлении.
В одном варианте осуществления R1, R2 и R3 включают алкильную группу, содержащую от 3 до 6 атомов углерода, при этом предпочтительная структура R1, R2 и R3 содержит 4 атома углерода. В данном варианте осуществления группа R4 включает алкильную группу, содержащую от 5 до 8 атомов углерода, при этом предпочтительная структура R4 содержит 6 атомов углерода. В данном варианте осуществления предпочтительный комплекс в виде галогенида четвертичного фосфония представляет собой трибутилгексилфосфоний-Al2Cl7.
В еще одном варианте осуществления изобретение включает пропускание изопарафина и олефина в реактор алкилирования, где реактор алкилирования включает катализатор в виде ионной жидкости для введения в реакцию олефина с изопарафином в целях получения алкилата. Изопарафин может включать парафины и содержит от 4 до 10 атомов углерода, а олефин содержит от 2 до 10 атомов углерода. Катализатор в виде ионной жидкости содержит ионную жидкость на фосфониевой основе, которая представляет собой галогеналюминат четвертичного фосфония. Ионная жидкость обладает структурой в форме PR1R2R3R4-Al2X7, где Р соотносится с фосфониевой частью ионной жидкости, а R1, R2, R3 и R4 представляют собой алкильные группы, содержащие от 4 до 12 атомов углерода. Структура, кроме того, включает то, что алкильные группы R1, R2 и R3 являются идентичными алкильными группами, а R4 включает другую алкильную группу, где группа R4 является большей, чем группа R1, и то, что R4 содержит, по меньшей мере, на 1 атом углерода больше, чем группа R1.
Примеры
Пример 1. Получение ионной жидкости на основе хлоралюмината трибутилдодецилфосфония
Хлоралюминат трибутилдодецилфосфония представляет собой ионную жидкость при комнатной температуре, получаемую в результате перемешивания безводного хлорида трибутилдодецилфосфония при медленном добавлении 2 молей безводного хлорида алюминия в инертной атмосфере. По истечении нескольких часов перемешивания получают бледно-желтую жидкость. Получающуюся в результате кислотную жидкость ИЖ использовали в качестве катализатора для алкилирования изобутана под действием 2-бутенов.
Пример 2. Алкилирование изобутана под действием 2-бутена при использовании катализатора в виде ионной жидкости на основе трибутилдодецилфосфоний-Al2Cl7
Алкилирование изобутана под действием 2-бутена проводили в непрерывно перемешиваемом автоклаве на 300 куб. см. Во избежание воздействия влаги в перчаточном боксе в автоклав загружали 8 граммов ионной жидкости на основе трибутилдодецилфосфоний (ТБДДФ)-Al2Cl7 и 80 граммов изобутана. После этого давление в автоклаве увеличивали до 500 фунт/дюйм2 (изб.) (3450 кПа (изб.)) при использовании азота. Начинали перемешивание при 1900 об/мин. После этого в автоклав загружали 8 граммов олефинового подаваемого исходного сырья (2-бутеновое подаваемое исходное сырье, к которому добавили 10 % н-пентанового маркера) при объемной скорости для олефина 0,5 г олефина/г жидкости ИЖ/час вплоть до достижения целевого молярного соотношения и/о 10:1. Перемешивание прекращали и фазам ионной жидкости и углеводорода давали возможность отстояться в течение 30 секунд. (Фактическое разделение было почти что мгновенным). После этого углеводородную фазу анализировали по методу ГХ. Для данного примера температуру автоклава выдерживали на уровне 25°С.
Таблица 1
Алкилирование при использовании катализатора в виде ионной жидкости на основе ТБДДФ-Al2Cl7
Степень превращения олефина, % (масс.) 100,0
Выход С5+, масса алкилата/масса олефина 2,25
С5+ алкилат, ОЧИ-НБ (исследовательское октановое число для неэтилированного бензина) 95,7
Селективность по С57, % (масс.) 15
Селективность по С8, % (масс.) 77
Селективность по С9+, % (масс.) 8
ТМП/ДМГ 13,7
Примеры 3-30
Методики из примера 2 повторяли при использовании последовательности из различных катализаторов в виде ионных жидкостей на основе хлоралюмината фосфония при 25°С (таблица 2), 38°С (таблица 3) и 50°С (таблица 4). Для демонстрации различий эксплуатационных характеристик между ионными жидкостями на Р-основе и N-основе включали четыре имидазолиевые или пиридиниевые ионные жидкости. Ионные жидкости представляли собой: А – трибутилдодецилфосфоний-Al2Cl7, В – трибутилдецилфосфоний-Al2Cl7, С – трибутилоктилфосфоний-Al2Cl7, D – трибутилгексилфосфоний-Al2Cl7, Е – трибутилпентилфосфоний-Al2Cl7, F – трибутилметилфосфоний-Al2Cl7, G – трипропилгексилфосфоний-Al2Cl7, Н – бутилметилимидазолий-Al2Cl7, I – октилметилимидазолий-Al2Cl7, J – бутилпиридиний-Al2Cl7 и К – гексадецилпиридиний-Al2Cl7.
Таблица 2
Экспериментальные прогоны при 25°С
Пример 2 3 4 5 6 7 8 9 10 11 12
Ионная жидкость А В С D E F G H I J K
Катион жидкости ИЖ ТБДДФ ТБДФ ТБОФ ТБГФ ТБПФ ТБМФ ТПГФ БМИ ОМИ БП ГДП
Степень превращения бутена, % (масс.) 100 100 100 100 100 100 100 100 100 100 100
Соотношение изобутан/олефин, молярное 10,3 9,5 10,6 10,4 11,1 10,3 9,6 9,1 11,2 11,2 10,4
Соотношение жидкость ИЖ/олефин, масс./масс. 1,07 0,98 1,10 1,07 1,15 1,09 0,99 0,94 1,16 1,18 1,07
Температура, °С 25 25 25 25 25 25 25 25 25 25 25
Давление, фунт/дюйм2 (изб.) (кПа (изб.)) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450)
Выход С5+ алкилата, масс./масс. олефина 2,25 2,06 2,13 2,13 2,20 2,00 2,18 2,01 2,08 2,10 2,17
Селективность по С5+ продукту, % (масс.)
С5-С7 15 12 11 10 8 10 14 10 14 10 20
С8 77 80 82 84 87 85 78 83 79 84 69
С9+ 8 8 7 6 5 5 8 7 7 8 11
ТМП/ДМГ 13,7 17,3 22,6 18,0 25,4 10,6 8,2 8,4 7,7 7,5 10,8
С5+ алкилат, ОЧИ-НБ 95,7 96,5 97,5 97,2 98,4 96,1 94,4 94,9 94,3 94,6 93,6
Таблица 3
Экспериментальные прогоны при 38°С
Пример 13 14 15 16 17 18 19 20
Ионная жидкость А С D E F H J K
Катион жидкости ИЖ ТБДДФ ТБОФ ТБГФ ТБПФ ТБМФ БМИ БП ГДП
Степень превращения бутена, % (масс.) 100 100 100 100 100 100 100 100
Соотношение изобутан/олефин, молярное 8,8 9,0 10,4 10,1 10,5 8,8 11,7 11,8
Соотношение жидкость ИЖ/олефин, масс./масс. 0,91 0,94 1,10 0,97 1,06 0,92 1,21 1,23
Температура, °С 38 38 38 38 38 38 38 38
Давление, фунт/дюйм2 (изб.) (кПа (изб.)) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450)
Выход С5+ алкилата, масс./масс. олефина 2,20 2,14 2,07 2,06 2,03 2,18 2,10 2,18
Селективность по С5+ продукту, % (масс.)
С5-С7 29 16 12 15 16 16 13 24
С8 61 76 81 74 76 76 87 64
С9+ 10 8 7 11 9 8 10 12
ТМП/ДМГ 7,6 7,4 15,3 19,4 5,5 4,9 5,4 7,2
С5+ алкилат, ОЧИ-НБ 93,2 93,8 96,6 96,2 92,3 91,6 92,5 92,1
Таблица 4
Экспериментальные прогоны при 50°С
Пример 21 22 23 24 25 26 27 28 29 30
Ионная жидкость А С D E F G H I J K
Катион жидкости ИЖ ТБДДФ ТБОФ ТБГФ ТБПФ ТБМФ ТПГФ БМИ ОМИ БП ГДП
Степень превращения бутена, % (масс.) 100 100 100 100 100 100 100 100 99 100
Соотношение изобутан/олефин, молярное 8,6 11,6 10,6 15,0 9,6 8,8 9,4 9,6 10,8 10,0
Соотношение жидкость ИЖ/олефин, масс./масс. 0,9 1,06 1,09 1,55 1,01 0,91 0,97 0,98 1,11 1,04
Температура, °С 50 50 50 50 50 50 50 50 50 50
Давление, фунт/дюйм2 (изб.) (кПа (изб.)) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450) 500 (3450)
Выход С5+ алкилата, масс./масс. олефина 2,22 2,09 2,08 2,09 2,22 2,23 2,11 2,13 2,03 2,14
Селективность по С5+ продукту, % (масс.)
С5-С7 25 21 16 15 25 28 22 43 18 26
С8 63 69 76 77 65 59 68 43 73 61
С9+ 12 10 8 8 11 13 10 14 9 13
ТМП/ДМГ 5,0 4,8 8,5 7,0 3,5 3,5 3,1 1,3 3,8 4,5
С5+ алкилат, ОЧИ-НБ 90,8 91,2 94,4 93,7 88,7 88,2 87,8 82,4 89,4 90,1
На основании скрининга данной последовательности из ионных жидкостей на основе хлоралюмината на фосфониевой основе заявители выявили хорошего кандидата, способного производить высокооктановый алкилат даже при проведении прогона при 50°С. Как продемонстрировано на фигуре 1, возможность разработки ионной жидкости, включающей надлежащую длину углеродной цепи, оказывает воздействие на качество продукта. Фигура 1 демонстрирует оптимизированное октановое число в зависимости от температуры для различных хлоралюминатных ионных жидкостей. Фигура демонстрирует результаты для реагентов ТБМФ – 1 (хлоралюминат трибутилметилфосфония), ТБПФ – 5 (хлоралюминат трибутилпентилфосфония), ТБГФ – 6 (хлоралюминат трибутилгексилфосфония), ТБОФ – 8 (хлоралюминат трибутилоктилфосфония), ТБДФ – 10 (хлоралюминат трибутилдецилфосфония) и ТБДДФ – 12 (хлоралюминат трибутилдодецилфосфония). Оптимальная длина асимметричной боковой цепи (R4 в PR1R2R3R4-Al2Cl7, где R1=R2=R3≠R4) находится в диапазоне количества углеродных атомов 5 или 6. Следует обратить внимание на то, что в случае отсутствия, по меньшей мере, одной асимметричной боковой цепи, ионная жидкость может закристаллизоваться и не остаться жидкостью в температурном диапазоне, представляющем интерес. В случае чрезмерно длинной асимметричной цепи, она может подвергнуться изомеризации и крекингу. Фигура 2 демонстрирует спад эксплуатационных характеристик при уменьшении размера симметричной боковой цепи (R1=R2=R3) от С4 до С3. Фигура 2 является графическим представлением зависимости оптимизированного октанового числа от температуры для различных хлоралюминатных ионных жидкостей при демонстрации результатов для реагентов ТПГФ (хлоралюминат трипропилгексилфосфония) и ТБГФ (хлоралюминат трибутилгексилфосфония). Не связывая себя теорией, представляется, что бутильные боковые цепи обеспечивают лучшее связывание и растворимость с компонентами изобутанового и бутенового подаваемого исходного сырья, и это может способствовать сохранению высокого локального значения и/о на активном центре.
Фигуры 3 и 4 сопоставляют эксплуатационные характеристики для лучших ионных жидкостей на основе хлоралюмината фосфония с тем, что имеет место для нескольких ионных жидкостей на азотной основе, включая хлоралюминат 1-бутил-3-метилимидазолия (БМИ) и хлоралюминат N-бутилпиридиния (БП), которые широко использовались и описывались в литературе. Фигура 3 демонстрирует зависимость оптимизированного октанового числа от температуры для ионных жидкостей ТБГФ (хлоралюминат трибутилгексилфосфония), ТБПФ (хлоралюминат трибутилпентилфосфония), БП (хлоралюминат бутилпиридиния) и БМИ (хлоралюминат бутилметилимидазолия). Фигура 4 демонстрирует различие в селективности по продукту при сопоставлении для ионных жидкостей на основе хлоралюмината на P-основе и N-основе. Ионные жидкости на фосфониевой основе согласованно обеспечивают получение лучших соотношений между реагентами ТМП и ДМГ и лучших октановых чисел по исследовательскому методу в сопоставлении с тем, что имеет место для ионных жидкостей на азотной основе. В то время как по мере увеличения температуры до 50°С значение ОЧИ-НБ (октанового числа по исследовательскому методу для неэтилированного бензина) для алкилата спадает ниже 90 для ионных жидкостей на азотной основе, фосфониевые ионные жидкости все еще будут способны обеспечивать получение октанового числа по исследовательскому методу ~ 95. Это позволяет добиваться получения экономического преимущества при разработке установки алкилирования в том смысле, что не потребуется дорогостоящее холодильное оборудование, и/или установка сможет функционировать при меньшем соотношении и/о для заданного качества продукта.
В то время как изобретение было описано при использовании того, что в настоящее время рассматривается в качестве предпочтительных вариантов осуществления, необходимо понимать, что изобретение описанными вариантами осуществления не ограничивается, но предусматривает охват различных модификаций и эквивалентных компоновок, включенных в объем прилагаемой формулы изобретения.

Claims (20)

1. Галогеналюминатное соединение четвертичного фосфония формулы (I)
Figure 00000001
в которой R1-R3 представляют собой одинаковые алкильные группы, содержащие от 1 до 8 атомов углерода,
R4 отличается от R1-R3 и выбран из С412 алкилов, а
X представляет собой галоген.
2. Соединение формулы (I) по п. 1, отличающееся тем, что каждый из R1-R3 представляет собой С36 алкил.
3. Соединение формулы (I) по п. 2, отличающееся тем, что каждый из R1-R3 содержит 4 атома углерода.
4. Соединение формулы (I) по п. 1, отличающееся тем, что R4 содержит от 5 до 8 атомов углерода.
5. Соединение формулы (I) по п. 4, отличающееся тем, что R4 представляет собой гексил.
6. Соединение формулы (I) по любому из пп. 1-5, отличающееся тем, что его выбирают из группы, состоящей из трипропилгексилфосфоний-Al2X7, трибутилпентилфосфоний-Al2X7, трибутилгексилфосфоний-Al2X7, трибутилгептилфосфоний-Al2X7, трибутилоктилфосфоний-Al2X7, трибутилнонилфосфоний-Al2X7, трибутилдецилфосфоний-Al2X7, трибутилундецилфосфоний-Al2X7 и трибутилдодецилфосфоний-Al2X7, где X выбирают из группы, состоящей из F, Cl, Br и I.
7. Соединение формулы (I) по п. 6, отличающееся тем, что X представляет собой Cl.
8. Соединение формулы (I) по п. 7, отличающееся тем, что оно представляет собой трибутилгексилфосфоний-Al2Cl7.
9. Соединение формулы (I) по п. 7, отличающееся тем, что оно представляет собой три-н-бутилгексилфосфоний-Al2Cl7.
10. Катализатор в виде ионной жидкости, предназначенный для проведения реакции олефинов с изопарафинами для образования алкилата, содержащий галогеналюминатное соединение четвертичного фосфония по любому из пп. 1-9.
11. Катализатор в виде ионной жидкости по п. 10, отличающийся тем, что он характеризуется начальной кинематической вязкостью, составляющей по меньшей мере 50 сСт при температуре 20°C.
12. Катализатор в виде ионной жидкости по п. 10, отличающийся тем, что он характеризуется начальной кинематической вязкостью, составляющей по меньшей мере 20 сСт при температуре 50°C.
13. Катализатор в виде ионной жидкости по п. 10, отличающийся тем, что температура кипения при атмосферном давлении для HR4 галогеналюминатного соединения фосфония является по меньшей мере на 30°C большей, чем температура кипения при атмосферном давлении для HR1.
14. Катализатор в виде ионной жидкости по п. 10, дополнительно содержащий сокатализатор, при этом катализатор в виде ионной жидкости взаимосвязан с сокатализатором.
15. Катализатор в виде ионной жидкости по п. 14, отличающийся тем, что сокатализатор представляет собой кислоту Бренстеда, выбранную из группы, состоящей из HCl, HBr, HI и их смесей.
16. Катализатор в виде ионной жидкости по п. 15, отличающийся тем, что указанный сокатализатор на основе кислоты Бренстеда представляет собой HCl.
RU2015124038A 2012-06-26 2013-06-20 Ионные жидкости на фосфониевой основе и катализаторы алкилирования, их содержащие RU2620085C2 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261664385P 2012-06-26 2012-06-26
US201261664405P 2012-06-26 2012-06-26
US201261664430P 2012-06-26 2012-06-26
US61/664,430 2012-06-26
US61/664,385 2012-06-26
US61/664,405 2012-06-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2014113317/04A Division RU2570174C2 (ru) 2012-06-26 2013-06-20 Способ алкилирования при использовании ионных жидкостей на фосфониевой основе

Publications (2)

Publication Number Publication Date
RU2015124038A RU2015124038A (ru) 2015-12-10
RU2620085C2 true RU2620085C2 (ru) 2017-05-23

Family

ID=49783756

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2014113317/04A RU2570174C2 (ru) 2012-06-26 2013-06-20 Способ алкилирования при использовании ионных жидкостей на фосфониевой основе
RU2015124038A RU2620085C2 (ru) 2012-06-26 2013-06-20 Ионные жидкости на фосфониевой основе и катализаторы алкилирования, их содержащие

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2014113317/04A RU2570174C2 (ru) 2012-06-26 2013-06-20 Способ алкилирования при использовании ионных жидкостей на фосфониевой основе

Country Status (17)

Country Link
EP (2) EP2864277B1 (ru)
KR (2) KR20150065908A (ru)
CN (2) CN103958447B (ru)
AR (1) AR091566A1 (ru)
AU (1) AU2013280781B2 (ru)
BR (2) BR122015010598A2 (ru)
CA (1) CA2851165C (ru)
CL (1) CL2014000804A1 (ru)
DK (1) DK2977380T3 (ru)
ES (1) ES2742380T3 (ru)
MX (2) MX344453B (ru)
MY (2) MY163955A (ru)
RU (2) RU2570174C2 (ru)
SG (2) SG11201401174TA (ru)
TW (2) TWI490185B (ru)
WO (1) WO2014004232A1 (ru)
ZA (2) ZA201405426B (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140173775A1 (en) * 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic plants
US9914675B2 (en) * 2015-03-31 2018-03-13 Uop Llc Process for alkylation using ionic liquid catalysts
WO2017100493A1 (en) 2015-12-10 2017-06-15 Uop Llc Reactor system for use with an ionic liquid catalyst
US10465950B2 (en) * 2016-05-26 2019-11-05 Yazaki Corporation Guanidinium-based ionic liquids in absorption chillers
WO2017214218A1 (en) * 2016-06-07 2017-12-14 Uop Llc Trialkylphosphonium ionic liquids, methods of making, and alkylation processes using trialkylphosphonium ionic liquids
US20170348680A1 (en) * 2016-06-07 2017-12-07 Cytec Industries Inc. Trialkylphosphonium ionic liquids, methods of making, and alkylation processes using trialkylphosphonium ionic liquids
US10717696B2 (en) 2016-07-29 2020-07-21 The Procter & Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
US10307744B2 (en) 2016-07-29 2019-06-04 The Procter & Gamble Company Catalysts for making acrylic acid from lactic acid or its derivatives in liquid phase
US10723687B2 (en) 2016-07-29 2020-07-28 The Procter & Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
EP3490705B1 (en) 2016-07-29 2023-08-30 The Procter & Gamble Company Catalysts for making acrylic acid from lactic acid or its derivatives in liquid phase
WO2018165283A1 (en) * 2017-03-07 2018-09-13 The Procter & Gamble Company Method of making acrylic acid from lactic acid or lactide using molten salt catalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD285090A5 (de) * 1989-06-15 1990-12-05 Ernst-Moritz-Arndt-Universitaet Greifswald,Dd Verfahren zur erzeugung leichter alkylate
RU2031900C1 (ru) * 1990-01-25 1995-03-27 Мобил Ойл Корпорейшн Способ алкилирования изопарафина олефином
US6583330B1 (en) * 1999-06-25 2003-06-24 Institut Francais Du Petrole Catalysts containing heteropolyanions usable in processes for conversion of paraffins
US20120088948A1 (en) * 2010-10-06 2012-04-12 Mitrajit Mukherjee Production of a high octane alkylate from ethylene and isobutene

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764440A (en) 1987-05-05 1988-08-16 Eveready Battery Company Low temperature molten compositions
FR2659871B1 (fr) 1990-03-20 1992-06-05 Inst Francais Du Petrole Composition liquide non aqueuse a caractere ionique et son utilisation comme solvant. invention de mm. yves chauvin, dominique commereuc, isabelle guibard, andre hirschauer, helene olivier, lucien saussine.
US5824832A (en) 1996-07-22 1998-10-20 Akzo Nobel Nv Linear alxylbenzene formation using low temperature ionic liquid
US8329603B2 (en) * 2003-09-16 2012-12-11 Uop Llc Isoparaffin-olefin alkylation
US7569740B2 (en) * 2005-12-20 2009-08-04 Chevron U.S.A. Inc. Alkylation of olefins with isoparaffins in ionic liquid to make lubricant or fuel blendstock
US7919664B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a jet fuel
US20100152027A1 (en) * 2008-12-15 2010-06-17 Chevron U.S.A., Inc. Ionic liquid catalyst having a high molar ratio of aluminum to nitrogen
CN102050747B (zh) * 2009-11-04 2013-11-06 中国科学院过程工程研究所 一种有机鎓四氟铝酸盐的制备方法、以及低温电解制备氧化铝的方法
US20120136189A1 (en) * 2010-03-09 2012-05-31 Conocophillips Company - Ip Services Group Buffered ionic liquids for olefin dimerization
US20140173775A1 (en) * 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic plants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD285090A5 (de) * 1989-06-15 1990-12-05 Ernst-Moritz-Arndt-Universitaet Greifswald,Dd Verfahren zur erzeugung leichter alkylate
RU2031900C1 (ru) * 1990-01-25 1995-03-27 Мобил Ойл Корпорейшн Способ алкилирования изопарафина олефином
US6583330B1 (en) * 1999-06-25 2003-06-24 Institut Francais Du Petrole Catalysts containing heteropolyanions usable in processes for conversion of paraffins
US20120088948A1 (en) * 2010-10-06 2012-04-12 Mitrajit Mukherjee Production of a high octane alkylate from ethylene and isobutene

Also Published As

Publication number Publication date
RU2570174C2 (ru) 2015-12-10
CN103958447B (zh) 2017-02-22
ES2742380T3 (es) 2020-02-14
AR091566A1 (es) 2015-02-11
MY163955A (en) 2017-11-15
SG10201503853WA (en) 2015-06-29
CL2014000804A1 (es) 2014-08-22
EP2864277B1 (en) 2019-08-07
EP2864277A1 (en) 2015-04-29
MY176998A (en) 2020-09-01
EP2977380A1 (en) 2016-01-27
RU2015124038A (ru) 2015-12-10
RU2014113317A (ru) 2015-11-10
AU2013280781A1 (en) 2014-04-24
AU2013280781B2 (en) 2015-12-03
MX356659B (es) 2018-05-31
CA2851165C (en) 2017-11-21
CN105153226B (zh) 2017-11-03
BR112014007977A2 (pt) 2017-06-13
MX344453B (es) 2016-12-16
ZA201405426B (en) 2015-12-23
WO2014004232A1 (en) 2014-01-03
KR20140056380A (ko) 2014-05-09
EP2977380B1 (en) 2018-09-26
BR122015010598A2 (pt) 2019-08-20
EP2864277A4 (en) 2016-01-06
CN105153226A (zh) 2015-12-16
TWI490185B (zh) 2015-07-01
CN103958447A (zh) 2014-07-30
CA2851165A1 (en) 2014-01-03
TW201527310A (zh) 2015-07-16
KR101645108B1 (ko) 2016-08-02
DK2977380T3 (da) 2019-01-02
ZA201505278B (en) 2019-12-18
SG11201401174TA (en) 2014-04-28
TW201404766A (zh) 2014-02-01
MX2014003998A (es) 2014-05-07
TWI554514B (zh) 2016-10-21
KR20150065908A (ko) 2015-06-15

Similar Documents

Publication Publication Date Title
RU2620085C2 (ru) Ионные жидкости на фосфониевой основе и катализаторы алкилирования, их содержащие
JP6383778B2 (ja) 非対称型ホスホニウムハロアルミナートイオン液体組成物
US9399604B2 (en) Alkylation process using phosphonium-based ionic liquids
US9156028B2 (en) Alkylation process using phosphonium-based ionic liquids
KR101472147B1 (ko) 경질 이소파라핀과 올레핀의 이온성 액체 촉매된 알킬화에서의 부텐 이성질화
US7432409B2 (en) Alkylation process using chloroaluminate ionic liquid catalysts
CA2848073C (en) Integrated butane isomerization and ionic liquid catalyzed alkylation processes
JP2009521443A (ja) 合成石油スルホネートの製造方法
JP2009521436A (ja) 酸性イオン液体触媒を用いるアルキル化芳香族炭化水素の製造方法
WO2012005923A2 (en) Ionic liquid catalyzed alkylation with ethylene in ethylene containing gas streams
US9156747B2 (en) Alkylation process using phosphonium-based ionic liquids
US20160060277A1 (en) Ionic liquid compound
US10550049B2 (en) Hydrocarbon conversion processes using non-cyclic amide and thioamide based ionic liquids
US20140113804A1 (en) Asymmetric phosphonium haloaluminate ionic liquid compositions
AU2015201944B2 (en) Alkylation process using phosphonium-based ionic liquids
AU2012360829B2 (en) Process for regeneration of ionic liquid catalyst

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant