RU2569525C2 - Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов, а также из диспергированной фазы - Google Patents

Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов, а также из диспергированной фазы Download PDF

Info

Publication number
RU2569525C2
RU2569525C2 RU2012129678/03A RU2012129678A RU2569525C2 RU 2569525 C2 RU2569525 C2 RU 2569525C2 RU 2012129678/03 A RU2012129678/03 A RU 2012129678/03A RU 2012129678 A RU2012129678 A RU 2012129678A RU 2569525 C2 RU2569525 C2 RU 2569525C2
Authority
RU
Russia
Prior art keywords
composite material
zirconium oxide
material according
phase
mol
Prior art date
Application number
RU2012129678/03A
Other languages
English (en)
Other versions
RU2012129678A (ru
Inventor
Майнхард КУНТЦ
Михаэль КУНТЦ
Лукас ГОТТВИК
Кристина ШЛИХЕР
Андреас МОРХАРДТ
Килиан ФРИДЕРИХ
Норберт Шнайдер
Original Assignee
Керамтек Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43754788&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2569525(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Керамтек Гмбх filed Critical Керамтек Гмбх
Publication of RU2012129678A publication Critical patent/RU2012129678A/ru
Application granted granted Critical
Publication of RU2569525C2 publication Critical patent/RU2569525C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Composite Materials (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к композиционному материалу, состоящему из матрицы оксида алюминия и диспергированного в ней оксида циркония, и может быть использовано для изготовления искусственных протезов. Композиционный материал в качестве первой фазы содержит по меньшей мере 65 об.% оксида алюминия, в качестве второй фазы от 10 до 35 об.% оксида циркония, и дополнительную дисперсоидную фазу. Преимущественная часть оксида циркония, в пересчете на общее содержание оксида циркония, находится в виде тетрагональной фазы, при этом оксид циркония имеет средний размер частиц, составляющий от 0,1 до 0,5 мкм. Дисперсоидная фаза в качестве дисперсоидов содержит пластинки алюмината стронция, которые в связи с их кристаллической структурой способствуют деформациям сдвига на микроскопическом уровне. Доля химических стабилизаторов в указанном материале составляет для Y2O3≤1,5 мол.%, для CeO2≤3 мол.%, для MgO≤3 мол.% и для CaO≤3 мол.% в каждом случае в пересчете на содержание оксида циркония. Технический результат изобретения - уменьшение склонности материала к гидротермальному старению, повышение трещиностойкости и прочности. 2 н. и 17 з.п. ф-лы, 5 пр., 5 ил.

Description

Изобретение относится к композиционному материалу, состоящему из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, а также к способу изготовления указанного материала и его применению.
Металлические сплавы и керамические материалы обладают существенно различающимися молекулярными структурами. Электроны металлической связи вращаются вокруг атомных ядер беспорядочно и со сравнительно небольшой силой связи. По причине подобной «рыхлой» структуры, например, в физической среде постоянно высвобождаются ионы, а также оказывается возможным протекание самых разных химических реакций.
Электроны связей в молекулах керамических материалов следуют точно установленным траекториям, так называемым ориентированным электронным орбиталям. Сила подобной связи чрезвычайно высока, и молекулы керамических материалов отличаются чрезвычайно высокой стабильностью. Вследствие этого отсутствует образование ионов, и практически исключено протекание химических реакций.
Экстремально высокая стабильность связей в молекулах керамического материала обусловливает практически полное отсутствие возможности его пластического деформирования. С одной стороны, это придает керамическому материалу необходимую экстремально высокую твердость, однако, с другой стороны, является причиной относительно высокой хрупкости этого материала. Тем не менее надлежащее конструирование керамического материала позволяет одновременно достигать высокой твердости и высокой вязкости.
В материаловедении различают прочность при разрыве и вязкость разрушения. Прочностью при разрыве называют максимальное механическое напряжение, которое способен выдержать материал до разрушения. Вязкость разрушения (или трещиностойкость) служит характеристикой сопротивления материала разрастанию трещин. В настоящее время в медицинской промышленности уже используют керамические материалы, которые обладают чрезвычайно высокой прочностью при разрыве. Некоторым из подобных керамических материалов дополнительно придают экстремально высокую вязкость разрушения. Подобные материалы способны гораздо лучше сопротивляться образованию и распространению трещин по сравнению с другими керамическими материалами.
Указанная особенность керамических материалов основана на двух механизмах усиления. Усиление керамических материалов в соответствии с первым механизмом обусловлено включением тетрагональных наночастиц оксида циркония. Указанные частицы разрозненно распределены в стабильной матрице из оксида алюминия. Они формируют локальные пиковые давления в зоне трещин, а следовательно, противодействуют их распространению.
Второй механизм усиления обусловлен присутствием кристаллов в виде пластинок, которые также разрозненно распределены в смеси оксидов. Подобные пластинки изменяют направление возможных трещин, рассеивают их энергию, а следовательно, ликвидируют их. Оба механизма позволяют конструировать из соответствующих керамических материалов элементы с геометрическими параметрами, достичь которых раньше не удавалось.
В основу настоящего изобретения была положена задача дальнейшего улучшения характеристик известных керамических материалов.
Настоящее изобретение относится к керамическому композиционному материалу, состоящему из оксида алюминия и оксида циркония в качестве основных компонентов, а также одной или нескольких неорганических добавок, посредством которых можно оказывать воздействие на свойства керамического композиционного материала. При этом оксид алюминия образует основной компонент с объемным содержанием более 65%, предпочтительно от 85 до 90%, в то время как оксид циркония образует вторичный компонент с объемным содержанием от 10 до 35%. Объемное содержание других добавок, которые ниже называют диспергирующими добавками, может составлять от 1 до 10%, предпочтительно от 2 до 8%, особенно предпочтительно от 3,5 до 7%. Кроме того, как оксид алюминия, так и оксид циркония могут содержать растворимые составные части. В качестве растворимых составных частей указанные оксиды могут содержать один или несколько следующих элементов: хром (Cr), железо (Fe), магний (Mg), титан (Ti), иттрий (Y), церий (Ce), кальций (Ca), лантаниды и/или ванадий (V). Преимущественная часть оксида циркония, предпочтительно от 80 до 99%, особенно предпочтительно от 90 до 99% в пересчете на общее содержание оксида циркония, в исходном состоянии находится в тетрагональной фазе. С целью благоприятного воздействия на трещиностойкость и прочность предлагаемого в изобретении композиционного материала в качестве механизма усиления используют известный фазовый переход оксида циркония из тетрагональной фазы в моноклинную фазу.
Неожиданно было обнаружено, что стабилизация тетрагональной фазы оксида циркония в предлагаемом в изобретении композиционном материале происходит не химическим, а преимущественно механическим путем. В соответствии с этим содержание неорганических химических стабилизаторов в пересчете на содержание оксида циркония ограничивается гораздо более низкими значениями в сравнении с обычно используемыми согласно уровню техники содержаниями. Химическим стабилизатором, предпочтительно используемым согласно уровню техники, обычно является оксид иттрия Y2O3. Другими известными стабилизаторами являются CeO2, СаО и MgO.
Примерами известных рецептур керамических композиционных материалов являются:
Название Y2O3, % мол. в пересчете на диоксид циркония
Y-TZP(1) 2,8 или 3,2
ZTA(2) 1,3
(1) Упрочненный иттрием цирконий
(2) Упрочненный цирконием алюминий
Содержание стабилизатора в предлагаемом в изобретении композиционном материале гораздо ниже по сравнению с используемыми согласно уровню техники содержаниями. Более низкое содержание стабилизатора в предлагаемом в изобретении композиционном материале способствует внедрению оксида циркония в матрицу из оксида алюминия, благодаря чему стабилизируется метастабильная тетрагональная фаза оксида циркония (механическая стабилизация).
Предпосылкой для механической стабилизации является содержание оксида алюминия по меньшей мере 65% об., предпочтительно от 65 до 90% об., при содержании оксида циркония от 10 до 35% об. Особое значение для неожиданно достигаемой согласно изобретению механической стабилизации имеет размер частиц оксида циркония в предлагаемом в изобретении композиционном материале. Средний размер частиц оксида циркония (измеряемый по методу секущих) не должен превышать 0,5 мкм. Средний размер частиц оксида циркония для механически стабилизируемого согласно изобретению композиционного материала предпочтительно находится в интервале от 0,1 до 0,2 мкм, от 0,2 до 0,3 мкм, от 0,3 до 0,4 мкм или от 0,4 до 0,5 мкм, предпочтительно от 0,1 до 0,3 мкм, особенно предпочтительно от 0,15 до 0,25 мкм.
Содержание химических стабилизаторов в предлагаемом в изобретении композиционном материале (соответственно в пересчете на содержание оксида циркония) составляет: Y2O3≤1,5% мол., предпочтительно ≤1,3% мол., CeO2≤3% мол., MgO≤3% мол., CaO≤3% мол. Общее содержание стабилизаторов особенно предпочтительно составляет менее 0,2% мол. Согласно изобретению еще более предпочтительным является отсутствие химических стабилизаторов в механически стабилизированном композиционном материале.
Известно, что материалы, стабилизируемые посредством химических стабилизаторов, в особенности Y2O3, склонны к гидротермальному старению. Самопроизвольное фазовое превращение в случае подобных материалов происходит в присутствии молекул воды при повышенных температурах, например, уже при нормальной температуре. Причиной подобной чувствительности по отношению к воде при повышенных температурах является формирование кислородных вакансий в кристаллической решетке оксида циркония, которые могут быть заняты ионами гидроксида. Подобный эффект называют гидротермальным старением.
Предлагаемый в изобретении композиционный материал обладает гораздо меньшей склонностью к гидротермальному старению по сравнению с материалами, стабилизируемыми благодаря использованию химических стабилизаторов, в частности, Y2O3.
Вследствие пониженного содержания химических стабилизаторов кристаллическая решетка оксида циркония в предлагаемом в изобретении композиционном материале содержит пропорционально уменьшенное количество кислородных вакансий. В связи с этим предлагаемый в изобретении композиционный материал в отличие от известных из уровня техники материалов обладает гораздо более низкой чувствительностью к присутствию воды при повышенных температурах и, соответственно, гораздо более низкой склонностью к гидротермальному старению.
Помимо оксида алюминия и оксида циркония в качестве основных компонентов предлагаемый в изобретении композиционный материал в качестве вторичного компонента содержит третью фазу. Подобная третья фаза, ниже называемая диспергированной фазой, образована компонентами, которые согласно изобретению ниже называют «дисперсоидами».
В соответствии с настоящим изобретением дисперсоидами являются способствующие неупругим микродеформациям пластинки. Образуемая подобными пластинками диспергированная фаза неожиданно обеспечивает значительное повышение трещиностойкости и прочности, причина которого состоит в том, что в композиционном материале поддерживаются механические растяжения на микроскопическом уровне, то есть неупругие микродеформации внутри диспергированной фазы. Размер частиц предусматриваемых согласно изобретению дисперсоидов значительно превышает размер частиц используемого согласно изобретению оксида алюминия, соответственно оксида циркония, и предпочтительно составляет от 1 до 5 мкм. Объемное содержание образующих третью фазу дисперсоидов в общем случае гораздо меньше содержания оксида циркония. Содержание дисперсоидов предпочтительно может составлять до 10% об. Содержание дисперсоидов особенно предпочтительно составляет от 2 до 8% об., еще более предпочтительно от 3 до 6% об.
Пригодными согласно изобретению дисперсоидами в принципе являются любые вещества, которые обладают химической стабильностью, в процессе изготовления композиционного материала путем спекания при высоких температурах не переходят в раствор в оксиде алюминия или оксиде циркония и в связи с их кристаллической структурой способствуют неупругим микродеформациям на микроскопическом уровне. Согласно изобретению возможно как специальное добавление дисперсоидов, так и их образование in-situ в процессе изготовления предлагаемого в изобретении композиционного материала. Примерами пригодных согласно изобретению дисперсоидов являются алюминат стронция (SrAl12O19) и алюминат лантана (LaAl11O18).
Функцией диспергированной фазы является аккомодирование неоднородных растяжений основных компонентов (оксида алюминия и оксида циркония) на микроскопическом уровне. Определение «неоднородное микроскопическое растяжение» используют, чтобы можно было отличать подобное растяжение от макроскопического гомогенного растяжения материала, например, обусловленного тепловым расширением или прикладываемым извне механическим напряжением. Неоднородное микроскопическое растяжения описывает локальные события, происходящие на уровне, соответствующем размеру кристаллитов. Речь при этом, прежде всего, идет о растяжениях, которые возникают при соответствующем нагружении предлагаемого в изобретении композиционного материала и инициируют необходимый согласно изобретению переход тетрагональной фазы оксида циркония в моноклинную фазу. Переход тетрагональной фазы в моноклинную фазу, который сопровождается увеличением объема примерно на 4%, подробно описан в литературе, например, в D.J.Green, Transformation Toughening of Ceramics, издательство CRC Press Florida, 1989, ISBN 0-8493-6594-5. Указанный переход обусловлен возникновением высоких локальных напряжений при растяжении, например, вблизи дефектов материала, и является причиной повышения трещиностойкости материала, так называемого усиления превращения. Вследствие фазового превращения отдельных кристаллитов оксида циркония окружащие их зоны существенно расширяются. Для оптимального полезного использования данного процесса в предлагаемом в изобретении композиционном материале в целях улучшения его свойств локальные расширения зон вокруг преобразованных кристаллитов оксида циркония аккомодируют благодаря предлагаемому в изобретении использованию диспергированной фазы.
В соответствии с настоящим изобретением под аккомодацией подразумевают следующий механизм: в случае присутствия предусматриваемых согласно изобретению дисперсоидов поддерживаются локальные растяжения, соответственно деформации, возникающие в определенном объеме при соответствующем нагружении предлагаемого в изобретении композиционного материала вследствие фазового превращения оксида циркония, препятствием для которых являлись бы жесткие кристаллы оксида алюминия или оксида циркония. Согласно изобретению это достигается, прежде всего, благодаря тому, что используемые согласно изобретению дисперсоиды способствуют локальной деформации сдвига, соответственно неупругой микродеформации. Предпосылкой для подобной локальной микродеформации, а следовательно, предусматриваемой согласно изобретению аккомодации, является наличие особых свойств у предусматриваемых согласно изобретению дисперсоидов. Предусматриваемые согласно изобретению дисперсоиды, предусматриваемые согласно изобретению кристаллы дисперсоидов, вследствие их кристаллической структуры или наличия внутренних поверхностей раздела оказывают гораздо меньшее сопротивление деформации сдвига, соответственно микродеформации по сравнению с используемыми до последнего времени согласно уровню техники жесткими кристаллами оксида алюминия или оксида циркония.
Растяжение-аккомодация оказывают благоприятное воздействие на внутренние напряжения и локальное распределение фазового превращения оксида циркония в предлагаемом в изобретении композиционном материале при вызывающем указанное превращение напряжении, благодаря чему эффективно достигают более высокого сопротивления распространению трещин (более высокой трещиностойкости).
Подобный принцип, неожиданно действующий в предлагаемом в изобретении композиционном материале, а также предлагаемые в изобретении свойства композиционного материала до последнего времени не были известны из уровня техники.
Для изготовления предлагаемого в изобретении композиционного материала используют известную обычную для керамических материалов технологию. При этом основными являются, например, следующие технологические операции:
a) приготовление порошковой смеси заданного состава в воде при необходимости с использованием разжижителей во избежание седиментации,
b) гомогенизация в диссольвере (быстроходном перемешивающем устройстве),
c) размол в бисерной мельнице, обеспечивающий повышение удельной поверхности порошковой смеси (соответственно измельчение),
d) возможное добавление органических связующих веществ,
e) распылительная сушка, в результате которой образуется сыпучий гранулят с определенными свойствами,
f) смачивание гранулята водой,
g) аксиальное или изостатическое прессование,
h) дообжиговая обработка посредством режущего инструмента, при которой с учетом происходящей при спекании усадки в максимальной степени формируют конфигурацию конечного изделия,
i) предварительный обжиг, который сопровождается усадкой до плотности, составляющей около 98% от теоретического значения; остающиеся поры замкнуты снаружи,
j) горячее изостатическое прессование при высокой температуре и высоком давлении газа с практически полным окончательным уплотнением,
k) так называемый «белый обжиг», в процессе которого устраняют неравновесное состояние ионов кислорода в керамическом изделии, возникающее при горячем изостатическом прессовании,
l) послеобжиговая обработка путем шлифования и полирования,
m) термическая обработка.
Предлагаемый в изобретении композиционный материал может находить применение, например, для изготовления спекаемых формованных изделий, деталей медицинской техники, способных поглощать энергию при динамическом нагружении, ортезов и эндопротезов, например, имплантатов тазобедренных или коленных суставов, свёрл, например, для медицинского применения, а также конструкционных элементов, подвергающихся трибологическому, химическому и/или термическому воздействию.
Таким образом, настоящее изобретение относится к композиционному материалу, состоящему из оксида алюминия в качестве керамической матрицы, диспергированного в ней оксида циркония и при необходимости дополнительных добавок/фаз, причем:
- в качестве первой фазы композиционный материал содержит по меньшей мере 65% об. оксида алюминия и в качестве второй фазы от 10 до 35% об. оксида циркония, а также при необходимости одну или несколько неорганических добавок, причем преимущественная часть оксида циркония, составляющая в пересчете на общее содержание оксида циркония предпочтительно от 80 до 99%, особенно предпочтительно от 90 до 99%, находится в виде тетрагональной фазы, и причем стабилизацию преимущественной части тетрагональной фазы оксида циркония осуществляют не химически, а механически.
Особенно предпочтительным является предлагаемый в изобретении композиционный материал, причем:
- средний размер частиц оксида циркония составляет от 0,1 до 0,5 мкм, предпочтительно от 0,15 до 0,25 мкм,
- содержание химических стабилизаторов в пересчете на оксид циркония ограничено значениями, гораздо более низкими по сравнению с соответствующими химическими стабилизаторами, используемыми согласно уровню техники,
- содержание химических стабилизаторов в предлагаемом в изобретении композиционном материале составляет: Y2O3≤1,5% мол., предпочтительно ≤1,3% мол., CeO2≤3% мол., MgO≤3% мол. и CaO≤3% мол., соответственно в пересчете на содержание оксида циркония,
- общее содержание химических стабилизаторов составляет менее 0,2% мол.,
- композиционный материал не содержит химических стабилизаторов,
- оксид алюминия и/или оксид циркония содержат растворимые составные части,
- в качестве растворимых составных частей оксид алюминия и/или оксид циркония содержат один или несколько следующих элементов: хром (Cr), железо (Fe), магний (Mg), титан (Ti), иттрий (Y), цезий (Ce), кальций (Ca), лантаниды и/или ванадий (V),
- дополнительно в качестве вторичного компонента присутствует другая фаза (диспергируемая фаза),
- диспергируемая фаза содержит дисперсоиды, которые способствуют неупругим микродеформациям на микроскопическом уровне,
- диспергируемая фаза в качестве дисперсоидов содержит пластинки, которые в связи с их кристаллической структурой способствуют деформациям сдвига на микроскопическом уровне,
- размер частиц дисперсоидов, содержащихся в диспергируемой фазе, гораздо выше размера частиц оксида алюминия, соответственно оксида циркония,
- размер частиц дисперсоидов предпочтительно составляет от 1 до 5 мкм,
- объемное содержание дисперсоидов, образующих диспергированную фазу, гораздо меньше содержания оксида циркония,
- объемное содержание дисперсоидов, образующих диспергированную фазу, составляет до 10% об., предпочтительно от 2 до 8% об., особенно предпочтительно от 3 до 6% об.,
- содержание дисперсоидов, образующих диспергированную фазу, составляет от 2 до 30 ммолей на 100 г общей массы,
- в качестве дисперсоидов используют химически стабильные вещества, которые в процессе изготовления композиционного материала путем осуществляемого при высоких температурах спекания не переходят в раствор в оксиде алюминия или оксиде циркония,
- в качестве дисперсоида используют алюминат стронция (SrAl12O19) или алюминат лантана (LaAl11O18),
- прочность композиционного материала при разрыве составляет более 1300 МПа.
Кроме того, настоящее изобретение относится к применению предлагаемого в изобретении композиционного материала:
- для изготовления спекаемых формованных изделий,
- для изготовления деталей, способных поглощать энергию при динамическом нагружении,
- в медицинской промышленности,
- для изготовления искусственных протезов в медицинской промышленности, например для изготовления ортезов и эндопротезов,
- для изготовления имплантатов тазобедренных или коленных суставов.
Приведенные ниже серии опытов служат для более подробного пояснения настоящего изобретения и не ограничивают его объема.
Серия опытов 1
Трещиностойкость в зависимости от содержания образующего пластинки дисперсоида
На Фиг.1 показаны результаты осуществления серии опытов с варьируемым содержанием предлагаемых в изобретении дисперсоидов. Дисперсоид в данном случае образован стронцием, содержания которого указаны на Фиг.1 в ммолях на 100 г общей массы. В каждом конкретном случае испытывают по-разному приготовленные образцы, отличающиеся друг от друга, например, длительностью измельчения или растворимыми добавками. Числу отдельных опытов для каждого содержания дисперсоида соответствует указанный на Фиг.1 номер n.
Трещиностойкость измеряют методом вдавливания индентора Викерса (HV10). Как показано на Фиг.1, в отсутствие дисперсоидов (нулевое содержание образующего пластинки дисперсоида) трещиностойкость гораздо ниже трещиностойкости при более высоких содержаниях дисперсоидов. Максимальной трещиностойкости в данной серии опытов достигают при содержании дисперсоидов 30 ммол/100 г матрицы. Существенное повышение трещиностойкости наблюдается уже при чрезвычайно низких СО-держаниях дисперсоидов.
Серия опытов 2
Трещиностойкость в зависимости от содержания стабилизатора
На Фиг.2 показаны результаты осуществления серии опытов, в соответствии с которыми повышение трещиностойкости обеспечивают путем сокращения количества используемого химического стабилизатора. На Фиг.2 приведена трещиностойкость для разных рецептур от F до I. Основными компонентами всех указанных рецептур являются Al2O3 и ZrO2 (21% масс.). Рецептуры отличаются друг от друга типом и количеством химического стабилизатора: рецептура F - отсутствие стабилизатора, рецептура G - 1% мол. Y2O3, рецептура Н - 5% мол. CeO2, рецептура 1-10 мол. CeO2. Количества стабилизаторов указаны в пересчете на содержание оксида циркония. Как известно, церий и иттрий обладают действием химических стабилизаторов тетрагональной фазы оксида циркония. Как показано на Фиг.2, добавление стабилизатора каждого из указанных типов приводит к значительному снижению трещиностойкости материала.
Серия опытов 3
Варьирование размера частиц и стабилизации
На Фиг.3 показаны результаты осуществления серии опытов, в соответствии с которыми исследуют взаимное воздействие химической стабилизации и структуры. Материалы J, K и L обладают следующими характеристиками:
материалом J является ZTA с содержанием ZrO2 24% масс., SrAl12O19 3% масс. и Y2O3 1,3% мол., причем размер частиц оксида циркония составляет 0,3 мкм,
материал K идентичен материалу J, однако размер частиц оксида циркония составляет 0,2 мкм; как показано на Фиг.3, уменьшение размера частиц оксида циркония приводит к существенному уменьшению трещиностойкости, равносильному чрезмерной механической стабилизации,
материал L идентичен материалу J, однако содержит в два раза меньшее количество Y2O3; уменьшение содержания этого химического стабилизатора позволяет скомпенсировать чрезмерную механическую стабилизацию и тем самым существенно повысить трещиностойкость.
Серия опытов 4
Прочность в зависимости от содержания дисперсоидной фазы
На Фиг.4 показаны результаты осуществления серии опытов, в соответствии с которыми исследуют зависимость прочности предлагаемых в изобретении композиционных материалов от содержания дисперсоидной фазы в матрице. Добавление образующих пластинки оксидов (в данной серии опытов SrAl12O19) обеспечивает значительное повышение прочности при изгибе в четырех точках. Аналогично трещиностойкости максимальному скачку прочности соответствует интервал содержаний образованных дисперсоидом пластинок от 0 и 10 ммол/100 г матрицы. Результатом дальнейшего повышения содержания указанных пластинок до 27 ммол/100 г матрицы является дополнительное незначительное увеличение прочности. Добавление предлагаемых в изобретении дисперсоидов позволяет достичь показателей прочности, превышающих 1300 МПа, что невозможно обеспечить без использования дисперсоидов.
Серия опытов 5
Влияние химической стабилизации на гидротермальное старение
На Фиг.5 показаны результаты осуществления серии опытов, в соответствии с которыми исследуют влияние химической стабилизации на гидротермальное старение.
Результаты исследования гидротермального старения (VA - до старения, NA - после старения) представлены в виде относительного прироста содержания моноклинной фазы при выдержке в атмосфере водяного пара. Исследования выполняют согласно проекту стандарта ISO/DIS 6474-2 в следующих условиях: водяной пар, давление 0,2 МПа, температура 134°С, 10 часов. Рецептуры 1 и 2 отличаются друг от друга лишь содержанием оксида иттрия:
рецептура 1 содержит 1,3% мол. оксида иттрия,
рецептура 2 содержит 0,0% мол. оксида иттрия.
Содержание моноклинной фазы в обеих исходных рецептурах составляет менее 10%. Для лучшей наглядности содержание моноклинной фазы на Фиг.5 указано в относительных единицах.
Относительное увеличение содержания моноклинной фазы в случае рецептуры 1 составляет 60%, в то время как изменение содержания моноклинной фазы в случае рецептуры 2 отсутствует. Данный результат является подтверждением положенного в основу настоящего изобретения технического решения, согласно которому отказ от химической стабилизации приводит к существенному повышению стабильности предлагаемого в изобретении композиционного материала в условиях гидротермального старения.

Claims (19)

1. Композиционный материал из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, а также одной или нескольких неорганических добавок, отличающийся тем, что в качестве первой фазы указанный материал содержит по меньшей мере 65 об.% оксида алюминия, в качестве второй фазы от 10 до 35 об.% оксида циркония, и дополнительную дисперсоидную фазу, причем преимущественная часть оксида циркония, в пересчете на общее содержание оксида циркония, находится в виде тетрагональной фазы, оксид циркония имеет средний размер частиц, составляющий от 0,1 до 0,5 мкм, дисперсоидная фаза в качестве дисперсоидов содержит пластинки, которые в связи с их кристаллической структурой способствуют деформациям сдвига на микроскопическом уровне, и доля химических стабилизаторов в указанном материале составляет для Y2O3≤1,5 мол.%, для CeO2≤3 мол.%, для MgO≤3 мол.% и для CaO≤3 мол.%, в каждом случае в пересчете на содержание оксида циркония.
2. Композиционный материал по п. 1, отличающийся тем, что оксид циркония от 80 до 99% в пересчете на общее содержание оксида циркония находится в виде тетрагональной фазы.
3. Композиционный материал по п. 1, отличающийся тем, что оксид циркония от 90 до 99% в пересчете на общее содержание оксида циркония находится в виде тетрагональной фазы.
4. Композиционный материал по п. 1, отличающийся тем, что оксид циркония имеет средний размер частиц, составляющий от 0,15 до 0,25 мкм.
5. Композиционный материал по п. 1, отличающийся тем, что доля химических стабилизаторов в нем составляет для Y2O3≤1,3 мол.%.
6. Композиционный материал по п. 1, отличающийся тем, что общее содержание химических стабилизаторов составляет менее 0,2 мол.%.
7. Композиционный материал по п. 1, отличающийся тем, что он свободен от химических стабилизаторов.
8. Композиционный материал по п. 1, отличающийся тем, что оксид алюминия и/или оксид циркония содержат растворимые составные части.
9. Композиционный материал по п. 8, отличающийся тем, что в качестве растворимых составных частей оксид алюминия и/или оксид циркония содержат один или несколько из следующих элементов: хром (Cr), железо (Fe), магний (Mg), титан (Ti), иттрий (Y), церий (Ce), кальций (Ca), лантаниды и/или ванадий (V).
10. Композиционный материал по п. 1, отличающийся тем, что дисперсоидная фаза содержит дисперсоиды, которые способствуют неупругим микродеформациям на микроскопическом уровне.
11. Композиционный материал по п. 1, отличающийся тем, что размер частиц дисперсоидов, содержащихся в дисперсоидной фазе, гораздо выше размера частиц оксида алюминия, соответственно оксида циркония.
12. Композиционный материал по п. 11, отличающийся тем, что размер частиц дисперсоидов предпочтительно составляют от 1 до 5 мкм.
13. Композиционный материал по п. 1, отличающийся тем, что объемная доля дисперсоидов, образующих дисперсоидную фазу, гораздо меньше доли оксида циркония.
14. Композиционный материал по п. 1, отличающийся тем, что объемная доля дисперсоидов, образующих дисперсоидную фазу, составляет до 10 об.%, предпочтительно от 2 до 8 об.%, особенно предпочтительно от 3 до 6 об.%.
15. Композиционный материал по п. 1, отличающийся тем, что содержание дисперсоидов, образующих дисперсоидную фазу, составляет от 2 до 30 ммолей на 100 г общей массы.
16. Композиционный материал по п. 1, отличающийся тем, что в качестве дисперсоидов используют химически стабильные вещества, которые в процессе изготовления композиционного материала путем осуществляемого при высоких температурах спекания не переходят в раствор в оксиде алюминия или оксиде циркония.
17. Композиционный материал по одному из пп. 1-16, отличающийся тем, что в качестве дисперсоида используют алюминат стронция (SrAl12O19) или алюминат лантана (LaAl11O18).
18. Композиционный материал по одному из пп. 1-16, отличающийся тем, что его прочность при разрыве составляет более 1300 МПа.
19. Применение композиционного материала по одному из пп. 1-18 для изготовления спекаемых формованных изделий или для изготовления деталей, способных поглощать энергию при динамическом нагружении, или в медицинской промышленности, или для изготовления искусственных протезов в медицинской промышленности, например для изготовления ортезов и эндопротезов, или для изготовления имплантатов тазобедренных или коленных суставов.
RU2012129678/03A 2009-12-16 2010-12-16 Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов, а также из диспергированной фазы RU2569525C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009054799.1 2009-12-16
DE102009054799 2009-12-16
DE102009054798.3 2009-12-16
DE102009054798 2009-12-16
PCT/EP2010/069995 WO2011083023A1 (de) 2009-12-16 2010-12-16 Keramischer verbundwerkstoff, bestehend aus den hauptbestandteilen aluminiumoxid und zirkonoxid und einer dispersoiden phase

Publications (2)

Publication Number Publication Date
RU2012129678A RU2012129678A (ru) 2014-01-27
RU2569525C2 true RU2569525C2 (ru) 2015-11-27

Family

ID=43754788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012129678/03A RU2569525C2 (ru) 2009-12-16 2010-12-16 Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов, а также из диспергированной фазы

Country Status (10)

Country Link
US (1) US9630883B2 (ru)
EP (1) EP2513010B1 (ru)
JP (1) JP5813002B2 (ru)
KR (1) KR101747870B1 (ru)
CN (1) CN102869635B (ru)
AU (1) AU2010340893B2 (ru)
CA (1) CA2784692C (ru)
DE (1) DE102010063290A1 (ru)
RU (1) RU2569525C2 (ru)
WO (1) WO2011083023A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189195U1 (ru) * 2018-11-12 2019-05-15 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Керамический композиционный материал
RU2710648C1 (ru) * 2018-12-18 2019-12-30 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Керамический композиционный материал
RU2755584C1 (ru) * 2020-11-09 2021-09-17 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Стенка широкополосного обтекателя
RU2816157C1 (ru) * 2023-06-23 2024-03-26 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Беспористый керамический композит на основе оксида циркония

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005485A (ko) * 2009-04-01 2012-01-16 세람테크 게엠베하 세라믹 커팅 템플릿
WO2011000390A1 (en) * 2009-06-30 2011-01-06 Aktiebolaget Skf Zirconia-alumina ceramic materials
CN103189975B (zh) * 2010-11-01 2016-02-17 日铁住金电设备株式会社 电子零部件元件收纳用封装
WO2014029757A1 (de) * 2012-08-20 2014-02-27 Ceramtec Gmbh Zirkonoxid-basierter verbundwerkstoff
DE102012110322B4 (de) * 2012-10-29 2014-09-11 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
BR112015019352B1 (pt) 2013-02-13 2021-05-04 Ceramtec Gmbh material de óxido de zircônio e uso do mesmo
DE102014113416B4 (de) * 2013-11-21 2017-09-28 Oximatec Gmbh Oxide Material Technologies Keramikwerkstoff
EP2947061B1 (en) * 2014-05-19 2020-02-19 BBL Technology Transfer GmbH & Co. KG Bioceramic component
PL2975010T3 (pl) * 2014-07-14 2017-01-31 Refractory Intellectual Property Gmbh & Co. Kg Ditlenek cyrkonu, zastosowanie ditlenku cyrkonu i sposób wytwarzania wyrobu ogniotrwałego
CN108135706B (zh) * 2015-10-07 2020-06-05 陶瓷技术有限责任公司 用于替代膝部关节的至少部分的膝部内假体
CN106083002B (zh) * 2016-06-22 2018-11-23 淄博职业学院 低温烧结原位合成六铝酸镧增强的氧化铝陶瓷及其制备
CN106830973A (zh) * 2017-02-09 2017-06-13 江苏省陶瓷研究所有限公司 一种新型Al2O3/ZrO2(Y2O3)复相陶瓷的制备方法
CN106866127B (zh) * 2017-02-21 2020-11-10 山东锆铪耐火材料科技有限公司 耐1800-2000℃温度的耐火材料
CN108329018B (zh) * 2018-01-12 2020-06-19 海南大学 一种增韧氧化铝复合陶瓷及其制备方法
DE102019201098A1 (de) 2019-01-29 2020-07-30 Thyssenkrupp Ag Verschleißschutzelement für eine Zerkleinerungsvorrichtung
DE102019201097A1 (de) * 2019-01-29 2020-07-30 Thyssenkrupp Ag Verschleißschutzelement für eine Zerkleinerungsvorrichtung
CN110078480B (zh) * 2019-04-18 2022-01-28 常州华森医疗器械股份有限公司 一种人工关节用陶瓷复合材料及其制备方法
CN115304372A (zh) * 2021-05-07 2022-11-08 苏州宸泰医疗器械有限公司 氧化锆复合陶瓷及由其制备的骨植入假体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032555A (en) * 1988-05-16 1991-07-16 Allied-Signal Inc. Process for making zirconia-alumina
RU2164503C2 (ru) * 1999-05-21 2001-03-27 Сибирский химический комбинат Шихта для изготовления керамики
US7148167B2 (en) * 2003-08-28 2006-12-12 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2549652B2 (de) * 1975-11-05 1980-05-29 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Keramikformkörper hoher Bruchzähigkeit
JPS6259565A (ja) * 1985-09-06 1987-03-16 第一稀元素化学工業株式会社 高密度アルミナ・ジルコニア焼結体およびその製造方法
US4771022A (en) * 1986-02-26 1988-09-13 The United States Of America As Represented By The Secretary Of Commerce High pressure process for producing transformation toughened ceramics
DD263703A1 (de) 1987-06-11 1989-01-11 Akad Wissenschaften Ddr Keramisches humanimplantat als knochenersatz
JP2810922B2 (ja) * 1987-09-25 1998-10-15 株式会社リケン アルミナージルコニア複合焼結体及びその製造方法
US5082809A (en) * 1987-12-21 1992-01-21 Kyocera Corporation High-strength alumina sintered body and process for preparation thereof
US5002911A (en) * 1989-04-07 1991-03-26 Cerametec, Inc. Ceramics with high toughness, strength and hardness
JPH0829975B2 (ja) * 1993-12-24 1996-03-27 工業技術院長 アルミナ基セラミックス焼結体
KR100635675B1 (ko) * 1997-10-31 2006-10-17 세람텍 아게 이노바티베 세라믹 엔지니어링 소형판이 보강된 소결체
US20020010070A1 (en) 2000-04-25 2002-01-24 Bernard Cales Zirconia-toughened alumina biocomponent having high resistance to low temperature degradation and method for preparing same
EP1188729A3 (de) 2000-09-13 2004-03-31 CeramTec AG Innovative Ceramic Engineering Verbundwerkstoff mit plateletverstärkter Aluminiumoxidkeramik-Matrix
CN1256298C (zh) * 2003-07-16 2006-05-17 中国科学院上海硅酸盐研究所 高强度氧化铝/氧化锆/铝酸镧复相陶瓷及制备方法
JP4883885B2 (ja) * 2004-01-28 2012-02-22 京セラ株式会社 生体部材及びその製造方法並びに人工関節
EP1679089A4 (en) * 2003-10-30 2009-11-04 Kyocera Corp BIOLOGICAL ELEMENT AND METHOD FOR ITS MANUFACTURE
WO2006080473A1 (ja) * 2005-01-27 2006-08-03 Kyocera Corporation 複合セラミックス及びその製法
BRPI0810501A2 (pt) * 2007-04-27 2014-10-14 Ceramtec Ag Material cerâmico
DE102007020471A1 (de) 2007-04-27 2008-11-06 Ceramtec Ag Innovative Ceramic Engineering Sinterformkörper
DE102007020473B4 (de) * 2007-04-27 2016-03-03 Ceramtec Gmbh Keramischer Werkstoff, seine Verwendung und Sinterformkörper
DE102008044906A1 (de) * 2008-08-29 2010-03-04 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung eines feinteiligen Pulverwerkstoffs sowie ein solcher Pulverwerkstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032555A (en) * 1988-05-16 1991-07-16 Allied-Signal Inc. Process for making zirconia-alumina
RU2164503C2 (ru) * 1999-05-21 2001-03-27 Сибирский химический комбинат Шихта для изготовления керамики
US7148167B2 (en) * 2003-08-28 2006-12-12 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAHAMAN M.N. et al "Ceramic for Prosthetic Hip and Knee Joint Replacement", Journal of American Ceramic Society, 90(7), 2007, p.1977-1980. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189195U1 (ru) * 2018-11-12 2019-05-15 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Керамический композиционный материал
RU2710648C1 (ru) * 2018-12-18 2019-12-30 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Керамический композиционный материал
RU2755584C1 (ru) * 2020-11-09 2021-09-17 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Стенка широкополосного обтекателя
RU2816157C1 (ru) * 2023-06-23 2024-03-26 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Беспористый керамический композит на основе оксида циркония

Also Published As

Publication number Publication date
US9630883B2 (en) 2017-04-25
RU2012129678A (ru) 2014-01-27
JP2013514250A (ja) 2013-04-25
KR101747870B1 (ko) 2017-06-15
CA2784692C (en) 2018-09-18
CN102869635A (zh) 2013-01-09
DE102010063290A1 (de) 2011-06-22
WO2011083023A1 (de) 2011-07-14
KR20120123324A (ko) 2012-11-08
CA2784692A1 (en) 2011-07-14
US20120252656A1 (en) 2012-10-04
AU2010340893A1 (en) 2012-08-02
AU2010340893B2 (en) 2015-07-30
JP5813002B2 (ja) 2015-11-17
EP2513010A1 (de) 2012-10-24
EP2513010B1 (de) 2017-08-30
CN102869635B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
RU2569525C2 (ru) Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов, а также из диспергированной фазы
RU2592319C2 (ru) Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов
Dehestani et al. Phase stability and mechanical properties of zirconia and zirconia composites
DE102007020473B4 (de) Keramischer Werkstoff, seine Verwendung und Sinterformkörper
EP2144856B1 (de) Verwendung eines sinterformkörpers in der medizintechnik
JP5649959B2 (ja) セラミック材料
JP2015516351A (ja) Y2o3安定化酸化ジルコニウムから構成されるセラミック焼結成形体と、y2o3安定化酸化ジルコニウムから構成されるセラミック焼結成形体の製造方法
Song et al. Enhanced mechanical properties of 3 mol% Y2O3 stabilized tetragonal ZrO2 incorporating tourmaline particles
Ganesh et al. Influence of chemical composition on sintering ability of ZTA ceramics consolidated from freeze dried granules
dos Santos et al. Effect of Al2O3 addition on the mechanical properties of biocompatible ZrO2-Al2O3 composites
Goyos et al. Alumina-Ceria-TZP nanocomposites obtained in an alcohol medium by two differente processing routes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181217